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Abstract

Journey planning in (schedule-based) public transit networks has attracted interest from
researchers in the last decade. In particular, many algorithms aiming at efficiently answering
queries of journey planning have been proposed. However, most of the proposed methods
give the user a single or a limited number of journeys in practice, which is undesirable in a
transportation context.

In this paper, we consider the problem of finding k earliest arrival time journeys in public
transit networks from a given origin to a given destination, i.e, an earliest arrival journey
from the origin to the destination, a second earliest arrival journey, etc. until the kth earliest
arrival journey.

For this purpose, we propose an algorithm, denoted by Yen - Public Transit (Y-PT),
that extends to public transit networks the algorithm proposed by Yen to find the top-k
shortest simple paths in a graph. Moreover, we propose a more refined algorithm, called
Postponed Yen - Public Transit (PY-PT), enabling a considerable speed up in practice.

Our experiments on several public transit networks show that, in practice, PY-PT is
faster than Y-PT by an order of magnitude.

Keywords: Journey planning, shortest path, routing, timetables.

1 Introduction

In the context of multimodal transportation, journeys planning in (schedule-based) public tran-
sit networks and accelerating queries for efficient journey planning is a long-standing problem [7].
In the last decade, many algorithms have been developed not only to answer efficiently basic
queries like a quickest or an earliest arrival journey, but also to optimize additional criteria like5

the number of transfers, the cost of the trip, etc. or even to offer Pareto optimal solutions
combining several criteria [7, 9, 10].

A transit network is a set of stops (such as bus stops or trains stations), a set of routes
(such as bus, tramway, ferries, metro or train lines), and a set of trips. Trips correspond
to individual vehicles that visit the stops along a certain route at a specific time of the day.10

Trips can be further subdivided into sequences of elementary connections, each given as a pair

∗This work has been supported by the French government, through the UCAjedi Investments in the Future
project managed by the National Research Agency (ANR) with the reference number ANR-15-IDEX-01, the
ANR project MULTIMOD with the reference number ANR-17-CE22-0016, the ANR project Digraphs with the
reference number ANR-19-CE48-0013, and by Région Sud PACA.
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of (origin/destination) stops and (departure/arrival) times between which the vehicle travels
without stopping. In addition, footpaths model walking transfers between nearby stops. A
journey is a sequence of trips one can take within a transit network (also referred to as a
transportation network or a timetable).15

The k shortest simple paths problem A directed graph (digraph for short) is a set of
vertices connected by arcs. A path from a source to a destination in a digraph is a sequence of
vertices starting from the source and ending at the destination, such that consecutive vertices
are connected by an arc. A path is simple if it has no repeated vertices. The length (or weight
or cost) of a path is the sum of the lengths (or weights or costs) of its arcs. In this context, the20

k shortest simple paths (kSSP) problem asks to find a set S of k pairwise different simple paths
from a source to a destination such that no path outside S has a length strictly less than a path
in S. This problem can be solved in time O(kn(m+ n log n)) using the algorithm proposed by
Yen [17], where n is the number of vertices and m is the number of arcs. Since this is the best
known time complexity for this problem, a significant research effort has been put on the design25

of algorithms for efficiently solving the kSSP problem in practice [1, 2, 13]. Note that, if the
paths of S are not required to be simple, the problem can be solved by Eppstein’s algorithm in
time O(k +m+ n log n) [11].

In fact, a road network can be modelled using a weighted directed graph where crossroads
are represented by vertices and routes by arcs with length corresponding to the distances or the30

travel time between crossroads. So, finding k “best” (shortest, fastest or cheapest) paths from
a given origin to a given destination in a road network is straightforward using any kSSP algo-
rithm. Unfortunately, this problem becomes harder in public transit networks. First, because
public transit networks are time dependent, i.e., certain segments of the network can only be
traversed at specific times. Second, several additional optimization criteria are considered in35

public transit network such as the arrival time, the departure time, the number of transfers,
etc.

Journey planning queries in public transit networks Plethora of algorithms were pro-
posed to efficiently answer queries of optimal journeys from a given origin o to a given destination
d after a departure time t0 in a public transit network. For instance, the Connection Scan Al-40

gorithm (CSA) [10] is the fastest algorithm, without any preprocessing routine, enabling to find
an earliest arrival journey from o to d departing after t0. With the help of a heavy preprocessing
routine, the Transfer Patterns algorithm [6] can achieve a tremendous speed up with respect to
the CSA. Besides, Round Based Public Transit Routing (RAPTOR) [9] is the fastest algorithm
(also without any preprocessing routine) enabling to compute a Pareto optimal set of jour-45

neys optimizing the arrival time and the number of transfers of a journey. Bast et al.Recently,
[7] presented an extensive survey on the topic of journey planning in road and public transit
networks.

Related work Vo et al. [16] proposed a time dependent graph modelizing a bus network.
Then, they adapt Yen’s algorithm to find alternative journeys in this network model. Precisely,50

they select a set of alternative journeys (journeys sharing only a limited part of their common
edges) among those given by Yen’s adaptation.

As shown below, Yen’s algorithm uses Dijkstra’s algorithm as a basic brick to compute
shortest detours of a given path. Analogously, Vo et al. [16] used a standard time-dependent
shortest path (TDSP) algorithm [15] to compute earliest detours of a journey in a bus network.55

They evaluated their method on a single network of around 4 000 stops and 8 000 connections,
resulting in an average running time of around 1 second to find 5 journeys.
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On the other hand, Scano et al. [14] proposed a labelled directed graph modelizing a trans-
portation network where a label is an object composed of the transportation mode (foot, car,
bus, etc.) and a travel time. This model merges a road and a public transport network together.60

Then, it is shown how the k shortest path algorithms can be adapted for this model. Specifi-
cally, they adapted Yen’s and Eppstein’s algorithm to work on their model. In both algorithms,
a Dijkstra-like algorithm called Dijkstra Regular Language Constraint (DRegLC) [5] is used to
answer earliest arrival journeys queries. Moreover, an Iterative Enumeration Algorithm (IEA)
is proposed to extract only simple journeys using Eppstein’s algorithm. i.e, using Eppstein’s k65

shortest paths algorithm as an iterator and then selecting the simple corresponding journeys (a
journey is simple if it does not visit a stop more than once).

Experimentally, Scano et al. showed that their IEA is faster than Yen’s straightforward
adaptation on the transportation network of Toulouse (75 000 nodes, 500 000 road edges and
43 000 public transport edges). On this network, the average running time of Yen’s adaptation70

to find 100 journeys is 250 seconds while it is 0.6 seconds using their refined IEA. However, IEA
is not a polynomial-time algorithm, and its memory consumption is too high [14]. In addition,
using the labelled directed graph model described in [14] may cause a duplication of the public
transit part in practice, i.e, a large number of journeys given by the algorithms proposed in [14]
may only differ on the foot-path part while sharing the exact same public transit part. This is75

undesirable in applications requesting diverse public transit journeys.

Our contribution In this paper, we aim at answering the k earliest arrival journeys queries
from a given origin to a given destination in a public transit network. For this purpose, we
use the timetable model of public transit networks, i.e, the well-known common model used
in [7,9,10]. First, we propose a performant adaptation of Yen’s k shortest simple paths algorithm80

to public transit networks (Yen - Public Transit, Y-PT algorithm). In contrast with [14, 16],
we use the Connection Scan Algorithm (CSA) to answer earliest arrival journey queries in our
algorithm.

Our main contribution is a novel algorithm, called Postponed Yen’s algorithm for Public
Transit networks (PY-PT). With the help of a lower bound on the arrival time of a detour85

journey (a journey that may be one of the k earliest arrival journeys), PY-PT postpones the
effective computation of such detour (and so the corresponding earliest arrival journey queries
using CSA) with the aim of skipping it. Our experimental results on several train and public
transit networks show that the running time of our adaptation of Yen’s algorithm is acceptable
in practice. Moreover, on the same dataset, the PY-PT algorithm performs 10 to 30 times faster90

than the Y-PT algorithm on average.

2 Preliminaries

In this section we formalize the inputs and algorithms used in this work. We use almost the
same formalization used in [10] for the CSA and as in [1] for Yen’s algorithm.

2.1 Graph - definitions and notations95

Let D = (V,A) be a digraph with n = |V | vertices and m = |A| arcs, let N+(v) = {w ∈ V |
vw ∈ A} be the set of out-neighbors of vertex v ∈ V , and let `D : A→ R+ be a length function
over the arcs. Sometimes D is pruned.

For every s, t ∈ V , a path from s to t in D is a sequence P = (s = v0, v1, · · · , vl = t) of
vertices with vivi+1 ∈ A for all 0 ≤ i < l. An arc uv belongs to a path P (uv ∈ P ) if and only if100

u and v are two consecutive vertices of P , i.e, there is 0 ≤ i < l such that ui = u and ui+1 = v. A
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path is simple if all of its vertices are distinct, i.e, vi 6= vj for all 0 ≤ i < j ≤ l. The length of the
path P is the sum of the length of its arcs, `D(P ) =

∑
0≤i<l `D(vi, vi+1) The distance dD(s, t)

between two vertices s, t ∈ V is the length of a shortest s-t path, i.e, a path with the smallest
length among all the s-t paths. Given two paths P = (v0, · · · , vr) and Q = (w0, · · · , wp), and105

an arc vrw0 ∈ A, we denote by P.Q the v0-wp path resulting from the concatenation of P and
Q. That is, P.Q = (v0, · · · , vr, w0, · · · , wp) = (v0, · · · , vr, Q) = (P,w0, · · · , wp).

Given s, t ∈ V , a set of top-k shortest simple s-t paths is any set S of s-t simple paths such
that |S| = k and `(P ) ≤ `(P ′) for every s-t path P ∈ S and s-t path P ′ /∈ S. The k shortest
simple paths problem takes as input a digraph D = (V,A), a length function over the arcs110

`D : A → R+ and a pair of vertices (s, t) ∈ V 2 and asks to find a set of top-k shortest simple
s-t paths.

Dijkstra’s algorithm finds an s-t shortest path in D with worst-case time complexity in
O(m+ n log n).

Let P = (v0, v1, · · · , vl) be any path inD. Let 0 ≤ i < l, any path P ′ = (v0, · · · , vi, v′, v′1, · · · ,115

v′r = vl) s.t. v′ 6= vi+1 is called a detour of P at vi. Note that neither P nor P ′ are required to
be simple. However, if P ′ is simple, it will be called a simple detour of P at vi. In addition,
P ′ is called a shortest (simple) detour at vi if and only if P ′ is a detour with minimum length
among all (simple) detours of P at vi. Finally, the subpath πi = (v0, · · · , vi−1) of P starting
from s and ending at vi−1 for 0 ≤ i ≤ l is called i-prefix path of P (the 0−prefix of any path is120

an empty path)

2.2 Yen’s algorithm

We start by describing Yen’s algorithm for finding a set of top-k shortest simple s-t paths in D.
For the sake of simplicity, we suppose that D has at least k s-t simple paths.

Yen’s algorithm starts by computing a shortest s-t path P0 = (s = v0, v1, · · · , vl = t) by125

applying Dijkstra’s algorithm. Note that P0 is simple since the weights of D are non-negative.
Clearly, a second shortest simple s-t path is a shortest simple detour of P0 at one of its vertices.
Yen’s algorithm computes, for every vertex vi in P0, a shortest simple detour of P0 at vi.
For this purpose, for 0 ≤ i < r, Yen’s algorithm removes the vertices of the i-prefix path
πi = (v0, · · · , vi−1) of P0 and the arc vivi+1, then it computes, using Dijkstra’s algorithm, a130

shortest path Qi from vi to t. Let Ci = πi.Qi be the concatenation of πi and Qi. First, Ci
is simple as Qi is computed after removing πi. Second, vivi+1 /∈ Ci as the arc vivi+1 of P0 is
removed before computing Qi and constructing Ci. Therefore, Ci is a shortest simple detour of
P0 at i. Note that the index i (called below deviation-index) where the path (v0, · · · , vi−1, Qi)
deviates from P0 is kept explicit, i.e, the path is stored with its deviation index. Finally, Ci135

is added to a set Candidate (initially empty) for every 0 ≤ i < l. Once Ci has been added to
Candidate for all 0 ≤ i < l, by remark above, a path with minimum length in Candidate is a
second shortest simple s-t path.

Now, let us assume that a set S of top-k′ (with 0 < k′ < k) shortest simple s-t paths has
been computed and the set Candidate contains a set of simple s-t paths such that there exists140

a shortest path Q ∈ Candidate with S ∪ {Q} a top-(k′ + 1) set of shortest s-t simple paths.
Let R = (v0 = s, · · · vj , · · · , vr = t) be a path in Candidate with minimum length and let

j be its deviation index. Similarly to the procedure of finding a second shortest path, Yen’s
algorithm iterates over the vertices vi (j ≤ i < r) of R. At each vertex vi, a shortest simple
detour of R at vi is added to Candidate (since one of these detours may be a k′ + 1th shortest145

simple s-t path). Let, again, πi = (v0, · · · , vi−1) be the i-prefix of R. Yen’s algorithm removes
πi from D. Then, it removes each arc viw such that S contains a path with (v0, · · · , vi, w) as
a i+ 1-prefix. Finally, a shortest vi-t path Qi is computed, using Dijkstra’s algorithm, and the
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path πi.Qi is added to Candidate with i as deviation index. This process is repeated until k
paths have been found, i.e, when k′ = k.150

Therefore, for each path R that is extracted from Candidate, O(|V (R)|) calls of Dijkstra’s
algorithm are done. This results in a worst-case time-complexity in O(kn(m+ n log n)).

2.3 Timetable - definitions and notations

In this section, we describe the data structures used by the CSA, with the same formalization
as in [10]. Then we will describe briefly the Connection Scan Algorithm and one of its variant155

called the profile CSA (PCSA).

Timetable A timetable represents for one specific day the vehicles that exist (train, bus,
tram, ferry, ...), when they travel, where they travel and how a passenger can go from one
vehicle to another. Formally, a timetable is a quadruple T = (S, T, C, F ) of stops S, trips T ,
connections C and footpaths F :160

• A stop is a position outside a vehicle where a passenger can wait. At a stop (and only at
a stop) a vehicle can halt and passengers can leave or get on.

• A trip is defined by a vehicle going through stops at fixed times. Precisely, a trip is a
scheduled vehicle, i.e, a journey done by a unique vehicle from a starting stop to a last
stop at a fixed time.165

• A connection is a vehicle going from one stop to another with no intermediate stops.
Formally, a connection c is a quintuple (cdep stop, carr stop, cdep time, carr time, ctrip) whose
attributes are the departure stop, the arrival stop, the departure time, the arrival time and
the trip of c, respectively. A connection must respect two conditions: (1) it cannot be a self
loop, i.e, cdep stop 6= carr stop and (2) it has a non-zero travel time, i.e, cdep time < carr time.170

• A footpath is used to model a transfer, i.e, how to get from one vehicle to another. Formally,
a footpath f is a triple (fdep stop, farr stop, fdur) whose attributes are the departure stop,
the arrival stop and the duration of the footpath, respectively. Note that, footpaths are
neither trips, nor connections.

Note that, all the connections of a trip form a sequence c1, c2 . . . cφ, such that ciarr stop =175

ci+1
dep stop and ciarr time < ci+1

dep time for all 0 ≤ i ≤ φ.
Going from a connection c to a connection c′ with ctrip 6= c′trip is possible if and only if

there is a footpath f t from carr stop to c′dep stop such that c′ is reachable via f t, i.e, f tdur ≤
c′dep time − carr time. A loop is introduced on each stop to allow a passenger to get off at a stop
and take another trip going through this stop.180

Journeys A journey describes how a passenger can travel through a public transit net-
work. It is made of legs that are sequences of connections of the same trip. Formally, a
journey is a sequence of alternating footpaths and legs J = (f0, l0, f1, l1 . . . f r−1, lr, f r), where
li = (ci0, · · · , ciδi). That is, a passenger takes the footpath f0 from f0dep stop to f0arr stop, then

takes the connection c10, c
1
1, · · · , c1δ1 , proceeds to take the footpath f1 from f1dep stop to f1arr stop185

etc. until he reaches f rarr stop. A journey must start and end with a footpath, which can
be a self loop. In this paper, we sometimes denote a journey as a sequence of footpaths
and connection, i.e, J = (f0, c0, c1, · · · , cα, f1, cα+1, · · · , f r−1, cγ+1, · · · cφ, f r) where c0 = c00,
c1 = c01, · · · , cφ = crδr .
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Given two stops o and d in S, an o-d journey J is a journey (f0, c0, · · · , cφ, f r) such that190

f0 starts from o and f r ends at d. We define the departure time of a journey dept(J) as the
departure time of its first footpath, formally, dept(J) = c0dep time − f0dur. Similarly, the arrival

time of a journey arrt(J) is the arrival time of its last footpath, i.e, arrt(J) = cφarr time + f rdur.
A journey is called simple if it does not visit twice the same stop (except for self loop

footpaths). Formally, let J = (f0, l0 = (c00, · · · , c0δ0), · · · , f i, li = (ci0, · · · , ciδi), · · · , f
j , lj =195

(cj0, · · · , c
j
δj

), · · · , lr = (cr0, · · · , crδr), f
r) be a journey. For all 0 ≤ i < j ≤ r, let cdep stop be the

departure stop of ciα for 0 ≤ α ≤ δi. Similarly, for 0 ≤ β ≤ δj , let c′dep stop be the departure stop

of cjβ and c′arr stop be the arrival stop of cjβ. We have cdep stop 6= c′dep stop and cdep stop 6= c′arr stop.
1

The concatenation of two journeys J = (f0, l0, · · · , lr, f r) and J ′ = (f ′0 = f r, l′0, · · · , l′`, f ′`)200

such that f r = f ′0 and arrt(J) ≤ dept(J ′) is the journey starting by f0, follows J until f r, then
it follows J ′ until f ′`. Formally, J” = (f0, l0, · · · , f r = f ′0, · · · ,= l′`, f ′`) (we denote J” = J.J ′).

Given a journey J = (f0, c0, · · · ci, · · · , cφ, f r), a journey Q = (f ′0, c′0, · · · , c′i, · · · , c′w, f ′`) is
called a detour of J at i if f ′0 = f0, c′0 = c0, · · · , c′i−1 = ci−1 but c′i 6= ci and f ′`arr stop = f rarr stop.
Moreover, if Q is simple, it is called a simple detour of J at i. Similarly, Q is called an earliest205

arrival (simple) detour of J at i, if arrt(Q) ≤ arrt(Q′) for each (simple) detour Q′ of J at i.
Two journeys are equal if and only if all of their attributes are the same.
We denote by J t0,tmaxo,d the set of o-d simple journeys starting from o after t0 and reaching

d before tmax, i.e, J t0,tmaxo,d = {J s.t. J is a simple o-d journey with dept(J) ≥ t0 and arrt(J) ≤
tmax}.210

2.4 Connection Scan Algorithm

The CSA answers earliest arrival time journey queries from a given origin o to a given destination
d. That is, departing after a given time t0, how to get from o to d as soon as possible.

Similarly to Dijkstra’s algorithm, the CSA will store an earliest arrival time for each stop
in an array. A connection is considered reachable if a passenger can sit in the public transit215

vehicle of the connection. However, the main difference between Dijkstra’s algorithm and the
CSA is the fact that the CSA does not use a priority queue. Instead, the CSA iterates over all
the connections sorted by their departure time (the same ordering is used for all queries). The
CSA checks whether a connection is reachable or not. If so, it improves the arrival time at the
arrival stop of the connection. Once all the connections have been scanned, the earliest arrival220

time to a stop is the current arrival time stored for the stop. The main advantage of avoiding
the use of a priority queue is that, while more connections are scanned, the amount of work per
connections is significantly reduced. Therefore, the CSA is significantly faster than Dijkstra’s
algorithm [10].

2.5 Profile Connection Scan Algorithm225

The result of the Profile Connection Scan Algorithm (PCSA) is a mapping between a departure
time from a departure stop onto the earliest arrival time at the arrival stop. In other words,
the profile problem solves simultaneously the earliest arrival problem for all departure times.

Compared with the CSA, the PCSA iterates on the connections sorted decreasingly by de-
parture time, which leads to the fact that it solves the all-to-one problem. The PCSA constructs230

journeys from late to early and exploits the fact that an early journey can only have later jour-

1We suppose that a leg cannot have a loop, as a user may get off and wait outside the corresponding vehicle.
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neys as subjourneys. It has been reported in [10] that the PCSA is one order of magnitude slower
than the CSA, which is acceptable considering the fact that it solves the all-to-one problem.

Note that, the PCSA offers, from each stop s to the arrival stop d, a single earliest arrival
s-d journey departing after t0 and reaching d before tmax.235

Let M be the output of the PCSA, we denote by M t0,tmax
o,d the earliest arrival journey, given

by M , starting from o and reaching d, departing after t0 and arriving before tmax.

3 Problem definition

In this section, we formalize the k Earliest Arrival Time problem definition.

k Earliest Arrival Time (kEAT ) problem In this paper, we aim at finding k earliest240

arrival time (kEAT ) simple journeys from a given origin to a given destination. Formally, the
problem takes as input a timetable T = (S, T, C, F ), origin and destination stops o, d in S, a
departure time t0, a maximum arrival time tmax (often tmax = t0 + 24h or tmax = t0 + 48h)
and an integer k. It asks to find a set J ∗ = {J1, J2, · · · , Jk} of top-k earliest arrival o-d simple
journeys i.e, Ji 6= Jj for 0 ≤ i < j ≤ k, and for every J in J ∗, J ′ ∈ J t0,tmaxo,d , arrt(J) ≤ arrt(J ′).245

o d

a

b

c

9h05→9h40

9h
55
→

10
h0

0

9h10→
9h15

10h05→
10h10

10h
30→

11h
00

9h35→9h409h45→9h50

9
h

20
→

9h
30

9h
20
→

9h
30

Figure 1: Toy network for k earliest arrival time journeys

Example In the example of Figure 1, we look for the four earliest arrival time journeys from
o to d departing after 9h00:

The earliest arrival journey arrives at d at 9h30, starts with o and reaches d via b, the
passenger arrives at b at 9h15 and waits 5 minutes before boarding the connection going from b
to d, J0 = (o, d, b). The second journey arrives at 9h40 and goes directly from o to d, J1 = (o, d).250

The third journey arrives at 10h10 and goes from o to b then a then d, the passenger arrives at
b at 9h15, waits 10 minutes then boards the connection going from b to a, arrives at 9h30 and
waits 35 minutes before boarding the connection going from a to d, J2 = (o, b, a, d). The fourth
journey arrives at 10h10 and goes from o to a then d, J3 = (o, a, d).
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Note that the journey Jns = (o, b, a, c, o, a, d) arriving at 10h10 is not a part of the solution255

as it is not simple (it visits the station o twice).
Indeed, there are other o-d journeys in this example, however they all have an arrival time

greater than 10h10, that is {J0, J1, J2, J3} are the four earliest arrival simple o-d journeys.
Each edge in the graph belongs to a specific trip, meaning that between each step in the

examples there is a self loop footpath.260

4 Public Transit Yen’s algorithm (Y-PT)

In this section, we describe our adaption of Yen’s algorithm on public transit networks, called
Y-PT algorithm. As described before, Y-PT algorithm solves the kEAT problem. So, it takes
as input a timetable T = (S, T, C, F ), origin and destination stops o, d in S, a departure time
t0, a maximum arrival time tmax (= t0 + 48h) and an integer k, and returns a set Output =265

{J1, J2, · · · , Jk} of top-k earliest arrival o-d simple journeys in T .
Roughly, Y-PT algorithm starts by computing a first earliest arrival journey, iterates over

its connections in order to compute its earliest arrival simple detours and adds their minimum
(the detour with minimum arrival time) to the output. Then, Y-PT algorithm repeats this
process until k journeys are added to the output.270

Now, let us give a precise and formal description of Y-PT algorithm whose pseudocode
is presented in Algorithm 1. Analogously to Yen’s algorithm, Y-PT starts by computing an
earliest arrival journey J0 and adding it (with 0 as deviation index) to a set of candidate
journeys called Candidates. The journeys of the set Candidates are non-decreasingly sorted by
their arrival time. Also, the algorithm initializes the output set Output as an empty set. After275

this initialization phase, the algorithm extracts a minimum element from the set Candidates, i.e,
a journey J = (f0, c0, · · · , cφ, f r) with minimum arrival time among those in Candidates and
adds it to Output. Let CJ = (c0, c1, · · · , cφ) be the sequence of connections of J . The algorithm
iterates over the connections in CJ starting from the deviation index of J . Precisely, let j be
the deviation index of J , for each connection ci = (cidep stop, c

i
arr stop, c

i
dep time, c

i
arr time, c

i
trip) for280

j ≤ i ≤ φ, the algorithm removes the prefix stations, i.e, each station visited by one of the
connections c0, · · · , ci−1, (equivalent to the prefix path of Yen’s) from T . This is done to ensure
that the candidate journey is simple.

Moreover, in order to avoid duplications of journeys, for each journey J in Output starting
with the connections c0, c1, · · · , ci−1, c′, the connection c′ is removed from T . Then, using the285

CSA, the Y-PT algorithm computes an earliest arrival journey Q = (f0Q, c
0
Q, · · · , cωQ, f `Q) from

ci−1arr stop to d with ci−1arr time as departure time 2. Let Jnew be the concatenation of the prefix

of J and Q, i.e, Jnew = (f0, c0, · · · , ci−1, f0Q, c0Q, · · · , cωQ, f `Q). The journey Jnew is added to
Candidates with i as deviation index.

Y-PT algorithm repeats this process until k journeys are added to Output.290

5 Public Transit Postponed Yen’s algorithm (PY-PT)

Here we explain Postponed Yen algorithm for public transit (PY-PT algorithm) whose pseu-
docode is presented in Algorithm 2. This algorithm is inspired from the Postponed Node
Classification algorithm (PNC) for the kSSP described in [2].

2If the element right before ci is a footpath, i.e, J = (f0, · · · , fλ, ci, · · · , fr). It is possible to have journeys
with two consecutive footpaths. In order to avoid such scenario, the CSA call is forced to compute a journey
starting with a self loop footpath.
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Algorithm 1 Public Transit - Yen’s algorithm (PT-Y)

1: Input A timetable T = (S, T, C, F ), an origin and a destination stops (o and d), departure
and maximum arrival time tdep, tmax and an integer k

2: Output a set of top-k earliest arrival journeys from o to d departing after tdep
3: J0 ← CSA(T , o, d, tdep, tmax)
4: Candidates← {(J0, 0)}
5: Output← ∅
6: while | Output |< k and Candidate 6= ∅ do
7: ε = (J, j)← extractmin(Candidates)
8: let J = (f0, c0, · · · , cφ, f r), j)
9: add J to Output

10: for each connection ci with j ≤ i ≤ φ in J do
11: carr stop ←the arrival stop of ci−1

12: carr time ←the arrival time of ci−1

13: π = (f0, c0, · · · , ci−1)
14: Sπ ← the set of stations visited by one of the connections (c0, · · · , ci−1)
15: Cdev ← {c′ s.t. there is a journey J ′ in Output starting with (c0, · · · , ci−1, c′)}
16: T ′ = (S \ Sπ, T, C \ Cdev, F )
17: Q← CSA(T ′, carr stop, d, carr time, tmax)
18: Jnew ← π.Q
19: add (Jnew, i) to Candidates

20: Return Output

PY-PT algorithm has the same input as Y-PT algorithm, and it also returns a set of top-k295

earliest arrival simple journeys from the origin to the destination in a timetable. However, the
journeys given by Y-PT are not necessarily the same as those given by PY-PT, i.e, the order
of extraction of journeys is not necessarily the same. This may occur in scenarios where several
journeys from the origin to the destination have the same arrival time.

The main drawback of Y-PT algorithm is its excessive number of calls of the CSA. Here, with300

the help of lower bounds on the arrival time of simple detours, we propose to postpone these calls
in order to avoid some of them. We show that this can be done while preserving the correctness
of the algorithm. In contrast with Y-PT algorithm where all journeys in the set Candidates are
simple, the PY-PT algorithm may add non-simple journeys to the set Candidates. As shown
below, this corresponds to detours whose effective computation (and so their corresponding305

CSA calls) are postponed.
Let us now describe PY-PT algorithm in details.
For a query from the origin o to the destination d starting at time t0, the PY-PT algorithm

first uses the Profile CSA (PCSA). Let M be the mapping output by PCSA. The mapping M
associates to each station s ∈ S and each departure time t ≥ t0 the earliest arrival s-d journey,310

providing it is possible to reach d from s before tmax when starting at t (we let tmax = t0 + 48h
in our experiments).

Similarly to Y-PT algorithm, PY-PT algorithm starts by adding an earliest arrival time
journey J0 to a set of candidate journeys called Candidates. An element ε in Candidates has
three attributes, the journey J , its deviation index i and a boolean flag ζ indicating whether J315

is simple or not. So, the element ε0 = (J0, 0, 1) is added to Candidates. In contrast with Y-PT
algorithm where a CSA call is consumed to compute J0, PY-PT algorithm extract J0 from the
already computed mapping M . Precisely, J0 = M t0,tmax

o,d . Then, also like Y-PT algorithm, the
Output set is initialized with an empty set. After these initializations steps, the algorithms

9



starts by extracting an earliest arrival journey (J, j, ζ) among those in Candidates. Suppose320

J = (f0, c0, · · · , cα, f1, cα+1, · · · , cβ, f2, · · · , cγ+1, · · · , cφ, f r). Two cases are distinguished:

• if ζ = 1 (J is simple): J is added to the Output, then all the earliest arrival detours
of J are added to Candidates. This is done as follows, let CJ = (c0, c1, · · · , cφ) be the
sequence of connections of J , at each connection ci (for j ≤ i < φ) in CJ , an earliest
arrival detour Jnew of J at i is extracted. This is done with the help of M as described325

below.

The journey Jnew may not be simple (also described below). However, Jnew will be added
to the set Candidate with i as deviation index and ζ = 1 if Q is simple (and ζ = 0
otherwise).

• if ζ = 0 (J is not simple): Then J is “repaired”, i.e., it is replaced (if possible) by its330

corresponding earliest arrival simple journey. For this purpose, the algorithm applies al-
most the same routine as Y-PT algorithm. Precisely, let cj = (cjdep stop, c

j
arr stop, c

j
dep time,

cjarr time, c
j
trip) be the connection at the deviation index, the algorithm removes the pre-

fix stations, i.e, each station visited by one of the connections c0, · · · , cj−1, from T .
Also, for each journey J ′ in Output starting with the connections c0, c1, · · · , cj−1, c′,335

the connection c′ is removed from T . Then, using the CSA, PY-PT algorithm com-
putes an earliest arrival journey Q = (f0Q, c

0
Q, · · · , f

`−1
Q , lφQ, f

`
Q) from cj−1arr stop to d with

cj−1arr time as departure time. Let Jnew be the concatenation of the prefix of J and Q, i.e,
Jnew = (f0, c0, · · · , cj−1, f0Q, c0Q, · · · , f `Q). The journey Jnew is added to the Candidates
with j as deviation index and with ζ = 1 (as Jnew is simple).340

The PY-PT algorithm repeats this process until k journeys are added to Output.

Now, let us explain how the journey Jnew is computed (in the case where ζ = 1). The
pseudocode of this procedure is described in Algorithm 3. Let ci = (cidep stop, c

i
arr stop, c

i
dep time,

ciarr time, c
i
trip) be the ith connection of CJ (for j ≤ i < φ), the following procedure is applied:

• First, the algorithm scans the connections starting with ciarr stop after ciarr time leading to345

new journeys, i.e, different from those in Output. Precisely, let Cdev = {cold ∈ C s.t. there
is a journey in Output starting with the connections c0, · · · , ci−1, cold}, let CN = {c ∈ C
s.t. cdep stop = cidep stop, cdep time ≥ cidep time and c /∈ Cdev} be the set of new deviating

connections. The algorithm scans the connections of CN . Let cLB be a connection of CN

leading to an earliest arrival journey from cidep stop to d using M . Formally, for each c in350

CN , let Jc be the journey via c following M , i.e, let Jc = c.M carr time,tmax
carr stop,d

, then cLB is a

connection in CN s.t. arrt(JcLB ) ≤ arrt(Jc) for each c in CN 3.

• Second, the algorithm scans the footpaths starting with cidep stop leading to new journeys,
i.e, different from those in Output. Again, let Fdev = {fold s.t. there is a journey in
Output starting with the connections c0, · · · , ci−1 followed by fold}, let FN = {f ∈ F355

s.t. fdep stop = cidep stop and f /∈ Fdev} be the set of the new deviating footpaths and

let fLB be a footpath of FN leading to an earliest arrival journey from cidep stop to d

using M . Precisely, for each f in FN , let Jf be the journey via f following M , i.e,

Jf = f.M
cidep time+fdur,tmax

farr stop,d , then fLB is a footpath in FN s.t. arrt(JfLB ) ≤ arrt(Jf ) for

each f in FN .360

3If the element right before ci is a footpath, i.e, J = (f0, · · · , fλ, ci, · · · , fr). It is possible to have journeys
with two consecutive footpaths. In order to avoid such scenario, the footpaths starting with ciarr stop will not be
scanned.
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Now let Qmin be the journey with minimum arrival time among JcLB and JfLB and let Jmin
be the journey formed by the concatenation of the prefix journey of J and Qmin, i.e, Jmin =
(f0, c0, · · · , ci−1, Qmin). Note that, Jmin may not be simple as the sub-journey extracted from
M may revisit a station of one of the prefix connections. For instance, a station that is visited
by c0 or c1, · · · , or ci−1 may be visited again by JcLB (or by JLBf )4.365

To conclude, in contrast with Y-PT algorithm where an earliest arrival simple detour is
computed at each index of an extracted journey using the CSA, PY-PT algorithm consider an
earliest arrival detour (not necessarily simple) given by the already computed PCSA at each
index, and two cases are distinguished: If the earliest arrival detour is simple, then a CSA call is
saved and a shortest simple detour is added to Candidates. If not, i.e, the earliest arrival detour370

is not simple, PY-PT algorithm inserts this non-simple detour to the set of Candidates with a
flag indicating that it is not simple. Recall that journeys in Candidates are non-decreasingly
stored by their arrival time. So, only when this non-simple detour is extracted from Candidates,
its simple version will be computed using the CSA. In other words, the actual computation of
such simple detour is “postponed”. Such postponement may end up saving some CSA calls,375

typically when k earliest arrival journey are added to Output while none-simple journeys, whose
actual computation is postponed, are still in Candidates, i.e, their whole “repair” procedure is
skipped.

Note that, despite these postponements, the order of extraction of simple journeys from
Candidates remains valid. This is because a journey J in Candidate is either inserted with its380

real arrival time (the case where J is simple) or with a lower bound on its arrival time (the case
where J is non-simple, by Claim 1).

Claim 1. Let J = (f0, c0, f1 · · · , cφ, f r) be an o-d journey with Jns an earliest arrival detour
of J at i and Js with an earliest simple arrival detour of J at i (where 0 ≤ i ≤ φ). Then,
arrt(Jns) ≤ arrt(Js)385

Proof. The proof follows from the fact that an earliest arrival detour of J at i arrives earlier
than any detour of J at i. In particular, it arrives earlier than any earliest arrival simple detour
of J at i.

6 Experimental evaluation

In this section we describe our experimental evaluation. First, we start by describing our390

implementation and settings (Section 6.1), then we discuss our experimental results on train
and public transit networks (Section 6.2).

6.1 Experimental settings

Here we describe the details of the implementation and the setting used in our experiments.
We have implemented Y-PT and PY-PT algorithms in Java and our code is publicly available395

at [4]. Note that in our implementations the parameter k is not part of the input, this enables
the use of these methods as iterators, able to return a next earliest arrival itinerary as long

4When scanning the connections starting with ciarr stop after ciarr time, the journey M
ciarr time,tmax

ciarr stop,d
can start

either with a self loop footpath or a footpath. On the other hand, when scanning footpaths starting with cidep stop

the journey M
cidep time+fdur,tmax

farr stop,d cannot start with anything other than a self loop footpath, to do so the PCSA
stores journeys in two separate data structures, one for journeys starting with a self loop footpath and one for
the other journeys.
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Algorithm 2 Public Transit - Postponed Yen’s algorithm (PY-PT)

1: Input A timetable T , an origin and a destination stops (o and d), departure and maximum
arrival time (tdep and tmax), and an integer k

2: Output a set of top-k earliest arrival simple journeys from o to d departing after tdep
3: M ← PCSA(T , o, d, tdep, tmax)

4: J0 ←M
tdep,tmax
o,d

5: Candidate← {(J0, 0, ζ = 1)}
6: Output← ∅
7: while Candidate 6= ∅ and |Output| < k do
8: ε = (J, j, ζ)← extractmin(Candidates)
9: Let J = (f0, c0, · · · , cφ, f r)

10: if ζ = 1 (J is simple) then
11: add J to Output
12: for each vertex ci in (cj , · · · , cφ) do
13: Jnew ← EarliestArrivalDetour(J, i,M)
14: ζ ′ ← 0
15: if Jnew is simple then
16: ζ ′ ← 1

17: add (Jnew, i, ζ
′) to Candidate

18: else
19: Sπ ← the set of stations visited by one of the connections (c0, · · · , cj−1)
20: Cdev ← {c s.t. there is a journey J ′ in Output starting with (c0, · · · , ci−1, c)}
21: T ′ = (S \ Sπ, T, C \ Cdev, F )
22: Q← CSA(T ′, carr stop, d, carr time, tmax)
23: if Q exists then
24: Jnew ← (f0, c0, · · · , cj , Q)
25: add (Jnew, j, ζ = 1) to Candidates

26: return Output

as one exists. Despite the fact that some additional optimizations could be added to the
implementation if k is a part of the input.

Networks setting We have evaluated the performances of our algorithms on two train net-400

works (Germany and Switzerland) and three public transit networks (Paris, Berlin and Stock-
holm). The characteristics of these networks are presented in Table 1. This dataset is publicly
available via a GTFS feed (https://transitfeeds.com/), we downloaded this dataset in Oc-
tober 2019.

The public transit networks are more dense than the train networks, i.e. the connections405

to stops ratio is smaller on train networks than public transit networks. This can be easily
explained because the train networks can only use trains whereas the public transit networks
can use buses, trains, ferries and many other means of transportation. Therefore, we will show
the performances of our algorithms on those two types of networks.

In our experiments, we have randomly chosen 1000 queries (source-destination pairs of stops)410

for each public transit network, and we have run each algorithm for each of these pairs for k
going from 2 to 100.

We have considered the execution time and the number of CSA calls. Note that the number
of CSA calls is an indication of the running time which is independent of the implementation
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Algorithm 3 EarliestArrivalDetour(J, i,M)

1: ci ← the ith connection of J
2: carr stop ← the arrival stop of ci−1

3: carr time ← the arrival time of ci−1

4: Cdev ← {c′ s.t. there is a journey J ′ in Output starting with (c0, · · · , ci−1, c′)}
5: CN = {c′ ∈ C s.t. c′dep stop = carr stop, c

′
dep time ≥ carr time and c′ /∈ Cdev}

6: cLB ← a connection in CN leading to a minimum arrival time from carr stop to d after
carr time following M

7: Fdev ← {f s.t. there is a journey J ′ in Output starting with (c0, · · · , ci−1, f)}
8: FN = {f ∈ F s.t. fdep stop = carr stop and f /∈ Fdev}
9: fLB ← a footpath in FN leading to a minimum arrival time from carr stop to d following M

10: JcLB ← cLB.M
cLBarr time,tmax

cLBarr stop,d

11: JfLB ← fLB.M
carr time+f

LB
dur,tmax

fLBarr stop,d

12: Jmin ← the earliest arrival journey among JcLB and JfLB
13: π = (f0, c0, · · · , ci−1)
14: Jnew ← π.Jmin
15: return Jnew

and the architecture of the machine.415

All reported computations have been performed on computers equipped with an Intel(R)
Core(TM) i7-1185G7 at 3.00GHz and 32 GB of RAM.

Network Stops Connections Lines Trips Footpaths

Germany 74 398 3 601 420 3 599 168 024 599 284

Switzerland 29 844 2 599 675 5 645 248 826 27 202

Paris 44 534 3 209 401 1 864 150 963 502 291

Berlin 28 651 1 379 755 1 296 63 569 62 456

Stockholm 14 258 703 326 664 34 799 22 138

Table 1: Characteristics of the PT networks: number of stops, connections, lines, trips and
footpaths.

6.2 Experimental results

In this section, we describe and analyse our experimental results on public transit networks.
We have measured the average and the median of the algorithms’ running time in the420

considered networks. The data (the running time and the number of CSA calls) in Tables 2
and 3 and figure 3 corresponds to the biggest experienced value of k (k = 100). While the data
in Figure 2 corresponds to their evolution with respect to the values of k.

The average and median running times reported in Table 2 show that the PY-PT algorithm
is significantly faster than the Y-PT algorithm for every considered network (the average speed425

up of the running time is bigger than 10 for k = 100). Moreover, a refined comparison on
Germany and Paris networks (Figure 3) show that PY-PT is faster than Y-PT for almost all
queries. In addition, Figures 2a and 2b shows that this speed up remains considerable even
for small values of k (even for k = 2) for Stockholm and Switzerland networks. This means
that the time consumed for the PCSA computation routine is compensated by the extraction of430
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Germany Switzerland Paris Berlin Stockholm

Y-PT
avg 94.6 42.0 66 22.7 7.2

med 47.3 30.6 25.1 14 3.5

PY-PT
avg 3.6 1.9 5.4 0.8 0.2

med 1.7 1.4 3.8 0.5 0.1

Table 2: Running time (s) of the algorithms on PT networks, (k = 100)

Germany Switzerland Paris Berlin Stockholm

Y-PT
avg 2132 2158 1355 1788 2072

med 1729 1749 1262 1604 1510

PY-PT
avg 32 77 39 7.6 8.3

med 12 56 26 7 2

Table 3: Number of CSA calls using each of the algorithms on PT networks, (k = 100)

simple detours, even for k = 2. In addition, very similar results were obtained on the remaining
networks. Based on these remarks, we conclude that, in practice, PY-PT is faster than Y-PT
for almost every scenario (the value of k, the query specifications and the network structure).

Furthermore, on Stockholm and Switzerland networks, Table 3 and Figures 2c and 2d show
that the number of CSA calls is significantly reduced using PY-PT. This ensures that a similar435

speed up is guaranteed for any experimental settings [12].
As the obtained results are similar, we only displayed data obtained from experiments on

selected networks (Stockolm and Switzerland for Figure 2, Paris and Germany for Figure 3).
However, the results/plots corresponding to the remaining networks are very similar.

To conclude, on average, PY-PT algorithm is more than 10 times faster than Y-PT algo-440

rithm, it is also faster than Y-PT for almost every scenario.

7 Conclusion

In this paper, we have shed lights on a new style of journey planning in public transit networks,
offering a vast set of interesting solutions. This is done by adapting the k shortest simple paths
problem to the public transit network context. We proposed a straightforward adaptation of445

Yen’s algorithm and a more refined version answering the proposed problem in a reasonable
running time.

Interesting questions are asked about designing algorithms answering k earliest arrival jour-
neys query faster. Whether by improving / proposing faster methods than PY-PT algorithm, or
even with the help of a preprocessing routine. For instance, a more specific question is whether450

one can use journey planning algorithms like Transfer Patterns algorithm [6] to answer k earliest
arrival journeys queries ?

In addition, the approach proposed in this paper does not guarantee any dissimilarity of
the proposed journeys, i.e, a large part of output journeys may overlap in some scenarios. So,
an interesting question is the study of finding journeys that are “dissimilar” in public transit455

networks, as studied for shortest dissimilar paths finding in a graph [3, 8].
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(a) Average running time on Stockholm (b) Average running time on Switzerland

(c) Average number of CSA calls on Stockholm (d) Average number of CSA calls on Switzerland

Figure 2: The running time of the kEAT algorithms on Switzerland train network and Stock-
holm public transit network with respect to the values of k

(a) Running time of Y-PT and PY-PT on Germany (b) Running time of Y-PT and PY-PT on Paris

Figure 3: Comparison of the running time of Y-PT and PY-PT on a train network and a public
transit network
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