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Abstract: This concept paper draws from our previous research on individual grip force data collected
from biosensors placed on specific anatomical locations in the dominant and non-dominant hand
of operators performing a robot-assisted precision grip task for minimally invasive endoscopic
surgery. The specificity of the robotic system on the one hand, and that of the 2D image-guided task
performed in a real-world 3D space on the other, constrain the individual hand and finger movements
during task performance in a unique way. Our previous work showed task-specific characteristics of
operator expertise in terms of specific grip force profiles, which we were able to detect in thousands
of highly variable individual data. This concept paper is focused on two complementary data
analysis strategies that allow achieving such a goal. In contrast with other sensor data analysis
strategies aimed at minimizing variance in the data, it is necessary to decipher the meaning of
intra- and inter-individual variance in the sensor data on the basis of appropriate statistical analyses,
as shown in the first part of this paper. Then, it is explained how the computation of individual
spatio-temporal grip force profiles allows detecting expertise-specific differences between individual
users. It is concluded that both analytic strategies are complementary and enable drawing meaning
from thousands of biosensor data reflecting human performance measures while fully taking into
account their considerable inter- and intra-individual variability.

Keywords: wireless technology; wearable biosensor; grip force data; statistical analysis

1. Introduction

Wireless technology provides the ability to communicate or control over distances
without requiring of wires or cables, or any other electrical conductors, but using electro-
magnetic waves, which were first conclusively proved to exist by the German physicist
Heinrich Hertz. After continuous efforts over a century, many types of wireless systems
have emerged, such as Infrared, Bluetooth, Wireless-Fidelity (WIFI), Radio Frequency Iden-
tification (RFID), Global Positioning System (GPS), etc. Presently, wireless technology plays
a key role throughout the world, and the applications could be found for communications
in cities [1], public buildings [2], individual houses [3], cars [4], people [5], animals [6].

Along with the advance of wireless technology, and other technique innovation
in sensor design, electronic and power management, wireless wearable biosensor sys-
tems [7,8] are currently developing rapidly, which can convert a biological response into
electrical measurements using electronic circuits, and allow transmiting the detected infor-
mation remotely without using cables or wires, to a data acquisition platform [9]. Unlike
conventional approaches, these devices enable convenient, continuous, unobtrusive and
real-time monitoring and analysis [10] of signals, including chemical signals such as gas
and biomolecules, thermals signals such as fever and hypothermia, electrophysiological
signals such as brainwave and cardiac activities, and physical signals such as pressure,
motion and, as will be shown in this paper, individual grip force data.

Individual grip force distributions necessary to complete functional tasks exhibit
functional redundancies and depend on the type of task [11]. For example, when a cylin-
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drical object needs to be manipulated, the middle finger will play an important role in
the generation of gross force contribution, especially when the task consists of lifting a
heavy object. In spherical grasp patterns, the contribution of the ring and small fingers is
important to the total grip force. Individual finger forces have also been found to differ
by gender [12] and age [13], indicating changes in the processing of fine motor control
tasks with increasing age, presumably caused by difficulties of late middle-aged adults to
produce any required amount of force rapidly.

This paper here is focused on data analysis strategies for the specific case of a precision
grip task for the control of a robot-assisted surgical platform. The specific characteristics
of the hard and software components of the robotic system are described in full detail in
our previous publications [10,14–18]. The robotic surgical system [19] is a prototype, and
data are currently available from one highly proficient expert user (with a total number of
about 116 thousand of data available), one moderately trained user (153 thousand) and, for
comparison, one complete novice user (171 thousand).

In a first part, we describe how issues relative to intra- and inter-individual variance
in the data need to be dealt in the specific case of human precision grip force deployment.
This involves particular statistical tools and metrics. Data variance in biosensor networks,
such as the grip force sensor network in the human hand explored here in this Figure 1, is
directly related to specific functional differences between locations where the sensors are
placed (our own work), and needs to be fully taken into account for the interpretation of
the data under the light of specific task constraints on the one hand, and biomechanical
constraints directly related to hand and finger movements during grip force deployment
on the other. This sheds a radically different light on analysis of variance by comparison
with cases where variance in the sensor data needs to be eliminated or minimized [20].

Figure 1. Sensor locations [17].

In a second part, we illustrate a method, which will be described in detail in the data
analysis section, that permits detecting individual spatio-temporal profiles in thousands of
variable grip force data by focusing on task specific finger locations. How can help under-
stand expertise-specific differences in grip force deployment between a highly proficient
operator, a trainee, and a complete novice, and how these anatomically specific and task
relevant grip forces evolve with time and level of training, will be shown.

The remainder of the paper is organised as follows. In Section 2, the materials and
methods are explained, including the experiment platform, sensor glove and experiment
design. The results are presented and the statistical analysis on time data, force data and
functionally representative sensors are investigated in Section 3. In Section 4, the discussion
of this study and some ideas for future work are proposed.

2. Materials and Methods
2.1. Experimental Platform

The experiment has been conducted on a robotic endoscope system called STRAS,
which stands for Single access and Transluminal Robotic Assistant for Surgeons [19,21],
aiming to optimally assist surgeons in minimally invasive procedures. It is designed for
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bi-manual intervention, and there is an endoscopic camera attached at the distal side of the
robotic endoscope and filming the users performing the task. During the manipulation of
the STARS endoscope system, as shown in Figure 2, the user can hold two joystick handles
to move and manipulate the endoscope tools in each hand while facing a monitor screen
that displays the camera view.

Figure 2. STRAS endoscope manipulation.

2.2. Sensor Glove Design

A pair of specific wearable wireless sensor gloves were developed [14,15], using
inbuilt Force Sensitive Resistors (FSR). Each of the small (5–10 mm diameter) FSR was
soldered to 10KΩ pull-down resistors to create a voltage divider. The voltage read by the
analog input of the Arduino is given by Equation (1)

Vout = RPDV3.3/(RPD + FFSR) (1)

where RPD the resistance of the pull down resistor, RFSRhe FSR resistance, and V3.3 is the
3.3 V supply voltage. FSR resistances can vary from 250 Ω when subjected to 20 Newton
(N) to about 10 MΩ when no force is applied at all. The voltage varies monotonically
between 0 and 3.22 Volt, as a function of the force applied, which is assumed uniform on
the sensor surface. In the experiments here, forces applied did not exceed 10 N; voltages
varied within the range of [0; 1500] mV. The relation between force and voltage is almost
linear within this range. It was ensured that all sensors provided similar calibration curves.

These FSR have been first glued inside the glove, and then secured by sewing a circular
piece of cloth around. For each glove, which is shown in Figure 3, twelve anatomically
relevant FSR are employed to measure the grip force applied on certain locations on the
fingers and in the palm, as illustrated in Figure 1.

Figure 3. Glove surface.

The software to acquire grip force data includes two parts: one running on the Arduino
Micro board embedded on the gloves, and the other running on the computer for data
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collection. Figure 4 shows this data acquisition process by taking Sensor 10 (S10) as an
example. Powered by Li-Po battery, the Micro board provides a regulated voltage, acquires
analog voltage output from each FSR sensor, which is merged with the time stamps
and sensor identification. This data package is then sent to the computer wirelessly via
Bluetooth with a frequency of 50 Hz, decoded by the computer software, and saved in an
excel file.

Figure 4. Diagram of data acquisition system [16].

2.3. Experimental Design

Equipped with the STRAS platform and the sensor gloves, a pick-and-drop image-
guided robot-assisted task was designed for this individual grip force study. The experi-
ment consists of manipulating the STRAS endoscope system with one hand while wearing
the sensor glove. The precision grip task is entirely image-guided [10,14–18] and executed
by a highly proficient expert user, a moderately trained user, and a complete novice. The
expert is left handed while the trained user and the novice are right handed, as illustrated
in Table 1. The left and right interfaces are identical, and this pick-and-drop task has been
realized with each hand here for ten successive sessions.

The specificity of the precision grip task in this case here may, on the one hand, be
described by the fact that the degrees of freedom for hand and finger movements are
unusually constrained. To operate the cylindrical handles in order to direct the surgical
tools, and to open and close the grippers at the tool-ends during the surgical task, only
sideways and forward/backward movements of the cylindrical handles are possible for
manipulating the tool movements in all directions in the three-dimensional workspace.
This is radically different from gripping cylindrical objects to lift and/or move them around
directly and freely in all possible directions. On the other hand, any surgical task executed
with the system, including the simulator task used for training and for which data were
collected and exploited in this paper here, imposes further constraints in terms of specific
task steps. These need to be executed one after the other in a precise order with the least of
effort, the greatest precision, and as swiftly as possible.

Essentially, this experiment consists of four critical steps. Figure 5 shows a snapshot
for these four steps from the video sequence captured by the endoscopic camera. As also
described in Table 2, to accomplish this four-step precision grip task, the user first activates
and moves the distal tool toward the object by manipulating the handles effectively. During
this step, movement along the depth in 2D image plane is required. When the tool arrives
the object location, the grippers will be opened to grab and lift the object firmly. In the
third step, the user has to move the tool with object until the target position, during which
only lateral movement is needed. In the last step, the user has to open the grippers and
drop the object [22–26].

Since the task here is entirely image-guided, the first task step here is the most difficult,
especially for the novice, as it requires moving the tool-tips ahead in depth along an
invisible z-axis in the 2D image plane. Even experts still have problems in adjusting to this
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problem, which can be quite challenging depending on the type of camera and imaging
system available to the surgeon on a specific platform. Here in our case, to accomplish
the task steps in optimal task time, and with maximal precision (i.e., no tool trajectory
corrections, no incidents) requires not only being familiar with the 2D image projection
of the three-dimensional task workspace, but also the skillful manipulation of the task-
relevant (left or right) handle of the robotic system, as pointed out in Section 2 of our
previous work [10,14–18].

Table 1. User Information

User Dominant Hand
Proficient expert Left

Intermediate user Right
Complete novice Right

Figure 5. Snapshot views of the four successive steps [15].

Table 2. Four-step pick-and-drop task.

Step Description
1 Activate and move tool towards object location
2 Open and close grippers to grasp and lift object
3 Move tool with object to target location
4 Open grippers to drop object in box

3. Results and Analysis

As mentioned in the previous section, this pick-and-drop task was realized with
each hand of three users for ten successive sessions, which means the same task has been
repeated for sixty times, a total of 60 time results have been recorded, together with 440,412
grip force signals having been collected from the twelve sensor locations on the dominant
and non-dominant hands of three users in ten successive task sessions, corresponding to a
total of 36701 grip force signals per sensor, as shown in Table 3.

The distinct levels of expertise are consistently reflected by performance task parame-
ters such as average task session times, or the number of task incidents in terms of object
drops, misses, and tool-trajectory adjustments during individual performance across task
sessions. Left and right system interfaces are identical, and the same task is realized with
either hand. The individual grip forces are centrally controlled in the human brain, and
aimed at optimizing human motor performance and control [27–31].

Table 3. Number of grip force signals for each sensor.

User Dominant Non-Dominant
Expert 4442 5244

Intermediate user 5974 6764
Novice 7780 6497

3.1. Time Results and Analysis

As discussed above, there are three levels of user factor and the two levels of handness
factor. A two-way ANalysis Of VAriance (ANOVA) has been conducted to access the
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effects of these two factors on the task execution time. As shown in Table 4, there is an
extremely significant difference among three users, while there is no significant difference
between dominant and non-dominant hands. Moreover, the last row illustrates a significant
interaction between the user and handness factors, which means here that the execution
times of different users depend on which hand they are using to accomplish the precision
task.

Table 4. Results from two-way ANOVA on time data as a function of user and handness.

Source of Variation Degree of Freedom F P
User 2 15.65 <0.001

Handness 1 0.09 Not significant
User × Handness 2 4.13 <0.05

Time results across sessions are given in terms of means and their Standard Errors of
Mean (SEM) in Table 5. Since the differences between means are difficult to grasp from
looking at the tables, we also represent the time results graphically in Figure 6, where
execution times by dominant and non-dominant hands are shown separately on top, and
total amount of times of both hands for each session are illustrated at bottom, together
with total execution times for each hand.

Table 5. Mean and SEM of task execution times across sessions

User Handness Mean (s) SEM (s)

Expert Dominant 8.88 0.36
Non-dominant 10.49 0.49

Intermediate Dominant 11.95 0.49
Non-dominant 13.53 0.66

Novice Dominant 15.56 1.60
Non-dominant 12.99 0.75
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Figure 6. Execution time for three users with dominant and non-dominant hands among ten sessions.
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Based on Table 5 and Figure 6, it is clear that the expert and the dominant hand of the
intermediate user have a better performance based on time results, with smaller means
and variations. Moreover, the novice user is slower and less stable with his dominant hand,
which indicates that in this kind of extremely constrained environment of precision task,
the novice user was more hesitant in manipulating with his dominant hand.

3.2. Force Results and Analysis

The locally grip forces deployed at each sensor location vary depending on how
skilled a user has become in performing the robot-assisted simulator task accurately. In our
work, grip force data were collected from three users with distinctly different levels of task
expertise. As mentioned at the beginning of this section, there are much more force data
than time data. To start with, total forces applied on each sensor during ten sessions by
each hand are calculated from the original raw data, and given in Table 6 to offer a general
description analysis. According to this table, different force strategies have been applied
for different users and hands. Novice applied a significant higher total force compared
with other two users, especially with the dominant hand. Moreover, some sensors have not
been used during certain maneuvers. For example, the expert did not activate S1, S8 and
S11 with his dominant hand, while S2 and S3 were not used with his non-dominant hand.

Table 6. Total force across sessions for each sensor (V).

Sensor Expert_D Expert_N Interm_D Interm_N Novice_D Novice_N
1 0 3.40 0 0.00 0 0
2 6.23 0 9.16 58.67 193.23 447.29
3 10.96 0 0 0 5328.26 0
4 9.03 46.90 37.50 0.60 6.07 0
5 437.13 1811.11 2901.79 283.75 5946.81 1926.19
6 2009.06 1895.47 3327.50 3520.78 3915.37 6910.31
7 2607.76 115.71 60.63 3638.08 664.06 3420.98
8 0 487.50 1064.15 38.27 5022.85 1512.46
9 2.50 534.02 786.74 0 8838.14 0.66
10 2106.27 900.44 489.66 499.17 5062.52 3246.43
11 0 3966.70 0 0 6842.42 0
12 5.15 2242.13 1593.11 0 6585.59 2.71

Total 7194.10 12,003.39 10,270.23 8039.33 48,405.31 17,467.03

In the case of force results, there are three levels of user factor, two levels of handness
factor and twelve levels of sensor factor. A three-way ANOVA has been conducted to
access the effects of these three factors on the force results. As shown in Table 7, there is an
extremely significant difference of force employed among three users, between two hands
and among twelve sensors, and an extremely significant interaction exists between each
two factors. The corresponding means and SEM are provided in Table 8. Moreover, the
average forces in different categories are also visualized in Figure 7.

Table 7. Force results from three-way ANOVA on force data as a function of user, handness and sensor.

Source of Variation Degree of Freedom F P
User 2 107.72 <0.001

Handness 1 38.27 <0.001
Sensor 11 41.88 <0.001

User × Handness 2 47.83 <0.001
User × Sensor 22 7.41 <0.001

Handness × Sensor 11 9.85 <0.001
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Figure 7. Force results for three users with dominant and non-dominant hands among ten sessions

Table 8. Force Mean and SEM for all sensors

Factor Level Mean (mV) SEM (mV)

User
Expert 161.96 15.85

Intermediate 120.29 13.10
Novice 370.55 25.49

Handness Dominant 263.74 17.93
Non-dominant 171.46 14.48

Sensor

S1 0.12 0.07
S2 17.60 3.60
S3 115.70 34.08
S4 3.05 0.54
S5 337.63 32.69
S6 575.04 30.21
S7 294.61 33.76
S8 193.40 31.19
S9 223.82 54.57
S10 320.96 34.51
S11 267.99 56.54
S12 261.28 44.41

3.3. Functionally Representative Sensors Analysis

In this part, the grip force data from three specific sensors, namely S5, S6, and S7,
which are explained and shown in Figure 8 will be further analyzed, as they are functionally
representative according to earlier studies [30,31]. Detailedly speaking, S5, which locates
on the middle phalanx of the middle finger, mostly contributes to gross force deployment,
such as lifting heavy objects, but useless for precision tasks. On the contrary, S7 is on
the middle phalanx of the pinky finger and critically important in fine grip force control
manipulation studied here. In addition, the last sensor S6, locating on the middle phalanx
of the ring finger, is among the least important in grip force control across a variety of tasks.
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Sensor Finger Role in grip force control
S5 Middle Gross grip force deployment

S6 Ring No meaningful role in grip
force control

S7 Pinky Precision grip force control

Figure 8. Three functionally representative sensors [17].

Based on the former analysis in this section, the most distinct performance happened
between the dominant hands of expert and novice. Therefore, a two-way ANOVA has
been conducted on the raw grip force data on these two hands of their first and last task
sessions, and illustrated in Table 9. Statistical comparison reveals significant interaction
between the two-level user and session factors for all three sensors considered here. To
deliver a more direct comparison, individual spatio-temporal grip force profiles have been
plotted in terms of average peak amplitude foe every one hundred signals for sensors S5,
S6 and S7 in Figure 9, together with relative durations of each of the four task steps using
the colored lines.

Table 9. Two-way ANOVA on three sensors on dominant hand of expert and novice for the first and
last session (mV).

Sensor Session Expert (Mean/SEM) Novice (Mean/SEM) Interaction

S5 First 240.37 /4.56 790.00 /3.02 F(1,3120) = 169.39;
Last 48.32 /0.36 691.72 /2.19 p < 0.001

S6 First 575.63 /4.51 504.12 /2.42 F(1,3120) = 394.24;
Last 473.98 /5.17 540.30 /2.23 p < 0.001

S7 First 594.02 /3.41 110.82 /0.75 F(1,3120) = 260.72;
Last 608.51 /2.38 72.90 /0.61 p < 0.001

One major difference between skilled or proficient operators and beginners concerns
proportional gross grip force deployed by the middle finger. Novice operators deploy
way too much unnecessary, task-irrelevant gross grip force, while the expert has learnt to
skillfully minimize those [18]. On the other hand, precision grip forces, which are mostly
deployed by the small finger and are particularly important in surgical tasks are generally
insufficiently deployed by novices [18]. The ring finger plays no major role in grip force
control, and the differences between ring finger grip force profiles of novices and experts
can be expected to be minimal.

The spatio-temporal profile analysis here shows that the novice takes more than twice
as long than the expert to accomplish the task, but at the end he scores a 30% time gain,
indicating a considerable temporal training effect. This effect concerns mostly the first
critical step in Figure 9 of the pick-and-drop task and becomes clear only under the light of
the specific analysis provided here. The functional interpretation of this effect relates to
the specificity of the tool-movement away from the body in the surgeon’s peri-personal
space required by this first task step. In the specific image-guided task-user system, grip
forces and hand movements are constrained by the limited degrees of freedom of the
robotic system on the one hand, and the perceptual recovery of physically missing depth
information [18], here along a virtual z-axis in the 2D image plane, is necessary. Such
difficulty results in longer task times and imprecise tool-movements, as shown in our
previous work [10,14–18].
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Figure 9. Average peak of three sensors on dominant hand of expert and novice for the first and last
session [18]

4. Discussion

In this paper, we conducted spatio-temporal statistical analysis on the grip force data
collected from three different individuals wearing wireless wearable sensor gloves while
manipulating on an endoscope platform to accomplish a four-step pick-and-drop precision
task. Following our results, as we could see in last sections, different users apply significant
different grip force strategy based on their level of training and task expertise. As grip
force monitoring can be run in real time during task execution, which could generate useful
information for research on clinical decision making. For example, it could help prevent
risks in robot assisted surgery [32], where excessive grip force may cause tissue damage. In
future, if we have the opportunity to acquire more data, especially from the novice, the
further study of the training effect and the force pattern development could be conducted,
which is hopefully to deliver insight to junior surgeons training [33], exoskeletons devel-
oping [34], rehabilitation robot design [35] and tactile internet implementation [36–38].
Moreover, we are building a new glove system with more advanced grip sensors [39],
which are smaller and more flexible. Additionally, there is a clear need for more research
on dynamic grip force measures that takes into account the hand-and- wrist complex in dy-
namic force measurements [40,41]. The hand-and-wrist complex is particularly important
in laparoscopic and endoscopic surgical tasks such as the one in this study here. The angle
of hand-wrist movements directly influences hand and finger grip forces as a function of
the diameter of the tool being grasped and manipulated. The grip forces then also depend
on hand size [42]. Further insights into these functional relationships should be useful
for the design of handles that require gripping in specific directions, to reduce the effort
needed and to minimize surgeons’ fatigue and exertion levels.
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