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Next-generation sequencing opens the way for genomic studies of diversity even
for non-model crops and animals. Genome reduction techniques are becoming
progressively more popular as they allow a fraction of the genome to be sequenced
for multiple individuals and/or populations. These techniques are an efficient way to
explore genome diversity in non-model crops and animals for which no reference
genome is available. Genome reduction techniques emerged with the development
of specific pipelines such as UNEAK (Universal Network Enabled Analysis Kit) and
Stacks. However, even for non-model crops and animals, transcriptomes are easier
to obtain, thereby making it possible to directly map reads. We investigate the direct
use of transcriptome as an alternative strategy. Our specific objective was to compare
SNPs obtained from the UNEAK pipeline as well as SNPs obtained by directly mapping
genotyping-by-sequencing reads on a transcriptome. We assessed the feasibility of
both SNP datasets, UNEAK and transcriptome mapping, to investigate the diversity
of 91 samples of wild pearl millet sampled across its distribution area. Both approaches
produced several tens of thousands of single nucleotide variants, but differed in the
way the variants were identified, leading to differences in the frequency spectrum
associated with marked differences in the assessment of diversity. Difference in the
frequency spectrum significantly biased a large set of diversity analyses as well as
detection of selection approaches. However, whatever the approach, we found very
similar inference of genetic structure, with three major genetic groups from West,
Central, and East Africa. For non-model crops, using transcriptome data as a reference
is thus a particularly promising way to obtain a more thorough analysis of datasets
generated using genome reduction techniques.

Keywords: SNP, GBS, UNEAK, transcriptome, site frequency spectrum, pearl millet

INTRODUCTION

In the last two decades, next-generation sequencing (NGS) technologies (Mardis, 2008) have
made the assembly of numerous new reference genomes possible (Ellegren, 2014). Yet, in the
case of non-model organisms, accessing genome diversity remains a challenge. Sequencing only
a fraction of a large genome has been proposed as a promising way of getting round this constraint
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(Narum et al., 2013). Reduced-representation library (RRL)
sequencing approaches enable sequencing of a fraction of
the genome as well as of homologous regions in a set of
individuals. Among RRL techniques, two main approaches are
widely used today: the RAD-seq approach (Baird et al., 2008;
Davey et al., 2011) and the genotyping-by-sequencing (GBS)
approach (Elshire et al., 2011) but several others are also available
(e.g., PE-RAD, dd-RAD, 2b-RAD, ezRAD). GBS, like RAD-seq,
reduces genome complexity through restriction digest, but offers
a simplified and more cost-effective library preparation protocol
(Elshire et al., 2011). These molecular techniques were developed
at the same time as specific bioinformatics pipelines to handle the
resulting NGS raw sequences. For instance, the Stacks pipeline
was developed primarily for RAD-seq data (Catchen et al., 2011,
2013), while the TASSEL pipeline was developed for the GBS
approach (Glaubitz et al., 2014).

Therefore, even though RAD-seq and GBS data can be
analyzed using either pipeline, they are preferentially analyzed
using their original corresponding pipeline. There is also
a preference for each RRL approach that depends on the
“scientific community” concerned. For instance, RAD-seq is
widely used for evolutionary history and conservation studies
on wild organisms (Hohenlohe et al., 2013; Pujolar et al.,
2014; Combosch and Vollmer, 2015), whereas GBS is used by
researchers working on crops and domesticated animals. The
TASSEL pipeline was thus primarily developed to handle low
coverage sequencing for homozygote samples (Glaubitz et al.,
2014) and to be used in genome wide association studies
(Moumouni et al., 2015; Sonah et al., 2015; Upadhyaya et al.,
2015). Even among crops, not all species are model organisms
with a reference genome. When no reference is available,
somewhat similar strategies are implemented in Stacks and
TASSEL to identify SNPs. First, similar reads are identified
and grouped together to create TAGs. Second, networks of
TAGs are built to identify which TAGs could be considered
as alternative copies of the same genomic loci. These steps
depend on several parameters, such as minimum coverage,
for a read to be considered as a TAG, or the number of
mismatches between two TAGs to be considered as alternative
copies of one locus or different loci. The TASSEL “no reference
genome” pipeline is implemented in the UNEAK (Universal
Network Enabled Analysis Kit) module (Lu et al., 2013).
SNPs are identified by drawing simple networks of reciprocal
TAGs that only differ by 1 bp mismatch. Significant effects
of pipeline parameters on SNPs identified and population
genetics inferences have been highlighted for Stacks (Catchen
et al., 2013; Mastretta-Yanes et al., 2014; Rodríguez-Ezpeleta
et al., 2016). To our knowledge, the effects of the UNEAK
calling approach on population genetics have not yet been
investigated.

An alternative strategy would be to map genomic reads
from RRL approaches directly on a transcriptome. Most non-
model crops possess a transcriptome reference that was primarily
built for transcriptome studies. While building a transcriptome
was formerly challenging (Martin and Wang, 2011; Góngora-
Castillo and Buell, 2013), new tools are available today that
make it possible to rapidly and efficiently obtain a new assembly

(Grabherr et al., 2011). Transcriptomes enable access to longer
sequences around SNPs, a very interesting feature for further SNP
validation and access to an annotation of the genomic region.
Thus, using a transcriptome reference to map reads from RRL
approaches (Russell et al., 2013; Combosch and Vollmer, 2015)
could be an interesting alternative for SNP discovery.

However, it is not easy to assess the bias arising from using
the SNP calling pipeline, especially for population genetic studies
(Hohenlohe et al., 2010; Nielsen et al., 2012; Arnold et al.,
2013; Davey et al., 2013; Gautier et al., 2013; Han et al., 2014;
Ilut et al., 2014; Harvey et al., 2015; Rodríguez-Ezpeleta et al.,
2016). Therefore, in the following, we compare two sets of
SNPs obtained from wild pearl millet populations using GBS
sequencing. The first set of SNPs was obtained through the
UNEAK pipeline without a reference genome and the second
set was obtained through a mapping pipeline to the pearl millet
transcriptome. We therefore investigated the differences and
congruence in SNPs called for the assessment of population
structure and analysis of genetic diversity.

MATERIALS AND METHODS

Plant Material
We selected 48 wild pearl millet populations [Pennisetum
glaucum (L.) R. Br. ssp. monodii] from a collection held at
IRD (Institut de Recherche pour le Développement, Montpellier,
France). The 48 populations were chosen to cover the known
distribution of wild pearl millet (Figure 1). Seeds were grown
in the greenhouse until flowering, and inflorescences from
10 plants per population were collected for DNA extraction.
DNA was extracted using the MATAB protocol (a modified
CTAB/β-mercaptoethanol method; Mariac et al., 2006). A set
of 95 DNA normalized to 100 ng/µl (sample size per
population≤ 2) was sent to the Institute for Genomic Diversity at
Cornell University1 for GBS genotyping. Details on GBS protocol
details can be found elsewhere (Elshire et al., 2011; Cronn
et al., 2012). Genomic libraries were constructed using ApeKI
restriction enzyme. The resulting 95-plex library was sequenced
with an Illumina HiSeq2000. Four samples were not used for
subsequent analyses due to the high rate of missing genotypes
(>70%).

SNP Discovery and Genotype Calling
UNEAK Pipeline
Raw sequences were processed with a modification of the
TASSEL-GBS pipeline (Glaubitz et al., 2014): the UNEAK
pipeline (Lu et al., 2013). With the UNEAK pipeline, the
alignment of TAGs to a reference genome is replaced by the
creation of a pair of TAGs and network filtering to enable SNP
discovery (Lu et al., 2013). Briefly, good reads were defined
as reads carrying a perfect barcode match with no Ns in the
64 bp following the barcode. Reads were subsequently trimmed
to 64 bp (excluding barcodes). Unique 64-bp sequence TAGs
that were present five or more times across all samples were

1http://www.biotech.cornell.edu/brc/genomic-diversity
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FIGURE 1 | Geographical distribution of the 48 populations of wild pearl millet.

retained and used to identify “TAG pairs,” with a default error
tolerance rate (ETR) of 0.03, as described in Lu et al. (2013).
Reciprocal “TAG pairs” with only 1 bp mismatch were considered
as putative SNPs. Likelihood scores for each possible genotype
were calculated according to formula 3.8 of Etter et al. (2011)
and the most likely genotype was assigned. SNPs with a minor
allele frequency (MAF) below 0.05 were excluded. Analyses were
conducted with TASSEL version 3.0.157. The final set of SNPs
(262,928) was then filtered for depth of coverage (DP) and for
the percentage of missing data per SNP (<10%). We use the
median value of coverage across all the SNP as threshold for the
DP filter.

Transcriptome Based Mapping (TM) Pipeline
The wild pearl millet transcriptome contains 50,313 contigs for
a total of 36.5 MB. This transcriptome was built from RNA
from early inflorescences when differential expression was not
too pronounced. The average contig length is 725 bp ± 732 bp
(the transcriptome assembly2).

Raw sequences were first trimmed for low quality ends (<20)
and reads of less 35 bp were removed using Cutadapt 1.2.1
(Martin, 2011). Secondly, a filter on read mean quality was
applied at a threshold of 30. Reads were mapped to the assembly
with BWA version 0.7.5 (Li and Durbin, 2009) with –n 3, allowing
for a maximum number of three mismatches. Unmapped reads

2https://sites.google.com/site/africropproject/data

were removed using SAMtools version 0.1.17 (Li et al., 2009).
We used RealignerTargetCreator and IndelRealigner from GATK
version 2.4.7 (DePristo et al., 2011) to handle indels. SNPs and
genotypes were called using UnifiedGenotyper. A total of 236,897
SNPs were then filtered for no more than three mismatches per
10 bp window, a HARD_TO_VALIDATE mapping quality (MQ)
filter was applied [MQ0 ≥ 4 && ((MQ0/(1.0 ∗ DP)) > 0.1], and
filtering was performed for QUAL (Quality) and QD (Quality by
Depth) parameters which derived from Illumina quality scores
(QUAL ≤ 60; QD ≤ 6.87 quantile 5%). The 121,279 remaining
SNPs were then filtered for DP using the median value, and the
percentage of missing data per SNP (≤10%). It is important to
note that the additional quality filters cannot be applied in the
UNEAK pipeline since Illumina quality scores are not used and
not kept through the pipeline. All command lines are available
in Supplementary Data File S1, and datsetes are availbale at
https://sites.google.com/site/africropproject/data.

Overlap between the Two SNP Datasets
We aligned the Hapmap file of TAG sequences on the
transcriptome using BWA version 0.7.5 (Li and Durbin, 2009)
with –n 3, allowing for a maximum number of three alignments
to output. We only report TAGs that had a unique hit.

In order to identify SNPs shared by the two datasets, we
identified TAGs among the 21,913 final UNEAK SNPs that
aligned to the transcriptome and extract the SNP position. We
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then compared the position and the alleles to identify homolog
SNPs in the TM dataset.

Diversity Statistics and Population
Genetics Structure
We performed most analyses in the R environment (R Core
Team, 20153). We performed a principal component analysis
(PCA) using SMARTPCA (Patterson et al., 2006; Price et al.,
2006) as implemented in the R package SNPRelate (Zheng
et al., 2012). We used the R package Adegenet (Jombart and
Ahmed, 2011) to estimate heterozygosity values, and the R
package Pegas (Paradis, 2010) for F-statistics. We used the
sNMF software to identify population structure (Frichot et al.,
2014). This software gives similar results to those obtained with
STRUCTURE (Pritchard et al., 2000) but it is much faster and
can handle a very large number of SNPs. Finally, the folded site
frequency spectrum (SFS) was calculated and used to estimate
2w, 2π and Tajima’s D (Tajima, 1989). In addition, we estimated
the SFS expected for a population at equilibrium in each dataset
(Fu, 1995).

RESULTS

Mapping and SNP Discovery
Both pipelines produced a similarly high number of SNPs. With
the UNEAK pipeline, we were able to identify 262,928 biallelic
SNPs. After filtering for depth (DP ≤ 51, 50.5% filtered) and
missing data (NA ≥ 0.1, 41.2% filtered), we obtained 21,913
good quality SNPs. With the TM approach, a total of 16,399,078
cleaned reads with a mean size of 92 bp mapped on 36 918
contigs. The mean coverage was 41.33 ± 44.2 and the mean MQ
was 24.5. We identified 238,897 biallelic SNPs with a median
depth of 90×, after filtering we obtained a total of 22,262
good quality SNPs. Specific filters (SNP clustering, mapping and

3http://www.R-project.org

quality filters) from TM pipeline removed nearly 50% of SNPs,
while subsequent filters for depth (DP ≤ 90) SNPs and missing
data (NA ≥ 0.1) removed 25 and 13.5%, respectively (Figure 2).

The final sets of SNPs revealed that the quality of the two
approaches was equivalent. The UNEAK final set of 21,913 SNPs
had a mean DP per site and per sample of 7.24 ± 3.63 sd and
an average missing rate per sample of 0.04 ± 0.04 sd. The TM
final set of 22,262 SNPs had a mean DP per site and per sample
of 8.68 ± 12 sd and an average missing rate per sample of
0.03 ± 0.03 sd. Within the TM final set, 56% of SNPs were found
within a distance of 64 bp. The missing rates per sample between
the UNEAK and TM dataset were highly correlated (r = 0.95).
However, we had an average of 70% inflate number of missing
data with UNEAK, since the average missing rates UNEAK:TM
ratio was 1.7± 1.8 sd.

In addition, we tested direct mapping of the 262,928 UNEAK
TAG 64 bp on the transcriptome. A total of 21,410 TAG loci (8%)
mapped on 13,177 transcriptome contigs (26%). The mapping
was relatively good since 94% of the mapped TAGs had a unique
hit, among which 96% had a perfect 64 bp match. The mean
MQ of these unique hits was 34 ± 9 sd. Among the 21,943
good quality TAGs, we found 3,146 TAGS (14%) that had good
alignment on 2,382 (5%) contigs. Among those, we retrieved 822
SNPs common to the two datasets. Nearly all UNEAK SNPs had
a MAF > 0.05 (Supplementary Figure S1 and Table S1). The
correlation coefficient between allele frequencies estimated by
both pipelines for shared SNPs was very strong (r = 0.98).

Genetic Structure and Genetic Diversity
The two datasets showed very similar inference of genetic
structure. We identified K = 3 grouping populations
geographically in a Western, Center, and Eastern clusters
with both datasets (Figure 3). Correlations between admixture
values from both approaches within each cluster were high with
r > 0.99. The results of a PCA were similar (Figure 3). Both
datasets showed the same three geographic clusters and the
correlation between PCA coordinates was very high (r > 0.99).

FIGURE 2 | Proportions of SNPs removed for each filter applied for both datasets UNEAK and TM.
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FIGURE 3 | Population structure inferences for both SNPs datasets UNEAK (left) and TM (right) using sNMF software (A,B) and PCA (C,D). Western
cluster is in red, Central cluster is in blue, and Eastern cluster in green.

Comparing UNEAK and TM PCA, only one sample (sample
5726B1) was in a different position in the two plots. This
individual had 17 times more missing data with the UNEAK
dataset than with the TM dataset despite missing rates <0.05%.
This very high ratio of missing data between datasets might
explain its outlier status. More generally, the regression of
PCA coordinates between the two pipelines showed that most
individuals qualified as slight outliers had three times more
missing data in the UNEAK pipeline than in the TM pipeline.
However, overall, we observed very good individual quality
and a very strong congruent inference of population structure
irrespective which pipeline was used.

In contrast, genetic diversity assessment was affected
differently depending on the pipeline. Heterozygosity values
were almost two times higher with the UNEAK dataset than
with the TM dataset (Table 1). For F-statistics, FIS was slightly
but significantly higher with the TM dataset and FST was
significantly (two times) lower. When we compared observed
SFS and expected SFS for a population at equilibrium, the

UNEAK dataset clearly did not retrieve the expected amount
of low frequency SNPs (Figure 4). On the other hand, TM SFS
appeared to overestimate their number. As a result, 2π was 2.2
times higher with the UNEAK dataset and Tajima’s D-values
consequently differed considerably with a positive Tajima’s
D-value of 2.74 for UNEAK and negative value of −0.65 for TM
dataset.

DISCUSSION

In this study, we compared two bioinformatics pipelines and their
impact on population genetics statistics. Investigating genomic
diversity is still challenging for non-model organisms with large
genomes. RRL sequencing approaches, such as RNA-seq and GBS
approaches, have been proposed to reduce genome complexity.
NGS data obtained can be handled by different pipelines
including Stacks and TASSEL. Here, we preferentially used the
TASSEL pipeline because is the most commonly used pipeline

TABLE 1 | Summary of diversity statistics for the two SNPs datasets.

UNEAK TM P-value

Mean Median Standard deviation Mean Median Standard deviation

HExp 0.28 0.25 0.13 0.12 0.04 0.15 <0.0001

HObs 0.16 0.13 0.13 0.09 0.03 0.14 <0.0001

FST 0.22 0.2 0.18 0.1 0.04 0.18 <0.0001

F IS 0.34 0.37 0.28 0.39 0.44 0.4 <0.0001
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for crops studies. We therefore first used the UNEAK approach
implemented in TASSEL and proposed and tested an alternative
strategy in which NGS genomic reads were directly mapped
on the pearl millet transcriptome. This strategy was guided
by the observation that species transcriptomes are becoming
progressively more accessible thanks to transcriptional studies
and that it would be advantageous to use it (Russell et al.,
2013; Combosch and Vollmer, 2015). It makes it possible to
avoid using the de novo DNA assembly and has the advantage
of using a reference genome, for example to access a longer
sequence around SNPs sites, and has a greater probability of
finding selection targets (Hancock et al., 2011).

GBS Reads Biased Toward Coding
Regions
The quality of our two final datasets is as good as the datasets used
in other population genetic studies with final coverage ranging
from 5 to 10 and missing values rates below 0.3. Many RRL
datasets may have low coverage in studies whose design aims for
more individuals or loci to increase the accuracy of population
genetic parameters (Alex Buerkle and Gompert, 2013).

Surprisingly, we found that non-negligible numbers of
UNEAK TAGs mapped to the transcriptome. Combosch and
Vollmer (2015) found that about 15% of RAD loci mapped to
10% of transcriptome contigs. Our results are similar with 8%
of TAG loci that mapped to 26% of transcriptome contigs. We
originally expected a very low mapping rate since we were only
mapping to the expressed genome. One possible explanation is
the choice of the restriction enzyme used. Our study, and many
others, used ApeKI enzyme with the GBS approach (Elshire et al.,
2011; Lu et al., 2013). Its methylation sensitivity made it possible
to eliminate repetitive methylated genomics regions from the
experiment (Sonah et al., 2013). In eukaryotes, non-methylated
sites are preferentially found in coding regions (Phillips, 2008).
In Populus populations, 27% of restriction sites from the whole
genome were recovered using ApeKI for GBS and of which
70% fell into annotated genes (Schilling et al., 2014). In sweet
cherry (Prunus avium L.) 66% of SNPs were found in genic
regions (Guajardo et al., 2015). In the present study, based on a
pearl millet genome estimated at 1.8 G (Xin Liu, BGI, personal
communication) and the size of the reference transcriptome at
36.5 MB, we interrogated only 2% of the genome. We found
that 6–7% of reads per sample mapped to the transcriptome
reference and 8% of UNEAK TAG loci were also aligned, which
is three to four times more than the expected 2%. These results
are in line with reports of an ApeKI enzyme bias toward coding
regions in previous studies (Schilling et al., 2014; Guajardo et al.,
2015).

Effect of Pipelines on SNPs Identified
Pipeline specifics influence the number of SNPs discovered and
their distribution properties. There are major differences in
how SNPs are called between pipelines, because pipelines deal
somewhat differently with sequencing errors, base quality values,
SNP calling and genotype calling methods and in our case, TAG
catalog construction vs. transcriptome mapping. We now review

some of the differences between the two approaches and how
such differences could impact our results.

Among all the parameters that can affect SNPs discovery,
coverage is one of the most important. For instance, error rates
are expected to increase with low coverage (<20×; Andrews
and Luikart, 2014). To limit the impact of coverage in both
our pipelines, we filtered SNPs with a depth above the median
value for each dataset (51× for UNEAK, 90×for TM). Both
final datasets had similar coverage and similar missing rates.
Thus, it that sense, it would have little effect on number of SNPs
discovered and population genetics estimates between datasets.

Another possible bias comes from repetitive regions in the
genome, such as paralogs, and is not always easy to identify with
NGS data. Different filters can be used to reduce the effect of
unidentified paralogs. Paralogous regions are expected to align
to multiple locations in the genome (Hohenlohe et al., 2012)
and SNPs within paralogs genes are expected to show more than
two alleles (Freedman et al., 2014). We only considered biallelic
loci in the two datasets, since in RRL approaches, the problem
of paralogs can be effectively addressed by ploidy-based filtering
(Ilut et al., 2014). With the TM approach, we were able to apply an
additional filter on MQ to reduce paralogous regions. However
when mapping UNEAK TAGs to the transcriptome, we found
that 94% of the TAGs that had a hit, mapped to a unique position.
This suggests that even if no mapping filter can be applied,
the probability of calling paralogs with the UNEAK pipeline is
relatively low and the ploidy-based filtering thus appears to be
sufficient to avoid paralog bias.

Statistical treatment of NGS sequences for a given genotype is
based on assumed independent drawn of non-redundant read at
a single gene. Several artifacts could bias the genotype likelihood
because reads do not behave like the underlying statistical
hypothesis: one read could be a duplicate (non-independent),
an alternative allele could be missing (non-random draw) or
mapping from two different but similar genes (not a single
gene) on a single reference. Neither pipeline deals very easily
with the occurrence of statistical non-independence of reads.
Pipelines developed for RRL approaches were not able to handle
allelic dropouts and mistake heterozygous presence/absence for
homozygous presence/absence (Davey et al., 2013). A very recent
pipeline for handling dominant and codominant markers has
been developed (Fu et al., 2013). Yet with both of our approaches,
a dominant marker (i.e., a mutation at the restriction site
leading to allelic dropout) would have led to a homozygote call.
Duplicate reads occur when, during DNA bank preparation,
two reads derive from a single DNA by PCR duplication.
PCR duplicates are by definition reads starting at the exact
same mapping position. The effects of PCR duplicates on the
estimation of population genetics have already been discussed
(Arnold et al., 2013; Davey et al., 2013; Gautier et al., 2013).
By construction, in RRL based on restriction enzymes, reads
will start at the same mapping position which is the RE site,
therefore applying PCR duplicates filter will not be possible
unless a paired-end sequencing approach and random sheering
is used (Davey et al., 2013) but recently a new protocol has
been proposed by introducing “adaptor tags” allowing PCR
duplicate discrimination (Tin et al., 2015). In conclusion, for both
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FIGURE 4 | Folded sites frequency spectrum for both SNP datasets: (A) TM (in red) and its expected neutral SFS in black; (B) UNEAK (in blue) and its
expected neutral SFS in black.

approaches we used, filtering for PCR duplicates was not possible
and we therefore expected both UNEAK and TM datasets to
underestimate heterozygosities. This is congruent with the strong
correlation observed between estimated frequencies by both
approaches for the shared SNPs.

The amount of SNPs allowed within a genomic windows is
important since regions with too many SNPs are not reliable and
may (i) contain many sequencing errors, (ii) be associated with
paralogs. Within the TM pipeline, we applied a SNP clustering
filter with no more than three SNPs per 10 bp. Nevertheless, it
allowed quite a number of SNPs in a 100 bp read. For instance
in the TM datasets, 56% of SNPs were less than 64 pb away.
Since the UNEAK approach only allows 1 SNP per 64 pb, more
than 50% of TM SNPs would be automatically discarded by the
UNEAK pipeline.

However, the two pipelines differ strongly in their rare variant
calling rates. Even if base quality is higher than 30 with the

ILLUMINA sequencing platform, i.e., one error every 103 bases,
with the amount of data that was generated, it ended up creating
numerous errors. Calling rare variants (or not) will depend on the
SNP and genotype calling algorithm implemented in the software
and on how error sequencing rates are considered (Han et al.,
2014). With some pipelines, the error rate estimate is considered
to be constant across the genome, while other pipelines estimate
an error rate for each base (Hohenlohe et al., 2011). Error rate
estimates can also account for dependency between sequencing
errors, (or not; Han et al., 2014). In GATK software, it is assumed
that sequencing errors are independent and it takes coverage
and base quality into consideration. Thus, unless coverage is
about 10× per site per sample, GATK with UnifiedGenotyper can
underestimate rare variants (Han et al., 2014), whereas UNEAK
handles sequencing errors differently. To deal with this issue, the
UNEAK pipeline uses a minimum ETR of 3% to call variants.
This ETR has a direct impact on true low frequency variants: with
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erroneous SNP, true SNP are discarded. This way of handling the
error sequencing rate might be the main reason why UNEAK SFS
underestimates low frequency SNPs compared to the expected
distribution with a population at equilibrium. It would also
explain why so few SNPs are shared, since only frequent SNPs
can be found by both datasets, which was confirmed by the
distribution of MAF observed for shared SNPs.

In summary, we identified two main reasons for the low
number of shared SNPs: (i) the constraint of no more than
one SNP within 64 bp, and (ii) the uncovering of rare variants
by UNEAK, which represent the majority of the polymorphism
expected for a population at equilibrium. We ended up with
relatively few shared SNPs. However, the allele frequency
correlation between these SNP was very high.

Effect of Pipelines on Diversity Estimates
How the specific characteristics of the SNPs we identified
will affect population genetics estimates is another important
question. There is an increasing literature on how parameters
such as the number of mismatches allowed to assemble reads
in orthologous loci with RRL approaches will influence the
number of SNPs identified and population results. Most available
studies focus on the effect of Stacks pipeline parameters (Catchen
et al., 2013; Mastretta-Yanes et al., 2014). For instance, allowing
a small number of mismatches would lead to the creation of
more loci than in real life, and conversely, allowing too many
mismatches would lead to merging paralogs. Being too stringent
can increase genotyping error rates (Mastretta-Yanes et al., 2014)
and overestimate homozygosity (Ilut et al., 2014). This could
also have an effect on the identification of population structure
(Harvey et al., 2015; Rodríguez-Ezpeleta et al., 2016). With
the UNEAK pipeline only allowing 1 bp mismatch, it is the
maximum stringency level for an RRL pipeline. Yet, we saw
no effect on population structure and we observed very high
congruence in the population structure in the two datasets and
with two different methods: a Bayesian method and a PCA. These
results are similar to those obtained by Rodríguez-Ezpeleta et al.
(2016).

The main difference we observed between pipelines concerned
the identification of low frequency variants. We found that
the UNEAK pipeline was not able to recover rare variants
while the SFS pattern for frequent variants was similar between
pipelines. Thus methods based on “more frequent alleles”
such as population structure approaches led to similar results.
On the other hand, several statistics using low frequency
variants differed considerably depending on the dataset used.
Tajima’s D test (Tajima, 1989) is based on the SFS pattern,
where an excess of rare variants is the sign of a population
expansion or positive selection and inversely, a reduction
in rare variants is the sign of a population contraction or
balancing selection. Both pipelines gave highly contrasted results
ranging from an overall negative value signature of −0.65 to
a positive value signature of 2.74. Unbiased SFS is crucial for
population genetics. Methods used to investigate population
history including bottlenecks or expansion events are based
on the difference between allelic diversity and heterozygosity
and therefore depend on the identification of rare variants.

Moreover, SFSs are widely used to test signatures of selection
using Tajima’s D but so are other tests such as the CLR test
(Nielsen et al., 2009). With such tests based on SFS, calling
pipelines might significantly affect genomic regions found to be
under selection.

Differences in the number of rare variants detected will
also influence F-statistics in addition to heterozygosities. FST
is dependent on allele frequency, low FST is expected for low
frequency variants. Consequently, integrating more rare variants
ends up adding low FST value, and thus lowering the mean FST
value. The first and most simple consequence will be to make it
difficult to compare diversity estimates obtained with different
pipelines, an important issue in comparative studies (Ilut et al.,
2014; Harvey et al., 2015). Another very “in vogue” approach
since the NGS area, is the FST outlier detection approach for
discovery of genes under selection. A number of FST outlier
tests have been developed and extensively used for the discovery
of candidate genes (Beaumont and Nichols, 1996; Vitalis et al.,
2001; Beaumont and Balding, 2004; Foll and Gaggiotti, 2008;
Bonhomme et al., 2010; Günther and Coop, 2013; Duforet-
Frebourg et al., 2014) and are based on the expected distribution
of FST. Underestimating rare variants will affect the overall
distribution of FST and might therefore have an impact on these
selection tests.

It is certain that some of the differences in the results of
diversity estimates observed between datasets are due to the
fact that the UNEAK pipeline interrogates coding and non-
coding regions while the TM pipeline only interrogates coding
regions. However, like other authors, we previously observed
that using APEKI biased SNP discovery toward coding regions
(Combosch and Vollmer, 2015; Guajardo et al., 2015). All
in all, we believe that the bias in the diversity estimates is
mainly the result of the properties of the pipelines. Biased
SFS are the result of different parameters including error rate
estimation formula and the stringency allowed for TAG merging.
An increasing number of studies suggest that genotype calling
might no longer be needed for NGS data (Nielsen et al., 2011;
Fumagalli et al., 2013; Han et al., 2014). Nielsen et al. (2011)
pointed out that, until now, no satisfactory genotype calling
algorithm is available that would lead to an unbiased SFS. These
authors proposed a direct approach implemented in ANGSD
software (Korneliussen et al., 2014) that does not intend to call
genotypes and this approach has been extended by a modified
PCA (Fumagalli et al., 2013) and admixture estimate approach
based on genotype likelihoods (Skotte et al., 2013). However, this
software works only with BAM files as input and a reference.
Given this limitation, SNPs obtained from the UNEAK pipeline
could not be used, whereas our TM pipeline could integrate such
analysis.

CONCLUSION

We have demonstrated the possibilities and discussed the
advantages and disadvantages of two pipelines used for SNP
discovery when no genome reference is available. We found that
the UNEAK pipeline, with little and simple bioinformatics work,

Frontiers in Plant Science | www.frontiersin.org 8 June 2016 | Volume 7 | Article 777

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00777 June 13, 2016 Time: 12:24 # 9

Berthouly-Salazar et al. SNPs Discovery for Non-models Crops

can efficiently identify a large number of SNPs as well as
highlight genetic clustering. However, we observed notable
underestimation of rare variants that could impact the estimation
of population genetics and the detection of selection. Therefore,
we encourage researchers to pay more attention to SFS. The
transcriptome mapping reference was less biased in that sense
and, more importantly, such a strategy could be used in
combination with ongoing approaches without genotype calling
to further reduce bias on SFS. The alternative strategy has the
further advantage of enabling access to sequences surrounding
SNPs for further genomic exploration. Moreover, since few SNPs
are shared, both datasets could be combined, thereby significantly
increasing the SNPs used.
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