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ABSTRACT The rapid development of information and wireless communication technologies together
with the large increase in the number of end-users have made the radio spectrum more crowded than
ever. Besides, providing a stable and reliable service is challenging, as electromagnetic environments are
evolving and becoming more sophisticated. Accordingly, there is an urgent need for more reliable and
intelligent communication systems that can improve the spectrum efficiency and the quality of service
to provide agile management of network resources, so as to better meet the needs of future wireless
users. Specifically, Automatic Modulation Recognition (AMR) plays an essential role in most intelligent
communication systems especially with the emergence of Software Defined Radio (SDR). AMR is an
indispensable task while performing spectrum sensing in Cognitive Radio (CR). Thanks to the significant
advancements in Deep Learning (DL) applications, new and powerful tools have been provided which can
tackle problems in this space. Thus, today, integrating DL. models into AMR has gained the attention of many
researchers. This work aims to provide a comprehensive state-of-the-art review of the most recent Machine
Learning (ML) based AMR methods for Single-Input Single-Output (SISO) and Multiple-Input Multiple-
Output (MIMO) systems. Furthermore, the architecture of each model will be identified along with a detailed
comparison in terms of specifications and performance. Finally, an outline of the open problems, challenges,
and potential research directions is provided along with discussion and conclusion.

INDEX TERMS Automatic modulation recognition, deep learning, machine learning, MIMO, SISO,
wireless signal classification.

I. INTRODUCTION

AMR was initially motivated by its significance in many
military applications such as electronic warfare, intelligence,
surveillance, and threat analysis. It is a crucial task in inter-
cepting the communications between adversary units and
recovering the intercepted signal [1]. Moreover, from the
standpoint of communication security, modulations can serve
as another level of encryption. Specifically, an encryption
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key may be integrated into the received signal so that the
AMR process can verify the legitimacy of the received signal
to avoid emulation attacks and jam.

Today, the new generation of communication standards
(5G & beyond) integrates multiple technologies of communi-
cation and information processing. This integration increases
the cognition of intelligent communication systems and
allows operators to reduce operational and maintenance costs
plus attracts more users. An intelligent communication sys-
tem is a system that can generate and implement new services
quickly, easily, flexibly, economically, and efficiently [2].
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It is recognized by its autonomy in making decisions based
on its external conditions; and its ability of transmission envi-
ronment cognition. In this direction, AMR can improve the
awareness of such systems and provides interference detec-
tion and spectrum management. For instance, AMR is consid-
ered as a major task in CR which can provide dynamic radio
resource management by employing re-configurable software
defined transceivers. These transceivers can reconfigure their
transmission parameters based on the available communi-
cation resources in the electromagnetic environment [3].
However, it is worth mentioning that the term ’automatic’ is
the opposite of the initial implementation of manual modula-
tion recognition.

In modern communication systems, a pool of modulation
types can be used by the transmitter to control both the
data rate and the bandwidth usage. While the transmitter
selects the modulation type adaptively, the receiving end
may or may not know the modulation type. Correspondingly,
the modulation information can be included in each signal
frame so that the receiver would have the knowledge of the
modulation type and react accordingly. However, the fre-
quency spectrum is extremely limited and, thus, this strategy
may not be efficient enough in real scenarios since it will
affect the spectrum efficiency due to the extra information
in each signal frame [4]-[7]. In fact, today’s wireless net-
works are highly heterogeneous and the number of users
is increasing significantly. Hence, AMR mechanism can be
used to detect the modulation type of the received signals and,
thus, eliminate any potential overhead in the network proto-
col. Ultimately, the signals will be correctly demodulated and
the received data will be accurately recovered. Nowadays,
the receivers enjoy a high computational power, especially
with the advancements in microprocessors. Thus, the signal
processing required in AMR becomes more feasible [4].

In literature, most of the existing AMR algorithms
are typically implemented via two main approaches:
Likelihood-Based (LB) and Feature-based (FB). On one
hand, LB approaches calculate the likelihood functions of
all candidate modulation schemes of the received signal
and select the scheme with maximal likelihood value [3].
Several LB-based AMR techniques have been introduced
for MIMO systems to blindly and semi-blindly identify the
modulation scheme especially when the channel suffers from
severe spatial correlation. Theoretically, LB approaches can
provide the optimal solution but they suffer from an extremely
high computational complexity and lack of robustness against
the model mismatch. These undesirable drawbacks tend
to restrict the feasibility of LB-AMR to be implemented
in real-time and low-cost applications. On the other hand,
FB approaches are considered to be a good alternative for
LB approaches because they can produce suboptimal solu-
tions with much lower computational complexity.

Nowadays, ML and DL applications have shown
overwhelming advantages in wide-ranging fields such as
computer vision, healthcare, robotics, and communication
systems. Typically, ML algorithms need some guidance from
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expert engineers to make the required adjustments when these
algorithms fail in the prediction process. On the contrary,
DL networks can learn unsupervised from unlabelled or
unstructured data, and make decisions without any human
supervision. In fact, DL imitates the functionality of the
human brain in processing data and creating patterns to be
used in decisions making. However, integrating ML and
DL in wireless communication networks and systems has
great potential for their development since it can make them
more intelligent. This suggests that integrating ML and
DL approaches in AMR process can achieve significant
results and boost its performance.

A. RELATED SURVEYS

In the literature, there are some brief surveys on DL-AMR!
for SISO communication systems, e.g., [8] and [9]. For
instance, the third section in [8] was dedicated to giving a
brief overview of modulation recognition approaches based
on the category of the extracted features. The authors focused
mainly on briefing the AMR methods based on crafted
expert features and developed ML classifiers. However, sev-
eral DL-AMR models were also reviewed in terms of the
employed features and classification criteria. Likewise, in [9],
a brief review of DL-AMR techniques in terms of modulation
pool are provided. The main DL models in the AMR methods
were outlined along with a demonstration on the feasibility
of using Convolutional Neural Network (CNN) to recognize
wireless signals. Table 1 provides a comparison between the
existing surveys and our paper.

B. SCOPE AND OBIJECTIVE OF THE SURVEY

This survey aims to provide a comprehensive view on state-
of-the-art ML and DL practices in AMR domain for SISO
and MIMO wireless communication systems. In this survey,
a detailed and fair comparison between the latest methods in
this area is provided along with emphasizing their limitations
and key advantages. Each method is presented in a clear and
concise manner along with all of its aspects. For instance,
the features extraction and classification criteria along with
channel assumption and modulation sets are pointed out
for ML-AMR methods. Furthermore, DL-AMR methods are
compared in terms of network architecture, network training
and testing parameters, used datasets, classification accuracy,
and concluding remarks.

However, there are several architectural parameters that
must be considered when designing a DL model. These
parameters have critical impacts on designing or choosing the
right DL model for solving the required AMR problem. For
instance, whether the input data has a fixed-length or varying
one. Besides, the depth of the network is a key parameter
since it may simplify or complicate the task of modulation
scheme classification. Equally, using an insufficient or badly
constructed dataset can distort the hyperplanes of classifiers

TFor simplicity, we refer to ML-based AMR and DL-based AMR by
ML-AMR and DL-AMR, respectively.
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TABLE 1. Summary and comparison of existing surveys related to ML-AMR and DL-AMR. The symbol v indicates that a survey includes publications in
the scope of a domain. The numbers indicate the count of reviewed publications in the scope of a domain. The symbol v indicates that a survey
compares publications in terms of this aspect. The symbol indicates that a survey did not review the scope of a domain.

DL Training & .
Publication One-sentence summary ML-AMR | DL-AMR SISO MIMO network testing Performance .I“P“t Modulations
systems systems . & accuracy formats pool
structure | configurations

A brief review of the most widely used

Zhou et al. [9] DL techniques for recognizing a wireless - 23 v X X X X X v
signal in terms of modulation schemes

Lietal [8]. A brief overview of e.merging ML fmd DL 10 25 v X X X X X X

(the 3rd section) approaches for signal recognition

A comprehensive state-of-the-art review

This survey [8] of the existing ML-AMR and DL-AMR 19 75 4 v v v v v v
methods for SISO and MIMO systems

and, hence, affect badly its accuracy. Trainable parameters
are very essential since they reflect the computational com-
plexity and the required storage of the model and, thus,
reveal the possibilities of implementing the model on real
hardware [10]. Similarly, there are many other parameters
to be considered during the model training process such as
the batch normalization, activation functions, cost functions,
and training configurations [10]. The training configurations
include the number of batches, number of epochs, dropout,
optimization and regularization algorithms applied during the
training process. Ultimately, all of these parameters can affect
the accuracy of the DL-based classifier and, thus, should be
pointed out. To the best of our knowledge, a comprehen-
sive survey of ML-AMR and DL-AMR methods considering
these parameters does not exist in the literature. Moreover,
few works are dedicated to reviewing the existing methods
for both SISO and MIMO systems.

This article fills this gap by carrying a comprehensive
up-to-date survey of researches in these domains. Beyond
reviewing the most relevant literature, we discuss the fea-
sibility of various DL architectures in view of solving
AMR issues. At the end of this paper, we provide potential
future research directions along with open challenges that
need more investigation. Hence, our ultimate objective is
to provide future affiliated researchers, who plan to take
advantage of DL models to resolve problems in the field of
AMR, with a definite guide that answers the following key
questions:

o Which are the most recent ML and DL models in the
field of AMR for MIMO and SISO systems?

o Why are ML and DL promising in AMR domain?

« What should be considered when designing a DL model
for AMR?

o What are the most important and promising directions
worthy of further investigation?

C. CONTRIBUTIONS OF THE SURVEY

The aforementioned surveys provide partial answers to some
of these questions. This survey goes beyond the previous
works and covers a wide range of DL models that have
not been explicitly discussed in earlier surveys, e.g., [9].
Unlike such existing surveys, we also review the network
architecture, accuracy against Signal-to-Noise Ratio (SNR)
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range, training parameters, and key concepts. We also review
DL-AMR methods not looked at in other related surveys,
including those for MIMO communication systems. While
our main scope remains the DL models in AMR domain,
for completeness we also discuss the most relevant ML
models connected to AMR field. It is worth mentioning
that we differentiate between DL-AMR, which refers to the
models where the features are automatically extracted from
data that has a complex structure and inner correlations, and
ML-AMR, where features hand-crafting is required to be
done by algorithms designed by expert engineers. Hence,
the main key perspectives which distinguish this paper
from earlier surveys can be outlined as follows:

« We provide an inclusive review of the existing DL mod-
els in AMR domain for both SISO and MIMO systems,
instead of briefly discussing the main DL models or
focusing on a single type of communication system, e.g.
SISO systems [8], [9].

« We particularly discuss the most recent DL models from
the perspective of AMR, focusing on their applicability
to this area and their structures and parameters.

To the best of our knowledge, this is the first time that
AMR is inclusively reviewed for both SISO and MIMO
systems in wireless communications from a DL angle.

D. ORGANIZATION OF THE SURVEY
This paper is structured in a top-down manner as shown
in Fig. 1. The outline of this paper can be summarised as:

o First, we begin, in section II, by presenting a basic
background of the traditional process of FB-AMR fol-
lowed by providing a basic ML and DL background to
illustrate the main required concepts for the rest of this
article. Thereafter, we discuss the main key factors that
encourage the implementation of ML and DL models in
AMR domain, aiming to clarify why such models can
outperform the traditional AMR methods.

« Later in section III, a discussion on the integration of
ML models into AMR methods is provided for SISO and
MIMO systems.

« Since DL models require large-scale datasets, we begin
section IV by presenting the specifications of some
existing radio signals datasets. This provides the
required information about the signal parameters and
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Introduction
% Background
1I-A FB-AMR Process
II-B ML and DL Overview
@D Machine Learning in AMR Domain for Wireless Communications
III-A ML-AMR methods for SISO systems
1II-B ML-AMR Methods for MIMO systems
@\D Deep Learning in AMR Domain for Wireless Communications
> IV-A DL-AMR Methods for SISO systems
IV-A2 CNN-based Methods

IV-A2a Classification Using IQ Samples

IV-A2b Classification Using 1Q Samples from Existing Datasets
IV-A2c Classification Using Image Representations

IV-A2d Classification Using Other Inputs

IV-A3 RNN-based Methods
IV-A4 DNN-based Methods
IV-AS AE-based Methods

L—> IV-B DL-AMR Methods for MIMO systems

V) Challenges and future research directions
Conclusion

FIGURE 1. The overall organization of the paper.

channel characteristics of these datasets. Therefore,
it will help to understand their usage in several of the pre-
sented DL-AMR methods. Then, we review the recent
DL algorithms for AMR in SISO systems. We then
review the existing DL-AMR methods for MIMO
systems.

o Finally, we wrap up this article by providing open
challenges and potential research directions along with
concluding remarks in section V and in section VI,
respectively.

In Fig. 1, a chart of the overall organization of the paper
is provided. Furthermore, a list of main abbreviations is pro-
vided in Table 2.

Il. BACKGROUND

In order to further illustrate the integration of ML and
DL models into AMR process, we begin this section by
providing an overview of a typical AMR process. Afterwards,
we present some basic background information on ML and
DL, and then we seal up this section by clarifying why such
models are needed in AMR domain.

A. FB-AMR PROCESS

A typical AMR system consists of two subsystems: fea-
tures extraction and classification subsystems. In the for-
mer subsystem, there are two phases: the pre-processing
phase and the features selection phase. Fig. 2 shows a gen-
eral block diagram of a features-based recognition AMR
method. First, the signal will pass throw the pre-processing
phase to determine several variables such as Carrier Fre-
quency Offset (CFO), baud rate, Phase Offset (PO), SNR,
and timing offsets. Next, the features will be extracted to
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TABLE 2. List of abbreviations in alphabetical order.

[ Acronym | Explanation |
ACGAN Auxiliary Classification Generative Adversarial Network
AE Auto-Encoder
AEN Auto-Encoding Network
Al Artificial Intelligence
AMR Automatic Modulation Recognition
ANN Artificial Neural Network
APoZ Average Percentage of Zeros
AWGN Additive White Gaussian Noise
BRNN Bidirectional RNN
CAE Convolutional AE
CCF Cyclic Correntropy Function
CCNN Cyclic CNN
CFO Carrier Frequency Offset
CLDNN Convolutional Long short-term Deep Neural Network
CNN Convolutional Neural Network
CR Cognitive Radio
CS Cyclic Spectra
CSI Channel State Information
CWD Choi-Williams time-frequency Distribution
DBN Deep Belief Network
DL Deep Learning
DNN Deep Neural Network
DPN Dual Path Network
DRCN Deep Reconstruction Classification Network
ELM Extreme Learning Machine
FB Feature-based
FLOCAF Fractional Lower-Order Cyclic-Autocorrelation Function
FLOCS Fractional Lower-Order Cyclic-Spectrum
FLOPs Floating point Operations per Seconds
FPGA Field-Programmable Gate Arrays
GCN Graph Convolutional Network
GNU GNU’s Not Unix
HDNN Hybrid DNN
HOC Higher Order Cumulant
HOM Higher Order Moment
1Q In-Phase and Quadrature
LB Likelihood-Based
LOS Line-Of-Sight
LRN Layered Resnet Network
LRR Low-Rank Representation
LSTM Long Short-Term Memory
M-ASK M-ary Amplitude Shift Keying
MIMO Multiple-Input Multiple-Output
ML Machine Learning
MLP Multilayer Perceptron
M-PSK M-ary phase-shift keying
M-QAM M-Ary Quadrature Amplitude Modulation
NiN Network-in-Network
NLOS Non-Line-Of-Sight
OFDM Orthogonal Frequency-Division Multiplexing
OSNR Optical SNR
PCA Principle Component Analysis
PO Phase Offset
PReLU Parametric ReLU
PSO Particle Swarm Optimization
RBM Restricted Boltzmann Machine
RNN Recurrent Neural Network
SCAE Stacked Convolutional Auto-Encoder
SCF Spectral Correlation Function
SELU Scaled Exponential Linear Unit
SGD Stochastic Gradient Descent
SISO Single-Input Single-Output
SNR Signal-to-Noise Ratio
SSAE Stacked Sparse Auto-Encoder
SSCCF Spatial Sign Cyclic Correlation Function
STFT Short-Time Fourier transform
SVM Support Vector Machine
SW-SCMA || Sliding Window Simplified Constant Modulus Algorithm
Tanh hyperbolic tangent
TL Transfer Learning
ZF Zero-Forcing
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Pre-processing

Features Extraction Subsystem
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Classification
Subsystem

Extracted

Features

FIGURE 2. Block diagram of the Feature-based AMR method.

be then fed into the classification subsystem. Specifically,
the extracted features can be categorized as follows: instan-
taneous time features [11], wavelet features [12], statistical
features [13]-[15]. Ultimately, the decision of the modulation
scheme is made by a specific classifier. Classifiers can be
categorized into three main categories: (1) traditional classi-
fiers such as classification tree, (2) ML-based classifiers, and
(3) DL-based classifiers.

B. ML AND DL OVERVIEW

Fundamentally, ML is an area of Artificial Intelligence (AI)
in which the algorithms can parse data, learn from them and
apply whatever they learned to make informed decisions.
In fact, DL is a sophisticated evolution subset of ML which
gives machines the ability to make decisions without the
intervention of humans. Technically, DL is ML and functions
in a similar way but they have different capabilities and
provide a different interpretation of the data they convey.
Moreover, DL models can learn knowledge from raw data and
decide if a prediction is accurate or not without any guidance.
Furthermore, a key difference between traditional ML and DL,
is in the features extraction mechanism. ML methods apply
the learning algorithms on hand-crafted engineering features,
while in DL models, the features are learned automatically in
multiple levels [10]. However, ML and DL approaches can
be categorized as follows: Supervised, semi-supervised and
unsupervised approaches [10]. Fig. 3 shows the Venn diagram
of the relation between Al, ML, and DL.

1) DEEP NEURAL NETWORK (DNN) OVERVIEW

DL models are designed based on a specific layered structure
of Artificial Neural Networks (ANNSs). The idea behind the
design of ANN is inspired by the biological neural network
of the human brain. Fig. 4 shows the structure of a simple
ANN. The first layer is called the input layer which receives
the input data, while the rightmost one is the output layer
which returns the output data. The layers between these two
layers perform mathematical computations on the input data
and they are called hidden layers since their values aren’t
observable in the training set. In general, an ANN with several
hidden layers is referred to as a DNN and the more hidden
layers it has, the deeper it is.

Each layer comprises several nodes called neurons. The
neuron is the basic element of a neural network. It receives
an input x, processes it, and generates an output. This output
is either the final output or it will be sent to other neu-
rons, through weighted connections, for further processing.
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Artificial Intelligence (AI)

Machine Learning (ML)

Deep Learning (DL)

FIGURE 3. The taxonomy of Al as the broader umbrella for both ML and
DL, and DL as a sub-branch of ML.

Each connection between these neurons is associated with
a specific weight W;. These weights are randomly initial-
ized and are updated during the model training process.
Each weight dictates the importance of the associated input
value. Besides, another linear component, called the bias b;,
is applied to the input. The bias role is to change the range of
the weight multiplied input. As can be seen, the final linear
component is:

LizxiXWi+bi (1)

Subsequently, a non-linear function, called activation func-
tion f, is applied to the combination of all linear components
of a specific neuron. Thereafter, the output y; will be look like:

vi=f (Z Ll-) =f <Zx,-w,- + b,-> )

As shown in Table 3, there are several activation functions
such as Sigmoid, hyperbolic tangent (7anh), Rectified Linear
Unit (ReLU) [16], Parametric ReLU (PReLU), Scaled Expo-
nential Linear Unit (SELU) [17] and Softmax [10], [18].
However, the main aim when training a DNN is to opti-
mize the prediction accuracy and, thus to minimize the pre-
diction error. Therefore, a cost or loss function should be
used for measuring this error and react accordingly. Besides,
the neural network should be trained on random equal-sized

57855



IEEE Access

B. Jdid et al.: ML Based AMR for Wireless Communications

Hidden
Layer 1

Input Layer

Output
Layer 1

S -

. s \/ y \
.‘ .. . . '
.n'-... "‘.‘ i .
g8
5 E
o S

Acmanon
function

FIGURE 4. A simple Artificial Neural Network (ANN).

TABLE 3. The mathematical representations of activation functions.

| Name | Equation |
sigmoid igmoid(x) ! 3)
sigmoi =
g & 1+e™
ReLU z x>0
e ReLu(z) = { 0 2<0 4)
PRel, _Jr x> 0
ReLU PReLu (1) { cry ®)
Tanh tanh = M 6
anh(x) g (6)
ifx>0
SELU SELU( )=2 { ae* —a, ifx<0 )
where « and )\ are pre-defined constants
Softmazx softmax (x;) = :71 ®)
> j—o €

batches which makes the model more generalized than send-
ing the whole input in one go. Moreover, optimization and
regularization techniques can be adopted such as dropout
regularization and gradient descent optimization algorithms.
It is worth mentioning that Multi-Layer Perceptron (MLP) is
always feed-forward, while DNN can have loops.

2) CNN OVERVIEW
CNN s a DL algorithm that comprises several types of layers,
and has several advantages over DNNs. CNN is much more
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like the human visual processing system, especially when it
comes to multi-dimensional inputs (e.g. 2D and 3D images).
Most of all, the parameters of CNNs are significantly fewer
than a fully connected network of similar size, and suffer
less from the diminishing gradient problem. Fig. 5 shows an
example of CNN structure. Mainly, the architecture of CNN
consists of a combination of several types of layers. These
layers can be summarized as follows [10], [18]:

o Convolutional Layer: This layer is responsible for con-
volving feature maps from previous layers with learn-
able kernels. Thereafter, a linear or non-linear activation
function is applied to the output of these kernels to
generate an activation map as its output.

o Rectification Layer: This layer performs element-wise
absolute value operation on the input value.

« Pooling Layer: This layer takes the activation map gen-
erated by the non-linearity layer, and performs a down
sampling operation in order to reduce its size.

o Fully Connected or Dense Layer: This layer is a MLP.
It is responsible for mapping the activation maps from
previous layers into a class probability distribution.

« Dropout Layer: This layer is practically used to prevent
over-fitting in the training process by using Dropout
along with other techniques such as L2 Regularization.

o Softmax Layer: This layer uses Softmax function in
order to computes the score of each class over all possi-
ble classes. This function is usually used in the classifi-
cation layer.

However, the total number of learnable parameters is an
important metric to measure the complexity and the required
memory of a CNN model.

3) RECURRENT NEURAL NETWORK (RNN) OVERVIEW

RNN is simply a generalized feed-forward ANN that has a
memory to store the output it has already learned from the
previous input. As shown in Fig. 6, RNN performs the same
function for every input with a consideration of the last com-
puted value. However, traditional ANNs approaches, DNNs,
and CNNs deal only with fixed-length input. On the contrary,
RNNSs can handle a sequence of vectors over time. Moreover,
amodified version of RNN, called Long Short-Term Memory
(LSTM), is able to not only solve the problem of vanishing
gradient, but also remember past data easily. LSTM is trained
using back-propagation and can classify a time series given
time lags of unknown duration. It is worth mentioning that
there are several modified versions of RNN in the literature
such as convolutional LSTM [18].

4) AUTO-ENCODER (AE) OVERVIEW

AE is practically a DNN approach which can learn features
unsupervised based on efficient data encoding and decoding.
As shown in Fig. 7, the inputs are encoded and mapped in
the lower dimensional features space with a constructive fea-
ture representation. Thereafter, the same process is repeated
till the desired feature dimensional space is reached. In the
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Convolution

FIGURE 5. Structure example of CNN.

Output

=

Unfold

FIGURE 6. Structure example of RNN.

Input layer Hidden layer Output layer

Encoder Decoder

FIGURE 7. Structure example of AE.

decoding phase, the actual features are obtained from lower
dimensional ones with reverse processing. Several kinds
of AE exist in the literature such as variational AEs and
split-brain AEs [10], [18].

5) RESTRICTED BOLTZMANN MACHINE (RBM) OVERVIEW

A RBM is also trained in an unsupervised manner. RBM
consists of a visible layer, a hidden layer, and weighted con-
nections between them. Each neuron in RBM is a stochastic
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Fully connected

Subsampling Convolution :

Subsampling

binary unit. The neurons in the visible layer are mutually
independent given the hidden ones, and vice versa [18]. As in
a simple feed forward ANN, the visible layer receives the
input data, and the neurons of the hidden layer are fully con-
nected to all neurons in the visible layer. However, the state of
the neurons in the hidden layer can affect those in the visible
one, and vice versa.

The architecture of a Deep Belief Network (DBN) [18]
can be formed by stacking RBMs or AEs. The process in
a DBN consists of two main stages: (1) pre-training stage
and (2) fine-tuning stage. The former stage is performed in
each layer of RBM in order to initialize the parameters of
the DBN. In the latter stage, regression algorithms such as
softmax regression can be applied to provide error prediction
and, hence, optimize the parameters by back-propagation
algorithm. Fig. 8 shows the general structure of a DBN.

Q Q Q Q Output layer

Other hidden
REM 3 layers
Hidden layer2
REM 2 5>
ll Hidden layer1
RBM 1 P ety
Za e
SOOOQ mtne

FIGURE 8. General structure of DBN.

a: THE NEED OF ML AND DL IN FB-AMR

The performance of the conventional FB-AMR methods
heavily depends on the extracted features from the received
signals and requires the supervision of expert engineers.
Moreover, a set of different features has to be built manually
in order to recognize different modulation schemes. Besides,
conventional FB methods require building a classification
tree with manual thresholds in order to decide on the mod-
ulation scheme. In such methods, the AMR process may
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need the knowledge of SNR value especially in the case of
wide range SNR applications, then SNR estimation is also
required. However, the hand-crafted features may have differ-
ent values under varying noise conditions and, thus, different
classification trees should be built or feature selection algo-
rithms should be designed to build a robust set of hand-crafted
features [19].

That is why ML and DL approaches have been developed
to reduce tedious threshold operations and to improve the
overall performance. DL approaches can eliminate the SNR
estimation requirement since they can learn automatically
optimal features, under varying noise regimes, without any
need for precisely designed features. Moreover, DL. mod-
els can be extended to several applications by adopting
the transfer learning approach for example. Recently, many
researchers proposed incorporating ML and DL models into
FB-AMR methods to explore different types of features. This
integration allows an automated features extraction process
by employing different architectures of DNNs. However,
self-learned features can be more relevant and, hence, achieve
better performance.

IIl. MACHINE LEARNING IN AMR DOMAIN FOR
WIRELESS COMMUNICATIONS

ML is a subset of Al that exploits statistical learning algo-
rithms for designing and implementing intelligent systems.
Many existing works employed ML classifiers in order to
improve the classification accuracy of AMR for both SISO
and MIMO systems. Numerous researches were proposed
based on ANNSs [15], [20]-[22], Extreme Learning Machine
(ELM) [23]-[25] as well as Support Vector Machine (SVM)
[26], [27]. In this section, the presented ML classifiers are
considered to be different from those in the DL subset. First,
we review the recent ML-AMR methods in SISO systems.
Then, we discuss the most relevant ML models in AMR for
MIMO systems. Finally, we conclude this section with a brief
discussion and learned lessons.

A. ML-AMR METHODS FOR SISO SYSTEMS

In [24], an ELM-based AMR method was proposed by
using one dimension local binary pattern [28] for features
extraction. The classification accuracy was investigated under
known channel states where the PO and CFO were recov-
ered prior to modulation classification. Moreover, the overall
performance was studied under several receiver conditions
such as the symbols number, timing offset, PO, impulsive
noise, and Doppler shift. In [25], Gabor filter and Cuckoo
search algorithm were employed for features extraction and
optimization, respectively. However, the decision on the mod-
ulation scheme was made by ELM classifier. In [26], a low-
complexity method for AMR and SNR estimation was intro-
duced over multipath fading channels. Principal Component
Analysis (PCA) was adopted for features extraction, while
two different types of SVMs were used for classification
and SNR estimation. In particular, three models of support
vector classifiers were trained to differentiate a modulation
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type from the others. K-means clustering was used in [27]
to extract the required features to feed the SVM classifier.
The authors in [29] presented a compressive sensing AMR
method by employing the higher-order cyclic cumulants and
SVM classifier. SNR variations were considered in [19] in
order to design a robust SVM-based AMR method. Hence,
the normalized-centered variance was used to select the
noise-insensitive features from a large set of extracted fea-
tures. Besides, attribute reduction based on rough set theory
was applied to remove all possible redundant features.

Wireless communication systems may be subject to
non-Gaussian interference and impulsive noise. Therefore,
the communication channel can be better modeled by
heavy-tailed distributions, such as the non-Gaussian «-stable
one. However, there are several promising solutions for AMR
in the presence of impulsive non-Gaussian noise such as
the Fractional Lower-Order Cyclic-Spectrum (FLOCS), the
Spatial Sign Cyclic Correlation Function (SSCCF), the Frac-
tional Lower-Order Cyclic Autocorrelation Function
(FLOCAF), and the Cyclic Correntropy Function (CCF). The
authors in [30] employed the graph-based FLOCS analysis in
the «-stable impulsive noise environment for AMR. Firstly,
the FLOCS of the received signal was obtained by the
transformation of its fractional lower-order moments. Then,
the modulation scheme was identified using the graph-based
AMR mechanism by employing the extracted features from
the adjacency matrices corresponding to the graph represen-
tation of FLOCS. In comparison, FLOCAF and CCF were
adopted in [31], and a mathematical expression demonstrat-
ing that SSCCF is a particular case of the FLOCAF was
derived. Besides, a detailed analysis of the cyclic spectrum
of BPSK, QPSK, 8QAM, 16QAM, and 32QAM signals
obtained by the FLOCAF and CCF was provided. Moreover,
both FLOCAF and CCF were found to allow the symbol rate
parameter estimation, where the latter was found to be more
efficient.

B. ML-AMR METHODS FOR MIMO SYSTEMS

The ANN-based AMR algorithm in [20] was proposed for
MIMO systems, and it was then modified in [21] by consider-
ing the time variation in the channel over an observation inter-
val. A sliding window simplified constant modulus algorithm
(SW-SCMA) was used during the blind channel estimation
phase. The work reported in [21] considered a more realistic
scenario because the channel matrix is unknown and blindly
estimated by SCMA without any channel compensation.
In [22], three AMR algorithms were presented. In the first
one, the modulation schemes were directly recognized with-
out any channel equalization. The second algorithm assumes
that the channel matrix is perfectly known at the receiver side
and it uses the Zero-Forcing (ZF) equalization to recover the
transmitted signal symbols before features extraction. In the
last one, the receiver has no prior knowledge of the channel
matrix and it is blindly estimated by SCMA likewise in [20].
It is worth mentioning that the final decision was made using
a majority rule by fusing all individual decisions.
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In [23], two ELM algorithms were introduced for multipath
fading channel without any prior knowledge of the channel
and signal parameters. In spite of the good performance and
the low complexity of ELM algorithm, it has some disadvan-
tages. For instance, the number of the hidden nodes is fixed
and their parameters are randomly generated to remain unal-
tered during the training phase. These disadvantages were
handled by an algorithm called self-adaptive evolutionary
ELM. The authors in [32] proposed a novel cepstrum-based
pre-processing algorithm and a logarithmic functional fitting
method. The main aim was to eliminate the multipath fad-
ing effects in order to improve the performance of AMR.
An impartiality comparison study in [33] was introduced
between four classifiers (classification tree, K-nearest neigh-
bours, ANN, and SVM) in FB-AMR in terms of classification
accuracy and computational complexity over MIMO chan-
nels. This study considered Higher Order Cumulants (HOCs)
up to 6th-order, and results revealed that the ANN classifiers
have the best performance/complexity trade-off for the M-ary
phase-shift keying (M-PSK), M-ary Amplitude Shift Keying
(M-ASK), and M-Ary Quadrature Amplitude Modulation
(M-QAM) modulations.

The work presented in [34] was devoted to resolving the
issue of lower recognition rate of HOC-based AMR in space
division multiplexing MIMO system. Auto-Encoding Net-
work (AEN) and ANN were used for data dimension reduc-
tion and classification, respectively. Tian et al. [35] proposed
an ML approach for AMR based on a modulation-constrained
clustering with unknown channel matrix and noise variance.
The problem of modulation classification was converted
into clustering one without direct channel estimation. How-
ever, the maximum likelihood criterion was used in order
to obtain the final decision on the modulation scheme. The
main core was called centroid reconstruction, in which the
cluster centroids were reconstructed with fewer parameters.
The model in [36] was introduced for signal detection in
the Orthogonal Frequency-Division Multiplexing (OFDM)
system. AEN and ELM were, respectively, exploited for fea-
tures extraction and classification. Table 4 summarizes the
extracted features, decision-maker, antennas number, noise
nature, channel, required estimation, and the recognized mod-
ulation schemes of the previously discussed ML-AMR.

1) DISCUSSION AND LEARNED LESSONS

Although ML-AMR algorithms outperform the conventional
methods [22], yet they still need a robust complex set of
hand-crafted features to achieve a good performance. Further,
these algorithms work well under relatively ideal conditions.
In such methods, some pre-processing techniques have to
be conducted on the received signals in order to perform
some parameters estimation before AMR to enhance the
classification accuracy [24]. However, ML algorithms enjoy
low implementation cost with high performance on small
data [26]. Nevertheless, they are time demanding and can be
affected badly by the curse of dimensionality.
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IV. DEEP LEARNING IN AMR DOMAIN FOR WIRELESS
COMMUNICATIONS

DL is a powerful technique that can be integrated into
FB-AMR to provide a high classification accuracy along
with high efficiency and robustness. It is worth noting that
DNNs are deeper than simple ANNs since they consist of
several layers between the input and output layers. Therefore,
the more layers they have, the deeper they are. In this section,
we begin by reviewing the most recent DL-AMR methods
for SISO systems. Then, we discuss the existing DL models
for AMR in MIMO systems. Finally, we wrap up this section
with a brief discussion and learned lessons.

A. DL-AMR METHODS FOR SISO SYSTEMS

We categorize the DL-AMR methods in this subsection based
on the employed deep network models, which simplify the
comparison among them. First, we outline some of the exit-
ing signal datasets in the literature. Second, the methods
that exploit CNN are discussed. Then, those using RNN are
explored. Next, DNN-based AMR methods are summarized.
Thereafter, we review the methods proposed for AMR based
on AE models.

1) RELATED SIGNALS DATASETS

Signals dataset are particularly required for training, validat-
ing, and testing the networks in ML-AMR and DL-AMR
models. Some researchers used their own simulated datasets,
and others prefer to employ those introduced in the literature.
Some of the datasets are presented as follows.

a: RadioML 2016.10A DATASET

In [37], a survey on the emerging applications of ML in radio
signal processing domain was proposed along with a syn-
thetic dataset. It was generated with GNU’s Not Unix (GNU)
Radio and it includes eight digital modulations and three ana-
log ones. 220k signals for 20 different SNRs were generated
and divided as 1k signals per modulation per SNR. In fact,
it represents a cleaner and more normalized version of the
RadioML 2016.04C dataset [38]. However, there is a larger
version of this dataset, called RadioML 2016.10B.

b: RadioML 2018.01A DATASET

This dataset is one of the most challenging datasets of modu-
lation classification which was presented in [39].2 It includes
over-the-air measurements of 24 digital and analog modu-
lation schemes spreading in a wide range of SNR values.
Moreover, it contains more than 2.5M signals with synthetic
simulated channel effects.

c: HisarMod2019.1 DATASET

In [40], 5 modulation families passing through 5 differ-
ent wireless channels (ideal, static, Rayleigh, Rician, and
Nakagami—m) were considered in the generated dataset. This
dataset was generated using MATLAB2017. It includes 780k

2 A discussion on [39] will be provided later in this paper, in section I'V.
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TABLE 4. Summary of ML-AMR method for SISO and MIMO systems.

‘ Paper ‘ Features ‘ Classifier Antennas ‘ Channel Modulation Pool Remarks
number
*Required estimation: Channel
. {BPSK, QPSK, 8PSK} and estimation.

[20] a?f}l;dgcufl:o f:)gjl‘;lzh";‘jg; ANNS {]\;X Z ]3V; 66} timFe ff/gfei?fyﬁ&o (BPSK, QPSK, 8PSK, 4ASK, | *SNR range: [-10, 10] dB.

S up o ’ ymng 8ASK, 16QAM} *Recognition accuracy with
mobility: >97% for SNR>-5dB.
. . Frequency-flat {BPSK, QPSK, 8PSK} and *Required estimation: Channel
[21] a?fy(;(‘j‘fso f;g::g:ho:z; ANNs {]\2[; ’6‘ ];fx 66} time-selective {BPSK, QPSK, 8PSK, 4ASK, | estimation: Only for SCMA-DML.
P > MIMO 8ASK, 16QAM, 64QAM} *SNR range: [-5, 15] dB.
*Required estimation: Channel
_ Frequency-flat, {BPSK, QPSK, 8PSK} and N .
[22] HOMngSﬁEgS upto ANNs | N ‘_24’ Ne | spatially correlated {BPSK, QPSK, 8PSK, 4ASK, Zf}%“%ﬁl‘s’zgfz with ZF-ELM
block fading MIMO 8ASK, 16QAM, 64QAM} *SNR range: [-5, 15] dB.
*Required estimation: CFO and PO
Time invariant and in the first case of known channel
(23] HOMs and HOCs up to Two N, € {24}, frequency flat {BPSK, QPSK, 8PSK} and scenarios .
sixth-order ELMs N, =4 d y {16QAM, 64QAM} *SNR range: [0, 20] dB.
MIMO ¥
*Recognition accuracy for 2x4
antennas: ~95% for SNR>4dB.
*Required estimation: CFO and PO
.. . in the first case of known channel
Additive White
o ) N, =1, N, o . {BPSK, QPSK, 8-PSK, 16- QAM, | scenarios .
[24] LBP histogram features ELM -1 Gaussian Noise 64-QAM and 4-ASK *SNR range: [-10, 10] dB.
(AWGN) ne
*Recognition accuracy for 2048
symbols: ~95% for SNR>-2dB.
*SNR range: [-10, 5] dB.
. . . {QPSK, 16PSK, 64PSK, BFSK, *Recognition accuracy for
[25] sh;rf;;e:;‘;l;zn;“&i‘l‘];ﬁ‘? e | VT 11’ Ny R B.A\(ZIGII:I f‘;g?n 4FSK, 16FSK, QAM,16QAM, | SNR=0dB: ~99.7% and ~100%
P g yielg £ 64QAM} at 512 samples and 1024 samples,
respectively.
*Required estimation: SNR
Nzl N Estimation.

[26] Histogram features SVM t __ 1’ r Multipath fading {2ASK, QPSK and 16QAM } *SNR range: [0, 30] dB.
*Recognition accuracy: ~99.83%
by employing all features.

. - *SNR range: [-2, 10] dB.
characteristic parameters: Ny=1,N, {2PSK, 4PSK, 8PSK and 16QAM, .S .
[27] SVM _ AWGN ) *Recognition accuracy: ~59% for
T2, T4, T8, T16, T32 =1 32QAM and 64QAM } SNR>.2dB.
. . . . *SNR range: [5, 15] dB.
Higher-order cyclic Ny=1,N, Multipath fading {4QAM,16QAM,64QAM} and Recaomition o

(291 cumulants (CCs) SVM -1 channels [SASK,16QAM, 64QAM, BPSK] | -Recognition accuracy: >90% for
SNR>10dB.

e (2ASK ASK, SASK T60AN, | SRS O

[19] g i g SVM t= L0 AWGN Channel | 2FSK, 4FSK, 8FSK, 2PSK, 4PSK, S y: =I5%

and 5 cyclostationary =1 8PSK | SNR>5dB and ~97% for
features SNR>10dB.

of In-Phase and Quadrature (IQ) samples spreading in the
same SNR range of the aforementioned RadioML.2016.10A.

Table 5 summarizes the modulation schemes, covered SNR
range, dataset’s size, and the synthetic simulated channel
effects of the datasets.

2) CNN-BASED METHODS

For a better understanding of the existing CNN-based
AMR methods, they are assorted based on the adopted signal
representation as follows.

a: CLASSIFICATION USING IQ SAMPLES

1Q samples convey the changes in magnitude and phase of a
wireless signal, and they are often used in RF applications.
Many researchers simply used their own simulated 1Q sig-
nals as the input of CNN. Shi et al. [41] conducted some
pre-processing techniques and SNR estimation in order to
design a CNN-based AMR method. This method aims at
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eliminating the bad effects of PO in uncooperative OFDM
systems and, therefore, achieving a high classification accu-
racy. The algorithm in [6] can learn to extract features auto-
matically from the long symbol-rate signals but still requires
high SNR to achieve high classification accuracy. A unit
classifier was applied to deal with the changes in input
dimensions. While two-step training method was adopted to
overcome the problem of direct training, transfer learning
was applied to improve the retraining efficiency. A multi-
stream structure was used in [42] to increase the network
width and obtain more valuable features. Several super-
position convolutional units were used in each stream to
overcome the problem of network training and over-
fitting. Moreover, a non-linear function approximator called
Network-in-Network (NiN) was exploited to deal with
the problem of the non-linearity in the extracted feature.
Gu et al. [43] studied both blind channel identification
and AMR. Two CNNs were used to remedy the flaws of
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TABLE 5. Summary of dataset used in the literature.

‘ Dataset Modulation Pool il:;{e ‘ Size fel:;: ‘ Included effects
Normal Classes: OOK, 4ASK, BPSK, QPSK, 8PSK, 16QAM, AM-SSB-SC, AM-DSB-SC, FM,
GMSK, OQPSK CFO, symbol rate offset, multipath
1391 Difficult Classes: OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK, 16PSK, 32PSK, 16APSK, [-20430] | 2.5M | 1024 tading and thermal noise
32APSK, 64APSK, 128APSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, AM-SSB-WC, ' ;
AM-SSB-SC, AM-DSB-WC, AM-DSB-SC, FM, GMSK, OQPSK
371 BPSK, QPSK, 8PSK, 16QAM, 64QAM, GFSK, CPFSK, 4PAM, WB-FM, AM-SSB, and (20418 | 220k | 128 CFO, sample rate offset, AWGN, and
AM-DSB " fading
BPSK, QPSK, 8PSK, 16PSK, 32PSK, 64PSK, 4QAM, 8QAM, 16QAM, 32QAM, 64QAM, . o
[40] 128QAM, 256QAM, 4PAM, 8PAM, 16PAM, 2FSK, 4FSK, 8FSK, 16FSK, FM, PM, AM-LSB, | [-20+18] | 780k | 1024 | ™multipath fad;ni“”mld‘fferem number
AM-USB, AM-SC, and AM-DSB of channel taps

classification on the same channel. The first CNN was
responsible for identifying the channel whether it is a Line-
Of-Sight (LOS) or Non-Line-Of-Sight (NLOS) channel.
The second one was used to classify the modulation schemes
under the identified channel. The work in [44] was devoted
to making a comparison study between CNNs, RNNs, incep-
tion modules, and Convolutional Long short-term DNNs
(CLDNN). Results revealed that CLDNN outperforms other
networks for SNRs above -8dB.

Wang et al. [45], applied two CNNs and dropout instead
of pooling operation in order to achieve high classification
accuracy. On one hand, the first CNN, named DrCNN, was
responsible for classifying the adopted modulation schemes
(BPSK, QPSK, 8PSK, GFSK, CPFSK, PAM4) in addition to
separate 16QAM and 64QAM schemes from others. On the
other hand, the second CNN aimed at classifying 16QAM
and 64QAM schemes. The authors created two datasets to be
used in AMR. The first dataset was created by IQ samples in
order to train the former CNN, while the second one adopted
constellation diagrams with a density window to train the
latter CNN. Simulation results demonstrated a considerable
improvement when compared to the benchmark methods.

CNN and LSTM were employed in [46] for modula-
tion scheme classification. The method in [47] was proved
to have higher robustness against SNR variation and less
memory consuming than the benchmark methods. Similarly,
the algorithm in [48] was proposed for varying noise regimes
with less computational complexity and likewise smaller
model sizes. In particular, the redundant neurons were pruned
through a compressive sensing based neuron pruning tech-
nology. Simulations showed that the proposed method not
only reduces the computational time but also diminishes the
required device memories under an acceptable performance
loss. In their work, Zheng et al. [49] aimed to solve the
problem of variable CNN’s input size and to make full use
of the complete signal burst. Thus, three fusion methods
were explored: voting-based fusion, confidence-based fusion,
and feature-based fusion. First, the signal is divided into
multiple segments of the same length. Then, each segment
is sent to the CNN to make a decision by the corresponding
fusion method. Finally, all results will be fused based on
classification results, confidence, or intermediate features of
these segmented signals. Simulations revealed that all of the
proposed fusion methods overcome the non-fusion method.
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In [50], a graph mapping CNN was employed to convert
the received signals into graphs. While CNN was used for
feature extraction, Graph Convolutional Network (GCN) was
employed for the classification part. The dataset is divided
into multiple subsets for the sake of converting modulated
signals into graphs. Each subset consists of 40 labeled signals
and one unlabelled one.

b: CLASSIFICATION USING 1Q SAMPLES FROM EXISTING
DATASETS

Many researchers chose to use one of the existing IQ sig-
nals datasets® in order to form the input of CNN. In [38],
the adaptation of CNN to the dataset in [37] was studied
along with a performance comparison between the proposed
CNN, and those of the expert HOM-based methods. Then
in [39], the authors extended their prior work on using deep
CNNs for AMR [38], [44], [S51]. They investigated the perfor-
mance of DL-AMR considering a rigorous baseline method
using HOMs and strongly boosted gradient tree classification.
Besides, the effects of a wide range of design parameters,
channel impairment conditions, and training dataset parame-
ters were studied. They conducted several simulations includ-
ing over-the-air measurement of AMR performance. More-
over, they built an improved version of the tool described
in [37] to be used in dataset generation3.

In [52], a signal distortion correction module was proposed
to improve the accuracy of CNN-based AMR. The proposed
module employed an ANN in order to estimate both CFO
and PO of received signals. In contrast to [41], this module
eliminates the effects of both CFO and PO by shifting the
signal frequency and phase prior to modulation recognition.
The work reported in [53] exploited the attention mechanism
for the fusion of the extracted multi-scale features. The SNR
was used for optimizing the categorical cross-entropy loss
with correct weight to improve the performance and the con-
vergence time of the network. The network structure in [54]
consists of six convolutional blocks (denoted M-block). Each
one of these M-blocks includes three convolutional layers
of different kernels. The output of every single block is the
concatenation of all feature maps in the depth dimension.
In order to improve the AMR accuracy, a Cyclic CNN CCNN)
and a Bidirectional RNN (BRNN) were employed in [7].

3 A discussion on these datasets was provided in section IV-Al.

57861



IEEE Access

B. Jdid et al.: ML Based AMR for Wireless Communications

The former network was devoted to extracting spatial fea-
tures, while the latter meant to obtain temporal ones. Besides,
the designed framework used an attention mechanism in order
to improve the efficiency of the received signal features.
In addition, an Auxiliary Classification Generative Adversar-
ial Network (ACGAN) was proposed to expand the training
data set. PCA procedure was used in [55] to create a set
of uncorrelated features and, therefore, reduce the features
vector length required for AMR.

In [40], HisarMo0d2019.1 dataset® was used to evaluate the
proposed CNN-based AMR method. The modulation type
of each signal was firstly identified, then the signals were
classified based on modulation order. The model in [56]
was dedicated for beyond Sth-generation communication
systems. Therefore, the main objective was to reduce the
computing time below 0.01 millisecond to comply with the
future communications standards. In [57], the signals were
identified whether they are wideband frequency modulation
or not by using two expert features: (1) the maximum value of
the power spectral density of the normalized-centered instan-
taneous amplitude, and (2) the kurtosis of the normalized
instantaneous frequency. Then, the signals were fed into a
CNN-LSTM classifier where QAM16 and QAM64 schemes
were considered as the same class. Finally, QAMI16 and
QAMO64 were classified by using Haar-wavelet transform
crest searching.

In [58], an adversarial transfer learning architecture was
introduced using the RadioML2016.10A dataset. In order
to improve the AMR overall performance, both adversarial
training and knowledge transfer were exploited. The com-
putational complexity of this architecture was found to be
slightly larger than CNN and DNN. However, it was accept-
able since the performance improvement was significant.
Table 6 summarizes the network configuration, modulation
pool, maximum achieved accuracy per SNR, and remarks
of the previously discussed CNN-based AMR based on
IQ samples.

c: CLASSIFICATION USING IMAGE REPRESENTATIONS

DL technologies in the last decades have achieved outstand-
ing achievements in the field of image processing. There-
fore, many researchers in the field of wireless communi-
cation are very keen on the idea of converting the signal
recognition problem into image recognition one. For exam-
ple, in [68], a CNN-based AMR was presented in which
various signal spectrograms were converted into an image
dataset using Short-Time Fourier Transform (STFT). The
authors introduced two image classification approaches in
order to examine the AMR accuracy. The first one is by
optimizing activation functions, while the second one is by
using optimization functions. Similarly, Sun et al. [64] and
Zhang et al. [69], adopted the same methodology. However,
the authors in [64] implemented VGG-16 [70], a widely
known CNN model, for recognizing 10 different modula-
tion schemes. Similarly, the algorithm in [69] exploited both
smooth pseudo Wigner-Ville and Born-Jordan distributions
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to obtain a different kind of images. Then, these images
were fused with hand-crafted features of the received signals.
In the same context, images were used in [71] as the signal
representation, while Wigner—Ville map pictures were used
in [72]. In [73], a spectrum CNN based AMR framework and
a Gaussian filter for noise elimination were presented.

The authors in [74] used constellation diagram and
AlexNet CNN model [75] for network training and classifi-
cation tasks. Furthermore, Caffe framework [76] was adopted
as well in the whole modulation classification process. Data
augmentation was applied in [77] based on ACGAN. Par-
ticularly, the data conversion algorithm converts constella-
tion diagram to contour stellar image. Therefore, more color
features were obtained compared to the constellation dia-
gram in [74]. Moreover, this made the CNN significantly
outperform the same CNN model mentioned in [74]. Tradi-
tional Generative Adversarial Nets [78] suffers from several
training issues such as generator disconverge, discriminator
overfitting, and mode collapse. Hence, the authors presented
several measures to overcome these issues. Results showed
a 0.1-6% increase in the classification accuracy using the
extended dataset when comparing to the original one.

Waveform identification is considered a major part of CR
technology. Therefore, Zhang et al. [79], proposed a blind
method for CR waveforms recognition using Choi-Williams
time-frequency Distribution (CWD). The received signals
were also transformed to 2D images through CWD. Then,
they were converted into a binary image by using image
binarization and image denoising algorithm. In [80], an AMR
method for PSK/QAM schemes of different orders was pro-
posed based on constellation structure and k-medoids clus-
tering in the slow and flat fading channel. Neuron pruning
techniques were used in [81] to reduce not only the con-
volution parameters but also the number of Floating Point
Operations per Second (FLOPs). This work was dedicated
for AMR implementation in the edge equipment. Anyhow,
the average percentage of zeros criterion was adopted for con-
volution layers. In addition, contour stellar image was used
as the signal representation. In [82], a CNN-based AMR was
proposed for the 5G signal modulation. AlexNet CNN was
used for features extraction and classification. 7 /2-BPSK,
QPSK, 16QAM, 64QAM, and 256QAM were employed as
the modulation pool and the constellation was selected as
the input feature of the AlexNet network. In [83], constella-
tion diagram and transfer adaptation was adopted in features
extraction subsystem, while SVM was used for classification.

Zha et al. [84], introduced a DL framework for
multi-signals detection and modulation recognition. The pro-
posed scheme can obtain the signal modulation format, center
frequency, and start-stop time. Both single shot multi-box
detector networks and multi-inputs CNNs were built for
signal detection and modulation recognition, respectively.
The time-frequency spectrum was employed as the signal
characteristic expression. Hence, MFSK modulation schemes
were identified during the signal detection phase while
MPSK, MAPSK, and MQAM schemes were identified in
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TABLE 6. Summary of network configuration, modulation pool, achieved accuracy, and remarks of CNN-based AMR Methods.

Paper| Configuration - Modulation Pool Accuracy per SNR Remark
3 £
z ]
= ]
z < |58
- o0 Iz
z 2 E E §. E Eﬁ 2
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E|S|E|S|8|EF ES
E-Izl(l)Pl:-tZ:OI]Q samples.» Epochs: [0-50] « SNR Range: « (%) 598.30%, > 60%, and >67% at high SNR
’ L . for the normal classes with 1M training samples,
* Benchmarks: Statistical Features in XGBoost[59]. the difficult classes with 240k training sampl
Bo1 || 37X 7] X | ¢ | RadioML2018.01A (%) * Transfer learning was investigated. © cuineutt classes wil ratmng sampies,
N N N . and with unsynchronized LOs and Doppler
* Refer to Table 8 for RNN configuration. frequency offset with 240k training samples
* (*) 80% training data and 20% for testing where resq: ‘t'i‘/)él Wi ining samples,
dataset sizee {240k, 1M, 1.4M,2M}. pectively.
>80% for + Input: IQ samples. + SNR Range: [-20, +18] : ans?;(i)zl;tei;:i:azs:id to prevent overfitting in
[38] 20 2 | X| - | ¥V| 96k | 64k RadioML 2016.1A i * Benchmarks: DNN, DT, NaiveByes, KNN & SVM. 8 C P s
SNR>-2dB | . Epochs: 92 « Batch size: 1024 CNN.
pochs: ch size: « Epochs take roughly 15 sec.
Dl=§l§§2}){,ﬁ§;’SK, SNT{1>08217(]7;§];1) + Input: IQ samples. * Stochastic Gradient Descent (SGD) was used to
[41] 3 2 | V| - | V| 20k's| 20k'S . * Benchmarks: DT, RF, and DNN. avoid overfitting.
D2~{BESK, OFSK, and for - SNR Range: [-10, +20] with 5dB ste + Epochs: 500 » Batch size: 500
8PSK, 16QAM} SNR>+5dB (D2). ge: 1210 step- POChS: 5 size:
79k, | 8.8k {2PSK, 4PSK, 8PSK, 86% for « Input: IQ samples. * SGD was used for minimising loss function.
[6] 2|5 |vV|4| X 228i< 2‘5k’ 16QAM, 16APSK, SNR>C+6dB * Benchmarks: FB-AMR[60] & ML-AMR. + Adopted transfer learning and two-step training.
32APSK, 64QAM} * SNR Range: [-6, +10] * Epochs: 20-240 « Batch size: 500-1000
« Input: IQ samples. * SNR Range: [-20, +20] * (NiN) multi stream network was adopted.
‘%i%iﬁpsziﬁk ~80% for * Benchmarks:Resnet[61],Densenet[62], « parameter size: 164618 (R1=1, R2=1),
[42] 213 | ¢|2] X 05k 0.5k 4FSK SI;SK PANi SNR>0—2dB ResNeXT[63]. 535754(R1=2, R2=2), 700842(R1=3, R2=3) &
D'SB FM) ’ * Parameters: 590848 without 1x1 convolution kernel 906890(R1=4, R2=4).
’ & 153600 with it. + Epochs: 0-55 « Batch size: 128
>83% for
{2FSK, DQPSK, .
42 & N SNR>0dB, and * Benchmarks: CNN,CNN without * SNR Range: [0, +12]
@31 | | 2 || - | V] 2| 2K ”’Qi’ﬁi 461)1\‘22’;;\“[(’ ~98% for BN,RNN,HOC-DNN & HOC-RF. « Input: IQ samples. » Epochs: [0-100]
SNR>6dB
~100%, and
>85% for
{BFSK, DQPSK, <
SNR>0dB under « Input: IQ samples. * SNR Range: [0, +12]
t t
46] 2|3 V]2V LK) ook IGQAMC'};APSAKN)[’ MSK, AWGN and * Benchmarks: HOC & SVM. * Refer to Table 8 for RNN configuration.
Rayleigh,
respectively.
AWGN:Q]OO% * Input: [Q Samplcs.. . *Epoch times: 40 for AWGN Channel and 55 for
& ts for SNR>-3dB * Benchmarks: Traditional CNN. .
[47] 302 | X - | V]| 6k | 6k® {FSK, PSK, QAM} . N . . . - Rayleigh channel.
Rayleigh:~98% « Simulation SNR Range: [-5, +5] with an interval of « Barly-stopping is adopted to avoid overfittin
for SNR>-1dB | 5 dB. y-stopping Is acop void overfitting.
G1={BPSK, QPSK, SN]?;SE;?B?:: Gl |* Input: IQ samples. * Neuron pruning via regularization was adopted.
[48] 3|2 || -|¢]|6k" | 6k | 8PSK}and G2={BPSK, and >70% for * Benchmarks: Traditional CNN-based AMR. * Fine-tuning and retrain the trimmed CNN in the
lo . B X
QPSK, 8PSK, 16QAM} SNR>0dBin G2 | ° SNR Range: [-10, +10] with 2 dB as an interval. short epochs was applied.
* SGD was used to prevent overfitting.
(012;’33]; %]lzzlli ilzgi ~88% at SNR = | °1nput: 1Q samples. « The performance of confidence-based and
20-| 2¢- ts ts g | ? oo o, | *Benchmarks: CNN1 and CNN2. feature-based fusions are almost the same and
[49] ¢ V2| V]I | ks 8FSK, 16QAM, 10dB® - ~ 94.5% . . . .
2' | 46 £ « SNR Range: [-20, +30] with an interval of 2 dB. they are both better than voting-based fusion.
32QAM, 64QAM, at SNR = 10dB LS . . . .
4PAM])  Validation is performed every 1500 iterations. * The performance gains under CNN1 is much
more obvious.
[50] 18- 28- v - R R ﬁ%il(};:i&élfssf’ ~ 69% at SNR = « Input: IQ samples. * SNR Range: [-14, +10] * SGD was used * Semi-supervised training.
2h | 4h 16QAM and 6’4QAM') 0dB * Benchmarks: CNN and KNN ¢ Parameters: 437071 * Inference time: 0.78ms ¢ Batch size: 10
R R . 80% for « Input: IQ samples. * SNR Range: [-20, +18]
(52 || 4 | 4| X2 RadioML 2016014 SNR>0dB + Benchmarks: CNN & CLDNN [44]. + Adam optimizer was used.
« Input: IQ samples. + Adam optimizer was used.
RadioML2016.10A >80% for * Benchmarks: CNN, GRU, focal loss & cross * Epochs: 10
(53] || 25| 3 | X| - | X| 110k 110k [64] SNR>-2dB entropy. * BN layer & Global average pooling were
* SNR Range: [-20, +18] adopted.
« Input: IQ samples. * M-block comprises 3 convolutional layers.
* Benchmarks:(ML-XGBoost,VGG,ResNet)[39], + Skip connections technique was applied.
[54] 121 X7 X ?(:'6‘7;/1 5(20;04 RadioML 2018.01A SI\?;(Z lfS(rlB CNN-AMRJ6]. * SGD was used to avoid overfitting.
. . * SNR Range: [-20, +30] * Accuracy increased as M-block increased.
* Trainable parameters: 141,880 + Epochs: 60 « Batch size: 128
70% | 30%
_ - . >70% for « Input: IQ samples. * Epochs: 15 * SNR Range: [-20, +30]
51| 1) 3 V]3| X Lol oem RadioML 2018.01A SNR>7dB « Benchmarks: CNN[39]. « PCA was adopted.
>90% at
416k | 364k HisarMod2019[4] SNR>14dB « Input: IQ samples. * Parameters = 1576453 for HisarMod2019 and
[40] 214 | V|4 | V| - - - - * Benchmarks: CLDNN[65], LSTM[66]. 659594 for RML2016.10a.
600k | 600k RML2016.10a2 ~90% at « SNR Range: [-20, +18] * Adam optimizer was used.
SNR>4dB
_ 91.70% for SNR~ | | . * SNR Range: [-20, +18]
D1=RML2016.10b, 10dB for D1, and Input: IQ samples. + Gaussian noise layer was applied for
[56] 2 | 4 | V| 2| V| 720k| 480k and D2 = * Benchmarks: CNN2 [51], ANN [15], CNN & L
RML2016.10a 83.40% at SNR = CNNI [67] regularization.
) 18dB for D2 ) + Computing time = 0.0048ms
80% | 20% « Simulation SNR Range: [-20, +18]
_ _ g =92.3% at SNR = | « Input: IQ samples an 2 expert features. . i s R
571 |2 |3 |vV]-| X| = = RML2016.10a 1048 « Benchmarks: CNN_LSTM [39], One LSTM layer was added in the network
960k | 240k structure.
{BPSK, QPSK, 8PSK. « Input: IQ samples in DrCNN & constellation + SNR Range: [-8, +18] with an interval of 2 dB.
[45] 4¢ | 2° v 1° V| 42| 1.8¢¢| GESK .CPFSK74PAM’ 95% for diagrams in CNN. « Distinguish QAMs with high accuracy at
59 3d 3d ) . IGQAM and 6;lQAM )' SNR>+2dB * Benchmarks: MaxCNN[51],RNN,DNN & SNR>-6dB.
’ Inception. * Netwrok parameters: 1,101,448

“per type per SNR, “per type, *per SNR, *Former CNN, PLatter CNN, °DrCNN, TLatterCNN, °CNN1, TCNN2, ¥ FECNN, "GMCNN
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the same categories to be then recognized using multi-inputs
CNN:ss. In [85], a comparative analysis was provided in order
to clarify the effects of choosing the features, classifiers,
and datasets. Also, the effects of the presence of noises
on the classification performance were investigated. Feature
discrimination analysis was provided through SVM, DNN,
and CNN. In [86], a two-stage hybrid digital AMR method
was proposed based on STFT and CNN. Firstly, STFT was
used to convert the signals into 2D images in order to
extract the time-frequency features and feed the input of the
CNN classifier. In [87], a CNN-based intelligent eye-diagram
analyzer was proposed for modulation format recognition
and optical SNR OSNR) estimation. Received signals were
converted into eye diagram images that have a grid-like
topology and then processed by CNN for modulation
classification.

d: CLASSIFICATION USING OTHER INPUTS

Anti-noise processing and deep sparse-filtering CNN were
used in [88] to design an AMR method for very high fre-
quencies. The Cyclic Spectra (CS) of modulated signals were
calculated first. Then, Low-Rank Representation (LRR) algo-
rithm was applied in the de-noising process of the obtained
cyclic spectrum images. Zhang et al. [89] proposed a com-
bination of the IQ samples and the 4th-order cumulants of
the modulated signals. The combined vector is then fed
into both CNN and LSTM classifiers, namely CNN-IQFOC
and LSTM-IQFOC, respectively. In [90], the impacts of
features selection for AMR were investigated. Moreover,
a novel method for selecting the most effective and dis-
tinctive features from a larger set of features was proposed.
This method was called Bhattacharrya distance-based feature
selection algorithm. In particular, the Bhattacharyya distance
metric was applied to evaluate the similarity between two
different probability distributions, and calculate the high-
est distance for all candidate modulation schemes. This
research studied the case of SISO system with perfect
timing synchronization, AWGN, and frequency-selective
fading channels. However, many simulations showed that
the proposed algorithm achieves a substantial reduction
in the computational complexity and outperforms the
traditional PCA.

Teng et al. [5] extend their previous work in [91] and
proposed an accumulated polar feature-based DL with a
channel compensation mechanism. In [91], they have shown
that learning features from polar coordinates, which can
be obtained from Cartesian coordinates, can achieve higher
recognition accuracy. Then in [5], they add a new tempo-
ral axis to accumulate historical information of symbols in
such dimension. In the proposed method, the polar coordi-
nates were projected to grid-like images. After that, the grid-
like images were converted into colorful images to feed the
CNN classifier. Moreover, an ANN-based channel estimator
was presented in order to cope with the problem of fading
channels. This was accomplished by finding the inverse chan-
nel response and reduce the impact of power scaling and

57864

phase shift on the performance. Two mechanisms for online
retraining were introduced to deal with the time-varying fad-
ing channel while having lower transmission and retraining
overhead. The model reported in [91] was used as a bench-
mark. Results revealed that the proposed method can reduce
the offline training overhead by about 190 times compared
to [91] and, therefore, provide better efficiency and accuracy.
Table 7 summarizes the network configuration, modulation
pool, maximum achieved accuracy per SNR, and remarks of
the previously discussed CNN-based AMR when images and
other signal representations are employed.

3) RNN-BASED METHODS

Data augmentation techniques are considered as a proper
solution for the drawbacks of insufficient training data.
In [102], for example, a state-of-the-art LSTM-based AMR
was presented to evaluate Gaussian noise, rotation, and
flip methods of radio signals augmentation in both train-
ing and inference phases. Similarly in [103], RNN and
LSTM were investigated for AMR. First, the received sig-
nals were converted into two normalized matrices to be
then fed into RNN. After that, sequence-correlated features
of I/Q signal components and amplitude/phase signal com-
ponents were extracted using 4-layer dual-channel LSTM.
In [104], a class activation vector was introduced to visual-
ize the extracted features by using different DL-based radio
modulation classifiers including CNN and LSTM classi-
fiers. On one hand, the CNN classifier was found to be
insensitive to the input formats and capture similar radio
features. On the other hand, the LSTM classifier discrim-
inates different modulation schemes in a similar manner
to the knowledge of human experts. Moreover, the LeNet-
based and the ResNet-based classifiers tend to capture the
transitions between and around modulation reference points,
respectively.

Authors in [105] outlined a Dual Path Network (DPN) for
joint blind modulation classification and symbol recovery.
This architecture combines both DL and linear signal pro-
cessing in order to estimate signal parameters and correct sig-
nal distortions like CFO and multipath fading. It consists of a
combination of residual blocks, LSTM and RNNs. Briefly,
the received samples were used to generate five different
outputs. Each output has a corresponding loss function differ-
ent from others. Hence, the training loss was a combination
of these different loss functions. Simulation results revealed
that the proposed DPN not only provides good accuracy in
signal distortion estimation but also outperforms many DL
methods in terms of classification accuracy. In [106], a blind
modulation scheme detection algorithm of non-orthogonal
multiple access [107] systems was designed. ResNet [61] was
used as a classifier, and joint constellation density diagrams
were used as the discriminating representation. Furthermore,
the wavelet de-noising method was adopted in order to reduce
the bad effects of high-intensity noise and losses, thereby
improve the quality of constellations.
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TABLE 7. Summary of network configuration, modulation pool, achieved accuracy, and remarks of CNN-based AMR Methods.

Paper Configuration - Modul Pool Accuracy per SNR Remark
g |2
z 5 |33
e | e @
1 % EIE|f |23
2|2 |9 | ®Fe| 28
2IS|E|&|A|&E5 &3
« Input: STFT spectrogram images. « Iterations < 80k * Adam solver was used.
[68] 312 v] 2| X 36k | 168K {AM, BPSK, FSK, >80% for * Benchmarks: SGD[65], Adam[92] & * The recognition accuracy under different
N : FM} SNR>-6dB RMSProp[93]. activation functions (ReLU, Sigmoid, softplus,
« SNR Range: [-20, +20] tanh) was studied.
. P * Mini-batch gradient descent was used to
{Const, LFM, SEM >93% when v;:;::\tfl:lrll: fiﬁﬁzw e e improve efficiency.
[72] 1 2| X | 2| X| 4kt | 02kt PEM, and FSK} SNR>0dB « Benchmarks: Methods in [4]. - Thel error rate decreases with increasing
« SNR Range: [-4, +15] 1lerat10p number.
« Iterations: [0-40]
« Input: Spectrogram images * SNR Range: « Training time: 7.14 ms » Memory: 941k
. «s| RadioML2016.10A >80% for [-20, +18] (RS e 8 :
(731 || 1| 4 | X| 3| X]07K"| 0.3k (64] SNR=0dB « Benchmarks: CNNR. IQFOC [89] & * iterations: 15 « Epochs: 0-120 + Network
CNNR-IQ [38]. parameters: 199k
{BPSK, 4ASK,
QPSK, OQPSK, « Input:contour stellar images[77] & « Data Augmentation was applied using
[74] 8PSK, 16QAM, > 95% for SNR > | constellation diagram[74]. ACGAN [77].
[77]’ 305 (X3 || 10k 1k® 32QAM, 64QAM} -2dB [77] and for | ¢ Benchmarks: GoogleNet, SVM & Cumulant. « Iterations < 50k [77], 100k [74] * Batch size:
[77] & {QPSK, SNR>8 dB [74] « Simulation SNR Range: [-6, +14][77], [-4, 64
8PSK, 16QAM, +14](74]. * AlexNet [75] was adopted.
64QAM} [74]
* AlexNet was dopted with 60M parameters &
{4ASK, BSPK, « Input: contour stellar images. 727M FLOPs.
* Benchmarks: * This method could use only 1.5%-5%
[81] 512X - |vV| 8k 8k° QPSK, OQPSK, >90% for (AlexNet,SVM-5,AVM-7,Cumulant)[94], parameter and 33%-35% time without losing
8PSK, 16QAM, SNR>-4dB .
32Q0AM, 64QAM} Orginal AlexNet. ) ) accuracy more thar{ 1.2%
« SNR Range: [-6, +6] with an interval of 2 dB. * This method was implemented on NVIDIA
Jetson TX2.
{BPSK, QPSK, * Benchmarks:
OQPSK, 8PSK, >80% for « Input: vector and eye diagrams. i i
841 || 1|3 [V |3 |X| - - 160AM., 16APSK. SNR>0dB « SNR Range: [0, +10] g;r;\ilg‘:}t[%],SVM-7[4],CNNR-IQ[38] &
32APSK, 64QAM} :
{ASK, FSK, PSK, ~99% . « Input: Spectrograms images using STFT. * SNR Range: [0, +25]
[86] 305 | X| 3|V ]1071% 459 QASK, QFSK, SNR 00‘;)]; * Benchmarks: VGG-16[96], VGG-19[70], « transfer learning approach was adopted.
QPSK} > GoogLeNet[97], and ResNet-101[61]. * Batch size: 64 « Epoch number: 32
« Input: CS-LRR samples. * SNR Range: [0,
20] « Unsupervised sparse filters to pre-train the
(BPSK, QPSK, 95% for j—Benchmarks‘CS—Gra h
. . b : ph[4] & CNN.
[88] L2 X2 | X ok Ik ZFSKA:/IFSFI;?/ISK’ SNR>+2dB RawWave-CNN[98]. * Netwrok Parameters: 3312
’ « Fine-tune the entire CNN with supervised * Epochs: 5 « Batch size: 50
learning.
« Input: IQFOC samples. * SNR Range: [-20,
ts +s| RadioML2016.10aA >80% for +18] * Refer to Table 8 for LSTM configuration.
[89] 2|2 X2\ v 07K 03k [64] SNR>0dB « Benchmarks: LSTM-IQ , CNN-IQ , and
CNNR-IQ [38].
* >90% for . i * SNR Range: [0, +15] « Iterations: 500
SNR>2dB for + Input: feaure sets including HOC. « Optimization Algo: L-BFGS for SAEDNN
AWGN channel, | * Benchmarks: CNN. Sparse AE DNN & SGDM for CNN.
[90] 3 2 X2 X 64k.1 64k! {BPSK, QPSK,8- « >80% for (SAEDNN), Radial Basis Function Network « The complexity can be coarsel
96k | 96k? PSK,16QAM) o 101 (RBEN), and PCA. * Loss function: MSE for omplexity Y e
SNR>6dB in I approximated to O(NDm), where “N”, “D’
FS-fading SAEDNN dndlcros;—entropy {or _CNNQ‘ and “m” are - dataset size, dimension of input
« Epochs: 400" -10° « Batch size: 256 R
channels. data and number of targets respectively.
« Input: Polar features. * SNR Range: [-4, +12] * (*) ~ 98% for model size = 1032 and SNR =
* Benchmarks: CNN[74], CNN[91], ML[99], 8dB,~ 98% for training data size = 10k and
5] 32l 2| v skt 1Kt {QPSK, 8PSK, *) HLRT[100], HOC[101]. SNR = 8dB, >80% for SNR>2 dB under
- 16QAM, 64QAM } « Classification accuracy average: 97.9% at high AWGN channel, >80 % for SNR>3 dB under
SNR. fading channel.
« Parameters: 2/ 1,032 « Time per epoch: 1.08 s
« Input: IQ samples. * SNR Range: [-10, +20] . i L
51 | 3 | 2 | v/ ] 2 | v/ | 259k | 317k | RadioML2018.01A | (42 I0r SNR= | g chmarks:LSTM{66].CNN[74] ResNet[39] - Lime Per epoch: 6s » Training time: 198
20dB & CNN[4]. « Epochs: 33

%per type per SNR, "per SNR, *per type, .SAEDNN, 2CNN

4) DNN-BASED METHODS

Several papers [108], [109] proposed DL-AMR where the
decision on the modulation scheme is made by DNN. For
instance, a novel Particle Swarm Optimization (PSO) scheme
was introduced in [108] to improve the structure of DNN
for optimizing the number of hidden layer nodes. Similarly,
the authors in [110] employed DNN for features extrac-
tion in digital coherent receivers. Amplitude histograms of
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the received signals were obtained after constant modulus
algorithm equalization. Results revealed that the proposed
method was non-data-aided and, therefore, it does not have
any bad effects on the spectral efficiency of the system.
In [111], twenty-one statistical features were extracted from
the received signals in order to feed the fully connected DNN
classifier. The proposed technique has a higher dimension of
the feature space than the conventional AMR methods, it has
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nonetheless a good classification performance. The extracted
features were carefully selected based on the analysis of the
empirical distribution for each modulation class. Simulations
demonstrated good performance for both AWGN and Rican
channels at different Doppler frequencies and SNRs.

In [112], a DL-AMR framework was proposed based on
the IQ constellation polluted by AWGN. The noisy received
samples were first normalized using the K-means algo-
rithm. Thereafter, the signals were converted into images
to be then fed into the DNN classifier. It is worth men-
tioning that 20% dropout was applied on hidden layers
to avoid overfitting. The method in [113] consists of a
large Hybrid DNN (HDNN) and a smaller Layered Resnet
Network (LRN). The HDNN is composed of 1-D Resnet
and LSTM-RNN layers. Cross model DL was proposed in
order to reduce the consumption of both storage and time.
Therefore, the low-complexity requirement can be fulfilled
for real-time applications. Besides, a knowledge distillation
method was also proposed to drive the learning process of
LRN.

DBN classifier was exploited in [114] for AMR.
First, the Spectral Correlation Function (SCF) generates
2-D images. After that, the generated images will be
pre-processed and fed into the DBN classifier. To evaluate the
performance, MAXNET classifier [115] and a feed-forward
backpropagation ANN with a continuous output [116] were
used. However, a common application of DBN is feature
extraction which can be used in different concepts with differ-
ent granularity. The authors of [117] propose a combination
of DBN and SVM classifier. Specifically, the stacked RBM
networks were used to form a DBN structure in order to
extract relevant features of the received signals.

5) AE-BASED METHODS
Li et al. [118], introduced a Stacked Sparse AE (SSAE)
and softmax regression-based DL network for AMR. They
employed a cyclic spectrum in order to pre-process the
received signals. Also, an unsupervised SSAE-DNN-based
AMR method was proposed in [119]. Its main aim was to
cope with much-neglected frequency selective fading scenar-
ios with Doppler shift. It was particularly trained by sev-
eral low complexity features such as spectral and cumulant
features. Furthermore, the network was trained on a range
of SNR values. Simulation results showed that the proposed
method can be feasible for all channel conditions. Moreover,
it can achieve a robust classification performance under sev-
eral impairments such as phase-frequency impairments and
Doppler shift for frequency selective fading scenarios.
Zhang et al. [120], proposed a hybrid AMR algorithm
for multipath fading channels. In particular, HOCs up to
sixth-order and Stacked Convolutional AEs (SCAEs) were
employed. The overall process starts when the received mul-
tipath signal was down-converted to the baseband. Then,
HOCs were calculated and a series of cumulant patches
were generated. Subsequently, zero-phase component anal-
ysis whitening was applied to each cumulant patch to reduce
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its dimension. Finally, these patches and their real modulation
types were combined into pairs to feed the SCAE classifier.
Dai et al. [71] proposed a novel inter-class DL-AMR method
by using two SSAE for features extraction. Received signals
were first converted into AF images to be then fed into SSAE.
The decision on the corresponding modulation scheme was
made by a softmax regression classifier. Table 8 summarizes
the network configuration, modulation pool, training and
testing parameters, and remarks of the previously discussed
RNN, DNN and AE based AMR methods.

B. DL-AMR METHODS FOR MIMO SYSTEMS

MIMO and massive MIMO are among the smartest antenna
technologies and they are considered as key enablers in the
current and future communication systems. In such systems,
there are multiple antennas at both ends, the transmitter and
the receiver. The increasing number of used antennas will
result in a significant improvement in link range and data
throughput. A survey on the emerging research on DL-based
models for MIMO and massive MIMO systems can be found
in the literature [121]. An investigation on the MIMO detec-
tion problem, in the presence of correlated interference over
time or frequency, by employing a deep CNN was proposed
in [122].

Wang et al. [123], proposed a CNN-based cooperative
AMR method for the MIMO systems. In order to make the
final decision on the modulation scheme, two kinds of coop-
erative decision rules were introduced in the decision-maker.
The first kind is the voting method, while the second kind
is the averaging method. In the former method, all votes on
the decided modulation schemes will be gathered from each
antenna, and the scheme with maximum votes will be the final
decision. While in the latter method, the average of proba-
bility distribution functions achieved by all of the receiving
antennas will be calculated and the scheme with the high-
est average probability will be the final decision. However,
the decision at each antenna is equally important in the direct
method, whereas each antenna has a different weight in the
weighty method. Results revealed that the averaging method
is better than the voting one and the weighty method is
better than the direct one. Besides, they proposed a CNN/ZF-
AMR method [124] for MIMO systems. ZF equalization was
employed since it can increase the SNR of the received signal.
The conducted simulations revealed that the performance was
much better in the case of perfect Channel State Informa-
tion (CSI). Furthermore, the classification performance was
proved to be influenced by the imperfect CSI; and also with
the number of the transmit and receive antennas. They also
proposed a Transfer Learning (TL)-based semi-supervised
AMR (TL-AMR) in a ZF-MIMO system [125]. The proposed
method includes a novel Deep Reconstruction and Classifica-
tion Network (DRCN) structure. This DRCN consists of two
pipelines: Convolutional AE (CAE) and CNN. The former
pipeline was used for labeled samples classification, while the
former was used for the massive unlabelled samples recon-
struction. Consequently, the knowledge will be transferred
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TABLE 8. Summary of (RNN, DNN & AE) based AMR methods.

‘ Algorithm H Network c ation ‘ Modulation pool Remarks
OTA-DL-based radio Input layer, 6 residual stacks, 2 « ResNet performance under channel
signal classification fully connected layers, and softmax RadioML 2018.01A P * Training parameters: 236,344

impairments & versus depth was studied.

output layer

[39] output layer
CNN-RNN-Based Inlz:l:)tnll?g]:lrés 115551:/;;)’:;5&31::“)’ (BFSK, DQPSK, 16QAM, Refer to Table 7
AMR [46] yers : 4PAM, MSK and GMSK}

SSAE-AF [71]

Input layer, hidden layer and
output layer

{ASK, PSK, QAM, FSK,
MSK, LFM, and OFDM}

* Training data: (6*7)k ¢ Testing data:
(I*7k
 Batch size: 100 * Epochs: 100

« Unsupervised pre-training and
supervised fine-tuning.

LSTM-IQFOC [89]

Input layer, 3 convolution layers, 1
LSTM layer, 1 fully connected
layer and softmax output layer

Refer to Table 7

* LSTM-IQFOC performance was around
higher 2% than CNN-IQFOC (Table 7) for
SNR>-5dB.

» Tanh & RELU activation functions were
used.

LSTM-based AMR

Input layer, 2 LSTM layers, one
fully connected layer and softmax

RadioML2016.10a

« Training data: 110-440k « Testing data:
110k

« Combine both rotation and flip methods

Classification [104]

output layer

(102} output layer « Batch size: 128 « Epochs: 80 can provide further improvement.
DC-LSTM AMR Input layer, 2 dual-channel LSTM . * Training data: 110k ¢ Testing data: 110k | . . Lo
[103] layers and softmax output layer RadioML2016.10a « Batch size: 256 « Epochs: 70 Center loss and weibull distribution.
DL-based Radio Input layer, 2 LSTM layers, 2 fully i . . . . o Validat . o Al .
Modulation connected layers and softmax RadioML2016.10a Training data: 88k ¢ Testing Data: 11k Validation Data: 11k « Adam optimizer

* Batch size: 128 * Epochs: 150

was employed.

PSO-DNN [108]

Input layer, 2 hidden layers and
softmax output layer

{(BPSK, QPSK, SPSK] and
{16QAM, 64QAM,
256QAM}

« No. PS: (10-20-30-50)
« Iteration number of training/optimizing:
300/5

* SGD method used for training the
hidden layers and MSE function to
calculate the output error.

DNN [109]

Input layer, 2 hidden layers and
softmax output layer

{2FSK, 4FSK, 2PSK,
4PSK, 2ASK, 4ASK}

* Epochs: 278

* Loss function: cross-entropy

DNN-based MFI
[110]

Input layer, 2 hidden layers and
softmax output layer

{QPSK, 16QAM, 64QAM}

* Training data: 135%3 e Testing data: 60*3

* Unsupervised pre-training and
supervised fine-tuning.

DNN-based AMR
[111]

Input layer, 3 hidden layers and
softmax output layer

{BPSK, QPSK, 8PSK,
16QAM, 64QAM}

« Batch size: 50 * Epochs: 15k
« Training data: (15*5)k * Validation Data:
(5*5)k

* Testing Data: (5*5)k * Training method:
SGD.
« Cost function: negative-log- likelihood.

DNNG [112]

Input layer, 3 hidden layers and
softmax output layer [48]

{16QAM, 4QAM, 8PSK,
16PSK, BPSK, 8QAM,
32QAM}

 The best performance results was found
to be at epoch equal to 2M.

DBN-SCF-based
AMR [114]

5 hidden layers and an output layer

{4FSK, 16QAM, BPSK,
QPSK, and OFDM}

* Training data: 6k * Testing data: 500

* Verification data: 2k * Semi-supervised
learning

SSAE[118]

Input layer, hidden layer and
output layer

{FSK, PSK, ASK, QAM
and MSK}

« Training data: (2.5*5)k * Testing data:
(1*5)k
« Batch size: 100 ¢ Epochs: 100

 Unsupervised learning.

SCAE-HOC [120]

Input layer, six hidden layers (3

convolutional layers, 2 pooling

layers and one fully connected
layer )

{(BPSK, QPSK, 16-QAM,
and 64-QAM}

« Training data: 120k * Testing data: 60k

« Unsupervised pre-training and
fine-tuning were performed.

* SGD was performed to reduce the
training error.

from CAE to the feature layer of CNN in order to cope with
ineffective training and over-fitting, which is caused by using
limited labeled samples. However, it is worth mentioning

TABLE 9. Summary of DL-AMR method for MIMO systems.

that the modulation schemes used in all of these researches
were PSK, QPSK, 8PSK, and 16QAM. Besides, the CNN
structure was also the same including 2 convolutional layers,
3 dense layers, and a softmax output layer. Furthermore,
the CAE in [125] had the same structure as in CNN with three
deconvolution layers.

1) DISCUSSION AND LEARNED LESSONS

DL models play an important role in AMR and the perfor-
mance demonstrated by recent prototypes is remarkable. This
is because DL can prove advantageous with regard to feature
learning, performance, complexity, and generalization capa-
bilities [2]. On one hand, training DL models on a wide range
of SNR can eliminate the requirement of SNR estimation and
generalize the classification process in the different environ-
mental conditions [39]. However, maintaining low compu-

‘ Paper Training & Testing Remarks
parameters
* ReLU & dropout were used.
.. X s « Antennas number: N, xN,€{4x1, 4x2, 4x4}.
: Tra?mn.g data: 1_4ktts * Benchmark: HOC and ANN-based AMR.

[123] || * Validation data: 6k . R 0

« Testing data: 10k fClasmﬁcallon aceuracy: ~100%,>91%,>87%
for SNR>0dB when N, N, €{4x1,4x2,4x4},
respectively.

« Training data: 20k* * ReLU and Dropout were used.

« Testing data: 10k" * Antennas number: N, x N; € {4x1, 4x2, 4x4}.

[124] * Maximum epoch, » Benchmark: HOC and ANN-based AMR.
early-stopping epoch, batch « Classification accuracy: >90%,>83%,>81%
size were set as 100, 20 and for SNR>-5dB when N, xN;.€{4x1,4x2,4x4},
500, respectively respectively.

* ReLU used for all layers, while softmax and
PReLU were used for the output layer in CNN
« Training data: 20k and the last deconvolution layer in CAE.
« Testing data: 10k" * Dropout were used.

[125] || * Maximum epoch, and batch * Antennas number: N, x N; € {4x1, 4x2, 4x4}.
size were set as 500, and 500, * Benchmark: CNN/ZF-AMR [125].
respectively. * Classification accuracy: >90%, >82%, and

>80% for SNR>-5dB when N, x N, €
{4x1,4x2,4x4}, respectively.
©per type per SNR

tational complexity, in such models, remains challenging as
well as constructing and gathering a large dataset of signals
in order to train the model and to guarantee the performance
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under varying noise regimes. For example, the CNN model
reported in [42] enjoys a high classification accuracy but suf-
fers from a large number of training parameters and, hence,
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high complexity. On the other hand, training a DL model on a
narrow range of SNR [46] can obtain high accuracy. However,
to target a wide SNR range, it is needed to use multiple DL
models for each SNR value, which will result in high storage
requirements. Fundamentally, the main difference between
RNN and CNN is the nature of their input data. While CNN
is specialized in modeling spatial data, RNN is very effective
in modeling temporal data. In fact, weight sharing is a key
advantage in CNN as well as the auto-learning of deep spatial
features. Alternatively, RNN can remember each information
through time and, hence, very appropriate for sequenced data
applications such as speech-to-text applications and video
processing applications. However, both CNN and RNN suffer
from vanishing and exploding gradient problems and require
large amounts of data. It is worth mentioning that training
RNN is a complex process and requires additional effort.
AEs can be used effectively for unsupervised hand-crafted
features learning [118], [120], or even for features extraction
and learning [71].

However, RNN and CNN models can be used together
to form a hybrid DL model and extend the effective pixel
neighbourhood [57], [89]. Due to the advancements in the
field of image recognition, image processing techniques are
being extended to AMR domain. For this purpose, some
kind of transformation algorithms have to be employed in
order to adapt the techniques previously used for imaging
to AMR [68], [72], [74]. However, this kind of data manip-
ulation requires additional time which can complicate the
AMR problem in time-sensitive applications. Likewise, sev-
eral imaging techniques are being extended to AMR domain
such as data augmentation [77] transfer learning [39], [86],
and PSO algorithm [108], yet additional efforts are required
to achieve the required performance and enable confident
decision making.

V. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Although the advancement of DL-AMR models has been
witnessed in the past few years, there are many issues that
need to be addressed in future researches. Generally speak-
ing, the design of an ideal and robust classifier remains
an open-ended challenge, despite the significant improve-
ments and blooming results of the previous works. For exam-
ple, some algorithms need prior information of the signal
(e.g. carrier frequency, baud rate, offset timing, etc.) [52],
while others are limited to a small number of modulation
schemes [47], [48]. Besides, some algorithms have consid-
erable computational complexity [42] and cannot be used in
real-time applications. Others are based on ideal cases with
ideal assumptions and cannot be used in practical applica-
tions. Some classifiers need high SNR values [6] which is
different from realistic scenarios. Consequently, if the current
researches on DL-AMR are to be more successful, they need
to focus on the key feature extraction [69] and the selection
of classification criteria at low SNRs. Specifically, artificially
choosing features, however, is a complicated and difficult
process. Nowadays, there is an increasing need to enhance
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the flexibility of AMR in the current and future wireless
communications to provide reliable low latency services. The
rest of this section is devoted to point out some potential
research directions and open challenges.

A. ELECTROMAGNETIC ENVIRONMENT

As found in the present literature, the use of DL technologies
can simplify the signal processing steps and improve the
AMR performance. Moreover, it can provide more practical,
robust, and efficient AMR methods with high classification
accuracy. Although DL-AMR methods outperform the tra-
ditional modulation recognition ones [119], but there is still
a long way for signal recognition in real electromagnetic
environments and practical applications. The performance of
FB-based AMR methods tends to degrade badly with chan-
nel impairment effects such as the high-speed mobility and
impulsive nature of noise [20], multipath fading effects [32],
PO [41], CFO [52], and heavy noises and interferences [88].
However, the quality of service in the complex communica-
tion environment under low SNRs is hard to be guaranteed
and, therefore, further investigation is required for the robust-
ness of DL classifiers in a larger range of SNR [43].

B. SIGNALS DE-NOISING BEFORE AMR PROCESS

AMR at low SNR becomes more challenging due to the com-
plex channel environment and the interference of multiple
noises. Therefore, eliminating such noises and enhancing the
SNR can improve the performance of AMR methods. There-
fore, signals de-noising algorithms can be applied before
AMR methods. For example, LRR algorithm was applied
in [88] for de-noising the cyclic spectrum images before the
AMR process. Similarly, image de-noising algorithms can be
adopted in order to remove the different kind of noises [79],
[106]. Moreover, DL. models can be employed directly on the
received raw signals in order to perform de-noising process
before AMR method [126].

C. VARIABLE LENGTH SIGNALS
A large amount of researches found in the literature consider
the input of the proposed DL model as a fixed-length vector,
which is not the real scenario where the signal frame length
is diverse [42], [89]. For instance, inclusive investigation
and enhanced models based on fully convolutional networks
[127], NiN [128], RNN [129], LSTM [102], [130] and signal
segmentation algorithms [49] can obtain DL-AMR methods
that can deal with variable-length inputs. Moreover, several
techniques in the field of computer vision can be considered
to resolve such issues. For instance, the following techniques
can be used for this target:

« Resizing the input images to the same input size [79],

« Crop out certain regions of the input image when the

images are large,

« Pad the images with a suitable background.

However, DL-AMR methods with variable-length input
can contribute to the problem of short-time classification.
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This kind of classification is required in many systems in
real-world scenarios. For instance, scanning a receiver need
to have a swift decision without consuming much time to
acquire more data to increase certainty. Besides, it could be
unavoidable when short signal bursts in the environment.
Moreover, the classification on short observations can be very
challenging but yet very needed in several systems where
the delay is a very crucial parameter. Therefore, there is an
urgent need to provide effective methods to deal with the
variable-length input.

D. SIGNALS DATASETS

Even though DL-AMR can provide significant performance,
it requires a large amount of training data. In practice, collect-
ing a sufficient amount of reliable training samples is usually
costly and difficult. Therefore, the used large-scale training
dataset should be constructed adequately and carefully with
more realistic signals under a wide range of SNR [39]. Fur-
thermore, data augmentation methods can make the classi-
fication of radio modulation schemes more successful by
using shorter radio samples [77], [102], which will provide
a simplified DL model with a smaller classification response
time.

E. ENHANCED DL MODELS

As mentioned before, the DL-based methods can operate
under a wide range of SNR. Hence, large-scale datasets will
be needed in order to achieve the expected results. This
may result in a high number of training parameters and,
hence, high computational complexity along with high stor-
age requirements. Besides, the training process may consume
a long time and suffers from over-fitting issues. Therefore,
optimized and hybrid DL methods [46] can be studied in
order to avoid over-fitting and reduce the computational com-
plexity as well as to improve the classification accuracy [25],
[108]. Moreover, the samples-labeling process in the training
phase in supervised learning methods is very difficult to
accomplish in addition to be time-consuming. Hence, the idea
of semi-supervised [114] and unsupervised learning methods
is being adopted [119]. These methods can meet the rapid
growth of AMR applications and enhance the overall perfor-
mance.

F. UNKNOWN MODULATION TYPES

In several military applications such as intelligence and
surveillance systems, the AMR process should be able to
detect the modulation type of unknown signals. For example,
jamming devices are deployed in the communication channel
between adversary units to prevent communication among
them. More specifically, they transmit noise or dummy sig-
nals modulated by the matching modulation type. Therefore,
the modulation scheme of the adversary communication sig-
nals should be detected in order to allow the jamming devices
to transmit jamming signals modulated using the correspond-
ing modulation scheme.
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However, as stated in the existing literature, the type of
modulation schemes to be classified is assumed to be within
a pool of known ones [110], [111]. More specifically, seldom
works are capable of coping with unknown signals. There-
fore, a comprehensive set of modulation types or a more
reasonable model design is needed to overcome the lack of
universality for the unknown signal recognition.

G. REAL HARDWARE IMPLEMENTATION

In order to design an AMR method feasible to be imple-
mented on real hardware, further investigation is required
to achieve high classification accuracy along with low com-
putational complexity. For example, the methods presented
in [40], [50] suffer from a large number of learnable param-
eters. Conversely, the method proposed in [56] achieve
low complexity with relatively low classification accuracy.
Besides, the proposed DL methods found in the literature
are still in the simulation phase and seldom works are
devoted to implementing the proposed AMR method on
real hardware. Hence, deploying DL-AMR algorithm to real
powerful computing hardware (e.g. field-programmable gate
arrays (FPGA) and beyond) can be very challenging [81],
especially when it comes to timing and validation issues.

H. DL-AMR IN MIMO SYSTEMS

DL-AMR models are scarcely explored for MIMO and mas-
sive MIMO communication systems. In this direction, further
investigation can be done in order to design new methods
or even extend prior works which were dedicated for SISO
systems. Although some signals datasets already exist in the
literature for SISO systems, but yet there are seldom datasets
for MIMO and massive MIMO systems. Hence, it is very
important for future researches to build robust and sufficient
signals datasets for such systems.

VI. CONCLUSION

Machine learning and deep learning are becoming increas-
ingly popular in AMR domain. Research in this area is still
incipient but it has however shown outstanding results. In this
article, we provided a comprehensive survey of recent work
lying at the junction of AMR, machine learning and deep
learning. We reviewed both ML and DL models in AMR area
for both SISO ans MIMO communication systems. We dis-
cussed the architecture of various deep learning models and
pointed out the key advantages of each model. We warped
up this paper by presenting potential research directions
and open challenges, which may result in significant future
research results.
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