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Abstract

In the latest years, the healthcare domain has seen an increasing in-
terest in the definition of intelligent systems to support clinicians in their
everyday tasks and activities. Among others, also the field of Evidence-
Based Medicine is impacted by this twist, with the aim to combine the rea-
soning frameworks proposed thus far in the field with mining algorithms
to extract structured information from clinical trials, clinical guidelines,
and Electronic Health Records. In this paper, we go beyond the state
of the art by proposing a new end-to-end pipeline to address argumen-
tative outcome analysis on clinical trials. More precisely, our pipeline is
composed of (i) an Argument Mining module to extract and classify ar-
gumentative components (i.e., evidence and claims of the trial) and their
relations (i.e., support, attack), and (ii) an outcome analysis module to
identify and classify the effects (i.e., improved, increased, decreased, no
difference, no occurrence) of an intervention on the outcome of the trial,
based on PICO elements. We annotated a dataset composed of more than
500 abstracts of Randomized Controlled Trials (RCT) from the MEDLINE
database, leading to a labeled dataset with 4198 argument components,
2601 argument relations, and 3351 outcomes on five different diseases (i.e.,
neoplasm, glaucoma, hepatitis, diabetes, hypertension). We experiment
with deep bidirectional transformers in combination with different neural
architectures (i.e., LSTM, GRU and CRF) and obtain a macro F1-score of
.87 for component detection and .68 for relation prediction, outperform-
ing current state-of-the-art end-to-end Argument Mining systems, and a
macro F1-score of .80 for outcome classification.
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1 Introduction

In the healthcare domain, there is an increasing interest in the development
of intelligent systems able to support and ease clinicians’ everyday activities.
These systems deal with heterogeneous kinds of data, spanning from textual
documents to medical images to biometrics. Concerning textual documents
(e.g., clinical trials, clinical guidelines, and Electronic Health Records), such
solutions range from the automated detection of PICO elements [1] in health
records to evidence-based reasoning for decision making [2, 3, 4, 5]. These
applications aim at assisting clinicians in their everyday tasks by extracting,
from unstructured textual documents, the exact information they necessitate
and to present this information in a structured and machine-readable format,
easy to be (possibly semi-automatically) analyzed. The ultimate goal is to aid
the clinician’s deliberation process [6].

Analyzing argumentation from the computational linguistics point of view
has recently led to a new field called Argument(ation) Mining (AM) [7, 8, 9, 10]
which deals with detecting, classifying and assessing the quality of argumenta-
tive structures in text. Standard tasks in AM are the detection of argument
components (i.e., evidence and claims), and the prediction of the relations (i.e.,
attack and support) holding among them. Our motivation to rely on argumen-
tation mining stems from its aptness in providing us with methods to auto-
matically detect in text the argumentative structures that are at the basis of
Evidence-Based Medicine (EBM), which is the “conscientious, explicit, and ju-
dicious use of current best evidence” [11] to guide clinical decision-making with
scientific information from systematic reviews. These information needs cannot
be directly tackled by current methods (e.g., clinical document classification [12],
clinical question answering [13], or extractive summarization [14]), and require
the development of novel approaches within the argumentation mining field.

Alas, despite its natural employment in healthcare applications, only few ap-
proaches have applied AM methods to this kind of text [15, 16, 17, 18], and their
contribution is limited to (part of) the Argument Mining pipeline, disregarding
the combination of this argumentative information with other kind of clinical
data that clinicians usually look at when searching for relevant evidence. Indeed,
when clinicians search for relevant evidence, they use a specialised framework
called PICO, which stands for Patient Problem or Population, Intervention,
Comparison or Control, and Outcome. The idea is to ask well-built clinical
questions [19], which should be answered by clinical trials. Searching for rele-
vant trials and finding meaningful answers is a time consuming and laborious
task for clinicians. Automating this process of evidence collection and argumen-
tative analysis from documents could unburden the clinicians substantially.

In our work, we take up these challenges and formulate them into the fol-
lowing research questions:

• How to adapt models from argumentation theory on large corpora of clin-
ical text for modeling argumentation and outcome-based evidence in Ran-
domized Controlled Trials?

2



• What computational approaches can be used to analyze arguments and
evidence on outcomes in Randomized Controlled Trials?

• What is the impact of argumentative structures and PICO elements on
evidence-based deliberation?

In this article, we answer to these research questions, with the goal of ad-
dressing the previously discussed challenges and issues. First, we apply a struc-
tured argumentation model [20] combined with the effects of an intervention
on an outcome from PICO evidence to manually annotate a new huge resource
of 660 abstracts of Randomized Controlled Trials. Second, we propose a deep
bidirectional transformer approach combined with different neural networks to
address in a pipeline both the AM tasks of component detection and relation
prediction, and the outcome classification in Randomized Controlled Trials,
evaluating it on the corpus we annotated. Third, we discuss the impact of
argumentative information and PICO evidence on the clinician’s deliberation
process both with respect to the data contained in the annotated dataset and
to the results of the end-to-end pipeline we propose.1

To summarize, the contributions of this paper are as follows:

• We create a new dataset which is, to the best of our knowledge, the largest
dataset that has been annotated within the argumentation mining field on
clinical data. The dataset is built from the MEDLINE database, consist-
ing of 4198 argument components and 2601 argument relations on five
different diseases (neoplasm, glaucoma, hepatitis, diabetes, hypertension).
A novel aspect of the corpus is the annotation of the effects (i.e., improved,
increased, decreased, no difference, no occurrence) of an intervention on
3351 outcomes.

• We experiment on the annotated data using various Machine Learning
methods relying on deep bidirectional transformers combined with differ-
ent neural networks, i.e., Long Short-Term Memory (LSTM) networks,
Gated Recurrent Unit (GRU) networks, and Conditional Random Fields
(CRFs) in order to extract argument structure and classify outcomes from
RCTs. We propose several novel feature sets and identify configurations
that run best in in-domain and cross-domain scenarios depending on the
diseases present in the dataset. To foster research in the community, we
provide the annotation guidelines, the annotated data as well as all the
experimental software.2;

1We used the dataset and core methods from this article in our publication Mayer et al.,
2020 [18]. The main difference is that this article focuses mainly on the argument-based anno-
tation and analysis of the dataset, and it introduces the outcome annotation and classification
together with the discussion of the argumentation and outcome analysis for evidence-based
deliberation, whereas in Mayer et al., 2020 [18] we study what are the best methods for iden-
tifying argument components and predicting argument relations in Randomized Controlled
Trials.

2The source code is available here: https://gitlab.com/tomaye/ecai2020-transformer_

based_am and the dataset together with the annotation guidelines is available here: https:

//gitlab.com/tomaye/abstrct
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• Our extensive evaluation allows to characterize argumentative components
using the effects on the outcomes we classified, such that we can now
identify for instance when a claim reports about an outcome as being
safe or efficient but the associated side effects are classified as increased.
This combined analysis reveals more fine-grained categorization of the
statements in RCTs.

The paper is organised as follows. In Section 2, we discuss the related liter-
ature pointing out the main advantages of our approach. Section 3 defines the
main guidelines of our annotation studies, and describes the creation process of
our annotated dataset of clinical trials. Section 4 introduces our argumentative
outcome analysis pipeline and discusses the methodological choices we address
in conceiving it. In Section 5, we detail the experimental setting and we report
on the obtained results together with an in-depth error analysis. Conclusions
end the paper.

2 Related Work

In this section, we first introduce the main achievements in the area of Argu-
ment Mining, and then we discuss the main results presented in the literature
to apply the Argument Mining pipeline to different application scenarios, high-
lighting the main advantages of our approach and the peculiarity of the clini-
cal trial scenario. Finally, we present the other approaches to evidence-based
medicine, stressing the importance of combining both argumentative compo-
nents and PICO elements to achieve more insightful analyses of clinical trials.

Argument Mining One of the latest advances in the field of artificial ar-
gumentation [21] deals with the automatic processing of text to extract argu-
mentative structures. This new research area is called Argument(ation) Min-
ing (AM) [7, 8, 9, 10], and it mainly consists of two standard tasks: (i) the
identification of arguments within the text, that may be further split in the
detection of argument components (e.g., claims, evidence) and the identifica-
tion of their textual boundaries; (ii) the prediction of the relations holding
between the arguments identified in the first stage. These relations are then
used to build the argument graphs, where the retrieved argumentative compo-
nents represent the nodes of the graph and the predicted relations correspond to
the edges. Different methods have been employed to address these tasks, from
standard Support Vector Machines (SVMs) to Neural Networks (NNs). AM
methods have been applied to heterogeneous types of textual documents, e.g.,
persuasive essays [22], scientific articles [23], Wikipedia articles [24], political
speeches and debates [25, 26], and peer reviews [27]. However, only few ap-
proaches [28, 15, 16, 17, 18] focused on automatically detecting argumentative
structures from textual documents in the medical domain, such as clinical trials,
clinical guidelines, and Electronic Health Records.
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Argument Mining pipeline The whole AM pipeline (i.e., mining both ar-
gumentative components and the relations connecting them) has been imple-
mented in few application scenarios. In particular, Stab and Gurevych [22]
propose a feature-based Integer Linear Programming approach to jointly model
argument component types and argumentative relations in persuasive essays.
Differently from our data, essays have exactly one major claim each. The au-
thors impose the constraint such that each claim has no more than one parent,
while no constraint holds in our case. In contrast with this approach, Eger et
al. [29] present neural end-to-end learning methods in AM, which do not require
the hand-crafting of features or constraints, using the persuasive essays dataset.
They employ TreeLSTM on dependency trees [30] to identify both components
and relations between them. They decouple component classification and rela-
tion classification, but they are jointly learned, using a dependency parser to
calculate the features. In this paper, we also decouple the two classification
tasks, in line with the claim of [29] that decoupling component and relation
classification improves the performance. Furthermore, the same work addresses
component detection as a multi-class sequence tagging problem [31]. Differently
from their approach, which does not scale with long texts as it relies on depen-
dency tree distance, our approach is distance independent. In addition, whilst
persuasive essay components are usually linked to components close by in the
text, in our dataset links may span across the whole RCT abstract.

Ajjour et al. [32] proposed a deep learning approach for segmentation of text
into argument units. Here, the task is, again, formulated as a sequence tag-
ging problem, where a label is assigned to each token following the BIO-tagging
scheme. The authors only tackle the argument unit segmentation (argumenta-
tive vs non-argumentative) without the further classification of the components.
Contrary to the performed five class argument component detection, this trans-
lates to a three class classification problem, i.e., Arg-B, Arg-I and Arg-O. The
best performing model consists of two BiLSTM, where one is using word embed-
dings and the other syntactic, structural and pragmatic input features (one-hot
vectors). Both BiLSTM outputs are concatenated and put through a dense layer
before it is passed to another (upper) BiLSTM. The output of the last (upper)
BiLSTM is used in the final classification layer. The authors noted an decreased
number of invalid BI sequences with the addition of the second (upper) BiL-
STM. In later work, the authors in [33] further investigated this architecture
with minor changes: they used solely one BiLSTM with word embeddings as
input features and tested the efficacy of the second (upper) BiLSTM. Moreover,
they investigated the effects of adding various attention layers. The results did
not show any major changes in performance with respect to adding the second
(upper) BiLSTM. Also, the addition of attention layers did not improve the
results. In line with these observations, no stacked RNNs or attention layers
are added for the sequence tagging architectures evaluated for argument com-
ponent detection in this work. The idea is to reduce the number of invalid
BI sequences not with a second (upper) RNN layer, but with a CRF. Recent
approaches for link prediction rely on pointer networks [34] where a sequence-to-
sequence model with attention takes as input argument components and returns
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the links between them. In these approaches, neither the boundary detection
task nor the relation classification one are tackled. Another approach to link
prediction relies on structured learning [35]. The authors propose a general
approach employing structured multi-objective learning with residual networks,
similar to approaches on structured learning on factor graphs [36]. Recently,
the argument classification task was addressed with contextualized word embed-
dings [37]. However, differently from our approach, they assume components
are given, and boundary detection is not considered. In line with their work,
we experimented with the BERT [38] base model to address parts of the AM
pipeline [17]. Contrary to this preliminary work, we employed and evaluated
various contextualized language models and architectures on each task to span
the full AM pipeline as well as the outcome analysis.

Evidence-based medicine Only few approaches have applied AM methods
to the kind of text relevant for systematic reviews [15, 16], and their contri-
bution is limited to the detection of argument components. In addition, no
huge annotated dataset for AM is available for the healthcare domain. There
exists a corpus of contradicting claims [39], which was created using research
abstracts of studies considered in systematic reviews related to cardiovascular
diseases, but this corpus does not contain the corresponding evidence backing
those claims. Some systems assisting in automatic evidence extraction have
been proposed in the literature. For instance, ExaCT [40] extracts information
containing PICO elements based on a SVM. It was designed to search full text
articles, but was limited by the scarce training data available. Whereas nowa-
days, there is the EBM-NLP corpus [41], which is a collection of considerable
size of sentences annotated with PICO elements. Similarly, Trenta et al. [42]
proposed a maximum entropy classifier to mine characteristics of randomized
clinical trials in form of PICO elements. Their dataset comprises 99 manually
annotated abstracts. Recently, Jin and Szolovits [43] proposed deep learning
models to address PICO elements detection, such as BiLSTM CRF combina-
tions, and methods to improve the generalization of these models. Another
system facilitating the evidence gathering process is RobotReviewer [44], which
summarizes the key information of a clinical trial. These key information com-
prise the interventions, trial participants and risk of bias, where the latter is
related to finding potential design flaws of the studies. Recently, Lehman et
al. [45] proposed an approach to infer if a study provides evidence with respect
to a given intervention, comparison and outcome. Additionally to the classifi-
cation, the model returns a sentence from the document supporting the classi-
fication result. These rationals [46] are important evidence which support the
classification result in a human readable way. Our approach is similar, but fo-
cuses more on these rationals, which we call argument components. While they
start with a prompt of PICO elements, we set up our pipeline in the opposite
direction, where the first step is to find evidence in the form of an argumen-
tation graph, which is human readable and then, in a subsequent step, enrich
these graphs with information about the contained PICO elements. This way,
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the comparison between the intervention and comparator, which is an essential
part of medical evidence, is not explicitly modelled in a machine-readable for-
mat, as the above mentioned Evidence Inference task does it. This information
about the direct comparison is only available in form of natural language text
in the nodes of the argumentation graph and a future research direction could
be to explicitly model and formalize this comparative relation. However, our
approach has the advantage to provide a more articulated and richer kind of ev-
idence through argument graphs, i.e., including outcome unspecific information
in the argumentation graph (e.g., limitations of the study where the authors
state that their findings need further confirmation), which is crucial in judging
the results of a study.

3 Annotation studies and dataset creation

In this section, we present an extension of the dataset of Randomized Controlled
Trials annotated with Argument Mining labels we firstly introduced in [16]. The
reasons for the augmentation of this dataset are manifold. Firstly, the previous
version of the dataset was relatively small and therefore not reliable enough to
make robust predictions about the generalizabilty of a model. Secondly, the
dataset was annotated with respect to the argument component identification
layer only, and it was thus missing a fundamental part of the argument structure,
i.e., the relations holding between argumentative components. In addition, the
possibility of adding among the main topics a more body-part-unspecific disease,
as described in the following section, further offered the opportunity to reuse the
previous smaller disease specific subsets as separated test sets and examine the
model potential generalizabilty. Finally, after collecting feedback on the dataset
from medical domain experts, we decided to incorporate information about the
observed outcome in the argument structure. We expect that this additional
information makes the argumentative approach to clinical trials more approach-
able for clinicians, which usually do not have any background in argumentation,
but are very familiar with the meaning and use of PICO elements.

In the following, Section 3.1 describes the data collection phase. Section 3.2
describes the three types of annotations carried out on the collected dataset,
namely :

• Argument Components: Comprising major claims, claims and evi-
dence, where a major claim is a general statement about properties of
treatments or diseases, a claim is a concluding statement, and an evi-
dence/premise is an observation or measurement in the study (see subsec-
tion 3.2.1).

• Argumentative Relations: The relations are connecting argumentative
components to form the graph structure of an argument. Components can
be either supporting, attacking or partially-attacking other components
(see subsection 3.2.2).
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• Effect-on-Outcome: It describes the effect an intervention has on each
outcome (evaluated parameter) of a study. Effects were annotated when
they improved, increased, or decreased, or when there was no observable
difference or an outcome did not occur (see subsection 3.2.3).

Section 3.3 reports on the annotation process and the Inter Annotation Agree-
ment, and discusses cases of disagreement.

3.1 Data collection

As stated in the previous section, we annotate Randomized Controlled Trials
(RCTs) to be in line with Evidence-Based Medicine (EBM) guidelines. EBM
builds the decision-making on analysing scientific information from systematic
reviews of clinical trials. While clinical trials also comprise observational stud-
ies, in EBM one opts for randomized controlled trials, which provide more com-
pelling evidence [47] than the observational studies making RCTs the most
valuable sources of evidence for the practice of medicine [48]. Albeit there are
more factors for this decision, one crucial aspect is the random process of as-
signing trial participants to at least two comparison groups, which eliminates
selection bias. One group receives the intervention under assessment, while the
other group, the control group/arm, receives either an established treatment,
a placebo or no intervention at all. The intervention efficacy is determined as
a comparison with respect to the control group(s). Due to the randomized al-
location of participants allowing the use of probability theory, the likelihood
that any difference between the groups was by chance can be estimated [49].
The documentation of the study is defined by the CONSORT3 policies. Due to
this comparative nature of the underlying data, for AM, this means that the
argumentation is also built mostly on relative statements4.

We decided to restrict our work to the abstracts of the trials following the
argumentation of Trenta et al. [42], such that “abstracts are the first section
readers look at when evaluating a trial”. Moreover, they are freely accessed,
while full text articles may require a paid subscription to unlock.

We rely on and extend our previous dataset AbstRCT [16], the only available
dataset of randomized controlled trial abstracts annotated with the different ar-
gument components (i.e., evidence, claims and major claims). Such dataset
contains the same abstracts used in the dataset of RCT abstracts presented by
Trenta et al. [42], that were retrieved directly from PubMed5 by searching for
the disease name and specifying that it has to be a RCT, adopting Strategy 1
in [42]. The first version of the dataset with coarse labels contained 919 argu-
ment components (615 evidence and 304 claims) from 159 abstracts comprising 4
different diseases (i.e., glaucoma, hypertension, hepatitis b, diabetes). To obtain

3http://www.consort-statement.org/
4In our dataset, about 70% of the annotated argumentative components contain either an

explicitly stated comparison or an implicit comparison reported as measured values.
5PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) is a free search engine accessing pri-

marily the MEDLINE database on life sciences and biomedical topics.
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more training data, we have extracted from PubMed 500 additional abstracts
following the aforementioned strategy. We selected neoplasm6 as a topic, as-
suming that the abstracts would cover experiments over dysfunctions related to
different parts of the human body (providing therefore a good generalization as
for training instances).

3.2 Data annotation

The annotation of the dataset was started after a training phase based on the
annotation guidelines we defined7, where amongst others the component and
outcome boundaries were topic of discussion. Gold labels were set after a recon-
ciliation phase, during which the annotators tried to reach an agreement. While
the number of annotators vary for the three annotation phases (i.e., argumenta-
tive component, argumentative relation and effect-on-outcome annotation), the
inter-annotator agreement (IAA) was always calculated with three annotators
based on a shared subset of the data. The third annotator was participating in
each training and reconciliation phase as well.

In the following, we describe the data annotation process for the argument
components layer in the neoplasm dataset (i.e., the newly added topic with
respect to the preliminary version of AbstRCT [16]), the argumentative relations
layer in the whole dataset, and for the effect-on-outcome layer also in the whole
dataset.

3.2.1 Argument Components

Following the guidelines for the annotation of argument components in RCT
abstracts provided in [16], two annotators with background in computational
linguistics8 carried out the annotation of the 500 abstracts on neoplasm. In the
following, example annotations of the abstract or parts of it are shown, where
claims are written in bold, major claims are highlighted with a dashed underline,
and evidence are written in italics. An illustration of an annotated abstract is
shown in Example 3.1.

Example 3.1 Extracellular adenosine 5’-triphosphate (ATP) is involved in the
regulation of a variety of biologic processes, including neurotransmission, mus-
cle contraction, and liver glucose metabolism, via purinergic receptors. [In
nonrandomized studies involving patients with different tumor types including
non-small-cell lung cancer (NSCLC), ATP infusion appeared to inhibit loss of
weight and deterioration of quality of life (QOL) and performance status]. We
conducted a randomized clinical trial to evaluate the effects of ATP in patients

6While neoplasms can either be benign or malignant, the vast majority of articles is about
malignant neoplasm (i.e., cancer). We stick with neoplasm as a term, since this was the MeSH
term used for the PubMed query.

7Guidelines can be found here: https://gitlab.com/tomaye/abstrct
8In [50], researchers with different backgrounds (biology, computer science, argumentation

pedagogy, and BioNLP) have annotated medical data for an AM task, showing to perform
equally well despite their backgrounds.
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with advanced NSCLC (stage IIIB or IV). [...] Fifty-eight patients were ran-
domly assigned to receive either 10 intravenous 30-hour ATP infusions, with the
infusions given at 2- to 4-week intervals, or no ATP. Outcome parameters were
assessed every 4 weeks until 28 weeks. Between-group differences were tested for
statistical significance by use of repeated-measures analysis, and reported P val-
ues are two-sided. Twenty-eight patients were allocated to receive ATP treatment
and 30 received no ATP. [Mean weight changes per 4-week period were -1.0 kg
(95% confidence interval [CI]= 1.5 to -0.5) in the control group and 0.2 kg (95%
CI =-0.2 to +0.6) in the ATP group (P=.002)]1. [Serum albumin concentration
declined by -1.2 g/L (95% CI=-2.0 to -0.4) per 4 weeks in the control group but
remained stable (0.0g/L; 95% CI=-0.3 to +0.3) in the ATP group (P =.006)]2.
[Elbow flexor muscle strength declined by -5.5% (95% CI=-9.6% to -1.4%) per 4
weeks in the control group but remained stable (0.0%; 95% CI=-1.4% to +1.4%)
in the ATP group (P=.01)]3. A similar pattern was observed for knee extensor
muscles (P =.02). [The effects of ATP on body weight, muscle strength, and
albumin concentration were especially marked in cachectic patients (P=.0002,
P=.0001, and P=. 0001, respectively, for ATP versus no ATP)]4. [...] This
randomized trial demonstrates that [ATP has beneficial effects on weight,
muscle strength, and QOL in patients with advanced NSCLC]1.

Claims In the context of RCT abstracts, a claim is a concluding statement
made by the author about the outcome of the study. It generally describes
the relation of a new treatment (intervention arm) with respect to existing
treatments (control arm) and is derived from the described results. An example
of comparative conclusions can be seen in the Examples 3.2 and 3.3, where the
latter is negated.

Example 3.2 [Trabeculectomy was more effective than viscocanalosto-
my in lowering IOP in glaucomatous eyes of white patients.]

Example 3.3 [Latanoprost 0.005% is not inferior (i.e., is either more
or similarly effective) to timolol and produces clinically relevant IOP
reductions across pediatric patients with and without PCG]

Example 3.4 [Brimonidine provides a sustained long-term ocular hy-
potensive effect, is well tolerated, and has a low rate of allergic re-
sponse]

Additionally to the comparative statements, claims can also assert general
properties, e.g., that an intervention was well tolerated or had beneficial effects
with respect to an outcome, like in Examples 3.1 and 3.4. These statements
can be in a coordinate structure, which poses the question how to split them.
Ideally, the goal is to make an argument component as small and self-contained
as possible. For coordinate structures, this means to split them into separated
components. For instance, in Example 3.4, this translates to one claim talking
about the long-term ocular hypotensive effect and another one about the low
rate of allergic response. Dividing the conclusions in these smaller claims makes
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the argumentative structure more transparent, because it is clear which assertion
an evidence supports. While for a coordination it cannot necessarily be seen at
first glance, especially for general outcomes with multiple aspects like quality
of life. In practice, most of these fine-grained discriminations are prohibited
by the syntactic structure of a sentence. Usually conjunctive and disjunctive
coordinations are written in an elliptical manner, as it is shown in Example 3.4.
The problem with elliptical coordinate structures is that if we divide them into
their single conjuncts, these conjuncts are not self-contained: the necessary
contextual information, usually the omitted subject, is missing, preventing them
to be a stand-alone argument component. This forces the annotators to treat
them as one component increasing the complexity of the subsequent relation
annotation and classification task.

Major claims Major claims are usually defined as a stance of the author
in the AM literature. Here, they are defined more as a general/introductory
claim about properties of treatments or diseases, which is supported by more
specific claims. They do not necessarily occur at the end of an abstract as a
final conclusion, but are mostly introduced before as a general hypothesis to be
tested or as an observation of a previous study to be confirmed. A major claim
with the goal of representing an introductory claim is shown in Example 3.1.
Given the negligible occurrences of major claims in our dataset (only 3% of the
components are major claims) and the structural similarity to normal claims,
we merge them with the claims for the classification task.

Evidence An evidence in RCT abstracts is an observation or measurement
in the study, which supports or attacks another argument component, usually a
claim. Those observations comprise side effects and the measured outcome of the
intervention and control arm. They are observed facts, and therefore credible
without further justifications, as this is the ground truth the argumentation
is based on. Evidence can either state exact measurements, see for instance
evidence 1-3 in Example 3.1, or explicitly expressed comparisons, as shown in
Examples 3.5, 3.6 and 3.8. A common part in medical argumentation are
outcomes which were not observed. For clinical decision making not only the
observed change in outcomes play an important role, but also the absence of,
for example, a side-effect. Section 3.2.3 elaborates more on this matter. Since
these observations of absence are important, we consider them as evidence in
the argumentation, as illustrated in Example 3.7.

Example 3.5 [Headache, fatigue, and drowsiness were similar in the 2 groups.]

Example 3.6 [Pulse rate was significantly reduced with timolol, but not with
latanoprost.]

Example 3.7 [No evidence of tachyphylaxis was seen in either group.]

Example 3.8 [Dry mouth was more common in the brimonidine-treated group
than in the timolol-treated group (33.0% vs 19.4%)]1, [but complaints of burning
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and stinging were more common in the timolol-treated group (41.9%) than in
the brimonidine-treated patients (28.1%)]2.

Example 3.9 [Mean (+/-SD) preoperative and 1-year postoperative intraocular
pressures in the 5-fluorouracil group were 26.9 (+/-9.5) and 15.3 (+/-5.8)mm
Hg, respectively. In the control group these were 25.9 (+/-8.1)mm Hg, and 15.8
(+/-5.1) mm Hg, respectively ]

Similarly to the aforementioned claims, evidence are often stated as conjunctive
coordinations and it is important that multiple observed measures are annotated
as multiple pieces of the same evidence. Again, the problem of how to divide
them into separated self-contained units arises. In Example 3.5, the syntax
does not allow splitting the conjunction and therefore the sentence as a whole is
annotated as one single evidence. Exceptions can be adversative coordinations
(e.g., but, except for). While they are usually also elliptical (see for instance
Example 3.6), in some cases they are not and can be seen as a separated ev-
idence, as illustrated in Example 3.8. Here, evidence 2 is self-contained and
can be processed without evidence 1. In rare cases, evidence can span multiple
sentences, like in Example 3.9. As stated before, the efficacy of an intervention
in a RCT is measured as a comparison to the control group. In Example 3.9,
each sentence on its own misses the relevant information to make the compari-
son from the other group. In terms of argumentation, this is a linked argument
structure, where multiple premises require each other to support a conclusion.
Given the interdependence of the premises in such a structure, we decided to
annotate it as one component.

3.2.2 Argumentative Relations

In order to identify complex argumentative structures in the data, it is crucial to
annotate the relations, i.e., directed links connecting the components. Those re-
lations are connecting argument components to form the argumentation graphs
representing the structure of an argument. Existing approaches in AM try to
form a tree structure with one root node [22]. Our approach is more data driven,
and we assume that a trial abstract contains at least one argument in form of a
tree, where an argument consists of at least one claim which is supported by at
least one evidence. In practice, the average clinical trial in our dataset has be-
tween one and two trees, depending on the number and topic of the claims and
major claims. In general, the annotated arguments are convergent9 or a combi-
nation of convergent and sequential10 arguments [51]. Removing one evidence
does not weaken the other. Given that claims often have a coordinate structure
or make general statements, i.e., that an intervention was well tolerated, there
are various independent pieces of evidence linked to a single claim making most
of the arguments in our data convergent. In our data, sequential arguments

9A convergent argument consists of a claim, which is supported by independent
premises/evidence [51].

10Sequential arguments consists of at least two premises/evidence, where one supports the
other, which is supporting the final claim.
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can be seen mostly in combination with two supporting claims or major claims.
There, one claim supported by evidence supports or attacks another (major)
claim. In 19% of the cases, claims are linked to other (major) claims.

Generally speaking, an argumentative relation is a directed link from an
outgoing node (i.e., the source) to a target node. The nature of the relation can
be supporting or attacking, meaning that the source argumentative component
is justifying or undermining the target argumentative component. Links can
occur only between certain components: evidence can be connected to either a
claim (in 92% of the cases) or another evidence (in 8% of the cases), whereas
claims can only point to other claims (including major claims). The polarity
of the relation (supporting or attacking) does not limit the possibility to what
type of component a component can be connected. Theoretically, all types
of relations are possible between the allowed combination pairs. Practically,
some relations occur rather seldom compared to the frequency of others. For
example, in 78% of the cases when an evidence is linked to another evidence it
is an attack or a partial-attack. As stated previously, in rare cases, components
can be unconnected. Additionally to the aforementioned occurrence, this can
happen for major claims in the beginning of an abstract, whose function is to
point out a general problem, unconnected to the outcome of the study itself.

As shown in Example 3.1, argument components can contain negations. For
many text mining tasks negation detection and scope resolution are important
subtasks, because negations entirely change the meaning of a sentence. Espe-
cially in the biomedical domain, the use of negative assertions (in particular,
negating negative phrases, like not inferior) is abundant [52]. This poses fur-
ther challenges for the automatic processing of this kind of text. In the case
of AM, negations do also play an important role. Here, the impact is related
rather to the correct classification of the relation than the correct linking of the
components. Failing to correctly detect a negation can culminate in assigning
the wrong polarity label, i.e., attack instead of support. Again, posing a great
challenge for the relation classification part of the AM pipeline on clinical trials.

Attack A component is attacking another one, if it is i) contradicting the
proposition of the target component, or ii) undercutting its implicit assumption
of significance, e.g., stating that the observed effects are not statistically signif-
icant. The latter case is shown in Example 3.10. Here, Evidence 1 is attacked
by Evidence 2, challenging the generality of the prior observation.

Example 3.10 [True acupuncture was associated with 0.8 fewer hot flashes per
day than sham at 6 weeks,]1 ←−−−−Attack

[but the difference did not reach statistical
significance (95% CI, -0.7 to 2.4; P = .3).]2

We further make the assumption that when the trial reports allergic reac-
tions or other adverse effects, the author as a domain expert knows if these
observations are disproportional or acceptable. So, when an intervention is
claimed to be well tolerated, the evidence reporting these effects is considered
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as supporting unless the opposite is clearly stated, e.g., in form of severe or
other modifiers.
The partial-attack is used when the source component is not in full contradiction,
but weakening the target component by constraining its proposition. Those
can be implicit statements about the significance of the study outcome, which
usually occur between two claims, as in Example 3.11. Attacks and partial-
attacks are identified with a unique class for the relation classification task,
because these relations are underrepresented in the dataset. In the training set
only 2,5% are attack and 12% are partial-attack relations.

Example 3.11 [SLN biopsy is an effective and well-tolerated proce-
dure.]1.←−−−−−−−−−−−

Partial−attack [However, its safety should be confirmed by the

results of larger randomized trials and meta-analyses.]2

Support Contrary to the attack relations, the support relation is not further
subdivided. While an evidence usually provides support for a certain aspect
of the more general claim, it would have been often ambiguous to distinguish
between partially and fully support relations, especially with respect to the im-
pact of observed adverse effects. Thus, all statements or observations justifying
the proposition of the target component are considered as supporting the target
(even if they justify only parts of the target component). In Example 3.1, all
the evidence support Claim 1.

We carried out the annotation of argumentative relations over the whole
dataset of RCT abstracts, including both the first version of the dataset [16]
and the newly collected abstracts on neoplasm.

3.2.3 Effect-on-Outcome

Argumentative structure annotations alone are for most domain specific AM use
cases sufficient. In the case of EBM, where one wants to facilitate the analysis
process of trials by clinicians, further medical annotations can be beneficial. For
this reason, we decided to annotate the effect an intervention has on an Outcome
(one of the PICO elements), e.g., if the outcome was increased, decreased or
was not affected. Contrary to Lehman et al. [45], which also use these three
labels11, we added two extra labels, which we consider essential to fully cover
the reports about an outcome. These labels are (i) the NoOccurrence label,
when an outcome, e.g., a side effect, did not occur, and (ii) the Improved label
for cases in which it is not clear from the text if the beneficial effect is due
to a decrease or increase in the measured value of the outcome. We consider
the addition of the NoOccurrence label important for medical argumentation,
even though these reports are less frequent. For decision-making, it is not only
relevant which effects were observed, but also which (side-)effects did not occur.

11We dropped the significantly from the labels, because even though we made an implicit
assumption of significance earlier, we do not know beforehand how many of the outcomes
are significant, since the model cannot take components undercutting this assumption into
account.
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Class #outcomes %

Improved 831 25
Increased 765 23
Decreased 782 23
NoDifference 897 27
NoOccurrence 76 2

Total 3351 100

Table 1: Statistics of the outcome dataset. Showing the numbers of Improved,
Increased, Decreased, NoDifference and NoOccurrence classes independent of
the disease-based subsets.

Note that we decided to not annotate our data with the other PICO elements.
Firstly, because argumentative components contain information about the trial
population only in roughly 1-2% of the cases. And secondly, there exists already
a larger corpus specialised on PICO annotations [41]. Before we started annotat-
ing the Effect-on-Outcome, we assessed whether the argumentative components
contain enough description of those effects to have a comprehensive coverage
in our dataset. Theoretically, following the CONSORT statement [53] authors
should report all PICO elements in the abstract. We found that claims contain
approximately in 72% of the cases at least one PICO element (P: 2%, I/C: 51%,
O: 47%) and evidence contain it approximately in 87% (P: 1%, I/C: 27%, O:
72%) of the cases. For our annotation, we consider explicit mentions of effects
on an outcome. From our 4198 argument components, 2195 fulfilled this crite-
ria. The others report either only the measured numerical values of outcomes
(704) making the effect implicit, or general statements without an indication of
a trend, e.g., that some side effect was mild or common. Moreover, many com-
ponents, especially claims, give conclusive statements, e.g., that a treatment is
safe or efficient, without listing the specific outcomes. Note that the annotation
(and later the classification) is even more complex as about 50% of the effect-
on-outcome containing argument components report either the outcome or the
intervention in an abbreviated form. This trend is similar to the distribution of
abbreviations in all argument components, where about 45% contain an abbre-
viation of either the intervention, or outcome or both. The detailed annotation
statistics are reported in Table 1.

Increased/Decreased These labels are used when it is stated that the out-
come was higher, like in Example 3.12, or lower after an intervention, like in
Examples 3.12 and 3.14. Generally, it should not contain a sentiment, like better
score. In rare cases, where an outcome was reported as worse, annotation guide-
lines were set to infer the value, e.g., a worsened side-effect usually means an
increased/more intense and not a decrease occurrence. There were only a hand-
ful of cases were this was not achievable without fundamental medical expertise.
These examples have been discarded.
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NoDifference An effect on an outcome is labeled as NoDifference, when there
was no change in the outcome or when the two treatments resulted in similar
values, i.e., there was no difference in the outcome between the two treatment
arms. The latter case is shown in Example 3.12, where the response rates of
both interventions are similar.

Example 3.12 Raltitrexed showed similar [response rates]NoDifference to the de
Gramont regimen, but resulted in greater [toxicity]Increased and inferior [quality
of life]Decreased.

NoOccurrence This label is used when an outcome, usually an adverse effect,
was not observed, as shown in Example 3.13. Moreover, this example illustrates
the division of coordinate structures in a single component. Contrary to argu-
ment components, the problem with ellipses preventing the division is lower,
because the annotation units are smaller.

Example 3.13 No cases of drug-related [neutropenic fever]NoOccurrence,
[sepsis]NoOccurrence, or [death]NoOccurrence occurred.

Improved This label is used when the described outcome explicitly had a ben-
eficial effect and no information if the measured value increased or decreased
is provided, like in Example 3.14. There, two problems come together. First,
bleb morphology, like quality of life, is a general term comprising various sub-
scales, for instance, bleb wall reflectivity, visibility of drainage route or presence
of hyper-reflectivity area. Second, the effect description better does not allow
any conclusions about the measured values without concrete expert knowledge
about which subscale should be increased or decreased to result in a better bleb
morphology. Thus, the only certain information, which can be drawn from this
statement, is that the bleb morphology improved.

Example 3.14 Ologen resulted in a lower long-term [postoperative IOP]Decreased,
a better [bleb morphology]Improved, and fewer [complications]Decreased.

3.3 Inter-Annotator Agreement

In total for all tasks, three annotators were participating in the annotation pro-
cess. During the training phase the guidelines were refined in multiple rounds of
discussion between all annotators. After the training phase, where the annota-
tors made themselves familiar with the tasks and the data, in order to validate
the annotations, the inter-rater reliability or inter-annotator agreement (IAA)
was calculated on a reserved and previously unseen subset of the data. The sub-
set was sampled randomly from the collected data and each rater annotated the
data independently. While the subsequent full annotation of each sub-task was
not always conducted with all three annotators, the corresponding IAA subset
was always annotated by all three annotators and the agreement was calculated
respectively.
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As the statistical measure for assessing the reliability of the annotations,
we used Fleiss’ kappa [54], a generalization of Scott’s pi. It is suitable for a
finite nominal-scale and contrary to the latter, it can be used for more than
two raters. Another plausible measure would have been Krippendorff’s alpha.
While it is more flexible and allows other scales and missing data, our data is
purely nominal and complete. Furthermore, having a highly imbalanced dataset
could lead to instances being correctly classified by chance. Both measures
control this providing a more reliable agreement score. While Krippendorff’s
alpha is based on the observed disagreement corrected for disagreement expected
by chance, Fleiss’ kappa considers the observed agreement corrected for the
agreement expected by chance [55]. In the case of complete nominal data12,
both measures are similar in representing the reliability [55, 56].

Argument Components For this task, the IAA was calculated for token-
level annotation. This way not only the label mismatch between claim and
evidence is considered, but also the disagreement in boundary annotation. IAA
among the annotators has been calculated on 30 abstracts, resulting in a Fleiss’
kappa of 0.72 for argumentative components and 0.68 for the more fine-grained
distinction between claims and evidence. Both values are higher than 0.61
meaning substantial agreement for both tasks [57].

Argumentative Relations Contrary to the other tasks reported in this pa-
per, here, the IAA was calculated not on token-level but considering each argu-
ment component as a unit. Annotation was considered as agreed, when both,
the relation label and the assigned target component, were the same. IAA has
been calculated on the same 30 abstracts annotated in parallel by three an-
notators (the same two annotators that carried out the argument component
annotation, plus one additional annotator). The resulting Fleiss’ kappa was
0.62, meaning substantial agreement.

Effect-on-Outcome Similarly to the argument component annotation, the
agreement was calculated on token-level. Since the Effect-on-Outcome descrip-
tions occur only on a subset of the argument components, we increased the
number of abstracts included in the IAA calculation to 47. This resulted in a
Fleiss’ kappa of 0.81, which means almost perfect agreement [57].

3.3.1 Disagreement

In the following, we discuss the observed disagreement between the annotators
and the associated difficulties, which were examined in the reconciliation phase.

For the argument component annotation, raters disagreed on the exact de-
termination of the boundaries. For example, conjunctive adverbs like however

12In our dataset, all N observations are assessed by all n raters, which makes our IAA
subset complete per definitionem.
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or in general can play an important role. In Example 3.15, in general is an im-
portant modifier which should be included in the component. Also, for phrases
like this suggests, it can be argued that they are an important part of the argu-
ment component, because they underline the conclusive function of a claim and
therefore serve as potential discriminators, in particular for cases where it is not
directly clear if the statement is an observed outcome or a drawn conclusion.
This is mostly the case when no exact measurement or p-value is stated, as in
Example 3.16.

Example 3.15 In general, the tolerance to medication was acceptable.

Example 3.16 Latanoprost provided greater mean IOP reduction than did
Brimonidine.

Further common disagreement was observed between claims and major claims,
which can be very similar in their function as a (general) summary or conclu-
sion. This strengthened us in the decision to merge these two labels later in the
classification. Another common conflict was the annotation of too general or
co-referring components, which would not be self-contained after removing the
context.

Concerning the relation annotation, most of the disagreement was not in
annotating the relation label, but in assigning the target component, with an
exception for the attack and partial-attack labels. As for the claims and major
claims, this further endorsed the label merge for classification. Linking com-
ponents lead to conflict in cases where multiple claims were very similar. One
could either see a sequential structure if one considers one of the claims less
specific, or two separated claims, which share parts of their evidence. In the
reconciliation phase, we decided against the latter option to avoid this kind of
divergent argument structures.

For the effect-on-outcome annotation, one of the main disagreements be-
tween the annotators was regarding how to annotate enumerations separated
by a backslash (e.g., anthralogia/myalgia), whether to annotate both as one
outcome or annotate them as separated entities. It was decided to label them
separately. Similar to this, the coordination of outcomes (e.g., mood, QOL or
healthcare utilization) were also labeled like that, unless the separation impli-
cates losing information related to the outcomes (e.g., liver and cardiac toxici-
ties).

Another topic of discussion was about the inclusion of extra information
relevant to the outcome or not, i.e., setting the exact boundaries. This led
to further discussion on what is considered relevant information. In the end,
it was decided to only include the tokens that directly affect the semantics of
the outcome (e.g., overall QoL, global QoL scores, emphirreversible toxicity).
The tokens left apart were those that do not change the semantic of such (e.g.,
severity of other toxicities, rating of cosmetic results, quality adjusted survival
time). A full sentence is provided in Example 3.17.

Example 3.17 Ratings of [cosmetic results]Decreased decreased with time, in
line with clinical observations of long-term side-effects of radiotherapy.
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Dataset #Evi #Claim #MajCl #Sup #Att

Neoplasm 2193 993 93 1763 298
Glaucoma 404 183 7 334 33
Hepatitis 80 27 5 65 1
Diabetes 72 36 11 44 8
Hypertension 59 26 9 53 2

Total 2808 1265 125 2259 342

Table 2: Statistics of the extended dataset. Showing the numbers of evidence,
claims, major claims, supporting and attacking relations for each disease-based
subset, respectively.

As previously discussed, in the dataset we have a few sentences that present
two different polarities at the same time, for instance Example 3.18. Most of
them are a comparison between the intervention and the control group where the
outcome has different results for each. This was the main disagreement between
the annotators, whether to annotate the outcome twice with each different result
or to follow one of the group results. Ultimately, it was decided to always follow
the intervention group results.

Example 3.18 Men in the control group had significant increases in [fatigue
scores]NoDifference from baseline to the end of radiotherapy (P=0.013), with no
significant increases observed in the exercise group (P=0.203).

Accordingly, with respect to Example 3.18, control group qualifies as the baseline
and exercise group as intervention, meaning that the outcome fatigue scores is
annotated as NoDifference. These cases pose additional challenges to the effect
classifier.

3.4 Dataset Statistics

To summarize, Table 2 reports on the statistics of the argumentative component
and relation annotation, and Table 1 on the Effect-on-Outcome annotations of
the final AbstRCT dataset.

Concerning the argumentative annotations, there are about as half as many
claims as evidence for every data split. While the average rate of evidence to
claim is 2.2, the average claim has 1.87 components pointing at it. The difference
is due to unconnected pieces of evidence and pieces of evidence pointing at other
pieces of evidence, which are in total 22% of all snippets annotated as evidence.
Major claims and attack relations are not as balanced in their distribution over
the various data splits, mostly because of their rare occurrence in general. As
previously stated, the average trial contains one to two argument graphs in form
of trees, with the highest average of 1.98 arguments on the neoplasm subset and
the lowest with 1.3 on the hypertension subset.
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Figure 1: The full argument mining and outcome analysis pipeline on clinical
trials.

4 AM and Outcome Analysis for Evidence-based
Medicine

In this section, we describe the full argument mining and outcome analysis
pipeline we defined, as visualized in Figure 1. More precisely, we first present
our approach for the tasks of argument component detection (Section 4.1) and
argument relation prediction (Section 4.2), and second, we define how to tackle
the task of outcome detection and classification (Section 4.3).

4.1 Argument Component Detection

The first step of the AM pipeline (visualized in Figure 1) is the detection of
argumentative components and their boundaries. As described above, most of
the AM approaches classify the type of component assuming the boundaries
of argument components as given. To merge the component classification and
boundary detection into one problem, we cast the component detection as a
sequence tagging task. Following the BIO-tagging scheme, each token should
be labeled as either being at the Beginning, Inside or Outside of a component.
As we have two component types (i.e., evidence and claims), this translates into
a sequence tagging problem with five labels, i.e., B-Claim, I-Claim, B-Evidence,
I-Evidence and Outside. To model the temporal dynamics of sequence tag-
ging problems, usually Recurrent Neural Networks (RNN) are used. In our
experiments, we evaluate different combinations of RNNs with various types of
pre-trained word representations. Each embedding method is combined with
uni- or bidirectional Long Short Term Memory (LSTMs) or Gated Recurrent
Units (GRUs) networks with and without a Conditional Random Fields (CRF)
as a last layer. The tested word embeddings range from GloVe [58] over fast-
Text [59] to contextualized embeddings, such as ELMo [60], Contextualized
String Embeddings (Flair) [61] or BERT) [38]. For a detailed overview of all
tested embeddings, we refer the reader to [18]. Additionally to these embed-
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dings, we are the first to do token level classification on AM by fine-tuning
different transformer models. To this end, a shallow layer for sequence tag-
ging is put on top of the transformer architecture. The shallow layer can be
either a simple dense layer or one of the RNN CRF combinations for sequence
modelling described above. Besides the original BERT, which is pre-trained on
the BooksCorpus and English Wikipedia, we experiment with BioBERT [62],
which is pre-trained on large-scale biomedical corpora outperforming the gen-
eral BERT model in representative biomedical text mining tasks. The authors
initialize the weights with the original BERT model and train on PubMed ab-
stracts and full articles. Therefore, the vocabulary is the same as for the original
BERT. Contrary to that, SciBERT [63] is trained from scratch with an own
vocabulary. While SciBERT is trained on full papers from Semantic Scholar
it also contains biomedical data, but to a smaller degree than BioBERT. We
chose to use the uncased SciBERT model, meaning that we ignore the capital-
ization of words. As it was the case for the original BERT, the uncased model
of SciBERT performs slightly better for sentence classification tasks than the
cased model.

4.2 Relation Classification

After the argument component detection, the next step is to determine which
relation holds between the different components (Figure 1). We extract valid
BI tag sequences from the previous step, which are then considered to be the
argumentative components of one RCT. Those sequences are phrases and do
not necessarily correspond to full sentences. The list of components then serves
as input for the relation classification.

As explained in Section 2, the relation classification task can be tackled with
different approaches. We treat it as a sequence classification problem, where
the sequence consists of a pair of two components, and the task is to learn
the relation between them. For this purpose, we use self-attending transform-
ers, since these models are dominating the benchmarks for tasks which involve
classifying the status between two sentences [38]. Treating it as a sequence clas-
sification problem gives us two options to model it: (i) jointly modelling the
relations by classifying all possible argumentative component combinations or
(ii) predicting possible link candidates for each entity and then classifying the
relation only for plausible entity pairs. In the literature, both methods are rep-
resented. Therefore, we decided to evaluate both ways of solving the problem.
We experiment with various transformer architectures and compare them with
state-of-the-art AM models, i.e., the Tree-LSTM based end-to-end system from
Miwa and Bansal [30] as employed by Eger et al. [29], and the multi-objective
residual network of Galassi et al. [35]. For option (i), we use bi-directional
transformers [38], which consist of an encoder and decoder which themselves
consist of a multi-head self-attention layer each followed by a fully-connected
dense layer. Contrary to the sequence tagging transformer, where each token
of the sequence has a representation which is fed into the RNN, for sequence
classification a pooled representation of the whole sequence is needed. This rep-
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resentation is passed into a linear layer with a softmax which decodes it into
a distribution over the target classes. We treat it as a three class classifica-
tion problem (Support, Attack and NoRelation), where all possible component
combinations of one trial are classified to determine the relations among them.
To counter the class imbalance caused by this problem formulation, we also
evaluate the effect of exchanging the cross entropy loss with weighted cross
entropy loss to give more importance to the underrepresented classes during
training. We refer to this type of transformer as SentClf. Using this architec-
ture, one component can have relations with multiple other components, since
each component combination is classified independently. This is not the case
in a multiple choice setting (MultiChoice), where possible links are predicted
taking the other combinations into account and which we employ for (ii). Here,
each component (source) is given the list of all the other components as possible
target relation candidates and the goal is to determine the most probable candi-
date as a target component from this list. This problem definition corresponds
to the grounded common sense inference problem [64]. To model components
which have no outgoing link to other components, we add the noLink option to
the choice selection. As an encoder for phrase pairs, we evaluate various BERT
models as detailed above, just as we do for the SentClf task. With respect to
the neural transformer architecture, a multiple choice setting means that each
choice is represented by a vector Ci ∈ RH , where H is the hidden size of the
output of an encoder. The trainable weight is a vector V ∈ RH whose dot
product with the choice vector Ci is the score of the choice. The probability
distribution over all possible choices is given by the softmax, where n is the
number of choices:

Pi =
eV ·Ci∑n
j=1 e

V ·Cj
(1)

The component combination with the highest score of having a link between
them is then passed into a linear layer to determine which kind of relation is
holding between the two components, i.e., Attack or Support. The MultiChoice
model is trained jointly with two losses, i.e., one for the multiple choice task
and one for for the relation classification task. Similar to the experiments on
sequence tagging, BERT, SciBERT and BioBERT are used. Furthermore,
RoBERTa [65] is employed, another new model, which outperforms BERT on
the General Language Understanding Evaluation (GLUE) benchmark. There,
the BERT pre-training procedure is modified by exchanging static with dynamic
masking, using larger byte-pair encoding and batches size, and increasing the
size of the dataset.

Complementary to the results of the isolated relation classification on gold
labels, we report the performance of the whole pipeline, which includes the com-
ponent detection as a prior step. Here, we follow existing work on end-to-end
Argument Mining systems [66, 29] to count true/false positives and false nega-
tives for relation/component combinations to calculate the overall performance.
In particular, the overlap percentage of tokens is used to determine the base if
a predicted component matches the annotated component in the gold standard.
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Similar to the aforementioned work, we report the results for a threshold of 50%
and 100% of matched tokens. However, for determining if a gold component was
detected, we ignore the difference between the argumentative labels (evidence
and claim) and consider them as one class, since the discrimination between
them is not relevant for our relation classification approach.

4.3 Outcome Detection and Classification

In Evidence-Based Medicine, PICO elements play an important role. How-
ever, to the best of our knowledge, we are not aware of any approach in EBM
combining argumentative and outcome analysis to support clinicians in their
investigation over clinical trials. With the goal of taking the automatic analysis
of clinical trials a step further in this direction, in this paper we combine an
analysis of the Effect-on-Outcome with an AM model, enriching the arguments
with valuable medical information and leverage this way the advantages of both
domains.

The outcome analysis is a pipeline composed of two major parts. First, the
outcome detection, which finds and extracts the outcomes of an argumentative
component, and second, the effect classifier, which predicts which consequence
was seen for each outcome after an intervention. Similar to the argument com-
ponent detection, we treat the outcome detection as a sequence tagging task
with the BIO-tagging scheme and we employ the same transformer architec-
ture for sequence tagging. From the prediction results, valid BI-sequences are
extracted, which are considered to be the outcomes reported in a component.
Each outcome together with the component it occurred in is provided as input
into the effect classifier. Given this bipartite input, the problem is similar to
the aforementioned relation classification and thus we treat effect classification
the same way, namely as a sequence classification task. Contrary to the three
class relation classification, in this case it is a five class (Improved, Increased,
Decreased, NoDifference, NoOccurrence) classification problem. Experiments
are conducted with the same pre-trained transformer model types as for rela-
tion classification, i.e., BERT, BioBERT and SciBERT (cased and uncased),
with the exception of RoBERTa. For both parts of the pipeline, i.e., the out-
come detection and effect classifier, the same type of transformer is employed.
Similar to the relation classification, the isolated performance on gold standard
and the overall performance with the prior component detection are reported.
As for the evaluation of the overall performance of the argument mining part of
the pipeline, the best performing sequence tagging model on the gold standard
was selected, i.e., SciBERT in a combination with BiGRU and CRF, and the
results reported for the 50% and 100% threshold of the component detection.

5 Experiments

This section presents experiments conducted on the annotated dataset of clinical
trials introduced in Section 3. We first present the experimental setup of the
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two tasks composing our pipeline, namely argumentative components detection
and relation prediction (Section 5.1) and outcome detection and classification
(Section 5.2). Secondly, we report and discuss on the obtained results, providing
an in-depth error analysis (Section 5.3).

5.1 Argumentative components detection and relation pre-
diction

For sequence tagging, each of the embeddings were combined with either (i) a
GRU, (ii) a GRU with a CRF, (iii) a LSTM, or (iv) a LSTM with a CRF.
For BERT, we use the PyTorch implementation of huggingface13 version 2.3.
For fine-tuning the BERT model, we used the uncased base model with 12
transformer blocks, a hidden size of 768, 12 attention heads, a learning rate of
2e-5 with Adam optimizer for 3 epochs. The same configuration was used for
fine-tuning Sci- and BioBERT. For SciBERT, we used the uncased model with
the SciBERT vocabulary. For BioBERT, we used version 1.1. For RoBERTa,
we increased the number of epochs for fine-tuning to 10, as it was done in the
original paper. The best learning rate was 2e-5 on our task. The number of
choices for the multiple choice model was 6. Batch size was 8 with a maximum
sequence length of 256 subword tokens per input example. The weight factor
for each class in the weighted cross entropy loss for the SentClf transformer
is the normalized number of training samples of this class14. To calculate the
overall performance of our pipeline, we used the best performing component
detection model, i.e., the SciBERT uncased with a BiGRU and CRF. We split
our neoplasm corpus such that 350 abstracts are assigned to the train, 50 to
the development, and 100 to the test set. Additionally, we use the first version
of the dataset [16] to create two extra test sets, both comprising 100 abstracts.
The first one includes only glaucoma, whereas the second is a mixed set with 20
abstracts of each disease in the dataset (i.e., neoplasm, glaucoma, hypertension,
hepatitis and diabetes), respectively.

5.2 Outcome detection and classification

For the sequence tagging architecture, we experimented with the GRU in com-
bination with a CRF, because it provided slightly better results than the LSTM
for the argument component detection. The outcome pipeline implementation
was done with the same Python, PyTorch and transformer versions as the pre-
vious experiments. Both transformer models of the pipeline are of the same
type and initialised with the same pre-trained weights. The effect-of-outcome
annotations are converted into two datasets, one for each part of the pipeline.
The first one in a CoNLL format for token-wise labels, and the second one in csv
format, where each outcome-component pair is listed. This results in multiple
entries, if a component contains more than one outcome. The fine-tuning of the

13https://github.com/huggingface/transformers
14The training set consists of 90% NoRelation, 8.5% Support and 1.5% Attack samples.
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Neoplasm Glaucoma Mixed
Embedding F1 C-F1 E-F1 F1 C-F1 E-F1 F1 C-F1 E-F1

GloVe .58 .50 .66 .52 .36 .68 .50 .36 .64
fastText(fT) .66 .61 .71 .65 .60 .71 .60 .52 .69
ELMo .68 .59 .76 .72 .67 .77 .70 .67 .74
FlairPM .68 .60 .75 .72 .69 .75 .68 .64 .72

fine-tuning BERT .85 .78 .90 .86 .76 .89 .88 .81 .91
fine-tuning BioBERT .84 .87 .90 .91 .93 .91 .91 .91 .92
fine-tuning SciBERT .87 .88 .92 .89 .93 .91 .88 .90 .93

Table 3: Results of the multi-class sequence tagging task are given in macro F1.
The binary F1 for claims are reported as C-F1 and for evidence as E-F1. Best
scores in each column are marked in bold.

models is done separately, each task on its own dataset version, with the same
configuration of hyper-parameters as for the argument component detection.
Token-wise evaluation is done on the full pipeline output, which is reconverted
to the CoNLL format to compare against the gold labels, taking the propagated
error from the first pipeline part into account. We split our annotated dataset
into a train and test set (80% and 20%, respectively) respecting the class dis-
tribution of the overall dataset in both subsets. This way we break with our
previous methodological choice of having one in-domain test set and two out of
domain sets, as it was the case for the evaluation of the AM pipeline. Given
the size of our dataset and the fact that our annotations are imbalanced with
respect to certain classes (see Section 3), it is not feasible to maintain these
three test sets and ensure at the same time that they have the same size, as
done for experiments on the AM pipeline (see Section 5.1), i.e., 100 abstracts
each. Whilst it would be indeed interesting to see the effects the comparison of
three different test sets offers, test sets with different sizes do not allow for a
fair comparison.

5.3 Results

The following sections present and discuss the empirical results of our experi-
ments on both modules of our pipeline. More precisely, the evaluation of our
AM module for RCTs is reported in Section 5.3.1 and the outcome analysis
module in Section 5.3.2. An in-depth error analysis completes each section.

5.3.1 Argument Mining Pipeline

Sequence Tagging We show the results for a selection of sequence tagging
models in Table 3. For a more detailed report, we refer the reader to [18].
The differences of the various shallow layers, which are required to make BERT
suitable for sequence tagging, are shown exemplary in Table 4 for the uncased
BERT base model. Results calculated on token level are given on all three test
sets in macro multi-class F1-score and for claim and evidence, respectively.
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Neoplasm Glaucoma Mixed
F1 C-F1 E-F1 F1 C-F1 E-F1 F1 C-F1 E-F1

dense layer .60 .69 .83 .55 .63 .80 .57 .65 .83
CRF .84 .78 .90 .85 .81 .89 .85 .79 .90
GRU+CRF .84 .78 .90 .80 .81 .87 .81 .78 .90
LSTM+CRF .65 .73 .89 .63 .78 .86 .64 .76 .88
BiGRU+CRF .85 .78 .90 .89 .76 .89 .88 .81 .91
BiLSTM+CRF .80 .77 .89 .81 .82 .88 .81 .79 .90

Table 4: Comparison of various architectures for the shallow layer extension of
BERT for the sequence tagging task. Results are given in macro F1-score. The
binary F1 for claims are reported as C-F1 and for evidence as E-F1.

Generally, evidence scores are higher than claim scores, leading to the con-
clusion that claims are more diverse than evidence. The explanation is that,
since natural language reports of measurements in clinical trials vary mostly
only in the measured parameter and its values, claims can be made about al-
most everything. Another observation is that the performance of the models
trained on neoplasm data do not significantly decrease for test sets on other
disease treatments. This fact supports our choice of a more general high level
disease type like neoplasm for training the models. The performance for many
model combinations even increases on the glaucoma test set. The glaucoma test
set comprises only a handful of different glaucoma treatments and is therefore
less diversified than the neoplasm or mixed test sets. This is ideal with respect
to the application of such models, where clinicians will compare studies for a
specific disease treatment. Looking at the main difference in the results, fine-
tuning transformers shows a significant improvement to other models, where
SciBERT with .87 F1-score is the best performing one.

Taking a look at the various options for the sequence modelling shallow layer
on top of the transformer in Table 4, the most notable difference is achieved by
adding a CRF. A CRF forces the model to consider all labels of a sequence in-
stead of making an independent prediction for each token. Interestingly, adding
a uni-directional GRU or LSTM between the transformer and the CRF does not
increase the overall results. Replacing the uni-directional with a bi-directional
RNN increases the performance only slightly with respect to having no RNN
at all. Interpreting the results, this means that the transformer part actually
captures the necessary information for the classification task, while the sequence
modelling of the RNN becomes redundant. The only marginal increase of the
bi-directional GRU is most likely more due to the increase in trainable network
parameters than the actual recurrent architecture. In a direct comparison be-
tween GRU and LSTM, both RNN types deliver results in a comparable range,
where the GRU does seem to show more reliable results. For example, the .65
macro F1-score on the neoplasm test set for the uni-directional LSTM is due
to the complete failure of correctly detecting B-Claim tokens, which the GRU
counterpart does not struggle with. Similar observations were found for the
bi-directional variants. Here, the BiLSTM misclassifies B-tokens as I-tokens of
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Method Neoplasm Glaucoma Mixed

Tree-LSTM .37 .44 .39
Residual network .42 .38 .43

BERT MultiChoice .58 .56 .55
BioBERT MultiChoice .61 .58 .57
SciBERT MultiChoice .63 .59 .60

BERT SentClf .62 .53 .66
BioBERT SentClf .64 .58 .61
SciBERT SentClf .68 .62 .69
SciBERT SentClf (WeightedCrossEntropyLoss) .68 .70 .70
RoBERTa .67 .66 .67
RoBERTa (WeightedCrossEntropyLoss) .68 .67 .67

Table 5: Results of the relation classification task, given in macro F1-score.

the correct component type, which translates into a lower macro F1-score.

Relation Classification The results for relation classification are shown in
Table 5. Results are given on all three test sets in macro multi-class F1-score.

The Tree-LSTM based end-to-end system [29] performed the worst with
a F1-score of .37. This can be explained by the positional encoding in the
persuasive essay dataset being more relevant than in ours. There, components
are likely to link to a neighboring component, whereas in our dataset the position
of a component only partially plays a role, and therefore the distance in the
dependency tree is not a meaningful feature. Furthermore, the authors specify
that their system does not scale with increasing text length. Especially detailed
reports of measurements can make RCT abstracts quite long, such that this
system becomes not applicable for this type of data.

The residual network [35] performed better with a F1-score of .42. The
main problem here is that it learns a multi-objective for link prediction, relation
classification and type classification for source and target component, where the
latter classification step is already covered by the sequence tagger and therefore
unnecessary at this step.

Similar to sequence tagging, one can see a notable increase in performance
when applying a BERT model. Comparing the specialized and general BERT
model, the Bio- and SciBERT increase the performance by up to .06 F1-score.
Interestingly, RoBERTa delivers comparable results even though it is a model
trained on general data. We speculate that parts of the web crawl data which
was used to train RoBERTa contain PubMed articles, since they are freely avail-
able on the web. Looking at the difference between the MultiChoice and SentClf
architectures, the SentClf delivers slightly better results, but the drawback is
that this technique tends to link components to multiple components. Since
most of our components have only one outgoing edge, it creates a lot of false
positives, i.e., links which do not exist. With respect to exchanging the loss
function, the weighted cross entropy helps the model to learn a better represen-
tation of the underrepresented classes. This is notable in the slightly increased,
but more stable performance of SciBERT on the glaucoma and mixed test sets.
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Moreover, comparing the confusion matrices of the weighted and unweighted
SciBERT model, shown below, indicates a reduced error rate for the support
class. However, the improvement for RoBERTa is only marginal. Furthermore,
the errors for the attack class increased, meaning that the model could learn a
better representation when components are related, but not the actual polarity
of the relation.

Full Pipeline Besides the performance of the single pipeline modules, the
overall performance of the whole argument mining pipeline was assessed. As
stated earlier, for this, the two best performing models were chosen, i.e., the
SciBERT with BiGRU and CRF for the sequence tagging part and the SciB-
ERT with the weighted cross entropy loss for the relation classification part.
The F1-scores for the 50% threshold (at least 50% of the tokens of a gold com-
ponent need to be classified as argumentative to be counted as a true positive)
are .54, .51 and .49 for the neoplasm, glaucoma and mixed test set, respectively.
After increasing the threshold to 100% (all tokens of a gold component must
be classified as one of the argumentative classes), the F1-scores are .55, .54
and .51 on the test sets. It may surprise that the stricter constraint (100%)
achieves better results. However, this is due to how the relation classification is
addressed. The input for the relation classification is generated by combining
each of the detected components with the others. The stricter constraint results
in fewer detected components, since gold components which did not reach the
threshold of correctly predicted tokens are getting discarded. A fewer number
of components results in fewer components which are paired with false posi-
tives from the component detection, which leads to fewer false positives in the
relation classification and thus results in a higher F1-score. In general, the sig-
nificant difference between the relation classification on predicted components
compared to gold components is mostly due to the above described way of how
the SentClf approach propagates and multiplies false positive errors from the
component detection module. This is a weakness, which becomes more obvious
with increasing text lengths. While our dataset consists of article abstracts only
for practical reasons, the pipeline can be applied on full text articles as well.
Alas, we cannot provide a quantitative analysis on full articles due to missing
annotated data. In preliminary experiments on full articles, we have observed a
notable increase of false positives in the relation classification, which is the ex-
pected consequence of an increased number of components. Furthermore, with
the number of components rising in the double-digit range, the multiple-choice
architecture loses its predictive power. We leave further investigations to deter-
mine how to refine this architecture to be applied on full text articles as future
work.

Error Analysis Common mistakes for the sequence tagger are the invalid BIO
sequences. Especially when there are multiple components in one sentence, the
tagger tends to mislabel B- tokens as I- tokens. This is due to the natural imbal-
ance between B- and I- tokens. Training the sequence tagging without the BIO
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scheme using only claim and evidence as labels, poses problems when multiple
components are following each other in the text. They would be extracted as
one single component instead. This is a common case in concluding sentences
at the end of a study, which strikingly often comprise multiple claims. Other
notable mistakes arise for determining the exact component boundaries. Espe-
cially in the case of connectives, e.g., however, which have sometimes nothing
but a conjunctive function, and in other cases signal a constraint of a previous
statement. Another mistake is the misclassification of the description of the ini-
tial state of the participant groups as an observation of the study and therefore
an evidence, e.g., there were no significant differences in pregnancy-induced hy-
pertension across supplement groups. In the study abstract, these descriptions
occur usually relatively close to the actual result description, which means that
adding information of the position in the text will not avoid this error. While
only some abstracts are structured, the full study report does usually have sep-
arated sections. This structure can be exploited when analysing full reports,
and in the simplest case one would analyse only the sections of interest.

Concerning link prediction, general components like the difference was not
statistically significant are problematic, since it could be linked to most of the
components/outcomes of the trial. Here, a positional distance encoding could
be beneficial, since those components are usually connected to the previous
component. In general, most of the errors in the MultiChoice architecture were
made in the multiple choice part by predicting a wrong link and not at the
stage of classifying the relation type. Interestingly, comparing the two domain
adapted models, Bio- and SciBERT, there were no regular errors, which allows
any conclusion about the advantages or disadvantages of one model.

Looking at the confusion matrices, all tested SentClf models show a higher
misclassification towards the NoRelation class. The confusion matrices for the
SciBERT SentClf and its counterpart with the weighted loss function are shown
exemplary in Figure 2. The Support relation was not as often misclassified as
with the unweighted loss function. It can be further observed that the model
could not learn a meaningful representation of the underrepresented Attack
class, not even with the weighted loss function. There, the error rate even in-
creased. Most of the attack relations were classified as NoRelation. These false
negative errors indicate that in both cases the model is overly focusing on the
NoRelation class. Concerning the learned representation of the relation classes,
both transformer approaches have in common the problem of dealing with nega-
tions and limitations or associating the polarity of a measurement and therefore
confusing support and attack, which might indicate that the model learns rather
linguistic patterns than a deeper understanding of the components and their re-
lations.

Example 5.1 [more research about the exact components of a VR in-
tervention and choice of outcomes to measure effectiveness is requi-
red]source [Conducting a pragmatic trial of effectiveness of a VR inter-
vention among cancer survivors is both feasible and acceptable]target
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Figure 2: Confusion matrices of the predictions on the test set (neoplasm, glau-
coma, mixed) of the relation classification task. SciBERT SentClf on top and
SciBERT SentClf with weighted cross entropy loss on the bottom.

Example 5.2 [this did not translate into improved progression-free
survival (PFS) or overall survival]source [The addition of gemcitabine
to carboplatin plus paclitaxel increased treatment burden, reduced
PFS time, and did not improve OS in patients with advanced epithe-
lial ovarian cancer]target

Example 5.1 shows two claims with a limiting (attacking) relation, which was
wrongly classified as supporting. In Example 5.2, not improving progression-free
survival (PFS) corresponds to a reduced PFS time, while for other factors re-
ducing the value means it is beneficial, and therefore improving some study
parameter. Here, the inclusion of external expert knowledge is crucial to learn
these fine nuances. The polarity of a measurement cannot be learnt from textual
features alone. Especially in the medical domain, there are complex interrela-
tionships which are not often explicitly mentioned and therefore are impossible
to capture with a model trained solely on character-based input. Phrases like
increased the blood pressure by X or showed no symptom of Y can connote dif-
ferent messages depending on the context. Future work needs to consider this
challenge of incorporating external expert knowledge. While we do not think
this is a problem limited to a special domain, we consider it more relevant for
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Model macro improved increased decreased noDiff noOcc
BERT (cased) .62 .69 .65 .66 .75 .00

BERT (uncased) .72 .72 .70 .72 .72 .50
BioBERT .75 .74 .74 .77 .76 .54

SciBERT (cased) .75 .71 .71 .73 .71 .65
SciBERT (uncased) .80 .81 .75 .81 .85 .59

Table 6: Results for the outcome detection and classification tasks, given in
F1-score.

understanding and representing medical text.

5.3.2 Outcome Analysis

The results for the outcome analysis tasks are shown in Table 6. Results are
given on the test set in macro multi-class F1-score and as a binary F1-score
for each of the five classes separately. Similarly to the relation classification
results, we can observe an increase in performance on the specialized Bio- and
SciBERT models compared to the general BERT model. In a direct comparison
of the cased versions of these two specialised models, the overall F1-score is
the same with .75. In the binary evaluation, BioBERT is slightly better with
the exception of the noOccurrence class. Interestingly here, the SciBERT cased
model performs the best with a F1-score of .65. Overall, SciBERT uncased is
the best performing model with a macro F1-score of .80. It also outperforms the
rest of the approaches in every F1-score measured except for the noOccurrence
category, where the cased version has higher score. This category, in particular,
suffers from sensitivity to class imbalance given that only 2% of the annotated
data is labeled as such. For the other classes, the binary F1-scores are in a
comparable range to each other, where the most prominent class in the anno-
tated data, i.e., noDifference with 27%, has consistently the highest or second
highest score. Besides the noOccurrence class, the Increased class has always
the second lowest scores. Even for the best performing model, the difference
compared to the worse performing models is not as massive as for the other
classes. Notable in the confusion matrix, visualized in Figure 3, the classifier
tends to wrongly predict it as Improved, which is a closely related class. The
F1-score for the overall performance of the pipeline, i.e., with the argument
component detection as a prior step, is .62 for the 50% and the 100% threshold.
Both constraints produce a similar F1-score. Taking a look at the number of
detected components for each of the constraints, there is only a total difference
of 2 between them. Varying the threshold does not change the difference by
much. We found that if the model detects a component most of the time at
least 70% of the tokens are detected. Concerning the strong decrease from the
gold label to the overall pipeline performance, we found that the NoOccurrence
is the main reason, with not a single sample correctly predicted; either through
not finding the component or, if detected, misclassifing the outcome with the
wrong label. A similar situation was observed for the BERT cased model on
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the gold standard, where the 0 F1-score of the NoOccurrence class lowered the
macro F1-score significantly with respect to the other models. Ignoring the
NoOccurrence class to estimate a performance value for the other classes, the
macro F1-score would be at .74 for the whole pipeline.

:2:2

Figure 3: Confusion matrix of the predictions on the test set of the outcome
classification task.

Error Analysis With respect to the source of error in the pipeline, the two
pipeline parts cause different observable errors in the overall output. Being
a binary classifier, the outcome detection is the only part which predicts the
negative class label (referred to as O in the confusion matrix). The second part,
the effect classifier, assigns effect class labels (Increased/Decreased, etc.) to
outcomes, which were found by the outcome detection module. Consequently,
the impact of the propagated error from the first part of the pipeline can be
observed in the confusion matrix in Figure 3. Effect classes are mostly not
misclassified as other effect classes, but as the negative class O. This is reflect
in a stronger coloration in the horizontal direction for the predicted O label in
the confusion matrix. Since the only part in the pipeline which is responsible
for the negative O label is the outcome detection, this means that the error
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occurred in the first part of the pipeline. Accordingly, confusion of effect class
labels are errors of the second part, the effect classifier, in the pipeline.

One of the most common mistakes of the models is the incomplete detection
of outcomes. In many cases, the outcome to classify includes other words that
complement it, for example in the sentence The levels of VEGF were signifi-
cantly lower, the outcome to classify is The levels of VEGF while the model
only catches VEGF. We also find that the model is effectively tagging outcomes
in such a way that is different from the true labels, but correct nonetheless.
For example, consider the sentence Excess limb size (circumference and water
displacement) and excess water composition were reduced significantly. This
sentence has as true labels the outcomes Excess limb size and excess water
composition, both labeled as Decreased. The model detects and classifies those
outcomes correctly, but also adding the words circumferences and water dis-
placement, predicting the label Decreased which would be the correct label.

6 Conclusions and Future Work

In this article, we presented our original research Argumentation Mining in
the healthcare domain. We conducted an annotation study on 660 Randomized
Controlled Trials to filter argumentative structures and evidence-based elements
like PICO. We then annotated the abstracts of those RCTs with a structured
argumentation model where arguments are composed by evidence and claims
linked by support and attack relations (components Fleiss’ kappa: 0.68, re-
lations: Fleiss’ kappa: 0.62). Furthermore, we annotated the effects on the
outcomes associated to the identified argumentative components (Fleiss’ kappa:
0.81). We proposed a full pipeline considering both argumentation structures
detection and the classification of the effects on the outcomes. We employed
a sequence tagging approach combining a domain specific BERT model with
a GRU and CRF to identify and classify argument components. We cast the
relation classification task as a multiple choice problem and compare it with
recent transformers for sequence classification. The same sequence tagging ar-
chitecture with the LSTM in combination with a CRF was experimented for the
outcome detection and classification. The proposed approach significantly out-
performed standard baselines and state-of-the-art AM systems with an overall
macro F1-score of .87 for component detection, .68 for relation prediction, and
a macro F1-score of .80 for outcome classification. We examined in depth the
errors made by the system and proposed future improvements.

As the field of Evidence-Based Medicine is still evolving, and to foster future
research in the area of argument mining and outcome analysis on clinical trials,
we make available to the research community our annotation guidelines, the
annotated data, the source codes for the experiments, as well as the results of our
system for error analysis. We believe this is a valuable contribution to motivate
the community to build upon our work. Moreover, we have integrated the
proposed pipeline into ACTA [17], the tool we have developed for automating the
argumentative analysis of clinical trials (both the argument component and the
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relation detection modules are fully integrated, while we are currently working at
the integration of the Effect-on-Outcome module). Such tool has been designed
to support doctors and clinicians in identifying the document(s) of interest about
a certain disease, and in analyzing the main argumentative content and PICO
elements.

Two main research lines are pursued for future work. First, whilst in this
paper we concentrate on intra-argument relations only, we aim to focus also on
inter-argument relations. To this aim, we will annotate relations across differ-
ent RCTs to allow reasoning on the resulting argument graphs and clustering
of arguments about the same disease with the aim to automatically identify,
for instance, possible controversies among the conclusions of the RCTs about a
certain disease. Second, as one of the main features of argumentation models
is the capability to capture inconsistencies [21], we aim at mining argument
components also in the full text of the RCTs. As it has been noticed in the
literature [67], sometimes RCT abstracts contain a more positive reporting of
the main findings of the article than what stated in the full text. Employing
argumentation mining methods to automatically identify these instances of mis-
representation and distortion of the results in RCTs is a challenging and crucial
research line for healthcare intelligent applications.
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