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On the flow of a viscoplastic fluid in a thinperiodic domain

, where a stationary incompressible Navier-Stokes flow was studied. Recently, the model of the thin porous medium under consideration in this paper was introduced in [FaEtAl16], where the flow of an incompressible viscous fluid described by the stationary Navier-Stokes equations was studied by the multiscale asymptotic expansion method, which is a formal but powerful tool to analyse homogenization problems. These results were rigorously proved in [AS18] using an adaptation (introduced in [AS17]), of the unfolding method from [CiEtAl08]. This adaptation consists of a combination of the unfolding method with a rescaling in the height variable, in order to work with a domain of fixed height, and to use monotonicity arguments to pass to the limit. In [AS17], in particular, the flow of an incompressible stationary Stokes system with a nonlinear viscosity, being a power law, was studied. For nonstationary incompressible viscous fluid flow in a thin porous medium we refer to [An17], where a nonstationary Stokes system is considered, and [An217], where a nonstationary non-Newtonian Stokes system, where the viscosity obeys the power law, is studied. For the unfolding method applied to the study of problems stated in other type of thin periodic domains we refer for instance to [Gr04] for crane type structures and to [GrEtAl17] for thin layers with thin beams structures, where elasticity problems are studied.

Viscoplastic fluids are quite often encountered in real life. We mention oils, polymer solutions, vocanic lavas, muds and clays, avalanches, liquid chocolate. The theory of the fluid mechanics of such materials has several different applications, as for instance in the oil and gas industry, which can be found in the ground, which is a porous medium. The most commonly studied viscoplastic fluid is the Bingham fluid. In our thin porous medium, we consider the flow of a nonlinear viscoplastic Bingham flow, whose yield stress itself depends on the small parameter characterizing the geometry of the domain, denoted e. The first study of this type of problem is due to [START_REF] Lions | Écoulement d'un fluide viscoplastique de Bingham dans un milieu poreux[END_REF], where the problem was studied in a classical porous medium, by using the multiscale asymptotic expansion method. A nonlinear Darcy law was obtained after the passage to the limit e ! 0. The corresponding convergence result was proved in [START_REF] Bourgeat | A note on homogenization of Bingham flow through a porous medium[END_REF] with the two-scale convergence method and then recovered in [START_REF] Bunoiu | Unfolding Method for the Homogenization of Bingham flow[END_REF] with the periodic unfolding method from [START_REF] Cioranescu | The periodic Unfolding Method in Homogenization[END_REF]. For the study in a porous medium with a doubly periodic structure we refer to [START_REF] Bunoiu | Bingham Flow in Porous Media with Obstacles of Different Size[END_REF], where a more involved nonlinear Darcy law was derived. The flow of a Bingham fluid was also studied in thin domains of small height, denoted e. We refer the reader to [START_REF] Bunoiu | Fluide de Bingham dans une couche mince[END_REF], [START_REF] Bunoiu | Asymptotic behaviour of a Bingham fluid in thin layers[END_REF], and [START_REF] Bunoiu | Asymptotic Analysis of a Bingham Fluid in a Thin T-like Shaped Structure[END_REF] for these studies, where a lower dimensional Bingham-like law was exhibited from the limit problem, after the passage to the limit e ! 0. This law was already used in the engineering (see [START_REF] Liu | Approximate equations for the slow spreading of a thin sheet of Bingham plastic fluid[END_REF]), but no rigourous mathematical derivation was previously known.

The paper is organized as follows. In Section 1.2 we state the problem: we define in (1.1) the thin porous medium (see also Fig. 1.3), in which we consider the flow of a viscoplastic Bingham fluid with velocity verifying the nonlinear variational inequality (1.5). In Section 1.3 we state and prove the main result of our paper, Theorem 1. We then give in Section 1.4 some conclusions and perspectives and we end the paper with a list of References.

Statement of the Problem

The domain: the periodic porous medium is defined by a domain w and an associated microstructure, or periodic cell Y 0 = [ 1/2, 1/2] 2 , which is made of two complementary parts: the fluid part Y 0 f , and the solid part

Y 0 s (Y 0 f S Y 0 s = Y 0 and Y 0 f T Y 0 s = ?).
More precisely, we assume that w is a smooth, bounded, connected set in R 2 , and that Y 0

s is an open connected subset of Y 0 with a smooth boundary

∂Y 0 s , such that Y 0 s is strictly included in Y 0 .
The microscale of the porous medium is a small positive number e. The domain w is covered by a regular mesh of square of size e: for k 0 2 Z 2 , each cell

Y 0 k 0 ,e = ek 0 + eY 0 is divided in a fluid part Y 0 f k 0 ,e
and a solid part Y 0 s k 0 ,e , i.e. is similar to the unit cell Y 0 rescaled to size e. We define Y = Y 0 ⇥ (0, 1) ⇢ R 3 , which is divided in a fluid part Y f = Y 0 f ⇥ (0, 1) and a solid part Y s = Y 0 s ⇥ (0, 1), and consequently Y k 0 ,e = Y 0 k 0 ,e ⇥ (0, 1) ⇢ R 3 , which is divided in a fluid part Y f k 0 ,e and a solid part Y s k 0 ,e .

We define L e (see Fig. 

W e = {(x 1 , x 2 , x 3 ) 2 w e ⇥ R : 0 < x 3 < e}. (1.1)
We make the assumption that the solids t(Y 0 s k 0 ,e ) do not intersect the boundary ∂ w (see Fig. 1.2): The problem: in the domain W e defined in (1.1), we consider the stationary flow of an incompressible Bingham fluid. Following [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF], the problem is formulated in terms of a nonlinear variational inequality.

Y f k , Y s k ,
For a vectorial function v, we define (1  i, j  3)

(D(v)) i, j = 1 2 ∂ x j v i + ∂ x i v j , |D(v)| 2 = D(v) : D(v),
where : denotes the full contraction of two matrices: for A = (a i, j ) 1i, j3 and B = (b i, j ) 1i, j3 , we have A : B = Â 3 i, j=1 a i j b i j . We consider the space

V (W e ) = {v 2 (H 1 0 (W e )) 3 | div v = 0 in W e },
and for u, v 2 (H 1 0 (W e )) 3 , we introduce

a(u, v) = 2µ Z W e D(u) : D(v)dx, (1.3) j(v) = p 2g e Z W e |D(v)|dx, (1.4) (u, v) W e = Z W e u • vdx,
where the positive real µ is the viscosity of the Bingham fluid and the positive real g is related to the yield stress of the Bingham fluid. More precisely, the yield stress of the Bingham fluid under consideration in this work is of the form ge, where e is the parameter related to the geometry of the domain. This yield stress is exactly the one considered by [START_REF] Lions | Écoulement d'un fluide viscoplastique de Bingham dans un milieu poreux[END_REF], where the flow of a Bingham fluid in a classical porous medium was studied.

Let f 2 (L 2 (W )) 3 be given such that f = ( f 0 , 0) and f e 2 (L 2 (W e )) 3 be defined by f e (x) = f (x 0 , x 3 /e), a.e. x 2 W e . The model of the flow is described by the following nonlinear variational inequality:

Find u e 2 V (W e ) such that a(u e , v u e ) + j(v) j(u e ) ( f e , v u e ) W e , 8v 2 V (W e ).

(1.5)

From [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF], we know that for every fixed e there exists a unique u e 2

V (W e ) solution of problem (1.5).

Main Convergence Result

Our aim is to study the asymptotic behavior of u e , solution of problem (1.5), when e tends to zero. For this purpose, we first use the dilatation of the domain W e in the variable x 3 , namely

y 3 = x 3 e , (1.6) 
in order to have the functions defined in an open set with fixed height, denoted e W e and given by (1.2).

Namely, we define ũe 2 (H1 0 ( e W e )) 3 by ũe (x 0 , y 3 ) = u e (x 0 , ey 3 ) a.e. (x 0 , y 3 ) 2 e W e .

Let us introduce some notation which will be useful in the following: for a vectorial function v = (v 0 , v 3 ) (and, analogously, for a scalar function w), associated to the change of variables (1.6), we introduce the operators D e , D e , div e ande , defined by

D e [v] = 1 2 D e v + D t e v , |D e [v] | 2 = D e [v] : D e [v] , (D e v) i, j = ∂ x j v i for i = 1, 2, 3, j = 1, 2, (D e v) i,3 = 1 e ∂ y 3 v i for i = 1, 2, 3, div e v = div x 0 v 0 + 1 e ∂ y 3 v 3 , -e w = (-x 0 w, 1 e ∂ y 3 w) t .
We consider the space

V ( e W e ) = { ṽ 2 (H 1 0 ( e W e )) 3 | div e ṽ = 0 in e W e },
and for ũ, ṽ 2 V ( e W e ), we introduce a e ( ũ, ṽ) = 2µ Using the transformation (1.6), the variational inequality (1.5) can be rewritten as:

Find ũe 2 V ( e W e ) such that a e ( ũe , ṽ ũe ) + j e ( ṽ) j e ( ũe ) ( f , ṽ ũe ) e W e , 8 ṽ 2 V ( e W e ).

(1.7)

We start by obtaining some a priori estimates for ũe , stated in the next lemma.

Lemma 1. There exists a constant C independent of e, such that if ũe 2 (H 1 0 ( e W e )) 3

is the solution of problem (1.7), one has

k ũe k (L 2 ( e W e )) 3  Ce 2 , kD e [ ũe ]k (L 2 ( e W e )) 3⇥3  Ce, (1.8 
)

kD e ũe k (L 2 ( e W e )) 3⇥3  Ce.
(1.9)

We extend the velocity ũe by zero to the W \ e W e and denote the extension by the same symbol. Obviously, estimates (1.8)-(1.9) remain valid for the extended function and the extension is divergence free too. According to this extension, problem (1.7) can be written as:

2µ Z W D e [ ũe ] : D e [ ṽ ũe ] dx 0 dy 3 + p 2g e Z W |D e [ ṽ]|dx 0 dy 3 (1.10) p 2g e Z W |D e [ ũe ]|dx 0 dy 3 Z W f • ( ṽ ũe ) dx 0 dy 3 ,
for every ṽ that is the extension by zero to the whole W of a function in (H 1 0 ( e W e )) 3 . Our main result is the following theorem: Theorem 1. Let ũe be the solution of problem (1.10). There exists û 2 L 2 (w; H 1 ] (Y ) 3 )(here "]" denotes Y 0 -periodicity), such that

ũe e 2 * Z Y 0 ûdy 0 in L 2 (W ), R Y 0 û3 dy 0 = 0, û = 0 on w ⇥Y s , û = 0 on y 3 = {0, 1}, div y û = 0 in w ⇥Y , div x 0 ✓ Z Y û0 (x 0 , y)dy ◆ = 0 in w, ✓ Z Y û0 (x 0 , y)dy ◆ • n = 0 on ∂ w,
and û is the unique solution of the limit problem

2µ Z w⇥Y D y [ û] : (D y [ ṽ] D y [ û]) dx 0 dy + p 2g Z w⇥Y D y [ ṽ] dx 0 dy p 2g Z w⇥Y D y [ û] dx 0 dy Z w⇥Y f 0 • ṽ0 û0 dx 0 dy, (1.11) 
for every ṽ 2 L 2 (w; H 1 ] (Y ) 3 ) such that ṽ(x 0 , y) = 0 in w ⇥Y s , div y ṽ = 0 in w ⇥Y,

div x 0 ✓ Z Y ṽ0 (x 0 , y)dy ◆ = 0 in w, ✓ Z Y ṽ0 (x 0 , y)dy ◆ • n = 0 on ∂ w.
Proof: First step A priori estimates The change of variable (1.6) does not provide the information we need about the behavior of ũe in the microstructure associated to e W e . To solve this difficulty, we use an adaptation of the unfolding method from [START_REF] Cioranescu | The periodic Unfolding Method in Homogenization[END_REF]. In order to apply the unfolding method, we will need the following notation: for k 0 2 Z 2 , we define

k : R 2 ! Z 2 by k(x 0 ) = k 0 () x 0 2 Y 0 k 0 ,1 .
(1.12)

Remark that k is well defined up to a set of zero measure in R 2 (the set [ k 0 2Z 2 ∂Y 0 k 0 ,1 ). Moreover, for every e > 0, we have

k ✓ x 0 e ◆ = k 0 () x 0 2 Y 0 k 0 ,e .
According to the adaptation introduced in [AS17] of the unfolding method, we divide the domain W in rectangular cuboids of lateral lengths e and vertical length 1. For this purpose, given ũe 2 (H 1 0 (W )) 3 , we define ûe by ûe (x 0 , y) = ũe

✓ ek ✓ x 0 e ◆ + ey 0 , y 3 ◆ , a.e. (x 0 , y) 2 w ⇥Y, (1.13) 
where the function k is defined in (1.12). For k 0 2 K e , the restriction of ûe to Y 0 k 0 ,e ⇥Y does not depend on x 0 , whereas as a function of y it is obtained from ũe by using the change of variables

y 0 = x 0 ek 0 e , which transforms Y k 0 ,e into Y .
We can obtain a priori estimates for the sequence ûe . There exists a constant C independent of e, such that ûe defined by (1.13) satisfies

D y [ ûe ] (L 2 (w⇥Y )) 3⇥3 Ce 2 , (1.14) k ûe k (L 2 (w⇥Y )) 3  Ce 2 .
(1.15)

Second step Convergence results

As in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF], we can obtain compactness results for the sequences ũe and ûe satisfying the a priori estimates given before.

For a subsequence of e still denoted by e, there exist ũ 2 H 1 (0, 1; L 2 (w) 3 ), where ũ3 = 0 and ũ = 0 on y 3 = {0, 1}, û 2 L 2 (w; H 1 ] (Y ) 3 ) ("]" denotes Y 0 -periodicity), with û = 0 on w ⇥Y s and û = 0 on y

3 = {0, 1} such that R Y û(x 0 , y)dy = R 1 0 ũ(x 0 , y 3 )dy 3 with R Y û3 dy = 0, such that ũe e 2 * ( ũ0 , 0) in H 1 (0, 1; L 2 (w) 3 ), ûe e 2 * û in L 2 (w; H 1 (Y ) 3 ),
(1.16) div y û = 0 in w ⇥Y, (1.17)

div x 0 ✓ Z 1 0 ũ0 (x 0 , y 3 )dy 3 ◆ = 0 in w, ✓ Z 1 0 ũ0 (x 0 , y 3 )dy 3 ◆ • n = 0 on ∂ w, div x 0 ✓ Z Y û0 (x 0 , y)dy ◆ = 0 in w, ✓ Z Y û0 (x 0 , y)dy ◆ • n = 0 on ∂ w.
(1.18) Third Step Passage to the limit By using (1.13), we first transform the variational inequality (1.10) in a variational inequality stated in the domain w ⇥ Y. Then, by choosing suitable test functions, we pass to the limit e ! 0. By using convergences (1.16), (1.17), (1.18) we find the limit problem (1.11). The uniqueness of the solution û of problem (1.11) is proved by contradiction.

Conclusions and perspectives

By using dimension reduction and homogenization techniques, we studied the limiting behavior of the velocity for a nonlinear viscoplastic Bingham flow with small yield stress ge, in a thin porous medium of small height e and for which the relative dimension of the pores is e. We found in Theorem 1 the limit problem (1.11), in which both effects of a nonlinear Darcy law and a lower-dimensional Binghamlike law appear. Indeed, as in [START_REF] Lions | Écoulement d'un fluide viscoplastique de Bingham dans un milieu poreux[END_REF](see also [START_REF] Bunoiu | Bingham Flow in Porous Media with Obstacles of Different Size[END_REF]), problem (1.11) can be written as a nonlinear Darcy law set in the domain w. The third component of the velocity of filtration appearing in the nonlinear Darcy law equals zero and this phenomenon corresponds precisely to a two-dimensional Bingham-like law (see [START_REF] Bunoiu | Asymptotic behaviour of a Bingham fluid in thin layers[END_REF]).

In the forthcoming work [AnEtAl] we study the cases of thin porous media those periodicity parameter is a e instead of e. Different cases are analysed, following the ratio between the height e of the porous media and the relative dimension a e of the periodically distributed pores. Moreover, we consider the more involved case in which the convergence of the pressure of the flow is also studied.
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