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Abstract—Radio resource allocation is a major research field
in wireless networks. The main challenge is to find the most
suitable user for each time and frequency resource to ensure
the Quality of Service (QoS) requirements. The use of Massive
Multiple-Input-Multiple-Output (MIMO) makes it possible to
simultaneously schedule several users on the same time and
frequency resources. This is a new paradigm for resource
scheduling. In this context, resource allocation algorithms have
to account for the choice of users served on the same time and
frequency resource in their decision mechanism. In this paper we
analyze the impact of different group sizes on system capacity
using several user selection algorithms and we propose a new
user selection algorithm which performs closer to the optimal
algorithm proposed in the literature.

Index Terms—5G, Massive-MU-MIMO, User selection, Re-
source allocation.

I. INTRODUCTION

One of the key technologies for 5G radio transmission is
Massive-MIMO [1]. Having a larger number of antennas at
the base station can significantly improve the link budget by
focusing the energy in the chosen direction [2]. Focusing the
energy can also be used to serve multiple users (MU) on the
same time and frequency resource. This technology opens the
way to conceiving new scheduling algorithms in order to make
the most of Massive-MIMO.

In MU mode, when several users are served on the same
time-frequency unit, they are said to be in the same group.
The total system rate is expected to be higher compare to
single user (SU) mode. However, there is intracell interference,
which increases with the number of users by group and reduces
the bit rate. Reducing interference is crucial but done at the
expense of individual throughput. Indeed, an efficient grouping
strategy is necessary to find the best compromise between
interference reduction and individual throughput.

For such strategies to be developed, efficient indicators
are required. Papers from the literature suggest using the
correlation of users’ channel matrices [3], [4] as grouping
indicator. In our previous study [5] we noticed that this
correlation was not a suitable indicator for user selection in our
simulating context, due to its instability and lack of accuracy
in predicting the throughput impact.

The objective of this paper is to propose a new indicator
for group selection in a MU-MIMO context. First, we study
different user selection algorithms and propose a new solution
based on previous user selections. Then, we evaluate the

impact of group size on overall system throughput. Our
solution, called Efficient System Capacity User Selection (ES-
CUS), progressively builds its indicator upon previous users’
selections by storing users’ throughput and selecting groups of
pairs of users. As the system’s capacity to manage more users
simultaneously increases, so does the algorithm’s complexity.
This indicator depends on the obtained throughput between
pairs of users and does not increase in complexity when
the number of users per group increases. Thanks to channel
stability due to channel hardening [6], this indicator is stable
in time and frequency. Results show a strong increase in the
system throughput compared to a correlation based algorithm.

The paper is organized as follows. Section II provides a
detailed description of the system in question. Section III
presents our new algorithm proposal for user selection. Section
IV introduces the main parameters of our simulation setup and
the performance evaluation of our new solution. Section V
concludes the paper.

II. DESCRIPTION OF THE TRANSMISSION CHAIN

We consider one base station (BS, also called gNB) and
several pieces of user equipment (UE) and study the downlink
transmission. In order to maintain our simulation time a
reasonable limit, each simulation frame has a duration of 10ms
with a usable bandwidth of 2 MHz. This frame is divided into
resource units (RU) with 60 kHz bandwidth and 1 ms length.
We define B as the bandwidth of the RU, U as the set of all
UEs in the cell, A as the set of all UE allocated simultaneously
to the same RU, and nt, nr the number of antennas at the
transmitter (BS) and at the receiver (UE), respectively. The
channel between the set of antennas at the BS and the set of
antennas at UE i is modelled by complex matrix Hi. The
precoding matrix at the BS is represented by matrix Fi and
the digital combining matrix at UE i is represented by W∗

i .
The white noise average power is denoted by σ2

N. Note that
interference from neighbouring base stations can be integrated
in σ2

N.
The channel matrix of a UE i is given by Hi[t] ∈ Cnr×nt

and is perfectly known at the gNB. Matrix Hi is generated
using the Saleh-Valenzuela model [16] extended to millimeter
waves. The advantage of this channel model is that it can be
validated with measured data. The total number of parallel
transmissions that can be made on the same RU by one gNB
is given by nt. The maximum number of transmissions on the



same RU to a given UE is min(nt, nr). The time is considered
discrete and ∆t is equivalent to a timeslot. We assume that the
coherence time of the channel is greater than ∆t and therefore
greater than the scheduling time.

A. Transmission model

At a given time, scheduling can be viewed as an indi-
cator function: δi(t) where i is the UE index and δi(t) ∈
[0,min(nt, nr)] gives the number of streams on the resource
allocated to i.

We have the following constraint:∑
i∈U

δi(t) ≤ nt. (1)

The potential number of usable resources is given by nt×K,
where K is the number of resource units. We assume that
there is no limitation regarding the number of RF chains and
the processing capacity. To illustrate the previous equation, we
can consider a number of UEs equal to nt ×K, for example
nt ×K = 100. In this case, UEs will only have 1 RU among
100 on average per timeslot.

For the sake of clarity we omit t for this part. We denote the
precoding matrix associated with channel Hi as Fi ∈ Cnt×δi,k .
The dimension of Fi depends on the number of antennas at
the gNB and the selected streams. The signal transmitted to
UE i is :

xi = Fisi, (2)

where i ∈ U and si is the δi × 1 transmitted vector of
symbols at a given subcarrier . Note that si is null if δi = 0.
The overall signal transmitted by the base station is:

X =
∑

j∈U,δj>0

Fjsj . (3)

At the receiver, the signal is affected by the channel matrix
Hi, noise corrupting the received signal n of power σ2 and I
external cell interference:

yi = HiX︸ ︷︷ ︸
signal

+ I + n︸ ︷︷ ︸
external interference+noise

. (4)

Due to the fact that we are considering a Multi-User
transmission (MU-MIMO) the transmitted signal for other UEs
scheduled on the same RU has to be considered as internal
interference:

yi = HiFisi︸ ︷︷ ︸
signal

+
∑

j 6=i,δj>0

HiFjsj + (I + n)

︸ ︷︷ ︸
interference+noise

. (5)

This internal interference depends on the precoders’ Fj
orthogonality to the channel matrix Hi. The signal at the
receiver after combining is finally given by:

zi = W∗
iHiFisi + W∗

i

∑
j 6=i,δj>0

HiFjsj + W∗
i (n + I), (6)

where W∗
i [k] is the digital combining matrix [7] and (.)∗

the conjugate transpose of a complex matrix.

B. Precoding techniques

We consider two precoding methods:
1) singular-value decomposition (SVD): A MIMO channel

Hi of a user i can be decomposed using the SVD as follow:

Hi = UiΣiV
∗
i . (7)

The optimal precoder in SU-MIMO for i is Fi[2]:

Fi = ViΛ
1/2, (8)

where Λ1/2 is a diagonal matrix of which the element λi scales
the power transmitted.

2) Block Diagonal precoding [8][9]: In MU-MIMO sev-
eral users can be scheduled simultaneously on the same RU.
In such conditions, users can experience interference from
other users. The objective of the Block Diagonal precoder
is to eliminate UEs interference when they are scheduled in
a MU-MIMO context. Block Diagonal is similar to SVD,
with the addition of a prior step of interference cancelling.
Therefore, all users that are simultaneously scheduled have to
be considered in the precoding process.
We define H̃T

i the concatenation of channel matrices of all
users in A except i:

H̃T
i = [H∗1...H

∗
i−1H

∗
i+1...H

∗
A]∗, (9)

where A = card(A) is the number of elements in set A. Note
that H̃T

i is a nr×(A−1) rows and nt columns complex matrix.
We are using the SVD on H̃T

i .

H̃T
i = UT

i Σi[V
(1)
i V

(0)
i ]∗, (10)

where [V
(1)
i V

(0)
i ] is a nt × nt matrix. V (1)

i contains vectors
corresponding to nonzero singular values and V

(0)
i contains

vectors corresponding to zero singular values.

H̃T
i Ṽ

(0)
i = ŨiΣ̃i[Ṽ

(1)
i Ṽ

(0)
i ]∗. (11)

The total precoding matrix is given by:

TBD = [Ṽ
(0)
1 V

(1)
1 Ṽ

(0)
2 V

(1)
2 ...Ṽ

(0)
A V

(1)
A ]Λ1/2. (12)

C. User Equipment throughput in MU mode

For the MU mode, we consider the Block Diagonal (BD)
precoding technique [9] because the BD precoder is focused
on interference management and therefore limits the reduction
of the bit rate due to the intracell interference of the group.
The bit rate for UE i is given by [10] :

Ri = B log2

∣∣∣∣1nr +
W∗

i HiFi (W∗
i HiFi)

∗

W∗
i (σ21nr + Gi)Wi

∣∣∣∣ , (13)

where 1nr is an identity matrix of size nr and Gi is the intracell
interference of the group, which is given by:

Gi =
∑

j 6=i,δj>0

HiFj (HiFj)
∗. (14)



In MU, nt/nr is the limit on users served at the same time.
We define ns as the number of simultaneously scheduled users,
where ns ≤ nt/nr. The mean system rate R is:

R = E

[
ns∑
i=1

Ri

]
, (15)

where E is the mathematical expectation. We consider a large
set of random terminals, which are deployed randomly thanks
to the properties of the channel model. Thus, Hi is a random
matrix. In the following, for different configurations, we study
R, which is our main performance indicator.

D. User Equipment throughput in SU mode

In the SU mode, δi is non-zero for only one value of i. Thus,
there is no intracell interference and the rate Ci is maximized.
Equation (13) is simplified as:

Ci = B log2

∣∣∣∣1nr +
W∗

i HiFi (W∗
i HiFi)

∗

W∗
i (σ21nr)Wi

∣∣∣∣ . (16)

User throughput in SU mode is used as an indicator for
classical opportunistic resource allocation schedulers. It is the
main indicator for opportunistic scheduler, such as MaxSNR
[11].

E. Channel matrix correlation as interference management

In MU-MIMO good interference management is crucial
to fully benefit from the technique. As seen in [3] and [4]
channels matrix correlation is commonly used as an indicator
of the interference level between UEs. The correlation of two
UEs channel matrices indicates the interference level if they
are using the same RU simultaneously. The correlation of two
UEs is defined by [12]:

ξ(i, j) =
|tr(HiH

∗
j )|

||Hi||F ||Hj ||F
, (17)

where (.)∗ denotes the conjugate transpose operation and ||.||F
the Forbenius norm of a matrix.
One previous work [5] shows that the correlation is not astable
and accurate enough indicator to be used reliably in the user
selection process. This work is why we aim to find better and
more robust indicators for the user selection process.

III. NEW ALGORITHM PROPOSAL FOR USER SELECTION

We propose a solution, called Efficient System Capacity
User Selection (ESCUS), based on previous group allocations.
Our solution is based on a matrix M that stores the capacity
values obtained when 2 users are served in the same group.
This matrix is gradually built from previous allocations. ES-
CUS relies on a card(U)× card(U) matrix which is updated
at the end of the allocation process.

A common strategy for user grouping is to consider user
channel correlation as an indicator, as seen in [3], [4], [13].
This technique involves calculating of channel matrix correla-
tion, which must be regularly updated and which yields mixed
results. Our solution, ESCUS, has the advantage of being less
complex, even when we increase the number of users by group.

This solution is highly flexible and will be easy to adapt to
any MIMO system thanks to channel hardening [6].

M ∈ R+,card(U)×card(U),Mi,j = 0,∀i,j ∈ U

Select a,
where a = argmax(Ci)

A = {a}

na = card({Ma,j > 0})

if na > threshold

Select b,
where b = argmax(Ma,j),

∀j /∈ A

if Ma,b > E(Mi,j) s.t. Mi,j > 0
or na = card(U)− 1

Add b to set A

if card(A) < group size
or card(A) < nt

nr

Allocate resource to A,
δi(t) = 1, ∀i ∈ A

Set Ma,b = Ra +Rb, ∀a ∈ A,∀b ∈ A, b 6= a

Select b,
where b = argmax(Cj),
s.t. Ma,j = 0,∀j /∈ A

False

False

False

True

True

True

Fig. 1: Diagram of the proposed solution

ESCUS is divided into two main phases, exploration and
exploitation. When the system starts, user compatibility (group
quality) is unknown. During the exploration phase, ESCUS
associates users in a certain order, in order to populate its
database with throughput of different pairs of users. When
database completion reaches a certain level, ESCUS enters an
exploitation phase. During this phase, ESCUS selects users
to be served depending on the best obtained throughput in
the database. In each case, the database is always updated
if the obtained throughput evolves. In this way, users can be
served with the highest compatibility, based on their previous
association.

The indicator used by ESCUS is the cumulated throughput
of all pairs of users in previous groups. When the number of
users per group increases, the number of possible combination
increases as well. Storing the obtained throughput for each
combinations would require a large database, which would
grow with the number of users per group (a n-dimensional
matrix, with n the number of users per group). The larger the



database, the longer it takes to fill it, leading to more explo-
ration than exploitation. To avoid such constraints, the ESCUS
database only stores the throughput obtained by a pair of users.
The data to be stored corresponds to a card(U) × card(U)
matrix. Another advantage of using a bi-dimensional matrix
is its flexibility concerning the number of users per group,
allowing the same database structure to be used regardless of
the group size. The following example illustrates the database
structure. We consider a group of 3 users A = {a, b, c}.
ESCUS stores the sum of the rate for each possible pair set
in A. For example, Ma,b = Mb,a = Ra +Rb.

Independently from the current phase of ESCUS, the first
user of the group is always selected according to a MaxSNR
strategy [11] in order to maximize the total system rate. The
objective of ESCUS is only to maximize the system rate. If
fairness is considered, then another first-user selection strategy
can be applied, such as proportional fair [14], [15].

The first phase aims at discovering unknown shared
throughput between users. This exploration phase selects sec-
ondary users that have the best instantaneous SU throughput
(Ci). As stated previously, this MaxSNR strategy might be re-
placed by another strategy to reach different goals. During this
selection, only users with unknown throughput are selected
when scheduled with the first user. This process stops when
the number of selected users reaches the maximum group size.

When the database contains enough information, ESCUS
switches to exploitation mode. The threshold for this transition
depends on the system configuration and is set to 1

4 ×card(U)
in our examples, as it was found to be efficient in all antenna
configurations and allows for sufficient group diversity. A
more configuration-specific threshold might increase perfor-
mance even more.

During this second phase, ESCUS uses the data gathered
previously. Secondary users are selected according to the best
value in the database when associated with the first user. To
prevent allocating low value, the selected value is compared
to the mean of the database. When the value is lower, ESCUS
switches to exploration in order to find a more suitable pair
of users.

At the end of this selection process, the resource is allocated
to selected users. After this allocation, the matrix M is updated
with experienced throughput from each pair of users. This full
process is described in Figure 1.

IV. PERFORMANCE EVALUATION

A. Simulation set up

Twenty pieces of user equipment (UEs), randomly dis-
tributed in the cell, are considered. The UE channels are
mutually independent. A channel for a user i is generated
using the Saleh-Valenzuela model [16] extended to millimeter
waves, where the obstructed-line-of-sight (OLOS) parameters
are given in table I.

f 26 GHz Frequency
Λ 5 ns Cluster arrival rate
λ 1 ns Ray arrival rate
Γ 8.7 ns Cluster decay rate
γ 4.7 ns Ray decay rate
σ 0.1 rad Intra-cluster angles standard deviation

TABLE I: Channel model parameters, from [16]

We consider one sector in a typical 3-sector configuration:
the angle between the terminal and the base station is between
0◦ and 120◦ horizontally and between −45◦ and 45◦ vertically.
Antenna arrays at the base station and on the user side
are Uniform Linear Array (ULA), with λ

2 distance between
antenna elements, where λ is the wavelength of the central
frequency. We assume that the base station has full knowledge
of the channel for each UE.

ESCUS is compared to several simple and known algo-
rithms:

• 1stMaxSNR: a MaxSNR for the first user and then all
secondary users of the group are chosen using a random
function.

• FullMaxSNR: a MaxSNR for the first user and then all
secondary users of the group are chosen depending on
their SNR.

• Correlation-Based-User-Selection (CBUS) [3]: a
MaxSNR for the first user and then all secondary
users in the group are chosen according to the lowest
correlation with the first user.

• ESCUS: our proposed solution, which is described in
Section III

• Optimal: the exhaustive search for the best group.
This optimal solution guarantees the maximum system
throughput.

As a representative correlation based algorithm, CBUS
presents the advantage of focusing only on system rate maxi-
mization, as opposed to fairness-oriented algorithm [4] which
are not directly comparable to our solution. Two types of
performance evaluation were conducted, either with a small
system or with larger systems (with 20 and 60 users in the sys-
tem, respectively). A first study with a small system allowed
us to compare our solution with all of the aforementioned
strategies, including the optimal one. A second study focused
on Massive-MIMO systems, where large groups of users can
be simultaneously allocated. However, maximizing the number
of users per group did not always provide the best system
capacity, due to a strong increase in inter-group interference.
Another limiting factor is the number of RF chains, which
defines the limit of group size. A 3GPP technical report [17]
sets the maximum number of RF chains at 12. At this group
size, it is not possible to compute an optimal solution in
reasonable time, due to its polynomial complexity depending
on the number of users per group. Indeed, the throughputs
of all possible groups are computed and compared. The
optimal strategy is then excluded in section IV-C. Results are
obtained with the mean of 100 frame samples, to avoid a non-
representative statistical event.



(a) 2 UEs per group (b) 3 UEs per group

Fig. 2: Algorithms impact on total system capacity

(a) Antenna configuration nr = 4 and nt = 32 (b) Antenna configuration nr = 4 and nt = 64

Fig. 3: Group sizes impact on the system rate (for a 2 MHz bandwidth)

B. Performance evaluation with small number of users per
group

Figure 2 shows the percentage gain over a full random
solution for different algorithms on the total system rate,
using the same parameters and user deployments. With two
users per group (see Figure 2a) the gain for all the solutions
is significant over a random selection. MaxSNR increases
the capacity by 8.7% when used only on the first user and
14.8% when used on both users. The use of the correlation
on the second user (CBUS) only increases the gain by 1.3%
compared to a random second user. Our ESCUS solution based
on previous allocations selection, represents an important gain
over all the other solutions, 6.2% over full MaxSNR, and is
only 3.1% below the optimal strategy. With three users per

group (see Figure 2b) the gain compared to random allocation
is lower for all the classical solutions. MaxSNR applied only
on the first user is only 2.9% higher than random allocation
and 9.2%, when applied to all users. The solution using
the correlation, CBUS, benefits from the high interference
environment and is 2.3% higher than a random selection for
secondary users. However, its performance is still 4% below
full system MaxSNR allocation. Our solution is the only one
with an increase in its performance, with 20.4% higher than
full MaxSNR, but is 20.6% below the optimal strategy.

When the number of users per group increases, the level of
interference becomes harder to manage. ESCUS maintains its
performance when we increase the group size thanks to the
knowledge of previous allocations, whereas other solutions see
their performance decrease due to their lack of consideration



for group quality. Finally, the gap between our solution and
the optimal selection for three users per group is still large
and further work is needed to achieve optimal performance.

C. Performance evaluation with large number of users per
group

In this section, results with large user group sizes are
studied. Users are chosen among a set of 60 users randomly
distributed in the cell, thus increasing group diversity com-
pared to the previous setup.

Figure 3 shows the evolution of the total system rate
depending on the group size for two antenna configurations.
All algorithms show a slow increase up to their best system
rate and a fast decrease. Communicating simultaneously with
an increasing number of users increases the overall data rate,
but also causes interference between users in the same group.
When the number of users reaches a given size, interference
has a greater impact than the gain from MU-MIMO, leading
to a decrease in the total system rate. Depending on the user
selection algorithm, this achievable size may differ.

Algorithm performance matches those obtained in section
IV-B: random allocation is the worst solution, followed by
1stMaxSNR and then CBUS [3] and finally by FullMaxSNR
and our ESCUS solution.

As shown in Figure 3a, the system experiences a strong gain
by using ESCUS over FullMaxSNR with an increase of 11.7%,
with a group size of 5 users, and an increase of 30.9%, with a
group size of 6 users. In Figure 3b, the gain over FullMaxSNR
is slightly less with a gain of 7.5%, with a group size of 9
users and 12.4%, with a group size of 10 users.

Compared to correlation based algorithms, ESCUS performs
better for all group configurations with a higher total system
rate. The results in Figure 3a show an increase of 18.8% for
ESCUS compared to CBUS regarding the highest value of the
total system rate for any group size with nr = 4 and nt = 32.
Figure 3b, with nr = 4 and nt = 64, shows a lower increase,
of 13.4%.

V. CONCLUSION

New techniques such as Multi-User-MIMO greatly improve
performance over Single-User techniques. To enable the base-
station to smartly select users, user selection algorithms are
often based on users’ channel matrix correlations. In our pre-
vious work, we showed that using correlation as an indicator
was not suitable in our context. In this paper, we propose
a solution called ESCUS (Efficient System Capacity User
Selection) based on a new principle which uses previous group
allocations as an indicator. This solution is easier to calculate
than correlation-based strategies when the number of users per
group increases. In terms of performance, ESCUS presents
an important improvement compared to classical solutions. A
significant part of 5G depends on services-oriented networks.
In future work, we will focus on the integration of Quality of
Services metrics in the user selection process to compare our
solution to fairness-oriented strategies. Another perspective is
to consider channels with estimation errors, where our solution

should outperform adverse strategies based on full knowledge
of the channel.
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