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Scalable morphological accessibility of complex microstructures

This paper addresses the descriptors-based characterization of dense 3D microstructures using the unifying concept of accessibility, mixing local shape features with global topology. Underlying percolation and constrictivity features are jointly considered by probing the connected components of the microstructure with structuring elements with increasing sizes. Adapted morphological operations are combined to provide a scalable protocol embedding suitable descriptors applied on accessible volumes, yielding a sharp discrimination power. The suggested framework named A-protocol can efficiently analyze complex microstructures by applying a stratified sampling for the selection of paths' endpoints, when connected. It stops when percolation ends, at a critical radius value. The A-protocol is tested on Cox multi-scale Boolean models using the Euler number as an arbitrarily chosen embedded descriptor. This computational protocol is available in the open access software environment plug im!.

Symbols

The main symbols used in this article are exposed and defined in the following list.

• X: the microstructure of interest, • r (X): the eroded set of X using a sphere B(r) of radius r as structuring element, • D max : maximal distance value of the distance map used for computing the erosion, • r c : the critical radius of X, • ρ c : the critical percolation threshold of the complementary set of r c (X), • β: the constriction factor, • V v A : the accessible volume fraction of r (X),

• N C : the number of cavities, • V C : the average volume of cavities, • S: the set of random points p i in X, • t: the threshold applied to the number of connected paths n paths between points p i , • χ: the Euler-Poincaré characteristic or Euler number.

Introduction

The analysis of interconnected networks is of paramount interest for many applications [START_REF] Kruglova | 3D connectivity of eutectic Si as a key property defining strength of Al-Si alloys[END_REF][START_REF] Bujoreanu | Robust graph representation of images with underlying structural networks. Application to the classification of vascular networks of mice's colon[END_REF][START_REF] Aryanfar | 3D percolation modeling for predicting the thermal conductivity of graphene-polymer composites[END_REF], especially in materials science [START_REF] Prifling | Parametric microstructure modeling of compressed cathode materials for Li-ion batteries[END_REF][START_REF] Bhardwaj | Graph theory based approach to characterize self interstitial defect morphology[END_REF][START_REF] Prifling | Stochastic 3D microstructure modeling of anodes in lithium-ion batteries with a particular focus on local heterogeneity[END_REF]. The structural characterization of materials enables valuable connections with physicochemical properties, especially in the analysis of porous media [START_REF] Dullien | Porous media: fluid transport and pore structure[END_REF][START_REF] Adler | Real porous media: Local geometry and macroscopic properties[END_REF]. Due to the complexity of some interconnected networks, named microstructures when real media are considered, their structural characterization often requires combination of various operators, named descriptors, focusing either on localmorphological-or global -topological-features [START_REF] Michielsen | Morphological image analysis[END_REF][START_REF] Kaeshammer | Morphological characterization and elastic response of a granular material[END_REF][START_REF] Prifling | Generating digital twins of mesoporous silica by graph-based stochastic microstructure modeling[END_REF]. Among topological measures, connectivity notion is considered in various descriptors, as connectivity number and Euler number, and concepts too, as percolation and accessibility [START_REF] Kruglova | 3D connectivity of eutectic Si as a key property defining strength of Al-Si alloys[END_REF][START_REF] Hahn | Automatic etch pit density analysis in multicrystalline silicon[END_REF][START_REF] Aryanfar | 3D percolation modeling for predicting the thermal conductivity of graphene-polymer composites[END_REF]. This latter turned out to have a central interest on various experiments considering hindrance phenomenon, making use of different flowing particles and measurement means [START_REF] Thibault-Starzyk | Quantification of enhanced acid site accessibility in hierarchical zeolites-the accessibility index[END_REF][START_REF] Do | The role of accessibility in the characterization of porous solids and their adsorption properties[END_REF][START_REF] Nishiyama | Permeability of porous media: role of the critical pore size[END_REF][START_REF] She | Accessibility of the pores in highly porous alumina films synthesized via sequential infiltration synthesis[END_REF]. Indeed, hindrance in porous media is crucial as the size of flowing particles can impact transport properties, especially when it has the same order of magnitude as the pores dimensions [START_REF] Wernert | Influence of molecule size on its transport properties through a porous medium[END_REF][START_REF] Skaug | Hindered nanoparticle diffusion and void accessibility in a threedimensional porous medium[END_REF]. In the digital domain, after 3D microstructure segmentation, hindrance could be addressed in the scope of morphological accessibility, defined here by combining connectivity seen through percolation, i.e., ability to connect, with constrictivity, i.e., strength of bottleneck effect [START_REF] Chaniot | The reachable volume fraction in porous media in the vicinity of percolation threshold: a numerical approach used on multi-scale Boolean schemes[END_REF]. Consequently, this morphological vision of accessibility is purely structural, no physicochemical phenomenon is considered. On the one hand, percolation as a theory considers accessibility in a specific way [START_REF] Broadbent | Percolation processes: I. Crystals and mazes[END_REF][START_REF] Stauffer | Introduction to percolation theory[END_REF], indicating the existence of a connected path totally included in the pattern, connecting a given entry to a given exit (Fig. 1(A-D)). This binary vision of connectivity, linked to global topological notions, received several numerical implementations of distinct types, which are not constrained to a single binary value [START_REF] Sahimi | Applications of percolation theory[END_REF]. On the other hand, constrictivity, introduced by Petersen [START_REF] Petersen | Diffusion in a pore of varying cross section[END_REF], highlights local hindrance through bottleneck effects quantification, usually represented by a scalar value named constriction factor β [START_REF] Holzer | The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells[END_REF]. Originally defined for a single path or a synthetic pore (Fig. 1(e)), both concepts have been extended to whole microstructures, mainly using statistical representations [START_REF] Jeulin | Percolation of random cylinder aggregates[END_REF][START_REF] Neumann | Estimation of geodesic tortuosity and constrictivity in stationary random closed sets[END_REF].

Similar ideas in literature address accessibility, reachability or penetrability by taking into account the local shape together with global assessments of proper descriptors, considering implicitly or explicitly percolation and constrictivity concepts. These works are of different types, involving either experimental analysis or numerical simulations of transports of any kind or purely digital morphological characterization, or a mix of the latter [START_REF] Vogel | Morphological determination of pore connectivity as a function of pore size using serial sections[END_REF][START_REF] Vogel | Topological characterization of porous media[END_REF][START_REF] Wernert | Influence of molecule size on its transport properties through a porous medium[END_REF][START_REF] Dupuy | Pore scale definition and computation from tomography data[END_REF][START_REF] Ohser | Estimation of the probability of finite percolation in porous microstructures from tomographic images[END_REF][START_REF] Skaug | Hindered nanoparticle diffusion and void accessibility in a threedimensional porous medium[END_REF][START_REF] Chaniot | The reachable volume fraction in porous media in the vicinity of percolation threshold: a numerical approach used on multi-scale Boolean schemes[END_REF]. Wernert et al. [START_REF] Wernert | Influence of molecule size on its transport properties through a porous medium[END_REF] tackle this issue with experimental analyses only, focusing on porosity, diffusion and tortuosity as a function of molecular size to predict transport properties of porous materials. Skaug et al. [START_REF] Skaug | Hindered nanoparticle diffusion and void accessibility in a threedimensional porous medium[END_REF] make use of nanoparticles tracking to study diffusion, highlighting the dependency of accessibility on particle size too. The needed improvement of characterization process is justified in [START_REF] Dupuy | Pore scale definition and computation from tomography data[END_REF], by the advances in computation and visualization technologies and not in analysis methods. As they focus on multi-scale transport models, they propose to consider various descriptors according to the pore scale using morphological erosions [START_REF] Serra | Image analysis and mathematical morphology[END_REF][START_REF] Soille | Morphological image analysis: principles and applications[END_REF]. Vogel [START_REF] Vogel | Morphological determination of pore connectivity as a function of pore size using serial sections[END_REF] already mentions the issue of the geometric complexity of real microstructures. He uses the Euler-Poincaré characteristic, or Euler number, to quantify the pore connectivity which is considered as a function of the pore diameter, defining a connectivity function of the pore space. As in his article in 2002 [START_REF] Vogel | Topological characterization of porous media[END_REF], morphological openings, erosion followed by dilation, with different sizes of structural elements are used for pore size distribution assessment. For their part, Ohser et al. [START_REF] Ohser | Estimation of the probability of finite percolation in porous microstructures from tomographic images[END_REF] explicitly take into account percolation, introducing a percolation probability depending on pores' width to describe penetrability. Similarly to [START_REF] Chaniot | The reachable volume fraction in porous media in the vicinity of percolation threshold: a numerical approach used on multi-scale Boolean schemes[END_REF], only erosions are considered, but to assess the porosity percolation probability instead of the reachable volume fraction, as it is done in [START_REF] Chaniot | The reachable volume fraction in porous media in the vicinity of percolation threshold: a numerical approach used on multi-scale Boolean schemes[END_REF]. This diversity of disciplines attests to the interest of the whole materials science community about this concept, highlighting the need of improving the set of solutions for materials analysis. Moreover, although these studies are of distinct type, each one assesses the impact of accessibility over different descriptors of porous media; spherical probes of different sizes traveling through the network could be a common basis for accessibility, as illustrated in Fig. 1(f). Nevertheless, to our best knowledge, in literature, no numerical solution such as computational protocol, is available in order to take into account accessibility, evaluating its impact on any proper descriptor to the application considered.

The main contribution of this article is a novel scalable framework considering morphological accessibility, being a solution to the is- tional percolation (between two opposite faces), (B) multi-directional percolation (in at least one direction), (C) adirectional percolation (between distinct faces) [START_REF] Chaniot | Caractérisation morphologique efficace de matériaux par cartes de distance[END_REF], and (D) stochastic point percolation [START_REF] Chaniot | Tortuosimetric operator for complex porous media characterization[END_REF] (between random points). Illustration of (e) constrictivity and (f) accessibility with critical radius r c (see Section 2).

sue mentioned above. Thus named, the Aprotocol is suitable for any specific applicationdependent descriptors, extending it in an easily interpretable manner, as shown below with the Euler number as an example of possible embedded descriptor, while assessing the effect of pore's/probe's size on it. Moreover, as complex microstructures are targeted, usual computational methods to assess percolation have to be improved; an example is presented in Fig. 7, being complex because of both, the porous network geometry and the random global shape of the observed sample. Finally, the A-protocol, being freely available in plug im! [START_REF]plug im! plug im!: an open access and customizable software for signal and image processing[END_REF], provides novel solutions, targeting a more exhaustive characterization of microstructures. Throughout the article, the term "accessibility" will mean "morphological accessibility". The computational protocol is proposed in Section 2, providing a versatile methodology addressing accessibility via 3D patterns. Its effectiveness is tested on Cox multi-scale Boolean models, focusing on the stochastic form of point percolation and point accessibility: the results quantifying local anisotropy and global heterogeneity are reported in Section 3. The conclusion is drawn in Section 4.

Accessibility to complex microstructures

First, discussions on percolation and on constrictivity define our vision of these two concepts, which are jointly considered in our definition of accessibility. Second, the A-protocol is defined and illustrated. Finally, the relationships connecting the critical radius to constrictivity and to percolation are given.

From percolation to constrictivity

Percolation is usually assessed utilizing a connected components labeling, assigning a specific label to each connected component [START_REF] He | The connected-component labeling problem: A review of state-ofthe-art algorithms[END_REF].

In order to remove the constraint of choosing planar sections as entries and exits, Chaniot et al. [START_REF] Chaniot | Tortuosimetric operator for complex porous media characterization[END_REF][START_REF] Chaniot | Heterogeneity assessment based on average variations of morphological tortuosity for complex porous structures characterization[END_REF] make use of a stratified sampling [START_REF] Baddeley | Stereology for statisticians[END_REF], yielding to a stochastic consideration of percolation, assessed between random points or vertices, in a certain way akin to graph theory [START_REF] Bhardwaj | Graph theory based approach to characterize self interstitial defect morphology[END_REF][START_REF] Prifling | Generating digital twins of mesoporous silica by graph-based stochastic microstructure modeling[END_REF]. Therefore, the A-protocol defined below, is able to support the different forms of percolation illustrated in Fig. 1(A-D), including the stochastic version of percolation (Fig. 1(D)) dedicated to microstructures as complex as the one in Fig. 7. This form of percolation is named stochastic point percolation.

As mentioned in the introduction, the accessibility is defined by considering jointly percolation and constrictivity; this last one is illustrated in Fig. 1(e) and can be quantified by the ratio R 2 min /R 2 max [START_REF] Neumann | Estimation of geodesic tortuosity and constrictivity in stationary random closed sets[END_REF]. Morphological openings or erosions, considering spheres as structuring elements with increasing sizes, can be utilized for characterization purposes according to pores' or particles' size. Erosion is adapted to topological measurements, while opening is suitable for geometric ones. For computation time purposes, the erosion is considered in this article, efficiently computed using distance transform [START_REF] Borgefors | Distance transformations in digital images[END_REF], quantifying in a certain way constrictivity by disconnections consideration.

The A-protocol

The definition of a protocol devoted to accessibility is motivated by the transfer of the concept into a scalable digital framework embedding relevant descriptors, with efficiency concerns, which are then extended in order to be applied on complex microstructures. The A-protocol is an iterative method taking into account all bottlenecks of a microstructure by considering increasing radii r for spheres B(r), i.e., the structuring elements of the erosions. At each iteration, percolation is jointly verified after labeling connected components, and predefined embedded descriptors are assessed. Some cavities defined as the resulting non-accessible connected components for a probe of a given size, are formed due to the hindrance caused by the probe dilation. Geometrically, the larger the radius, the more there will be vanished volumes. Topologically, the trajectories between any two remaining points of the microstructure, lengthen until they are closed. The A-protocol ends when the critical radius r c is reached, i.e., the radius of the biggest percolating spherical probe B(r c ).

As the A-protocol is a cumulative step by step process, if residues descriptors are considered, as cavities, the value of the descriptor for a specific size is equal to the sum over these residues from r = 0 to the given size. Sampling 3D patterns is optional, but required in the context of stochastic point percolation giving rise to stochastic point accessibility, that we define herebelow, Definition 1. Stochastic point accessibility: Let r (X) be the eroded set of microstructure X using a sphere B(r) as structuring element. Let S = {p i } be a set of N random points such that S ⊂ r (X). A connected component of r (X) is said to percolate if at least a number t of connected paths exists between some pairs of points (p i , p j ), i = j. Eroded set r (X) percolates if there exists at least a percolating connected component. Let Cc r be the union of the percolating connected components of r (X). If Cc r = ∅, X is said to be accessible for a probe B(r).

In order to comply with usual definitions, we take t = 1; for a connected component to be considered as accessible, it suffices that a connected path has been found. The stochastic point accessibility allows the A-protocol to be applied on any microstructures, reflecting the flowing particles in the physical domain. The focus being mainly on topological measurements and computation time efficiency, the erosion operation is chosen instead of opening, as mentioned above, and in the case of stochastic point accessibility, S is defined once for all at the initialization step.

The A-protocol illustrated in Fig. 2 on a synthetic structure, is formally given by the algorithm below. The estimates of accessible volume fraction Vv A , number of cavities NC , and average volume of cavities VC are simultaneously assessed until the critical radius rc is reached. These estimates are inherent to the A-protocol definition and have to be distinguished from the arbitrary embedded descriptors which are selected by the user. Let us note that the skeleton of microstructure X [48] could be considered, but would lead to increase the bias over morphological descriptors as volume fraction assessments.

Constrictivity, percolation and critical radius

Constriction factors β quantifying bottlenecks, are scalar values obtained from comparison of minimal and maximal cross sections [START_REF] Holzer | The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells[END_REF][START_REF] Bini | A 3D Model of the Effect of Tortuosity and Constrictivity on the Diffusion in Mineralized Collagen Fibril[END_REF]. A specific definition consists in computing the squared ratio of the minimal to the maximal radius, which could be translated in our case by using the critical radius r c and the maximal radius, i.e. the maximal distance value D max obtained from the distance map used for the iterative erosions. To avoid border effects, leading to overestimation of the maximal radius, a maximal distance D max 1 is computed over the whole image. A second computation is performed with the condition that the location of the maximal distance D max has to be further from the border than D max 1 . Moreover, all the computations in the Results section are performed on points further from the border than

β = r c D max
D max 1 -D max .
The original definition of β being for a unique pore, this definition is a novel alternative to extend it to a whole network.

By definition, the critical radius r c is linked to the critical percolation threshold ρ c , which can be assessed using a statistical approach [START_REF] Jeulin | Percolation of random cylinder aggregates[END_REF] when stochastic models are considered, then defined as the volume fraction where exactly 50% of the realizations percolate. Boolean models [START_REF] Matheron | Random sets and integral geometry[END_REF][START_REF] Serra | The Boolean model and random sets[END_REF][START_REF] Chiu | Stochastic geometry and its applications[END_REF], a specific stochastic model, are based on a Poisson Point process of intensity θ [START_REF] Kingman | Poisson processes[END_REF]. Random primary grains A (overlapping allowed) are located at Poisson points x k . A and θ define the Boolean model A, being equal to the union of grains A . Eq. 2 shows dependency of θ with respect to the average volume V(A ) of the grains and to the total volume fraction V v .

1 -V v = exp(-θ. V(A )) (2) 
Let A r = A ⊕ B(r) be a Boolean model defined as the dilation of A by B(r), and V v,r be the volume fraction of A r . As we focus on the complementary set of A, this operation represents the erosion of the microstructure.

As V v,r ≥ V v , there exists a function α, ∀r ≥ 1 α(r) ≥ 1, such that V(A r ) = α(r). V(A ). Therefore, with eq.2, 1 -V v,r = (1 -V v ) α(r) .
Henceforth, r c is a limit value of r, obtained when 1 -V v,r is equal to the threshold ρ c of the eroded complementary set. Therefore, there exists α c = α(r c ) and,

ρ c = 1 -V v,r c ρ c = (1 -V v ) α c α c = ln(ρ c )/ ln(1 -V v ). (3) 
In the case of a Boolean model of sphere of radius R, A = B(R), therefore α c = V(A r c )/ V(A ) = ((R + r c ) /R) 3 and,

r c = 3 ln(ρ c )/ ln(1 -V v ) -1 .R. ( 4 
)
The same rationale with the Cox multi-scale Boolean models, as considered below, is proposed. The total volume fraction of primary grains V v,TOT is defined by,

V v,TOT = V v,I NC .V v,I N + (1 -V v,I NC ).V v,OUT (5) 
with V v,I NC the volume fraction of inclusions or aggregates, with higher density, V v,I N the volume fraction of grains inside aggregates, and V v,OUT the volume fraction of grains outside aggregates. Eq.2 is valid for each volume fraction, leading to,

ρ c = (1 -V v ) α c -(1 -V v,I NC ).((1 -V v ) α c -(1 -V v,OUT ) α c ).
(6) These equations define our critical radius in the specific cases of Boolean models and Cox multi-scale Boolean models, while highlighting the relationship between the critical percolation threshold ρ c and the critical radius r c .

Results

For testing the A-protocol and illustrating its properties on complex microstructures, stochastic models or numerical twins are considered. In particular, we insist on the stochastic point accessibility. For these purposes, Cox multi-scale Boolean models which are suitable for statistical analyses of computational methods and usual investigation of stereological operators are used [START_REF] Aubert | Estimation of the influence of second-and third-order moments on random sets reconstructions[END_REF]. Therefore, the A-protocol's behavior analysis with respect to specific features is practicable; impact of the grains' anisotropy and the geometric heterogeneity over the accessibility to the microstructure. This is preceded by the presentation of the stochastic models considered, and by the comparative study of the parametric stochastic point percolation with the other forms of percolation.

Stochastic models

Boolean models are first considered in order to generate homogeneous microstructures made of isotropic or anisotropic grains A , located at Poisson points. A homogeneous microstructure is defined as a structure possessing a unique scale of grains' density, quantified by a unique volume fraction V v . Consequently, hereafter, they are defined by this single volume fraction of grains V v . Multi-scale microstructures can be modeled by using Cox multi-scale Boolean models [START_REF] Jeulin | Morphology and effective properties of multi-scale random sets: A review[END_REF][START_REF] Moreaud | Multi-scale stochastic morphological models for 3D complex microstructures[END_REF], simulating heterogeneous materials with aggregates or inclusions, i.e., areas of higher density of grains. In the following, two-scale models are considered, defined by three volume fractions: V v,I NC , V v,I N and V v,OUT . Boolean models of spheres (Fig. 3(a)) and of spherocylinders with random orientations (Fig. 3(b)) are generated; V v is fixed at 0.4 for both models, having a similar fixed average volume of grain, V(A ) = 4188.8 for spheres and V(A ) = 4215.0 for spherocylinders. Cox multi-scale Boolean models of platelets are considered; platelets' shape is fixed (Fig. 3(c)): L = 6, l = 5 and H = 3, aggregates' size and volume fraction are fixed too: R I NC = 10, V v,I NC = 0.5, as well as the total volume fraction of grains V v,TOT which is equal to 0.4. 40 realizations of size 400 3 of each model are generated (Fig. 3). The A-protocol is applied to the complementary set of the grains union (black areas in Fig. 3), representing the microstructure of interest. Consequently, a volume fraction of grains V v equal to 0.4 leads to an accessible volume fraction V v A equal to 0.6, if and only if the whole microstructure is accessible. Confidence intervals with 95 % confidence level, represented by vertical bars in the results display, are equal to 2l σ , with l σ = 2σ/ √ n r , and σ the standard deviation over the n r realizations. Finally, in this case, the A-protocol provides averaged assessments; let π be a given descriptor, then π is an averaged estimator over all realizations.

Stochastic point accessibility

Let us now restrict our attention to the model [START_REF] Adler | Real porous media: Local geometry and macroscopic properties[END_REF]. Only rc and Vv A are displayed in Tab.1 and Fig. 4. As a global statement, the low values of l σ attest to the representativity of the considered volume, i.e. the realizations' volume times the realizations number. Confidence intervals of all curves are represented, but too small to be visible before a certain value; the larger the radius r, the bigger the representative volume element, the lower the representativity [START_REF] Neumann | On variability and interdependence of local porosity and local tortuosity in porous materials: a case study for sack paper[END_REF]. The stratified sampling, as defined in [START_REF] Chaniot | Tortuosimetric operator for complex porous media characterization[END_REF], is a parametric method, with N T and N the target number of random points given by the user and the final number of random points, respectively. None of them is meaningful because they are both dependent of the size of the considered images, but the length of the cubic sub-images' edges e is. During the stratified sampling process, the image is cut into cubic sub-images of exact same volume in which one point is randomly drawn; e is the length of their edge, then equal to the average Euclidean distance between two neighbouring points. The purpose is to assess its optimal value with respect to an arbitrary reference. Hereafter, we choose the percolation (A) as the reference (r c,re f , Vv A,re f ).

The A-protocol with stochastic point accessibility, is analyzed as a function of e = {133, 100, 80, 66} (Fig. 4(a)). One can notice some slight differences with (A) due to negligible volumes (Fig. 4 bottom right); Fig. 4(a) shows the similarities of Vv A whatever e. The best assessment of (r c,re f , Vv A,re f ) is reached for e = 100 (N = 64), as shown in Tab.1. The same Let us compare now the four percolation forms (Fig. 4(b)). Globally, the curves are quite similar whatever the percolation. The considered models being isotropic, the percolations (A) and (B) exhibit very similar results, as for the percolation (D), which is highlighted in Tab.1 too. Nevertheless, the percolation (C) having a less constrained definition (percolation between faces with a common edge is allowed), it overestimates (A) in terms of rc (Tab.1) and Vv A , but the low representativity of the remaining connected components is shown with the bigger confidence intervals when rc,re f is passed. The accessible volume in Fig. 4 bottom, places in evidence the similarities and differences; in particular with (C) for r = 10, where the remaining connected components are placed at edges and corners of the cubic image.

Microstructures characterization

The focus is now on the A-protocol with stochastic point accessibility only. Although rc is suffi- The Euler number χ is arbitrarily selected as an example of embedded descriptor. χ is one of the main topological descriptor of microstructures, characterizing their connectivity or interconnectivity [START_REF] Mecke | Euler characteristic and related measures for random geometric sets[END_REF][START_REF] Mecke | Morphology of spatial patterns-porous media, spinodal decomposition and dissipative structures[END_REF][START_REF] Roberts | Estimation of the connectivity of a synthetic porous medium[END_REF]. This feature, connected to the Minkowski functionals [START_REF] Minkowski | Volumen und Oberflache, volume 447[END_REF][START_REF] Matheron | Random sets and integral geometry[END_REF][START_REF] Serra | The Boolean model and random sets[END_REF], has been the subject of various works [START_REF] Jernot | Euler-Poincaré characteristic of a randomly filled three-dimensional network[END_REF][START_REF] Arns | Euler-Poincaré characteristics of classes of disordered media[END_REF][START_REF] Ohser | The Euler number of discretized sets-on the choice of adjacency in homogeneous lattices[END_REF][START_REF] Ohser | The Euler number of discretised setssurprising results in three dimensions[END_REF]. χ can be expressed as a combination of some classic topological measures,

χ = n CC -c R + h (7) 
with n CC the number of isolated objects or connected components, i.e. pores or set of pores, c R the number of redundant connections and h the number of cavities, equal to zero in our case as they are removed at each iteration. Consequently, a negative value represents a high interconnectivity and a positive value represents a low interconnectivity. Hereafter, χ is assessed as a function of the probe's radius; its extension produced by the A-protocol, the accessible Euler number, and its numerical estimator are named χ A and χA , respectively.

First, let focus on the models ( 1) and (2), i.e., the Boolean models, which are clearly discriminated in Fig. 5. Although the anisotropy of the spherocylinder, characterized by its morphological diameter too, provides a smaller value of rc , its global constriction factor β is smaller than for the spheres (Tab.2). Moreover, as shown in Fig. 5(a-c), this grains' anisotropy strongly induces the creation of cavities, which are bigger too, when r increases; the more pronounced the local bottleneck effects, the faster the pores' closing, the faster the decrease of accessible volume. Fig. 5(a) displays this decrease of volume accessibility with the grains' anisotropy. Finally, these phenomena linked to the higher anisotropy of spherocylinders lead to a faster decrease of interconnectivity, i.e., χ A tends faster toward zero from an initial negative value (Fig. 5(d)).

Considering the models (3-5), Fig. 6(a-d) underlines the good discrimination between the distinct heterogeneities. Indeed, heterogeneity naturally involving cavities formation (Fig. 6(bc)). For V v,TOT fixed and V v,I NC = 0.5, globally, the more heterogeneous the microstructure, the less dense the exterior of aggregates, the slower the porous network closes because of the enlarging of the pores size, decreasing the strength of local bottleneck effects outside aggregates. Nevertheless, the more heterogeneous the microstructure, the more dense the aggregates, the faster the aggregates close, increasing the strength of local bottleneck effects inside aggregates. Consequently, with these two opposite phenomena, the global bottleneck effect increases with heterogeneity; the more heterogeneous the microstructure, the bigger β. This second case attests also to the slower decrease of interconnectivity with heterogeneity for large enough particles, if the outside of the aggregates percolates (Fig. 6(d)).

At a finer scale, the A-protocol puts in evidence the classification reversal of topological measures NC , VC and χA , attesting to the heterogeneity of these models (Fig. 6(b-d)). Indeed, this behavior, corresponding to the very "moment" of the aggregates closing, provides models' discrimination; in particular between homogeneous (models (1-2)) and heterogeneous materials (models (3-5)), highlighted by the comparison of Fig. 5 and Fig. 6. Consequently, together, these cases bring novel information about heterogeneity detection, while giving intels about the impact of grains' anisotropy over isotropic and homogeneous models. Furthermore, they highlight the improvement in sensitivity of the embedded descriptors, which are extended by accessibility consideration.

Conclusion

The A-protocol combines state-of-the-art definitions dynamically considering the accessibility, aiming to extend any given numerical descriptor definition with topological notions. The A-protocol integrates all bottleneck effects, detected by the spherical probes with increasing radii, and gives rise at the end to estimates as the critical radius, the accessible volume fraction and the number and the average size of cavities. The A-protocol is illustrated using Cox multi-scale Boolean models, validating its interest as a new "extractor" of morphological and topological information. The A-protocol with the stochastic point accessibility, providing a less restrictive method through the existence of a connected path between random points, is discussed. This analysis attests to the similarities of this definition with the most common definition in the literature, yielding a good estimator. The Euler number is then considered, illustrating together with the estimates, the enhancement of discriminative power when characterizing multi-scale microstructures; anisotropy discrimination and heterogeneity detection and discrimination.

The A-protocol exacerbating initially imperceptible differences, is able to characterize microstructures whatever their complexity, inherent to the materials and/or stemming from the image acquisition device, thanks to the stochastic point accessibility. Consequently, real materials as the γ-alumina (Fig. 7), can be characterized with any proper morphological descriptors, extending the work of Moreaud et al. [START_REF] Moreaud | Analysis of the accessibility of macroporous alumino-silicate using 3D-TEM images[END_REF] and opening wide application perspectives. Also, a deterministic extension of the A-protocol will be defined, similarly to [START_REF] Batista | Atomic Scale Insight into the Formation, Size, and Location of Platinum Nanoparticles Supported on γ-Alumina[END_REF], yielding to a deterministic point accessibility. Finally, a grayscale extension would allow the consideration of continuous fields, as mentioned in [START_REF] Vogel | Topological characterization of porous media[END_REF].

The A-protocol procedure is available in the open access software environment plug im! [START_REF]plug im! plug im!: an open access and customizable software for signal and image processing[END_REF].
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 1 Figure 1: (A-D) Four forms of percolation: (A) direc-tional percolation (between two opposite faces), (B) multi-directional percolation (in at least one direction), (C) adirectional percolation (between distinct faces)[START_REF] Chaniot | Caractérisation morphologique efficace de matériaux par cartes de distance[END_REF], and (D) stochastic point percolation[START_REF] Chaniot | Tortuosimetric operator for complex porous media characterization[END_REF] (between random points). Illustration of (e) constrictivity and (f) accessibility with critical radius r c (see Section 2).

2 ( 1 )Figure 2 :

 212 Figure 2: Analysis of a synthetic structure (in white) by the A-protocol; directional percolation and rc = 1. (A-0) shows the pattern state at the starting of an iteration, (A-1) connected components labeling, each label being associated with a color, (A-2) percolation assessment with deletion of non percolating connected components, (A-3) (not displayed) computation of descriptors, (A-4) morphological erosion using B(1), deleted pixels being in gray.

1 .

 1 sphere R = 10, 2. spherocylinder R = 5 and L = 47.

3 .

 3 V v,I N = 0.5 and V v,OUT = 0.3, 4. V v,I N = 0.6 and V v,OUT = 0.2, 5. V v,I N = 0.7 and V v,OUT = 0.1.

Figure 3 :

 3 Figure 3: The different grain's shapes used in this paper: (a) sphere, (b) spherocylinder and (c) platelet. Volume representation and 2D slice of a realization of each Boolean model: (1) spheres and (2) spherocylinders, and Cox multi-scale Boolean models of platelets: (3) V v,I N = 0.5, (4) V v,I N = 0.6 and (5) V v,I N = 0.7. Volumes generated and rendered using [43].

  e = 80 (N = 125), (5) e = 80. Hereafter, these values are considered in percolation (D).

Figure 4 :

 4 Figure 4: Vv A for (a) the stochastic percolation (e ∈ {133, 100, 80, 66}) and (b) the four forms of percolation ((A), (B), (C), (D)), applied to Boolean models (1). Confidence intervals, with 95 % confidence level, are represented by vertical bars. The accessible volume of a realization of the Boolean model (1) for specific radii: r = 9 = rc,re f and r = 10. Volumes rendered using [43].

Figure 5 :

 5 Figure 5: A-protocol with stochastic point accessibility applied to the Boolean models: (a) Vv A and (b) χA ((b) is an enlargment, orange rectangle, of original curves, small and blurred). Confidence intervals, with 95 % confidence level, are represented by vertical bars.

Figure 6 :

 6 Figure 6: A-protocol with stochastic point accessibility applied to the Cox multi-scale Boolean models: (a-c) A-protocol estimates and (d) χA ((c-d) are enlargments, orange rectangle, of original curves, small and blurred). Confidence intervals, with 95 % confidence level, are represented by vertical bars.

Figure 7 :

 7 Figure 7: A sample of a specific γ-alumina, obtained by electron tomography, reconstructed, filtered, and segmented: (left) the porous volume, (right) a slice. Volumes rendered using [43].

Table 1 :

 1 1 st line: rc for the stochastic accessibility with different e values. 2 nd line: rc for the various accessibility types. Display of l σ , the half length of the confidence interval, with 95 % confidence level.

	Model	Percolation	rc	l σ
		Stochastic e = 133 9.175 0.311
	(1) Sphere	Stochastic e = 100 9.050 0.237 Stochastic e = 80 9.400 0.266
		Stochastic e = 66 10.950 0.531
		A	8.900 0.096
	(1) Sphere	B C	8.975 0.050 13.950 0.423
		D	9.050 0.237
	process is performed on each model showing
	a necessary refinement for the more complex
	ones; (1)			

e = 100, (2) e = 100, and (3) e = 100,

Table 2 :

 2 rc and β for the stochastic point accessibility with optimal e values, for all models. Display of l σ , the half length of the confidence interval, with 95 % confidence level.

	Model	rc	l σ	β	l σ
	(1) Sphere	9.050 0.237 0.182 0.012
	(2) Spherocylinder 6.325 0.166 0.123 0.007
	(3) V v,I N = 0.5	2.000 0.000 0.077 0.002
	(4) V v,I N = 0.6	2.575 0.158 0.096 0.011
	(5) V v,I N = 0.7	3.575 0.174 0.118 0.011
	cient to discriminate the models in Tab.2, ad-	
	ditional information is provided by the con-	
	striction factor β, and also the behavior of the	
	estimates, inherent to the A-protocol, and of the	
	embedded descriptor, being the Euler number	
	χ.