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Pseudo-Rate Matrices, beyond Dayhoff’s model

Claudine Landès, Yolande Diaz-Lazcoz, Alain Hénaut and Bruno Torrésani

Abstract One of the fundamental techniques of biology is sequence alignment,
namely transforming one sequence into another with minimal change. Sequence
alignment is essential for evolutionary studies and is a source of information for
the analysis of the physico-chemical mechanisms which are at the heart of protein
activity. Biologists almost exclusively use methods based on a very simple model,
although they are aware that this can be quite removed from reality. In fact, the more
complex models involve so many variables that they cannot be calculated in practice.
This paper presents amethod to estimate the quality of the approximationmade using
simple models, giving a measure of the deviation from reality. It is exclusively based
on the analysis of pairwise alignments, without resorting to multiple alignments, and
therefore without requiring the construction of trees and the problems associated
with it. The paper also describes an approach that allows building trees and clusters
from sequences without strongly relying on the choice of a dissimilarity measure.
It illustrates the interest and effectiveness of the point of view promoted by Alex:
assume as little as possible and try to gather information from the data, before turning
to explicit modeling if necessary.
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1 Introduction

Alignment-free sequence comparisons make it possible to reconstitute the phylogeny
of proteins that have diverged greatly over time (see the introduction of the companion
paper [2] in this volume for definitions of themain concepts), but they do not, on their
own, enable to model the mechanisms of protein evolution. This requires alignments,
that is, the transformation of one sequence into anotherwhilstminimizing the number
of changes.

The realization of the alignments has two clearly distinct parts: an alignment
algorithm and a transition matrix (also called substitution scoring matrix or matrix
of accepted mutation rates, see Definition 5 below). This matrix defines the rate at
which amino acids are replaced by others over the course of evolution.

We presented the alignment algorithms in the article [2]. Here we present some
of the issues related to the construction of amino acid substitution rate matrices, the
relatedmodels of sequence evolution, and howAlex approached them. Amain aspect
of Alex’s contributions is the will to adapt models to data, not vice versa. This paper
first describes the estimation of observed rate matrices from pairwise sequence
alignments, examines connections with popular sequence evolution models and
shows how simple multivariate analysis techniques can be applied to these matrices
to highlight and quantify departures from suchmodels. It also accounts for an original
approach to biological sequence clustering that avoids as much as possible ad-hoc
dissimilarity measures that tend to bias results and thus interpretations. Theoretical
developments are complemented by numerical results on real data that include
topoisomerases already discussed in [2].

2 Classical approaches, scoring matrices

2.1 Dayhoff evolution model - The PAM (Point Accepted Mutation)
Matrix

In the late 1960s, Margaret Dayhoff had the excellent idea of collating as many
closely related homologous protein sequences as possible, aligning them "by hand"
and counting the substitutions, which enabled her to estimate the probability that
a given amino acid will be replaced by another when there is about 1% change
between two sequences. She thus obtained a 20 × 20 matrix called PAM1 for "1
Point Accepted Mutation per 100 residues". By construction, the PAM matrices are
symmetrical.1

Margaret Dayhoff hypothesized that the probability of replacing an amino acid
at a given site depends only on the nature of that amino acid. This probability is

1 In general, the PAM series rather refers to the scoring matrices that are used to weigh the replace-
ments in protein alignment methods. These scoring matrices, calculated from these probabilities,
and closely connected to transition matrices studied in section 3.2 below.
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independent of what may happen at the other sites and of what may have happened
previously at this same site [5]. In other words, repeated mutations over a longer
period of evolution follow the same substitution pattern as those observed. We can
therefore extrapolate from PAM1 the PAMmatrices corresponding to any percentage
of change.

Biologists typically use the PAM120 matrix (about 40 % identity). They switch
to PAM250 if they find that the sequences are very divergent (about 20 % identity)
(see Fig. 1).

Fig. 1 Correspondence of the observed percent difference and the estimated evolutionary distance
in PAM [5].

2.2 BLOSUM, another general purpose substitution matrix

Since then, other matrices based on the same principle have been developed. The
most widely used are the BLOcks of Amino Acid SUbstitution Matrix (BLOSUM)
matrix series. BLOSUM matrices were constructed from the count of substitutions
observed in a series of multiple alignments listed in the Blocks database [22]. This
database collated alignment blocks without gap within related proteins [2]. These
well-conserved regions are believed to have greater functional relevance.

Created twenty years after the PAM matrices, the BLOSUM matrices obviously
have the advantage of being constructed from a much higher number of alignments,
themselves made from a much larger range of proteins. Biologists generally use the
BLOSUM62 matrix (i.e. the matrix constructed by retaining in all the aligned pairs
of the Blocks database those which present at most 62 % identity).

As BLOSUM matrices are based on structures which have been well conserved
during evolution, they are less "lax", which means that amino acids are less easily
exchangeable than in PAM matrices. The general consensus is that the BLOSUM
matrices are superior in terms of sensitivity and specificity without, however, the
difference with the PAM matrices being considerable (see Chapter 11 in [27]).
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2.3 Available biological material for the estimation of scoring matrices

Margaret Dayhoff had very little data when she calculated the first PAM matrices
(in 1969, 814 substitutions in all were known in pairs of sequences having more
than 85% identity). Progress has been very rapid, the matrices were based on 60 000
substitutions by the early 1990s. The number of known sequences has exploded since.
Biologists now have a choice of dozens of substitution scoring matrices (see [28]
and [23]). They differ among other things by:

• the sequences used in the training set (it can contain a single family of proteins
or several hundred);

• some authors use the mutations observed in a global alignment, including both
highly conserved regions as well as highly mutable regions (e.g. PAM), while
others only take into account regions whose structure is well conserved (e.g.
BLOSUM).

On the other hand, all authors implicitly assume that the matrices of the substitu-
tion rates are homogeneous in the training set. The latter assumption is not necessary.
As we show below, one can simultaneously estimate the evolution rate matrix and a
divergence age for each pair of sequences [8].

3 Rate Matrices, beyond Dayhoff’s model

The construction of the Dayhoff matrices is very similar to approaches developed in
the context of the inference of evolutionary trees that often rely on Markov models
on trees (see [9], and Chapter 11 of [14], see also [20] for a different approach, which
bears similarities with the techniques presented here).

However, Dayhoff’s approach departs from these as it is mainly descriptive and
does not involve explicit modeling and corresponding parameter estimation. It only
exploits simple counting, converted into scores. The construction in [8], described
below, builds on these ideas and attempts to interpret counting matrices in terms of a
minimal number of parameters, namely a rate matrix and divergence times whenever
possible, or several matrices in more complex cases.

3.1 Definitions and notations

We start by introducing background definitions and notations. Throughout this paper,
we work with square matrices with real entries. We refer to [4] for an account of
the main aspects of matrix calculus. We use the following notations: for any < × <
matrices M,M′, their inner product is defined as 〈M,M′〉 = ∑<

8, 9=1 "8 9"
′
8 9
, the

corresponding norm is denoted by ‖M‖2, and the trace of M is Tr(M) = ∑<
8=1 "88 .

The spectral norm ‖M‖ of a matrix M is its largest singular value.
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We will make use of the matrix logarithm, which should be understood as the
inverse function of the matrix exponential. While the latter can be defined by its
power series which is always convergent, the matrix logarithm raises more difficult
questions, and may be defined in various ways (see the note by H.E. Haber [13] for
a summary). We will limit ourselves to the definition based on the Mercator series:

Definition 1 (Matrix logarithm)
The logarithm of a matrix M is defined by the infinite power series expansion

log M =

∞∑
:=1

(−1):+1
:
(M − I<): , (1)

when the latter is convergent. Here, I< denotes the < × < identity matrix.

Convergence is ensured whenever ‖M − I<‖ < 1. The matrix logarithm does not
satisfy all the usual properties of the numerical logarithm: in general, log(M1M2) ≠
log(M1) + log(M2). However, the equality holds true when M1 and M2 commute,
and the relation

log(Mg) = g log(M) (2)

is preserved for all positive integer g, and more generally when Mg is well defined.

Definition 2 (Transition matrices, rate matrices)

1. A transition matrix is an < × < matrix P such that for all 8,
∑<
9=1 %8 9 = 1.

2. A pseudo rate matrix is a < × < matrix Q such that
∑<
9=1&8 9 = 0 for all 8 and

&88 ≤ 0 for all 8.
3. A rate matrix is a pseudo rate matrix Q such that &8 9 ≥ 0 for all 8 ≠ 9 .

Transition matrices are sometimes called stochastic matrices, or Markov transition
matrices. Transitionmatrices are naturally associatedwith finite stateMarkov chains,
i.e. random processes such that the probability of moving from state 8 to state 9 in
one time step is given by the matrix element %8 9 . In general, the eigenvalues of a
transition matrix are complex numbers of modulus smaller than or equal to 1.

Definition 3 (Markov semigroup)
A Markov semigroup is a family of transition matrices C ∈ R+ → P(C) satisfying

the Chapman–Kolmogorov equation

P(C)P(C ′) = P(C + C ′) , C, C ′ ∈ R+ , (3)

and such that for all 8, 9 , %8 9 (0) = X8 9 and limC→0 %88 (0) = 1.

Given a Markov semigroup, there always exists a matrix Q = P′(0) such that
P(C) = 4CQ and Q is a rate matrix. Conversely, if Q is a rate matrix, then the
exponentials 4CQ, where C ∈ R+, form a Markov semigroup.

Definition 4 (Embeddable transition matrices)
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1. A transition matrix P, is embeddable into a Markov semigroup, or simply em-
beddable if there exists a corresponding Markov semigroup C → P(C) such that
P = P(1) or, equivalently, if there exist a rate matrix Q such that P = 4Q. Q is
called a generator.

2. A set of transition matrices {P(1) , . . . P( ) } is jointly embeddable if there exist a
rate matrix Q and positive numbers g1, . . . g such that for all : , P(:) = 4g:Q

When P is embeddable, the corresponding rate matrix Q coincides with the matrix
logarithm of the transition matrix P.

These notions are at the heart of the maximum likelihood approach developed by
Felsenstein [9] and followers for the estimation of evolutionary trees. Evolutionary
trees model the evolution of a set of current time data, called taxa, from their
most recent common ancestor. In the situation of interest here, taxa are protein
sequences. The latter are represented as symbolic sequences, namely sequences
{G(:), : = 1 . . .  } with values in a finite alphabet A of cardinality < = #A (for
protein sequences, < = 20, letters label amino-acids). A pairwise alignment of two
sequences G, H is an ordered pair (G, H) = {(G(:), H(:)), : ∈ � (G, H)}where � (G, H) is
a set of indices. Pairwise alignments are used to identify regions of similarity between
two sequences of interest. Multiple alignments involve more than two sequences.
Algorithms for aligning sequences have been described in the companion paper [2].

Many models have been proposed for describing a family of aligned sequences (a
multiple alignment) from an evolutionary perspective (see [25] for a review). Among
these the Markov Chain on a Tree (MCT) model has received considerable attention.
The MCT model assumes that the sites of the sequences are independent, identically
distributed, random variables (see e.g. [26] for a discussion of the consequences of
such assumptions), whose time evolution is mainly described by two parameters:

• a binary tree, whose leaves are the sequences considered (present time), nodes
are ancestor sequences, and branches represent Markovian evolution,

• a family of transition matrices associated with the branches of the tree that
characterize evolution along the branch, modeled by a Markov chain.

At each node a sequence gives rise to two different sequences, each one evolving
according to its own Markov chain. A couple of examples is provided in Fig. 2. A
rooted tree with  leaves has 2 − 3 edges (2 − 2 for unrooted trees), thus 2 − 3
transition matrices. It is worth mentioning at this point that the number of different
tree topologies is equal to (2 − 3)!!, which makes the tree identification problem
extremely difficult for large numbers of sequences.

Among MCT models, the F81 model of [9] also assumes that the evolutionary
process is stationary, homogeneous, and reversible. In the context of interest here,
stationarity means that the probabilities of amino-acids are the same at all nodes of
the tree; homogeneity essentially means that all transition matrices are embeddable
(local homogeneity) or jointly embeddable (global homogeneity); reversibilitymeans
that for all pair (8, 9) of amino-acids, substitutions 8 → 9 and 9 → 8 have equal
probabilities.
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Fig. 2 Two examples of rooted evolutionary trees with 4 taxa, with different topologies. In the most
general form of MCT models a transition matrix is associated with each branch.

The parameters of the model (transition matrices and tree) are sufficient to com-
pute probabilities of all possible multiple alignments and evaluate them numerically.
The associated estimation problem is: infer parameter values of the multiple align-
ment, which was done in [9] using a maximum likelihood approach.

Parameter estimation turns out to be computationally heavy for large families of
sequences, even under the assumptions of homogeneity, stationarity and reversibility
and additional simplifications are often made. In addition, the comparison of likeli-
hoods for different tree topologies raises other difficult questions [1]. Finally, these
assumptions are often violated by data, so that the inferred evolutionary trees have
to be taken cautiously. An alternative approach avoiding these assumptions has been
proposed in [3] and more recently [16], it attempts to estimate a transition matrix
for each branch of the tree using again maximum likelihood. Still, the problem is
extremely difficult when large sequence families are considered, and the statistical
significance of results obtained with such a large number of parameters may be rather
questionable.

3.2 From pairwise alignments to rate matrix

The approach developed in [8] departs from these general models and attempts to
find simpler and more versatile descriptions for multiple alignments. The starting
point is a multiple alignment of sufficiently related and sufficiently close protein
sequences (to be introduced in Definitions 6 and 7 below). As stressed above, unlike
most probabilistic approaches to phylogeny (see [9], and [14] and references therein),
the approach of [8] does not use the full multiple alignment, and only focuses on
pairwise alignments. From each pairwise alignment (G, H), an observed transition
matrix P(G,H) is computed (see Definition 5 below), and the question is: to which
extend can the so-obtained family of observed transition matrices can be gathered
(embedded in the sense of Definition 4) into a common framework. For that, the
objects of interest will be the matrix logarithms L(G,H) of the observed transition
matrices P(G,H) .
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3.2.1 Observed transition and rate matrices

From now on, we consider a set of sequences denoted by - , and a set {(G, H), G, H ∈
-} of pairwise alignments.

Definition 5 (Counts, frequencies)
Given an ordered pairwise alignment (G, H) of length 2(G, H),

1. The matrix of transition frequencies F(G,H) is defined by its elements

�
(G,H)
8 9

=
1

2(G, H) ♯
{
: : G(:) = 8 and H(:) = 9

}
, 8, 9 = 1, . . . < . (4)

2. The vectors of frequencies c (G) = (c (G)1 , · · · c (G)< ) are given by

c
(G)
8

=
1

2(G, H) ♯
{
: : G(:) = 8

}
, 8 = 1, . . . < . (5)

We also denote by Π (G) = diag(c (G) ) the corresponding diagonal matrices.

From these quantities, observed transition and rate matrices can be introduced.

Definition 6 (Observed transition and rate matrices)
Given an ordered pairwise alignment (G, H) of length 2(G, H),

1. The associated observed transition matrix is defined as

P(G,H) = Π (G)
−1

F(G,H) , %
(G,H)
8 9

=
�
(G,H)
8 9

c
(G)
8

. (6)

2. The sequences G, H are sufficiently related if the corresponding observed transition
matrices admit a logarithm in the sense of Definition 1. In this case, the matrices

L(G,H) = log P(G,H) (7)

are called observed rate matrices. The diagonals of these matrices are called
mutabilities, and denoted by

` (G,H) = diag
(
L(G,H)

)
. (8)

Algorithms for reconstructing evolutionary trees from multiple alignments can be
based upon "evolutionary distances". Such distances can be constructed from the
above data. For example, the LogDet distance proposed in [3]

ldet(G, H) = log(det(P(G,H) )) , (9)

is a natural choice in situations where the observed transition matrices are jointly
embeddable, i.e. of the form P(G,H) = 4g (G,H)Q for some rate matrix Q (called
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generator). In such a case ldet(G, H) = Tr(L(G,H) ) = g(G, H)Tr(Q) is proportional
to the divergence time g(G, H). Although termed "distance", ldet is not a metric,
in particular is not symmetric, and is therefore not a suitable quantity for most
tree reconstruction methods that require tree metrics2. Nevertheless, ldet may be an
interesting quantity to look at, precisely because it doesn’t force symmetry. We will
analyze a biologically relevant example in section 4.1 below.

Remark 1 (Symmetric LogDet distances)
Several alternative LogDet distances have also been proposed and studied in the

literature. Among these, the quantity 3 (G, H) = − log(det(� (G,H) )) proposed in [18],
where it was shown that this distance allows identification of the tree topology, but
not edge lengths. Another alternative is X(G, H) = 1

2 log(det(P(G,H)P(H,G) )) which
possesses the desired symmetry property and interesting interpretations in the context
of reversible MCT models [25].

3.2.2 The symmetrized case

In the above setting a pairwise alignment (G, H) gives rise to two observed rate matri-
ces L(G,H) and L(H,G) , which complicates the analysis (although a strong discrepancy
between these two would indicate a strong departure from the above model). Simpli-
fication can be achieved by averaging these two matrices, however it appears more
natural to introduce symmetrization directly in the counting procedure. With the
above notations, we introduce the symmetrized matrices F̃(G,H) and vectors c̃ (G,H)

F̃(G,H) =
1
2

(
F(G,H) + F(H,G)

)
, c̃ (G,H) =

1
2

(
c (G,H) + c (H,G)

)
, (10)

and define as before the diagonal matrix Π̃ (G,H) = diag(c̃ (G,H) ).

Definition 7 (Sufficiently close sequences)
Two sequences (G, H) are sufficiently close when the corresponding matrix F̃(G,H)

is positive definite.

As stated in [8], for sufficiently close sequences (G, H), the matrix Π̃ (G,H) is nonsin-
gular. This motivates the introduction of corresponding transition and rate matrices:

Proposition 1 Let (G, H) be a pairwise alignment of sufficiently close sequences.
Then the following symmetrized observed transition and rate matrices are well
defined

P̃(G,H) = (Π̃ (G,H) )−1F̃(G,H) , L̃(G,H) = log P̃(G,H) . (11)

Assuming, for argument’s sake, that alignments were generated according to the
Markov tree model of [9], the following observations can be made:

2 A tree metric is a map (G, H) → X (G, H) that satisfies the requirements of a dissimilarity map (it
is non-negative, symmetric, and such that X (G, G) = 0 for all G) and an additional condition called
the four points condition, see e.g. chapter 11 in [14].
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• Observed transition matrices can be expected to be powers Pg (G,H) of a unique
transition matrix P (up to statistical fluctuations).

• Therefore observed rate matrices can be expected to be (up to fluctuations) pro-
portional to a unique rate matrix Q = log(P).

In such a situation, simple tools such as linear regression may be expected to yield
estimates for the rate matrix Q and divergence times g(G, H). To resolve the scaling
indeterminacy, a normalisation condition has to be imposed on either Q or the
divergence times, for example Tr(Q) = −1 (or ‖Q‖� = 1 as in [8]).

3.3 Multivariate analysis of observed rate matrices

We now address the problem of comparing sufficiently related sequences using
observed rate matrices and without additional assumptions. Consider a set of ?
pairwise alignments (G, H) of sufficiently related sequences as defined inDefinition 6.
To each pair (G, H) is associated an observed rate matrix L(G,H) , which provides an
<2-dimensional representation of the alignment.

In the biological applications described below we mainly focus on two aspects,
namely the symmetry and the adequacy of models associated with a unique rate
matrix Q. For that we will resort to multivariate analysis techniques, in particular
adaptations of principal component analysis (PCA for short, see e.g. [17] for a recent
review), which we briefly outline here.

PCA is a very simple and routinely used tool for exploratory data analysis. Given
an = × ? data matrix X, PCA provides orthonormal bases of the space of rows
and the space of columns of X, denoted respectively by {V: } and {Uℓ }. These
are eigenvectors of the matrices X)X and XX) respectively3. Eigenvalues are real
and non-negative, and conventionally ordered in decreasing order (basis vectors are
sorted accordingly). They represent the standard deviations of the projections of
rows and columns of X onto the axes generated by corresponding basis vectors.

The coordinates of rows and columns with respect to these bases can often be
given a sensible interpretation. It is customary to represent graphically projections
onto subspaces spanned by the first eigenvectors (for convenience two-dimensional
subspaces are chosen, the so-called first factorial planes). Also of interest are the
weights of the expansion of basis vectors {V: } (resp. {Uℓ }) as linear combinations
of rows (resp. columns) of X, which we will call contributions.

Remark 2 (Mutabilities, ldet)Besides observed rate matrices, other simple quantities
are also worth investigating. For example, the mutabilities (diagonals of observed
rate matrices) defined in (8) can be analysed in the same way and provide similar
or complementary conclusions. While rate matrix elements are labelled by pairs of
amino acids, mutabilities are vectors labeled by amino acids. Biologists prefer to

3 Standard PCA often involves prior centering of the columns of - , and sometimes an additional
normalization.
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use mutabilities because they are easier to interpret. This is what we will do in the
examples below.

Also, traces of observed rate matrices (i.e. sum of diagonal elements) coincide
with the ldet distance defined in (9), and therefore provide information relative to
divergence times of sequences.

4 Biological validation of observed rate matrices

The above approach is very general, and provides a representation of alignments
which enables in particular to check if L(G,H) is indeed equal to L(H,G) or if the rate
matrix Q is the same for all the sequences in the sample. These are necessary checks
because, as we show below, this is not always the case. They provide a rational basis
for the choice of a model of molecular phylogenies.

4.1 Rate matrices and subfunctionalization in reverse gyrases

For some genes, multiple copies are present in the genome. The different copies
can have the same function, the duplication simply increasing the amount of protein
produced, or different functions while keeping the same type of enzymatic activity;
this is what biologists call a subfunctionalization. Subfunctionalization involves a
modification of the protein sequence that goes beyond conservative substitutions, i.e.
those where one amino acid is replaced by another which will play the same role. The
associated mutation matrix must therefore be different from those usually observed
since the latter were calculated on sequences whose function was conserved during
evolution. The whole question is whether the differences come out of the noise
enough to be visible.

We approached the problem by studying the duplication of a gene, the reverse
gyrase4, because we know from biological data that there are cases of subfunction-
alization. (See the introduction and section 4 of [2] where these points are discussed
in more detail). In Sulfolobus for example, the two genes encoding the reverse gyrase
are essential, the two proteins have different enzymatic properties and have a specific
regulatory pathway [11, 10].

The set of sequences that we used contained 17 reverse gyrases representative
of the biodiversity of hyperthermophiles and the duplicated genes topR1 and topR2
from three Sulfolobus, namely S. acidocaldarius, S. solfataricus and S. tokodaii. We
performed a pairwise alignment of the 23 reverse gyrases. The sequences are close
enough (according to Definition 6) to allow the computation of the ldet divergences,
following equation (9).

4 The reverse gyrase exists mostly in bacteria and archaea whose growth optimum is above 80 ◦C;
it protects DNA from the denaturation that normally occurs at such high temperatures [11].
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The distribution of the asymmetry |ldet(G, H) − ldet(H, G) | is displayed in Fig. 3. A
first remark to be made: the main mode of the asymmetry distribution is not located
at the zero value (it is located between 0.4 and 0.5); in addition, the 22 values greater
than 2.5 forming the second mode all correspond to the alignments involving the
reverse gyrase of the bacteria Thermus thermophilus.

Fig. 3 Distribution of the asymmetry |ldet(G, H) − ldet(H, G) | for the 253 alignments of the 23
reverse gyrases. The 22 values larger than 2.5 correspond to alignments involving the reverse gyrase
of the bacteria Thermus thermophilus.

Here we will only discuss the comparisons between topR1 and topR2 in Sul-
folobus. As shown in Table 2, the asymmetry is much weaker in their case, but it is
not zero (the identifiers are defined in Table 1).

Species Gene Identifier Species Gene Identifier
S. acidocaldarius topR1 A1 S. acidocaldarius topR2 A2
S. solfataricus topR1 B1 S. solfataricus topR2 B2
S. tokodaii topR1 C1 S. tokodaii topR2 C2

Table 1 Definition of identifiers used in Table 2 and Table 3.

Table 3 displays the differences ldet(G1, H2) − ldet(G2, H2) between a pair (G1, H1)
of sequences topR1 and the peer pair (G2, H2) of sequences topR2. The average
value of this difference approximately equals -2.3. Since ldet(G, H) = g(G, H)Tr(Q)
(equation (9)) and as g is the same for topR1 and topR2 for any given couple of
species (this is the time since the two species evolved separately), this means that
a unique rate matrix Q cannot describe both topR1 and topR2. This proves that the
subfunctionalization is associated with a modification of the observed rate matrix L.

We now turn to multivariate analysis of mutabilities ` (G,H) (i.e. diagonals of
observed rate matrices, see (8)). Although the set of such vectors may be seen geo-
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Alignment ldet(G, H) Alignment ldet(H, G) ldet(G, H) − ldet(H, G)
A1.B1 13.03 B1.A1 13.07 -0.04
A1.C1 9.79 C1.A1 9.89 -0.10
B1.C1 11.90 C1.B1 11.91 -0.01
A2.B2 15.11 B2.A2 15.03 0.08
A2.C2 12.22 C2.A2 12.08 0.14
B2.C2 14.47 C2.B2 14.36 0.11

Table 2 Reverse Gyrases: asymmetry of the ldet "distance" between topR1 and topR2 in Sulfolobus.

Alignment ldet(G1, H1) Alignment ldet(G2, H2) ldet(G1, H1) − ldet(G2, H2)
A1.B1 13.03 A2.B2 15.11 -2.08
A1.C1 9.79 A2.C2 12.22 -2.43
B1.A1 13.07 B2.A2 15.03 -1.95
B1.C1 11.90 B2.C2 14.47 -2.57
C1.A1 9.89 C2.A2 12.08 -2.19
C1.B1 11.91 C2.B2 14.36 -2.45

Table 3 Reverse Gyrases: differences between ldet values for type R1 proteins (denoted by
ldet(G1, H1)) and homologous type R2 proteins (denoted by ldet(G2, H2)). The average value ap-
proximately equals -2.3.

metrically as a cloud of points in a 20-dimensional space, they actually lie (to some
extent) in a subspace of much smaller dimension. Performing an uncentered PCA
(see section 3.3 above) on this dataset gives a satisfactory image of this dimension
reduction: the first two axes here account for 59 % (35% + 24%) of the variance.
There is an almost perfect homothety between the values of ldet(G, H) and the co-
ordinates on the first axis: a linear regression gives axis1(G, H) ≈ 0.24 ldet(G, H)
('2 = 0.97).

However, the observation of the projection onto the first factorial plane (i.e. the
plane generated by the first two principal components) displayed in Fig. 4 provides
more information than the simple calculation of ldet(G, H). We see for example that
the second axis separates ` (G,H) and ` (H,G) and therefore outlines the asymmetry
mentioned above. In addition,Fig. 5 shows that the projection onto the plane 2-3 both
outlines the asymmetry (axis 2) and separates ` (G1 ,H1) and ` (G2 ,H2) (axis 3, which
accounts for 7% of the variance), i.e. matrices corresponding to pairs of sequences
topR1 and the peer pairs topR2. We could not observe clear structures in the higher
dimensions.

The analysis of the contributionmakes it possible to give biological significance to
these observations by highlighting the amino acidswhosemutability varies according
to the matrices Q.
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Fig. 4 Reverse gyrases: projections of mutabilities ` (G,H) onto the first factorial plane of the
principal component analysis. Each point represents an alignment between topR1 or topR2. See
Table 1 for the definitions of identifiers.

Fig. 5 Reverse gyrases: projections of mutabilities ` (G,H) onto the plane generated by principal
components 2 and 3. Each point represents an alignment between topR1 or topR2. See Table 1 for
the definitions of identifiers.

4.2 Several rate matrices within a protein family: the case of
mitochondrial proteins

Mitochondria are organelles found in almost all eukaryotic cells (i.e. in all living
organisms except bacteria and archaea). They contain the respiratory chain. Mito-
chondria have their own genome, which encodes for a subset of the proteins of the
respiratory chain (they are called mtDNA-encoded proteins in the following).

We compared the mtDNA-encoded proteins of 120 representative species of ani-
mals: arthropods, tetrapods, echinoderms, molluscs and roundworms. These are very
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different groups: 500 million years ago the ancestors of today’s arthropods were al-
ready totally different from the ancestors of vertebrates. Arthropods have diversified
throughout geological time: the ancestors of spiders and scorpions already existed
500 million years ago while the ancestors of insects appeared 400 million years ago,
at the same time as the first tetrapods [19]. Mammals are much more recent [29].
Just before the disappearance of the dinosaurs (65 million years ago) and especially
during the ten million years that followed, mammals underwent an explosive diver-
sification. The sample also contains pairs of species that have diverged for several
million years (e.g.man and chimpanzee, different species of Drosophila - small fruit
flies). It therefore allows us to analyze the evolution over a very large time scale.

We aligned the 12 mtDNA-encoded proteins that are present in all the species
considered here. Transition matrices P(G,H) were computed for all the 14 280 pairs,
after summation over the 12 proteins of two species G and H. Sequences were
sufficiently related (according to Definition 6), to allow the computation of the
observed rate matrices L(G,H) .

Fig. 6 Distribution of the asymmetry |ldet(G, H) − ldet(H, G) | for the 14 280 alignments of the
mtDNA-encoded proteins of 120 species. Values between 3 and 4 all correspond to alignments
involving bees.

The distribution of the asymmetry |ldet(G, H) − ldet(H, G) | is displayed in Fig. 6.
The main mode of the asymmetry distribution is around the zero value and 95%
of the values are less than 2. However, the difference can be as high as 4. Values
between 3 and 4 all correspond to alignments involving bees.

As before, the mutabilities ` (G,H) can be viewed geometrically as points in a
20 dimensional space. As the cloud of points is very elongated, the PCA gives a
satisfactory image. The first axis represents 66% of the variance, the second 15% and
the third 8%, all others are below 3%. The dominance of axis 1 over axis 2 means,
as already mentioned, that a MCT model with a single generator is approximately
valid for the proteins in our set, axis 1 roughly corresponding to the divergence time
g.
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Fig. 7 displays the projections of the 22 × 21 mutabilities ` (G,H) corresponding
to alignments within insects excluding bees (in blue) and the 21 × 20 vectors ` (G,H)
corresponding to alignments within mammals (in red).

Fig. 7 mtDNA-encoded proteins: projections of the vectors ` (G,H) onto the first factorial planes
of an uncentered principal component analysis. Each point represents an alignment between two
species. Points corresponding to alignments are identified by blue dots (insect–insect) or red dots
(mammal-mammal). The projection strongly suggests the existence of two different generators Q
for insects and mammals.

The staggering of the alignments along axis 1 reflects the time that has elapsed
since the species have diverged: mammals are grouped to the right near the origin of
the cloud, while alignments involving insects are far to the left of the cloud.

However, a closer examination of the projection on the second and third axis
shows biologically significant deviations. The points corresponding to the vectors
` (G,H) mammal-mammal (red) form a cluster clearly disjointed from that of the
vectors ` (G,H) insect-insect (blue). Clearly, a unique rate matrix Q cannot account
for these two clusters.

It is perhaps not surprising that groups that have evolved separately for more than
500 million years correspond to different Q matrices. It is very surprising, however,
to observe a difference between bees and other insects (Fig. 8). This observation is
consistent with other works on the mitochondrial genome of bees which have shown
that its evolution presents peculiarities [6, 30]. It should be noted that these authors
took into account other criteria than the protein sequence. This difference may be
due to the extremely high A+T/G+C ratio and the very small number of reproductive
individuals in bees. Studies on other organisms have shown high genome instability
under these conditions [21].

5 The influence of dissimilarity measures on sequence clustering
and phylogeny reconstruction

The analysis of multiple alignment based upon rate matrices is interesting in several
respects. On the one hand, it assumes as little as possible about data, of which
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Fig. 8 mtDNA-encoded proteins: projections of the mutabilities ` (G,H) onto the factorial plane 2-3
of an uncentered principal component analysis. Each point represents an alignment between two
species. Points corresponding to alignments are identified by blue dots (insects other as bees), red
dots (bees→ other) and green dot (other→ bees). The projection strongly suggests the existence
of two different generators Q for bees and other insects.

it provides model-free representations (even though largely inspired by Markov
evolution ideas). On the other hand, these representations turn out to provide valuable
information about evolution. It is a good example which shows the existence of two
distinct generators for the sequence family under consideration. Such information
may in turn be used to fine tune models.

However, such an approach alone does not directly meet the expectations of
biologists, who often seek a tree or a clustering that summarizes the information
contained in dissimilarity matrix. Even though there exist many techniques that can
generate such trees or clustering, the demand is less trivial than it appears. Indeed,
the available, biologically relevant dissimilarity measures are numerous and varied
(including the ldet distance introduced above), not to mention that some of them
do not satisfy the necessary assumptions that allow using these techniques. This is
actually an inexhaustible source of debate for biologists.

5.1 An iterative-rank based clustering

To overcome the dependence on the choice of a dissimilarity measure (and a tree
building algorithm), Alex proposed an alternative solution [7]: assume that what
really matters in dissimilarities between sequences is their relative order, not their
numerical value. The choice of a particular measure then no longer has any im-
portance since they will all give the same result as long as they are all related
by a monotonic transformation. As for the dependence on tree building/clustering
technique, the solution of [7] rely on an iterative procedure which we detail below.
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The agreement of judgments

Consider a set - of species (i.e. sequences) of size = = ♯- , and a matrix � on - ,
seen as a function � : - × - → R+ such that � (G, G) = 0 for all G ∈ - . � may be
chosen symmetric, but not necessarily. Associate with � a family {�G , G ∈ -} of
evaluation maps defined by

�G (H) = � (G, H) . (12)

These maps provide a description of how each G ∈ - (hereafter called judge)
evaluates all elements of - (the candidates). To achieve the announced goal, i.e. get
rid of numerical values and preserve ordering, each map �G is replaced with the
corresponding rank A�G

: H → A�G
(H) ∈ N defined by

A�G
(H) = ♯{I ∈ -, �G (I) ≤ �G (H)} . (13)

It may be shown that for all G, H, I ∈ - , A�G
(H) ≤ A�G

(I) is equivalent to � (G, H) ≤
� (G, I), i.e. ordering is preserved.

The agreement of judgments of two judges G, H ∈ - may be measured using any
mapping ) : N= × N= → R+, by evaluating ) (A�G

, A�H
).

Definition 8 With the above notations, the)-derivate of the matrix � : -×- → R+
is the map m) � : G, H ∈ - −→ m) � (G, H) ∈ R+ defined by

m) � (G, H) = )
(
A�G

, A�H

)
. (14)

m) � (G, H) thus provides a quantitative measure of the agreement of judges G and H
on - . In [7], the squared Euclidean distance )2 : (D, E) → ∑

G∈- (D(G) − E(G))2 is
used (also studied in Spearman rank statistics).

Iteration

Clearly enough, if ) is a symmetric map, the )-derivate m) � of the matrix �
is always a dissimilarity matrix. This also suggests to iterate the procedure, thus
deriving a whole family of dissimilarities mℓ

)
� : - × - → R (ℓ = 0, 1, . . .) from any

matrix �, defined recursively by

m0
) � := � and mℓ+1) � := m) (mℓ) �) (15)

Since - is finite, the sequence (mℓ
)
�)ℓ necessarily runs into a cycle, but there is

no reason to expect that this iteration should converge. However, the authors of [7]
observe that in their experiments, formost distance data obtained either by comparing
biological sequences or by random simulation, there was always some integer 80 of
about the same order of magnitude as ♯- such that (m)2 )80� is a fixed point of m)2 .
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Clustering and tree construction

In cluster analysis, a standard task is to associate, to any dissimilarity matrix �, a
Linnean hierarchy H = H(�), i.e. a collection H of subsets �, �, . . . of - such
that � ∩ � ≠ ∅ implies � ⊆ � or � ⊆ �.

Introduce the collection

A� = A� (-) := {� ⊆ - |0, 1 ∈ �, G ∈ -\�⇒ � (0, 1) < � (0, G)} (16)

of subsets � of - such that, for any 0 ∈ �, any other 1 ∈ � is "closer" to 0 than any
G ∈ - outside �. These subsets always form a Linnean hierarchy, and are therefore
natural candidates for being clusters in applications.

Further, denote by �� (G : H) the smallest ball (with respect to �) with center G
containing H or, in other words, the set of all I in - that are, relative to �, at least as
"close" to G as H. One has [7] for all G, H ∈ -

A�G
(H) = #�� (G : H) . (17)

So, while the actual values of � might be debatable, one only needs to trust that one
can use � to decide, for any three distinct objects G, D, E in - , whether D or E is more
similar to G. And only the resulting rankings of the objects D, E, . . . in - relative to
the objects G, . . . in - are needed to define A� .

Remark 3 (Practical considerations)

1. Given the way the rank is defined, the maximal rank value in a cluster � equals
the cluster size ♯�. This simplifies significantly the determination of clusters.
Indeed, in order to find all the clusters of size # (groups of # judges having the
same view on the candidates), it suffices to browse the rows (which correspond
to judges) of the final rank matrix and find all values with rank less than # .

2. The chosen definition of ranks also facilitates the computation of the the distance
between two objects (two judges) for the construction of the tree. This distance
turns out to be equal to the maximum rank between the two objects, minus 1.
This distance is ultrametric, i.e. the two largest distances of a triplet are equal to
each other, which defines a hierarchy that can be represented by a dendogram.

5.2 Application to mtDNA-encoded proteins of tetrapods

We present below a study of the phylogeny of tetrapods based on mtDNA-encoded
proteins, already discussed in section 4.2. As this phylogeny is very firmly established
at the scale considered here, it makes it possible to assess the reliability of phylogeny
reconstruction programs. A common pitfall of the latter is that they separate species
which actually have a common ancestor. This apparent non-monophyly is due to
poor management of the differences between the transition matrices of the different
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branches. The Iterative-Rank Clustering described above turns out to give results of
a quality quite comparable to that of the most frequently used software suites.

The sample is composed of 49 species representative of Amphibians, Reptiles,
Birds and Mammals. It covers about 400 million years. The species belong to 12
clearly separated monophyletic categories but the divergence can be significant in
some branches of a given category. However, Prototheria (platypus) is relatively close
toMetatheria (marsupial) and Tubulidentata (aardvark) to Cetartiodactyla (ruminant,
cetacean).

The 12 mtDNA-encoded proteins that are present in the 49 species under consid-
eration have been aligned, and the matrices P(G,H) have been calculated for all the
pairs of sequences. The resulting observed rate matrices could be obtained, since
the sequences are sufficiently related (according to Definition 6). The sample is
homogeneous (a single matrix Q) and asymmetry |ldet(G, H) − ldet(H, G) | is weak,
the mode is around 0.15 and 95% of values are less than 0.45. In the study below,
we use the average 1

2 (ldet(x, y) + ldet(y, x)), but the same results are obtained using
ldetmin (x, y) or ldetmax (x, y).

e.g. Nb ldet ldet ProtDist ProtDist
Species Rank NJ NeighborNet NJ

Amphibia frog 4 4 4 4 4
Testudines turtle 4 4 4 4 4
Squamata snakes 3 3 2 | 1 3 2 | 1
Paleognathae ostrich 7 7 7 7 7
Neognathae chicken 7 7 7 4 | 3 5 | 2
Crocodylidae alligator 2 2 2 1 | 1 2
Prototheria platypus 1 1 1 1 1
Metatheria marsupial 2 2 2 2 2
Tubulidentata aardvark 1 1 1 1 1
Cetartiodactyla ruminant 5 5 5 5 5
Lagomorpha rabbit 2 2 2 2 2
Primata monkey 6 4 | 2 4 | 2 4 | 2 6
Rodentia mouse 5 3 | 2 5 5 5

Table 4 Reliability of the reconstitution of the phylogeny of tetrapods from mtDNA-encoded
proteins. The program makes a mistake when it splits the species of a category into several groups.
This is the case for example with ldet + BioNJ and ProtDist + BioNJ which distinguish two groups
of snakes (one with 2 species and the other with 1) while they are monophyletic.

Tetrapod phylogenies have been constructed using various standard programs.
These are based upon two ingredients:

1. distance matrices: we used ldet (defined in equation (9)) and a distance calculated
using the ProtDist5 software, see [24].

5 ProtDist provides a distance measure for protein sequences, using maximum likelihood estimates
based on amino acid scoring matrices. It uses the multiple sequence alignment provided by the user.
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2. a tree or network reconstruction algorithm: we used BioNJ [12] (a variant of
Neighbor Joining6), iterative rank (section 5.1) and NeighborNet7 (see [15]).

Table 4 summarizes the groupings proposed by the phylogeny construction pro-
grams. It should also be noted that all the programs show the proximity of Prototheria
toMetatheria and of Tubulidentata to Cetartiodactyla. All the programs made at least
two errors (three in the case of ProtDist + NeighborNet) in finding non-monophyly,
but not necessarily for the same species.

The nature of the errors depends both, on the distances and on the method used
to construct the tree. One way to detect them is therefore to compare the results of
several independent analyzes. In this context, the iterative rank clustering approach
developed by Alex is of great interest in several respects. On the one hand, it is not
redundant with the commonly used methods. In addition, the user is not likely to
give in to the temptation to tweak the options until he obtains the result he wants.

5.3 The impact of symmetry assumptions

Experience shows that given a pair of sequences (G, H), there is always a more or
less significant gap between ldet(G, H) and ldet(H, G). This gap is mainly due to the
asymmetry of the matrix of transition frequencies F(G,H) as defined in equation (4).
Since the early work of Margaret Dayhoff, the problem has been evaded by sym-
metrizing the matrices F(G,H) and the vectors c (G,H) (see equation (10)). This choice
has no consequences if the difference is small, as in the case presented in Table 4,
it is, however, very questionable when the asymmetry is important as in the case
of Fig. 3 and Fig. 8. It amounts to attempting to characterize a bimodal distribution
by its mean, which is hardly not the most relevant characteristic value in this case!

With the exception of iterative-rank based clustering, the methods generally
used, notably those cited in Table 4, assume that the data have been symmetrized
previously. This is a drawback because the exploitation of asymmetry opens new
possibilities, which can highlight different aspects of the alignments.

We consider here four symmetric measures that can be derived from asymmetric
quantities, in this case ldet. Given an alignment (G, H), we consider ldetmin (G, H) =
min(ldet(H, G), ldet(G, H)) and ldetmax (G, H) = max(ldet(H, G), ldet(G, H)). In the spirit
of section 5.1, we also use the rank-based dissimilarities �1 (G, H) = m)2 ldet(G, H) and
the similar quantity �2 (G, H) = m)2 ldetC (G, H) built from the transposed matrix ldetC
of ldet. Here, m)2 is the )2-derivate (see section 5.1), )2 being the squared Euclidean
distance. These four solutions are not mutually exclusive (one may also consider

6 Neighbor joining is an agglomerative (i.e. aggregation from leaves to root) clustering method for
the creation of phylogenetic trees that only requires the knowledge of the distance between each pair
of taxa (e.g., sequences) to form the tree. It evaluates branch lengths so that the distances deduced
from the tree are closest to the values in the distance table.
7 NeighborNet is similar to Neighbor Joining, except that it can lead to overlapping clusters which
do not form a hierarchy, and are represented using a type of phylogenetic network called a splits
graph.
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others, for example higher order )2 derivates of ldet); in fact they turn out to provide
complementary points of view on the set of observed rate matrices.

We used this approach to analyze the phylogeny of duplicated genes in reverse
gyrases (see section 4.1) using the Neighbor Joining method to build the trees. The
ldetmax matrix shows, as already known, that the topR1 and topR2 genes have a
common origin. The matrix ldetmin and the two dissimilarity matrices �1 and �2
highlight the phylogenetic relationships of Sulfolobus and Aeropyrum pernix, which
are both Archaea of the class Thermoprotei. The tree groups the genes topR1 of
Sulfolobus and the gene topR1 of Aeropyrum pernix on one branch and the genes
topR2 of Sulfolobus and the gene topR2 of Aeropyrum pernix on another. We display
in Fig. 9 the reverse gyrase phylogenetic tree constructed from ldetmax (G, H), and
in Fig. 10 the corresponding tree constructed from ldetmin (G, H).

6 Discussion - Conclusion

One of the fundamental techniques of biology is sequence alignment, namely trans-
forming one sequence into another with minimal change. Sequence alignment is
essential for the study of evolution and is a source of information for the analysis of
the physico-chemical mechanisms which are at the heart of protein activity.

Almost all multiple alignment programs use a guide tree to reduce complexity.
Advanced programs proceed by iteration:

1. A first estimation of the distance between the sequences is made
2. A guide tree is computed based on these estimates
3. The sequences are progressively aligned following the order given by the guide

tree
4. A new distance between the sequences is calculated after alignment
5. The program iterates at point 2 as long as the procedure improves the alignment

score

A refinement consists in splitting the guide tree and proceeding in the same way in
each sub-tree, the stopping criterion remaining the improvement of the alignment
score (see Chapter 25 in [27]).

The procedure gives an optimal Alignment - Tree pair for a given measure of
distance between sequences. The topology is almost frozen by the alignment pro-
gram. The biologist may then use Monte-Carlo-type methods to get an idea of trees
with roughly equivalent scores. It consists in randomly modifying the matrices P to
identify the TRULY robust parts in the tree.

This approach differs considerably from the one we propose as we do not modify
the matrices P at all, we simply change the angle under which we look at the matrices
L in order to better perceive the proximities between the sequences.

Indeed, one can think that in many situations a single tree is not enough to
faithfully summarize the information contained in an alignment, it can therefore
be interesting to build several trees, exploiting different points of view, rather than
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Fig. 9 Phylogenetic tree of reverse gyrase constructed with NJ from ldetmax (x, y) . The topR1 and
topR2 proteins of Sulfolobus are clustered in this tree. In contrast, the proteins topR1 and topR2
of Aeropyrum pernis are separated. The identifiers consist of genus, species and group. They are
archaea when not specified otherwise.

trying to make a single one and trying to show that it is significant by bootstrap
methods or similars.

The point of view promoted by Alex was to assume as little as possible and try
to collect information from data, before turning to explicit modeling if needed "We
must look for a model that fits the data and not twist the data to fit the model".

The starting point here is to avoid modeling multiple alignments (and therefore
introducing trees) and try to see which information could be obtained from pair-
wise alignments. Another originality was to compare pairwise alignments, not only
sequences.
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Fig. 10 Phylogenetic tree of reverse gyrase constructed with NJ from ldetmin (x, y) . The topR1
proteins of Sulfolobus are grouped with the topR1 proteins of Aeropyrum pernis in this tree (and
similarly for the topR2 proteins of all four species) but topR1 and topR2 are separate. The identifiers
consist of genus, species and group. They are archaea when not specified otherwise.
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