David Coudert

Ali Al Zoobi

Arthur Finkelstein

On finding k earliest arrival time journeys in public transit networks *

Keywords: Journey planning, shortest path, routing, timetables

Journey planning in (schedule-based) public transit networks has attracted interest from researchers in the last decade. In particular, many algorithms aiming at efficiently answering queries of journey planning have been proposed. However, most of the proposed methods give the user a single or a limited number of journeys in practice, which is undesirable in a transportation context.

In this paper, we consider the problem of finding k earliest arrival time journeys in public transit networks from a given origin to a given destination, i.e, an earliest arrival journey from the origin to the destination, a second earliest arrival journey, etc. until the k th earliest arrival journey.

For this purpose, we propose an algorithm, denoted by Yen -Public Transit (Y-PT), that extends to public transit networks the algorithm proposed by Yen to find the top-k shortest simple paths in a graph. Moreover, we propose a more refined algorithm, called Postponed Yen -Public Transit (PY-PT), enabling a considerable speed up in practice.

Our experiments on several public transit networks show that, in practice, PY-PT is faster than Y-PT by an order of magnitude.

Introduction

In the context of multimodal transportation, journeys planning in (schedule-based) public transit networks and accelerating queries for efficient journey planning is a long-standing problem [START_REF] Bast | Route planning in transportation networks[END_REF]. In the last decade, many algorithms have been developed not only to answer efficiently basic queries like a quickest or an earliest arrival journey, but also to optimize additional criteria like the number of transfers, the cost of the trip, etc. or even to offer Pareto optimal solutions combining several criteria [START_REF] Bast | Route planning in transportation networks[END_REF][START_REF] Delling | Round-based public transit routing[END_REF][START_REF] Dibbelt | Connection scan algorithm[END_REF].

A transit network is a set of stops (such as bus stops or trains stations), a set of routes (such as bus, tramway, ferries, metro or train lines), and a set of trips. Trips correspond to individual vehicles that visit the stops along a certain route at a specific time of the day. Trips can be further subdivided into sequences of elementary connections, each given as a pair of (origin/destination) stops and (departure/arrival) times between which the vehicle travels without stopping. In addition, footpaths model walking transfers between nearby stops. A journey is a sequence of trips one can take within a transit network (also referred to as a transportation network or a timetable).

The k shortest simple paths problem A directed graph (digraph for short) is a set of vertices connected by arcs. A path from a source to a destination in a digraph is a sequence of vertices starting from the source and ending at the destination, such that consecutive vertices are connected by an arc. A path is simple if it has no repeated vertices. The length (or weight or cost) of a path is the sum of the lengths (or weights or costs) of its arcs. In this context, the k shortest simple paths (kSSP) problem asks to find a set S of k pairwise different simple paths from a source to a destination such that no path outside S has a length strictly less than a path in S. This problem can be solved in time O(kn(m + n log n)) using the algorithm proposed by Yen [START_REF] Yen | Finding the k shortest loopless paths in a network[END_REF], where n is the number of vertices and m is the number of arcs. Since this is the best known time complexity for this problem, a significant research effort has been put on the design of algorithms for efficiently solving the kSSP problem in practice [START_REF] Al Zoobi | Space and time trade-off for the k shortest simple paths problem[END_REF][START_REF] Al Zoobi | Finding the k Shortest Simple Paths: Time and Space trade-offs[END_REF][START_REF] Kurz | A sidetrack-based algorithm for finding the k shortest simple paths in a directed graph[END_REF]. Note that, if the paths of S are not required to be simple, the problem can be solved by Eppstein's algorithm in time O(k + m + n log n) [START_REF] Eppstein | Finding the k shortest paths[END_REF].

In fact, a road network can be modelled using a weighted directed graph where crossroads are represented by vertices and routes by arcs with length corresponding to the distances or the travel time between crossroads. So, finding k "best" (shortest, fastest or cheapest) paths from a given origin to a given destination in a road network is straightforward using any kSSP algorithm. Unfortunately, this problem becomes harder in public transit networks. First, because public transit networks are time dependent, i.e., certain segments of the network can only be traversed at specific times. Second, several additional optimization criteria are considered in public transit network such as the arrival time, the departure time, the number of transfers, etc.

Journey planning queries in public transit networks Plethora of algorithms were proposed to efficiently answer queries of optimal journeys from a given origin o to a given destination d after a departure time t 0 in a public transit network. For instance, the Connection Scan Algorithm (CSA) [START_REF] Dibbelt | Connection scan algorithm[END_REF] is the fastest algorithm, without any preprocessing routine, enabling to find an earliest arrival journey from o to d departing after t 0 . With the help of a heavy preprocessing routine, the Transfer Patterns algorithm [START_REF] Bast | Fast routing in very large public transportation networks using transfer patterns[END_REF] can achieve a tremendous speed up with respect to the CSA. Besides, Round Based Public Transit Routing (RAPTOR) [START_REF] Delling | Round-based public transit routing[END_REF] is the fastest algorithm (also without any preprocessing routine) enabling to compute a Pareto optimal set of journeys optimizing the arrival time and the number of transfers of a journey. Bast et al.Recently, [START_REF] Bast | Route planning in transportation networks[END_REF] presented an extensive survey on the topic of journey planning in road and public transit networks.

Related work Vo et al. [START_REF] Vo | Finding alterna-500 tive paths in city bus networks[END_REF] proposed a time dependent graph modelizing a bus network. Then, they adapt Yen's algorithm to find alternative journeys in this network model. Precisely, they select a set of alternative journeys (journeys sharing only a limited part of their common edges) among those given by Yen's adaptation.

As shown below, Yen's algorithm uses Dijkstra's algorithm as a basic brick to compute shortest detours of a given path. Analogously, Vo et al. [START_REF] Vo | Finding alterna-500 tive paths in city bus networks[END_REF] used a standard time-dependent shortest path (TDSP) algorithm [START_REF] Schulz | Dijkstra's algorithm on-line: An empirical case study from public railroad transport[END_REF] to compute earliest detours of a journey in a bus network.

They evaluated their method on a single network of around 4 000 stops and 8 000 connections, resulting in an average running time of around 1 second to find 5 journeys.

On the other hand, Scano et al. [START_REF] Scano | Adaptations of k-shortest path algorithms for transportation networks[END_REF] proposed a labelled directed graph modelizing a transportation network where a label is an object composed of the transportation mode (foot, car, bus, etc.) and a travel time. This model merges a road and a public transport network together.

Then, it is shown how the k shortest path algorithms can be adapted for this model. Specifically, they adapted Yen's and Eppstein's algorithm to work on their model. In both algorithms, a Dijkstra-like algorithm called Dijkstra Regular Language Constraint (DRegLC) [START_REF] Barrett | Engineering label-constrained shortest-path algorithms[END_REF] is used to answer earliest arrival journeys queries. Moreover, an Iterative Enumeration Algorithm (IEA) is proposed to extract only simple journeys using Eppstein's algorithm. i.e, using Eppstein's k shortest paths algorithm as an iterator and then selecting the simple corresponding journeys (a journey is simple if it does not visit a stop more than once).

Experimentally, Scano et al. showed that their IEA is faster than Yen's straightforward adaptation on the transportation network of Toulouse (75 000 nodes, 500 000 road edges and 43 000 public transport edges). On this network, the average running time of Yen's adaptation to find 100 journeys is 250 seconds while it is 0.6 seconds using their refined IEA. However, IEA is not a polynomial-time algorithm, and its memory consumption is too high [START_REF] Scano | Adaptations of k-shortest path algorithms for transportation networks[END_REF]. In addition, using the labelled directed graph model described in [START_REF] Scano | Adaptations of k-shortest path algorithms for transportation networks[END_REF] may cause a duplication of the public transit part in practice, i.e, a large number of journeys given by the algorithms proposed in [START_REF] Scano | Adaptations of k-shortest path algorithms for transportation networks[END_REF] may only differ on the foot-path part while sharing the exact same public transit part. This is undesirable in applications requesting diverse public transit journeys.

Our contribution

In this paper, we aim at answering the k earliest arrival journeys queries from a given origin to a given destination in a public transit network. For this purpose, we use the timetable model of public transit networks, i.e, the well-known common model used in [START_REF] Bast | Route planning in transportation networks[END_REF][START_REF] Delling | Round-based public transit routing[END_REF][START_REF] Dibbelt | Connection scan algorithm[END_REF]. First, we propose a performant adaptation of Yen's k shortest simple paths algorithm to public transit networks (Yen -Public Transit, Y-PT algorithm). In contrast with [START_REF] Scano | Adaptations of k-shortest path algorithms for transportation networks[END_REF][START_REF] Vo | Finding alterna-500 tive paths in city bus networks[END_REF], we use the Connection Scan Algorithm (CSA) to answer earliest arrival journey queries in our algorithm.

Our main contribution is a novel algorithm, called Postponed Yen's algorithm for Public Transit networks (PY-PT). With the help of a lower bound on the arrival time of a detour journey (a journey that may be one of the k earliest arrival journeys), PY-PT postpones the effective computation of such detour (and so the corresponding earliest arrival journey queries using CSA) with the aim of skipping it. Our experimental results on several train and public transit networks show that the running time of our adaptation of Yen's algorithm is acceptable in practice. Moreover, on the same dataset, the PY-PT algorithm performs 10 to 30 times faster than the Y-PT algorithm on average.

Preliminaries

In this section we formalize the inputs and algorithms used in this work. We use almost the same formalization used in [START_REF] Dibbelt | Connection scan algorithm[END_REF] for the CSA and as in [START_REF] Al Zoobi | Space and time trade-off for the k shortest simple paths problem[END_REF] for Yen's algorithm.

Graph -definitions and notations

Let D = (V, A) be a digraph with n = |V | vertices and m = |A| arcs, let N + (v) = {w ∈ V | vw ∈ A} be the set of out-neighbors of vertex v ∈ V , and let D : A → R + be a length function over the arcs. Sometimes D is pruned.

For every s, t ∈ V , a path from s to t in D is a sequence

P = (s = v 0 , v 1 , • • • , v l = t) of vertices with v i v i+1 ∈ A
for all 0 ≤ i < l. An arc uv belongs to a path P (uv ∈ P) if and only if u and v are two consecutive vertices of P , i.e, there is 0 ≤ i < l such that u i = u and u i+1 = v. A path is simple if all of its vertices are distinct, i.e, v i = v j for all 0 ≤ i < j ≤ l. The length of the path P is the sum of the length of its arcs, D (P) = 0≤i<l D (v i , v i+1) The distance d D (s, t) between two vertices s, t ∈ V is the length of a shortest s-t path, i.e, a path with the smallest length among all the s-t paths. Given two paths P = (v 0 , • • • , v r) and Q = (w 0 , • • • , w p), and an arc v r w 0 ∈ A, we denote by P.Q the v 0 -w p path resulting from the concatenation of P and

Q. That is, P.Q = (v 0 , • • • , v r , w 0 , • • • , w p) = (v 0 , • • • , v r , Q) = (P, w 0 , • • • , w p).
Given s, t ∈ V , a set of top-k shortest simple s-t paths is any set S of s-t simple paths such that |S| = k and (P) ≤ (P) for every s-t path P ∈ S and s-t path P / ∈ S. The k shortest simple paths problem takes as input a digraph D = (V, A), a length function over the arcs D : A → R + and a pair of vertices (s, t) ∈ V 2 and asks to find a set of top-k shortest simple s-t paths.

Dijkstra's algorithm finds an s-t shortest path in D with worst-case time complexity in O(m + n log n).

Let P = (v 0 , v 1 , • • • , v l) be any path in D. Let 0 ≤ i < l, any path P = (v 0 , • • • , v i , v , v 1 , • • • , v r = v l) s.t. v = v i+1 is
π i = (v 0 , • • • , v i-1
) of P starting from s and ending at v i-1 for 0 ≤ i ≤ l is called i-prefix path of P (the 0-prefix of any path is an empty path)

Yen's algorithm

We start by describing Yen's algorithm for finding a set of top-k shortest simple s-t paths in D.

For the sake of simplicity, we suppose that D has at least k s-t simple paths.

Yen's algorithm starts by computing a shortest s-t path

P 0 = (s = v 0 , v 1 , • • • , v l = t) by
applying Dijkstra's algorithm. Note that P 0 is simple since the weights of D are non-negative.

Clearly, a second shortest simple s-t path is a shortest simple detour of P 0 at one of its vertices. Yen's algorithm computes, for every vertex v i in P 0 , a shortest simple detour of P 0 at v i . For this purpose, for 0 ≤ i < r, Yen's algorithm removes the vertices of the i-prefix path

π i = (v 0 , • • • , v i-1
) of P 0 and the arc v i v i+1 , then it computes, using Dijkstra's algorithm, a

shortest path Q i from v i to t. Let C i = π i .Q i be the concatenation of π i and Q i . First, C i is simple as Q i is computed after removing π i . Second, v i v i+1 / ∈ C i as the arc v i v i+1 of P 0 is removed before computing Q i and constructing C i . Therefore, C i is a shortest simple detour of P 0 at i. Note that the index i (called below deviation-index) where the path (v 0 , • • • , v i-1 , Q i)
deviates from P 0 is kept explicit, i.e, the path is stored with its deviation index. Finally, C i is added to a set Candidate (initially empty) for every 0 ≤ i < l. Once C i has been added to Candidate for all 0 ≤ i < l, by remark above, a path with minimum length in Candidate is a second shortest simple s-t path. Now, let us assume that a set S of top-k (with 0 < k < k) shortest simple s-t paths has been computed and the set Candidate contains a set of simple s-t paths such that there exists

a shortest path Q ∈ Candidate with S ∪ {Q} a top-(k + 1) set of shortest s-t simple paths. Let R = (v 0 = s, • • • v j , • • • , v r = t
) be a path in Candidate with minimum length and let j be its deviation index. Similarly to the procedure of finding a second shortest path, Yen's algorithm iterates over the vertices v i (j ≤ i < r) of R. At each vertex v i , a shortest simple detour of R at v i is added to Candidate (since one of these detours may be a k + 1 th shortest simple s-t path). Let, again,

π i = (v 0 , • • • , v i-1
) be the i-prefix of R. Yen's algorithm removes π i from D. Then, it removes each arc v i w such that S contains a path with (v 0 , • • • , v i , w) as a i + 1-prefix. Finally, a shortest v i -t path Q i is computed, using Dijkstra's algorithm, and the path π i .Q i is added to Candidate with i as deviation index. This process is repeated until k paths have been found, i.e, when k = k.

Therefore, for each path R that is extracted from Candidate, O(|V (R)|) calls of Dijkstra's algorithm are done. This results in a worst-case time-complexity in O(kn(m + n log n)).

Timetable -definitions and notations

In this section, we describe the data structures used by the CSA, with the same formalization as in [START_REF] Dibbelt | Connection scan algorithm[END_REF]. Then we will describe briefly the Connection Scan Algorithm and one of its variant called the profile CSA (PCSA).

Timetable A timetable represents for one specific day the vehicles that exist (train, bus, tram, ferry, ...), when they travel, where they travel and how a passenger can go from one vehicle to another. Formally, a timetable is a quadruple T = (S, T, C, F) of stops S, trips T , connections C and footpaths F :

• A stop is a position outside a vehicle where a passenger can wait. At a stop (and only at a stop) a vehicle can halt and passengers can leave or get on.

• A trip is defined by a vehicle going through stops at fixed times. Precisely, a trip is a scheduled vehicle, i.e, a journey done by a unique vehicle from a starting stop to a last stop at a fixed time.

• A connection is a vehicle going from one stop to another with no intermediate stops.

Formally, a connection c is a quintuple (c dep stop , c arr stop , c dep time , c arr time , c trip) whose attributes are the departure stop, the arrival stop, the departure time, the arrival time and the trip of c, respectively. A connection must respect two conditions: (1) it cannot be a self loop, i.e, c dep stop = c arr stop and (2) it has a non-zero travel time, i.e, c dep time < c arr time .

• A footpath is used to model a transfer, i.e, how to get from one vehicle to another. Formally, a footpath f is a triple (f dep stop , f arr stop , f dur) whose attributes are the departure stop, the arrival stop and the duration of the footpath, respectively. Note that, footpaths are neither trips, nor connections.

Note that, all the connections of a trip form a sequence c 1 , c 2 . . . c φ , such that c i arr stop = c i+1 dep stop and c i arr time < c i+1 dep time for all 0 ≤ i ≤ φ. Going from a connection c to a connection c with c trip = c trip is possible if and only if there is a footpath f t from c arr stop to c dep stop such that c is reachable via f t , i.e, f t dur ≤ c dep time -c arr time . A loop is introduced on each stop to allow a passenger to get off at a stop and take another trip going through this stop.

Journeys A journey describes how a passenger can travel through a public transit network. It is made of legs that are sequences of connections of the same trip. Formally, a journey is a sequence of alternating footpaths and legs J = (f 0 , l 0 , f 1 , l 1 . . . f r-1 , l r , f r), where

l i = (c i 0 , • • • , c i δ i).
That is, a passenger takes the footpath f 0 from f 0 dep stop to f 0 arr stop , then takes the connection

c 1 0 , c 1 1 , • • • , c 1 δ 1 , proceeds to take the footpath f 1 from f 1 dep stop to f 1 arr stop
etc. until he reaches f r arr stop . A journey must start and end with a footpath, which can be a self loop. In this paper, we sometimes denote a journey as a sequence of footpaths and connection, i.e, J = (f

0 , c 0 , c 1 , • • • , c α , f 1 , c α+1 , • • • , f r-1 , c γ+1 , • • • c φ , f r) where c 0 = c 0 0 , c 1 = c 0 1 , • • • , c φ = c r δr .
Given two stops o and d in S, an o-d journey J is a journey (f 0 , c 0 , • • • , c φ , f r) such that f 0 starts from o and f r ends at d. We define the departure time of a journey dep t (J) as the departure time of its first footpath, formally, dep t (J) = c 0 dep time -f 0 dur . Similarly, the arrival time of a journey arr t (J) is the arrival time of its last footpath, i.e, arr t (J) = c φ arr time + f r dur . A journey is called simple if it does not visit twice the same stop (except for self loop footpaths). Formally, let J = (f 0 , l 0 = (c 0 0 ,

• • • , c 0 δ 0), • • • , f i , l i = (c i 0 , • • • , c i δ i), • • • , f j , l j = (c j 0 , • • • , c j δ j), • • • , l r = (c r 0 , • • • , c r δr), f r
) be a journey. For all 0 ≤ i < j ≤ r, let c dep stop be the departure stop of c i α for 0 ≤ α ≤ δ i . Similarly, for 0 ≤ β ≤ δ j , let c dep stop be the departure stop of c j β and c arr stop be the arrival stop of c j β . We have c dep stop = c dep stop and c dep stop = c arr stop .

1

The concatenation of two journeys

J = (f 0 , l 0 , • • • , l r , f r) and J = (f 0 = f r , l 0 , • • • , l , f)
such that f r = f 0 and arr t (J) ≤ dep t (J) is the journey starting by f 0 , follows J until f r , then it follows J until f . Formally,

J" = (f 0 , l 0 , • • • , f r = f 0 , • • • , = l , f) (we denote J" = J.J). Given a journey J = (f 0 , c 0 , • • • c i , • • • , c φ , f r), a journey Q = (f 0 , c 0 , • • • , c i , • • • , c w , f) is called a detour of J at i if f 0 = f 0 , c 0 = c 0 , • • • , c i-1 = c i-1 but c i = c i and f arr stop = f r arr stop . Moreover, if Q is simple, it is called a simple detour of J at i. Similarly, Q is called an earliest arrival (simple) detour of J at i, if arr t (Q) ≤ arr t (Q) for each (simple) detour Q of J at i.
Two journeys are equal if and only if all of their attributes are the same. We denote by J

Connection Scan Algorithm

The CSA answers earliest arrival time journey queries from a given origin o to a given destination d. That is, departing after a given time t 0 , how to get from o to d as soon as possible.

Similarly to Dijkstra's algorithm, the CSA will store an earliest arrival time for each stop in an array. A connection is considered reachable if a passenger can sit in the public transit vehicle of the connection. However, the main difference between Dijkstra's algorithm and the CSA is the fact that the CSA does not use a priority queue. Instead, the CSA iterates over all the connections sorted by their departure time (the same ordering is used for all queries). The CSA checks whether a connection is reachable or not. If so, it improves the arrival time at the arrival stop of the connection. Once all the connections have been scanned, the earliest arrival time to a stop is the current arrival time stored for the stop. The main advantage of avoiding the use of a priority queue is that, while more connections are scanned, the amount of work per connections is significantly reduced. Therefore, the CSA is significantly faster than Dijkstra's algorithm [START_REF] Dibbelt | Connection scan algorithm[END_REF].

Profile Connection Scan Algorithm

The result of the Profile Connection Scan Algorithm (PCSA) is a mapping between a departure time from a departure stop onto the earliest arrival time at the arrival stop. In other words, the profile problem solves simultaneously the earliest arrival problem for all departure times.

Compared with the CSA, the PCSA iterates on the connections sorted decreasingly by departure time, which leads to the fact that it solves the all-to-one problem. The PCSA constructs journeys from late to early and exploits the fact that an early journey can only have later jour-neys as subjourneys. It has been reported in [START_REF] Dibbelt | Connection scan algorithm[END_REF] that the PCSA is one order of magnitude slower than the CSA, which is acceptable considering the fact that it solves the all-to-one problem.

Note that, the PCSA offers, from each stop s to the arrival stop d, a single earliest arrival s-d journey departing after t 0 and reaching d before t max .

Let M be the output of the PCSA, we denote by M t 0 ,tmax o,d the earliest arrival journey, given by M , starting from o and reaching d, departing after t 0 and arriving before t max .

Problem definition

In this section, we formalize the k Earliest Arrival Time problem definition.

k Earliest Arrival Time (kEAT) problem In this paper, we aim at finding k earliest arrival time (kEAT) simple journeys from a given origin to a given destination. Formally, the problem takes as input a timetable T = (S, T, C, F), origin and destination stops o, d in S, a departure time t 0 , a maximum arrival time t max (often t max = t 0 + 24h or t max = t 0 + 48h) and an integer k. It asks to find a set Note that the journey J ns = (o, b, a, c, o, a, d) arriving at 10h10 is not a part of the solution as it is not simple (it visits the station o twice).

J * = {J 1 , J 2 , • • • , J k } of top-k earliest arrival o-d simple journeys i.e, J i = J j for 0 ≤ i < j ≤ k, and for every J in J * , J ∈ J t 0 ,tmax o,d , arr t (J) ≤ arr t (J).
Indeed, there are other o-d journeys in this example, however they all have an arrival time greater than 10h10, that is {J 0 , J 1 , J 2 , J 3 } are the four earliest arrival simple o-d journeys.

Each edge in the graph belongs to a specific trip, meaning that between each step in the examples there is a self loop footpath.

Public Transit Yen's algorithm (Y-PT)

In this section, we describe our adaption of Yen's algorithm on public transit networks, called Y-PT algorithm. As described before, Y-PT algorithm solves the kEAT problem. So, it takes as input a timetable T = (S, T, C, F), origin and destination stops o, d in S, a departure time t 0 , a maximum arrival time t max (= t 0 + 48h) and an integer k, and returns a set Output =

{J 1 , J 2 , • • • , J k } of top-k earliest arrival o-d simple journeys in T .
Roughly, Y-PT algorithm starts by computing a first earliest arrival journey, iterates over its connections in order to compute its earliest arrival simple detours and adds their minimum (the detour with minimum arrival time) to the output. Then, Y-PT algorithm repeats this process until k journeys are added to the output. Now, let us give a precise and formal description of Y-PT algorithm whose pseudocode is presented in Algorithm 1. Analogously to Yen's algorithm, Y-PT starts by computing an earliest arrival journey J 0 and adding it (with 0 as deviation index) to a set of candidate journeys called Candidates. The journeys of the set Candidates are non-decreasingly sorted by their arrival time. Also, the algorithm initializes the output set Output as an empty set. After this initialization phase, the algorithm extracts a minimum element from the set Candidates, i.e, a journey J = (f 0 , c 0 , • • • , c φ , f r) with minimum arrival time among those in Candidates and adds it to Output. Let C J = (c 0 , c 1 , • • • , c φ) be the sequence of connections of J. The algorithm iterates over the connections in C J starting from the deviation index of J. Precisely, let j be the deviation index of J, for each connection c i = (c i dep stop , c i arr stop , c i dep time , c i arr time , c i trip) for j ≤ i ≤ φ, the algorithm removes the prefix stations, i.e, each station visited by one of the connections c 0 , • • • , c i-1 , (equivalent to the prefix path of Yen's) from T . This is done to ensure that the candidate journey is simple. Moreover, in order to avoid duplications of journeys, for each journey J in Output starting with the connections c 0 , c 1 , • • • , c i-1 , c , the connection c is removed from T . Then, using the CSA, the Y-PT algorithm computes an earliest arrival journey

Q = (f 0 Q , c 0 Q , • • • , c ω Q , f Q) from c i-1
arr stop to d with c i-1 arr time as departure time2 . Let J new be the concatenation of the prefix of J and Q, i.e,

J new = (f 0 , c 0 , • • • , c i-1 , f 0 Q , c 0 Q , • • • , c ω Q , f Q).
The journey J new is added to Candidates with i as deviation index.

Y-PT algorithm repeats this process until k journeys are added to Output.

Public Transit Postponed Yen's algorithm (PY-PT)

Here we explain Postponed Yen algorithm for public transit (PY-PT algorithm) whose pseudocode is presented in Algorithm 2. This algorithm is inspired from the Postponed Node Classification algorithm (PNC) for the kSSP described in [START_REF] Al Zoobi | Finding the k Shortest Simple Paths: Time and Space trade-offs[END_REF].

Algorithm 1 Public Transit -Yen's algorithm (PT-Y) ε = (J, j) ← extractmin(Candidates) for each connection c i with j ≤ i ≤ φ in J do C dev ← {c s.t. there is a journey J in Output starting with (c 0 ,

8: let J = (f 0 , c 0 , • • • , c φ , f r), j
• • • , c i-1 , c)} 16: T = (S \ S π , T, C \ C dev , F) 17:
Q ← CSA(T , c arr stop , d, c arr time , t max) 18:

J new ← π.Q 19:
add (J new , i) to Candidates 20: Return Output PY-PT algorithm has the same input as Y-PT algorithm, and it also returns a set of top-k earliest arrival simple journeys from the origin to the destination in a timetable. However, the journeys given by Y-PT are not necessarily the same as those given by PY-PT, i.e, the order of extraction of journeys is not necessarily the same. This may occur in scenarios where several journeys from the origin to the destination have the same arrival time.

The main drawback of Y-PT algorithm is its excessive number of calls of the CSA. Here, with the help of lower bounds on the arrival time of simple detours, we propose to postpone these calls in order to avoid some of them. We show that this can be done while preserving the correctness of the algorithm. In contrast with Y-PT algorithm where all journeys in the set Candidates are simple, the PY-PT algorithm may add non-simple journeys to the set Candidates. As shown below, this corresponds to detours whose effective computation (and so their corresponding CSA calls) are postponed.

Let us now describe PY-PT algorithm in details. For a query from the origin o to the destination d starting at time t 0 , the PY-PT algorithm first uses the Profile CSA (PCSA). Let M be the mapping output by PCSA. The mapping M associates to each station s ∈ S and each departure time t ≥ t 0 the earliest arrival s-d journey, providing it is possible to reach d from s before t max when starting at t (we let t max = t 0 + 48h in our experiments).

Similarly to Y-PT algorithm, PY-PT algorithm starts by adding an earliest arrival time journey J 0 to a set of candidate journeys called Candidates. An element ε in Candidates has three attributes, the journey J, its deviation index i and a boolean flag ζ indicating whether J is simple or not. So, the element ε 0 = (J 0 , 0, 1) is added to Candidates. In contrast with Y-PT algorithm where a CSA call is consumed to compute J 0 , PY-PT algorithm extract J 0 from the already computed mapping M . Precisely, J 0 = M t 0 ,tmax o,d . Then, also like Y-PT algorithm, the Output set is initialized with an empty set. After these initializations steps, the algorithms starts by extracting an earliest arrival journey (J, j, ζ) among those in Candidates. Suppose

J = (f 0 , c 0 , • • • , c α , f 1 , c α+1 , • • • , c β , f 2 , • • • , c γ+1 , • • • , c φ , f r).
Two cases are distinguished:

• if ζ = 1 (J is simple): J is added to the Output, then all the earliest arrival detours of J are added to Candidates. This is done as follows, let C J = (c 0 , c 1 , • • • , c φ) be the sequence of connections of J, at each connection c i (for j ≤ i < φ) in C J , an earliest arrival detour J new of J at i is extracted. This is done with the help of M as described below.

The journey J new may not be simple (also described below). However, J new will be added to the set Candidate with i as deviation index and ζ = 1 if Q is simple (and ζ = 0 otherwise).

• if ζ = 0 (J is not simple): Then J is "repaired", i.e., it is replaced (if possible) by its corresponding earliest arrival simple journey. For this purpose, the algorithm applies almost the same routine as Y-PT algorithm. Precisely, let c j = (c j dep stop , c j arr stop , c j dep time , c j arr time , c j trip) be the connection at the deviation index, the algorithm removes the prefix stations, i.e, each station visited by one of the connections c 0 , • • • , c j-1 , from T . Also, for each journey J in Output starting with the connections c 0 , c 1 , • • • , c j-1 , c , the connection c is removed from T . Then, using the CSA, PY-PT algorithm computes an earliest arrival journey

Q = (f 0 Q , c 0 Q , • • • , f -1 Q , l φ Q , f Q) from c j-1 arr stop to d with c j-1
arr time as departure time. Let J new be the concatenation of the prefix of J and Q, i.e,

J new = (f 0 , c 0 , • • • , c j-1 , f 0 Q , c 0 Q , • • • , f Q).
The journey J new is added to the Candidates with j as deviation index and with ζ = 1 (as J new is simple).

The PY-PT algorithm repeats this process until k journeys are added to Output. Now, let us explain how the journey J new is computed (in the case where ζ = 1). The pseudocode of this procedure is described in Algorithm 3. Let c i = (c i dep stop , c i arr stop , c i dep time , c i arr time , c i trip) be the i th connection of C J (for j ≤ i < φ), the following procedure is applied:

• First, the algorithm scans the connections starting with c i arr stop after c , then

c LB is a connection in C N s.t. arr t (J c LB) ≤ arr t (J c) for each c in C N 3 .
• Second, the algorithm scans the footpaths starting with c i dep stop leading to new journeys, i.e, different from those in Output. Again, let F dev = {f old s.t. there is a journey in Output starting with the connections c 0 , • • • , c i-1 followed by f old }, let

F N = {f ∈ F s.t. f dep stop = c i
dep stop and f / ∈ F dev } be the set of the new deviating footpaths and let f LB be a footpath of F N leading to an earliest arrival journey from c i dep stop to d using M . Precisely, for each f in F N , let J f be the journey via f following M , i.e,

J f = f.M c i dep time +f dur ,tmax f arr stop,d , then f LB is a footpath in F N s.t. arr t (J f LB) ≤ arr t (J f) for each f in F N .
Now let Q min be the journey with minimum arrival time among J c LB and J f LB and let J min be the journey formed by the concatenation of the prefix journey of J and Q min , i.e, J min = (f 0 , c 0 , • • • , c i-1 , Q min). Note that, J min may not be simple as the sub-journey extracted from M may revisit a station of one of the prefix connections. For instance, a station that is visited by c 0 or c 1 , • • • , or c i-1 may be visited again by J c LB (or by J LB f) 4 .

To conclude, in contrast with Y-PT algorithm where an earliest arrival simple detour is computed at each index of an extracted journey using the CSA, PY-PT algorithm consider an earliest arrival detour (not necessarily simple) given by the already computed PCSA at each index, and two cases are distinguished: If the earliest arrival detour is simple, then a CSA call is saved and a shortest simple detour is added to Candidates. If not, i.e, the earliest arrival detour is not simple, PY-PT algorithm inserts this non-simple detour to the set of Candidates with a flag indicating that it is not simple. Recall that journeys in Candidates are non-decreasingly stored by their arrival time. So, only when this non-simple detour is extracted from Candidates, its simple version will be computed using the CSA. In other words, the actual computation of such simple detour is "postponed". Such postponement may end up saving some CSA calls, typically when k earliest arrival journey are added to Output while none-simple journeys, whose actual computation is postponed, are still in Candidates, i.e, their whole "repair" procedure is skipped.

Note that, despite these postponements, the order of extraction of simple journeys from Candidates remains valid. This is because a journey J in Candidate is either inserted with its real arrival time (the case where J is simple) or with a lower bound on its arrival time (the case where J is non-simple, by Claim 1).

Claim 1. Let J = (f 0 , c 0 , f 1 • • • , c φ , f r
) be an o-d journey with J ns an earliest arrival detour of J at i and J s with an earliest simple arrival detour of J at i (where 0 ≤ i ≤ φ). Then, arr t (J ns) ≤ arr t (J s)

Proof. The proof follows from the fact that an earliest arrival detour of J at i arrives earlier than any detour of J at i. In particular, it arrives earlier than any earliest arrival simple detour of J at i.

Experimental evaluation

In this section we describe our experimental evaluation. First, we start by describing our implementation and settings (Section 6.1), then we discuss our experimental results on train and public transit networks (Section 6.2).

Experimental settings

Here we describe the details of the implementation and the setting used in our experiments.

We have implemented Y-PT and PY-PT algorithms in Java and our code is publicly available at [START_REF] Zoobi | [END_REF]. Note that in our implementations the parameter k is not part of the input, this enables the use of these methods as iterators, able to return a next earliest arrival itinerary as long 4 When scanning the connections starting with c i arr stop after c i arr time , the journey M

Let J = (f 0 , c 0 , • • • , c φ , f r) 10: if ζ = 1 (J is simple)
C dev ← {c s.t. there is a journey J in Output starting with (c 0 , • • • , c i-1 , c)} 21: T = (S \ S π , T, C \ C dev , F) 22: Q ← CSA(T , c arr stop , d, c arr time , t max) 23: if Q exists then 24: J new ← (f 0 , c 0 , • • • , c j , Q) 25:
add (J new , j, ζ = 1) to Candidates 26: return Output as one exists. Despite the fact that some additional optimizations could be added to the implementation if k is a part of the input.

Networks setting

We have evaluated the performances of our algorithms on two train networks (Germany and Switzerland) and three public transit networks (Paris, Berlin and Stockholm). The characteristics of these networks are presented in Table 1. This dataset is publicly available via a GTFS feed (https://transitfeeds.com/), we downloaded this dataset in October 2019.

The public transit networks are more dense than the train networks, i.e. the connections to stops ratio is smaller on train networks than public transit networks. This can be easily explained because the train networks can only use trains whereas the public transit networks can use buses, trains, ferries and many other means of transportation. Therefore, we will show the performances of our algorithms on those two types of networks.

In our experiments, we have randomly chosen 1000 queries (source-destination pairs of stops)

for each public transit network, and we have run each algorithm for each of these pairs for k going from 2 to 100. We have considered the execution time and the number of CSA calls. Note that the number of CSA calls is an indication of the running time which is independent of the implementation

, • • • , c i-1 , f)} 8: F N = {f ∈ F s.t

Experimental results

In this section, we describe and analyse our experimental results on public transit networks. We have measured the average and the median of the algorithms' running time in the considered networks. The data (the running time and the number of CSA calls) in Tables 2 and 3 and figure 3 corresponds to the biggest experienced value of k (k = 100). While the data in Figure 2 corresponds to their evolution with respect to the values of k.

The average and median running times reported in Table 2 show that the PY-PT algorithm is significantly faster than the Y-PT algorithm for every considered network (the average speed up of the running time is bigger than 10 for k = 100). Moreover, a refined comparison on Germany and Paris networks (Figure 3) show that PY-PT is faster than Y-PT for almost all queries. In addition, Figures 2a and2b shows that this speed up remains considerable even for small values of k (even for k = 2) for Stockholm and Switzerland networks. This means that the time consumed for the PCSA computation routine is compensated by the extraction of simple detours, even for k = 2. In addition, very similar results were obtained on the remaining networks. Based on these remarks, we conclude that, in practice, PY-PT is faster than Y-PT for almost every scenario (the value of k, the query specifications and the network structure). Furthermore, on Stockholm and Switzerland networks, Table 3 and Figures 2c and2d show that the number of CSA calls is significantly reduced using PY-PT. This ensures that a similar speed up is guaranteed for any experimental settings [START_REF] Johnson | A theoretician's guide to the experimental analysis of algorithms. Data structures, near neighbor searches, and methodology[END_REF].

As the obtained results are similar, we only displayed data obtained from experiments on selected networks (Stockolm and Switzerland for Figure 2, Paris and Germany for Figure 3). However, the results/plots corresponding to the remaining networks are very similar.

To conclude, on average, PY-PT algorithm is more than 10 times faster than Y-PT algorithm, it is also faster than Y-PT for almost every scenario.

Conclusion

In this paper, we have shed lights on a new style of journey planning in public transit networks, offering a vast set of interesting solutions. This is done by adapting the k shortest simple paths problem to the public transit network context. We proposed a straightforward adaptation of Yen's algorithm and a more refined version answering the proposed problem in a reasonable running time.

Interesting questions are asked about designing algorithms answering k earliest arrival journeys query faster. Whether by improving / proposing faster methods than PY-PT algorithm, or even with the help of a preprocessing routine. For instance, a more specific question is whether one can use journey planning algorithms like Transfer Patterns algorithm [START_REF] Bast | Fast routing in very large public transportation networks using transfer patterns[END_REF] to answer k earliest arrival journeys queries ?

In addition, the approach proposed in this paper does not guarantee any dissimilarity of the proposed journeys, i.e, a large part of output journeys may overlap in some scenarios. So, an interesting question is the study of finding journeys that are "dissimilar" in public transit networks, as studied for shortest dissimilar paths finding in a graph [START_REF] Al Zoobi | On the complexity of finding k shortest dissimilar paths in a graph[END_REF][START_REF] Chondrogiannis | Exact and approximate algorithms for finding k-shortest paths with limited overlap[END_REF].

10

 10

Figure 1 :

 1 Figure 1: Toy network for k earliest arrival time journeys

)

11 :c

 11 arr stop ←the arrival stop of c i-1 12: c arr time ←the arrival time of c i-1 13:π = (f 0 , c 0 , • • • , c i-1) 14:S π ← the set of stations visited by one of the connections (c 0 , • • • , c i-1) 15:

 i arr time leading to new journeys, i.e, different from those in Output. Precisely, let C dev = {c old ∈ C s.t. there is a journey in Output starting with the connections c 0 , • • • , c i-1 , c old }, let C N = {c ∈ C s.t. c dep stop = c i dep stop , c dep time ≥ c i dep time and c / ∈ C dev } be the set of new deviating connections. The algorithm scans the connections of C N . Let c LB be a connection of C N leading to an earliest arrival journey from c i dep stop to d using M . Formally, for each c in C N , let J c be the journey via c following M , i.e, let J c = c.M c arr time ,tmax carr stop,d

 self loop footpath or a footpath. On the other hand, when scanning footpaths starting with c i dep stop the journey M c i dep time +f dur ,tmax f arr stop,d cannot start with anything other than a self loop footpath, to do so the PCSA stores journeys in two separate data structures, one for journeys starting with a self loop footpath and one for the other journeys.

Algorithm 2 1 : 2 : 5 :

 2125 Public Transit -Postponed Yen's algorithm (PY-PT) Input A timetable T , an origin and a destination stops (o and d), departure and maximum arrival time (t dep and t max), and an integer k Output a set of top-k earliest arrival simple journeys from o to d departing after t dep 3: M ← P CSA(T , o, d, t dep , t max) 4: J 0 ← M t dep ,tmax o,d Candidate ← {(J 0 , 0, ζ = 1)} 6: Output ← ∅ 7: while Candidate = ∅ and |Output| < k do 8: ε = (J, j, ζ) ← extractmin(Candidates) 9:

 then

12 :

 12 for each vertex c i in (c j , • • • , c φ) do 13: J new ← EarliestArrivalDetour(J, i, M) 14: ζ ← 0 15: if J new is simple then 16:ζ ← 1 17: add (J new , i, ζ) to Candidate 18: else 19: S π ← the set of stations visited by one of the connections (c 0 , • • • , c j-1) 20:

Algorithm 3

 3 EarliestArrivalDetour(J, i, M) 1: c i ← the i th connection of J 2: c arr stop ← the arrival stop of c i-1 3: c arr time ← the arrival time of c i-1 4: C dev ← {c s.t. there is a journey J in Output starting with (c 0 , • • • , c i-1 , c)} 5: C N = {c ∈ C s.t. c dep stop = c arr stop , c dep time ≥ c arr time and c / ∈ C dev } 6: c LB ← a connection in C N leading to a minimum arrival time from c arr stop to d after c arr time following M 7: F dev ← {f s.t. there is a journey J in Output starting with (c 0

 (a) Average running time on Stockholm (b) Average running time on Switzerland (c) Average number of CSA calls on Stockholm (d) Average number of CSA calls on Switzerland

Figure 2 :

 2 Figure 2: The running time of the kEAT algorithms on Switzerland train network and Stockholm public transit network with respect to the values of k

 (a) Running time of Y-PT and PY-PT on Germany (b) Running time of Y-PT and PY-PT on Paris

Figure 3 :

 3 Figure 3: Comparison of the running time of Y-PT and PY-PT on a train network and a public transit network

 called a detour of P at v i . Note that neither P nor P are required to be simple. However, if P is simple, it will be called a simple detour of P at v i . In addition, P is called a shortest (simple) detour at v i if and only if P is a detour with minimum length among all (simple) detours of P at v i . Finally, the subpath

1 :

 1 Input A timetable T = (S, T, C, F), an origin and a destination stops (o and d), departure and maximum arrival time t dep , t max and an integer k 2: Output a set of top-k earliest arrival journeys from o to d departing after t dep 3: J 0 ← CSA(T , o, d, t dep , t max) 4: Candidates ← {(J 0 , 0)} 5: Output ← ∅ 6: while | Output |< k and Candidate = ∅ do

	7:

Table 1 :

 1 . f dep stop = c arr stop and f / ∈ F dev } 9: f LB ← a footpath in F N leading to a minimum arrival time from c arr stop to d following M10: J c LB ← c LB .M J f LB ← f LB .M J min ← the earliest arrival journey among J c LB and J f LB 13: π = (f 0 , c 0 , • • • , c i-1) 14: J new ← π.J min 15: return J newand the architecture of the machine. Characteristics of the PT networks: number of stops, connections, lines, trips and footpaths.

	c LB arr time ,tmax			
	c LB arr stop ,d			
	dur ,tmax 11: c arr time +f LB f LB arr stop ,d		
	12: All reported computations have been performed on computers equipped with an Intel(R)
	Core(TM) i7-1185G7 at 3.00GHz and 32 GB of RAM.
	Network	Stops Connections Lines Trips Footpaths
	Germany	74 398 3 601 420 3 599 168 024 599 284
	Switzerland 29 844 2 599 675 5 645 248 826	27 202
	Paris	44 534 3 209 401 1 864 150 963 502 291
	Berlin	28 651 1 379 755 1 296 63 569	62 456
	Stockholm 14 258	703 326	664 34 799	22 138

Table 2 :

 2 Running time (s) of the algorithms on PT networks, (k = 100)

			Germany Switzerland Paris Berlin Stockholm
	Y-PT	avg med	94.6 47.3	42.0 30.6	66 25.1	22.7 14	7.2 3.5
	PY-PT	avg med	3.6 1.7	1.9 1.4	5.4 3.8	0.8 0.5	0.2 0.1
			Germany Switzerland Paris Berlin Stockholm
	Y-PT	avg med	2132 1729	2158 1749	1355 1788 1262 1604	2072 1510
	PY-PT	avg med	32 12	77 56	39 26	7.6 7	8.3 2

Table 3 :

 3 Number of CSA calls using each of the algorithms on PT networks, (k = 100)

We suppose that a leg cannot have a loop, as a user may get off and wait outside the corresponding vehicle.

If the element right before c i is a footpath, i.e, J = (f 0 , • • • , f λ , c i , • • • , f r).It is possible to have journeys with two consecutive footpaths. In order to avoid such scenario, the CSA call is forced to compute a journey starting with a self loop footpath.

If the element right before c i is a footpath, i.e, J = (f 0 , • • • , f λ , c i , • • • , f r).It is possible to have journeys with two consecutive footpaths. In order to avoid such scenario, the footpaths starting with c i arr stop will not be scanned.

This work has been supported by the French government, through the UCA jedi Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-15-IDEX-01, the ANR project MULTIMOD with the reference number ANR-17-CE22-0016, the ANR project Digraphs with the reference number ANR-19-CE48-0013, and by Région Sud PACA.