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Introduction

In this paper we study the asymptotic behavior of a Bingham fluid in a T-like shaped domain. More precisely, for every n ∈ N let h n ∈]0, 1[ be a small parameter and let Ω n be a thin two-dimensional T-like shaped domain defined by (see Fig. 1)

Ω n = Ω a n ∪ Ω b n , Ω a n = - h n 2 , h n 2 × [0, 1[ , Ω b n = - 1 2 , 1 2 × ]-h n , 0[ . (1.1) 
In Ω n we consider the steady incompressible flow of a Bingham fluid (see [START_REF] Bingham | Fluidity and Plasticity[END_REF]) having viscosity µh 2 n and yield stress gh n , with µ and g two strictly positive constants. The fluid moves under the action of given external forces f n and obeys no-slip condition on the whole boundary of the domain (see [START_REF] Lamb | Hydrodynamics[END_REF]). The goal of our paper is to study the asymptotic behavior of this fluid when lim

n h n = 0. (1.2)
The Bingham fluid is a fluid which has a non linear rheological behavior (see Section 2). It As examples of such a fluid we can mention some paints, the mud which can be used for the oil extraction, the volcanic lava, etc. Also the blood can be assumed in first approximation as a Bingham fluid; more precisely, it has a yield stress as the Bingham fluid, but at high shear stress it behaves as a pseudo-plastic fluid. As proposed in [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF], from a mathematical point of view, the velocity u n and the pressure r n of a Bingham fluid in Ω n solve the following non linear variational inequality

                   (u n , r n ) ∈ (H 1 0 (Ω n )) 2 × (L 2 (Ω n )/R) , div(u n ) = 0 in Ω n , Ωn h 2 n µDu n D (v -u n ) + h n g|Dv| -h n g|Du n | dx 1 dx 2 ≥ Ωn f n (v -u n ) dx 1 dx 2 -∇r n , v -u n (H -1 (Ωn)) 2 ,(H 1 0 (Ωn)) 2 ∀v ∈ H 1 0 (Ω n ) 2 .
(1.3)

It is not an easy task to solve this variational inequality numerically due to the presence of the small parameter h n which impedes the construction of suitable meshes. For this reason an asymptotic analysis is required when h n vanishes. First we reformulate problem (1.3) on a fixed domain through two appropriate rescalings according to [START_REF] Ciarlet | A justification of the two-dimensional linear plate model[END_REF] (see (3.1)-(3.9)), and in (3.10) we impose appropriate convergence assumptions on the rescaled external forces. A distinctive feature of the result proved in this paper Figure 2: Flow in a 90 0 bend is that the limit problem obtained letting h n tend to zero decouples into two independent problems associated to the two different branches of the T-domain, as stated in Theorem 4.1. This behaviour can be explained with the separation of the flow in a 90 0 bend. In fact (for instance, see [START_REF] Lamb | Hydrodynamics[END_REF]) in a 90 0 bend the streamlines have a gradual change of direction, and a recirculation zone appears near the junction (see Fig. 2) This recirculation zone contracts the flow, i.e. it reduces the passage area between the two branches of the T-shaped domain.

In the limit problem considered in the present paper such a recirculation near the junction is emphasized and its effect produces the decoupling of the flow in the two branches. Now we limit ourself to describe what happens in the horizontal branch, since a similar situation occurs in the vertical branch, up to a permutation of the axes. In the horizontal branch, the second component of the limit velocity vanishes. Indeed, following the separation of the two branches, now the flow in each branch reduces in a recirculation (see Fig. 3), then, the mass transfer through a transversal section is zero. Clearly when the thickness of the branch tends to zero this implies the limit zero velocity in the transversal direction to the branch. As the first component of the velocity is concerned, it solves variational inequality (4.4), stated in an anisotropic functional space. This inequality involves the first component of the limit force. If this component is independent of the transversal direction, also the first component of the velocity is zero (see Remark 8.2). This behavior can be explained because in this case the velocity is constant along transversal directions. Consequently, due to the presence of the wall, the conservation of the mass implies the zero velocity. On the other hand, if the first component of the force depends also on the transversal direction and the first component of the velocity is non-identically zero, then the variational inequality (4.4) modelizes a flow Figure 3: Recirculation in the horizontal branch obeying to a lower-dimensional "Bingham-like" law (see Remark 8.4). This law is used in engineering literature for describing Bingham flow in thin domains (for instance, see [START_REF] Liu | Approximate equations for the slow spreading of a thin sheet of Bingham plastic fluid[END_REF]).

If in the original problem one assumes g = 0 in the yield stress, the corresponding fluid is Newtonian, the flow is governed by the Stokes equations and a similar analysis can be performed (see Section 8).

The paper is organized as follows. In Section 2 we introduce the physical properties of the fluid and the variational inequality modelizing the flow. In Section 3 we rescale the problem on a fixed domain. The main converge result, Theorem 4.1, is stated in Section 4. In order to prove this theorem, in Section 5 and in Section 6 we obtain sharp a priori estimates on the velocity and on the pressure, respectively. Section 7 is devoted to the identification of the variational inequality satisfied by the limit velocity and pressure. An analysis of the limit problem is performed in Section 8.

Thin domains with T-junctions are of wide interest in fluid dynamics. For instance, in [START_REF] De Menech | Transition from squeezing to dripping in a microfluidic T-shaped junction[END_REF] the effect of a T-junction in a micro-fluidic device for the controlled formation of waterin-oil dispersion is analyzed. For other numerical and experimental studies of flows in thin junctions we refer to [START_REF] Hussong | Numerical study on the flow physics of a T-shaped micro mixer[END_REF], [START_REF] Tripathi | Blood plasma separation in elevated dimension T-shaped microchannel[END_REF], and review [START_REF] Dean | On the numerical simulation of Bingham visco-plastic flow: Old and new results[END_REF]. For the asymptotic analysis of Navier-Stokes flow in thin multi-domain we refer to [START_REF] Panasenko | Multi-scale modelling for structures and composites[END_REF] and [START_REF] Panasenko | Asymptotic expansion of the solution of Navier-Stokes equation in tube structure and partial asymptotic decomposition of the domain[END_REF]. About the study of this type of junction in other contexts, we refer to [START_REF] Gaudiello | Asymptotic analysis of a class of minimization problems in a thin multidomain[END_REF], [START_REF] Gaudiello | Ferromagnetic thin multi-structures[END_REF], [START_REF] Gaudiello | Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multi-structure[END_REF], [START_REF] Gaudiello | Asymptotic analysis of the eigenvalues of an elliptic problem in an anisotropic thin multidomain[END_REF], [START_REF] Gaudiello | A model of joined beams as limit of a 2D plate[END_REF], [START_REF] Klevtsovskiy | Asymptotic approximations of the solution to a boundary value problem in a thin aneurysm type domain[END_REF], [START_REF] Khludnev | Junction problem for Euler-Bernoulli and Timoshenko elastic inclusions in elastic bodies[END_REF], [START_REF] Kolpakov | Asymptotic decomposition in the problem of joined elastic beams[END_REF], [START_REF] Dret | Problèmes variationnels dans les multi-domaines: modélisation des jonctions et applications[END_REF], [START_REF] Nazarov | Asymptotic analysis of an L-shaped junction of two elastic beams[END_REF].

The physical description of the Bingham fluid was introduced in [START_REF] Bingham | Fluidity and Plasticity[END_REF] and its mathematical model for a bounded domain was given in [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF] as a non linear variational inequality. The existence of the velocity and of the pressure for such a flow was there proved in the case of a two-dimensional domain. For further mathematical considerations on the Bingham fluid and other non-Newtonian fluids we refer to [START_REF] Ciorȃnescu | Mechanics and mathematics of a family of fluids of the differential type[END_REF]. The first asymptotic mathematical analysis of the Bingham flow in a thin domain was performed in [START_REF] Bunoiu | Fluide de Bingham dans une couche mince[END_REF] and [START_REF] Bunoiu | Asymptotic behaviour of a Bingham fluid in thin layers[END_REF] in the two-dimensional and the three-dimensional case, respectively. For other studies of the Bingham flow in domains depending on a small parameter, in particular in the frame of the homogenization theory, we refer the reader to [START_REF] Lions | Ecoulement d'un fluide viscoplastique de Bingham dans un milieu poreux[END_REF], [START_REF] Bourgeat | A note on homogenization of Bingham flow through a porous medium[END_REF], [START_REF] Bunoiu | Bingham flow in porous media with obstacles of different size[END_REF], and [START_REF] Bunoiu | Unfolding method for the homogenization of Bingham flow[END_REF].

The setting of the problem

In the domain Ω n defined by (1.1) we consider the non linear flow of a Bingham fluid. If we denote by u n and r n the velocity and the pressure of this fluid, respectively, the corresponding stress tensor is defined by

σ ij (u n , r n ) = -r n δ ij + gh n e ij (u n ) e II (u n ) + 2µh 2 n e ij (u n ), (2.1) 
where δ ij is the Kronecker symbol, g is a strictly positive constant related to the yield stress of the fluid, µ is a strictly positive constant related to the viscosity of the fluid, e(u n ) is the strain tensor with entries given by

e ij (u n ) = 1 2 ∂u n,i ∂x j + ∂u n,j ∂x i , 1 ≤ i, j ≤ 2,
and e II (u n ) is defined by

e II (u n ) = 1 2 2 i,j=1 e ij (u n )e ij (u n ).
Moreover, we define

σ e ij (u n ) = gh n e ij (u n ) e II (u n ) + 2µh 2 n e ij (u n ), σ II (u n ) = 1 2 2 i,j=1 σ e ij (u n )σ e ij (u n ).
We remark that relation (2.1), which represents the constitutive law of the Bingham fluid, is valid only if e II (u n ) = 0. In [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF] it is shown that this constitutive law is equivalent with the following one:

         σ II (u n ) ≤ gh n ⇔ e ij (u n ) = 0, σ II (u n ) > gh n ⇔ e ij (u n ) = 1 2µh 2 n 1 - gh n σ II (u n ) σ e ij (u n ). (2.2)
We point out that this is a threshold law: as long as the shear stress σ II (u n ) is below gh n , the fluid behaves as a rigid solid. When the value of the shear stress σ II (u n ) exceeds gh n , then the fluid flows obeying a non linear law. We also suppose that the fluid is incompressible, which means that its velocity is divergence free

div u n = ∂u n,1 ∂x 1 + ∂u n,2 ∂x 2 = 0 in Ω n . (2.3)
Moreover, we apply to the fluid a given external force f n belonging to (L 2 (Ω n )) 2 , and we then have the following relations

∂σ i1 ∂x 1 + ∂σ i2 ∂x 2 = u n,i in Ω n , i = 1, 2.
(2.4) Furthermore, we assume the no-slip condition to the boundary of the domain, which reads u n = 0 on ∂Ω n .

(2.5)

In [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF] it is shown that the velocity u n satisfying (2.1), (2.3), (2.4) and (2.5) solves the following variational inequality

                   u n ∈ (H 1 0 (Ω n )) 2 , div(u n ) = 0 in Ω n , Ωn h 2 n µDu n D (v -u n ) + h n g|Dv| -h n g|Du n | dx 1 dx 2 ≥ Ωn f n (v -u n ) dx 1 dx 2 ∀v ∈ H 1 0 (Ω n ) 2 : div(v) = 0 in Ω n . (2.6)
where Dv is the matrix denoting the gradient of v, for a function v in (H 1 0 (Ω n )) 2 . For each n, this inequality admits a unique solution u n .

According to [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF], problem (2.6) is equivalent to the following one

                   (u n , r n ) ∈ (H 1 0 (Ω n )) 2 × (L 2 (Ω n )/R) , div(u n ) = 0 in Ω n , Ωn h 2 n µDu n D (v -u n ) + h n g|Dv| -h n g|Du n | dx 1 dx 2 ≥ Ωn f n (v -u n ) dx 1 dx 2 -∇r n , v -u n (H -1 (Ωn)) 2 ,(H 1 0 (Ωn)) 2 ∀v ∈ H 1 0 (Ω n ) 2 (2.7)
which admits a solution (u n , r n ), such that u n is unique, but r n is not unique. The aim of this paper is to study the asymptotic behavior, as n diverges, of problem (2.7), under assumption (1.2) and suitable assumption on the given data {f n } n∈N .

For

n ∈ N, let u n ∈ (H 1 0 (Ω n ))
2 be the solution of problem (2.7) and let r n ∈ L 2 (Ω n )/R be a solution of problem (2.7). Obviously we have

∇r n , v -u n (H -1 (Ωn)) 2 ,(H 1 0 (Ωn)) 2 = ∇ r n - 1 |Ω a n | Ω a n r n dx 1 dx 2 , v -u n (H -1 (Ωn)) 2 ,(H 1 0 (Ωn)) 2 .
By setting

p n = r n - 1 |Ω a n | Ω a n r n dx 1 dx 2 , the function p n ∈ L 2 (Ω n ) is such that Ω a n p n dx 1 dx 2 = 0 (2.8) and ∇r n , v -u n (H -1 (Ωn)) 2 ,(H 1 0 (Ωn)) 2 = ∇p n , v -u n (H -1 (Ωn)) 2 ,(H 1 0 (Ωn)) 2 = Ωn p n div (v -u n ) dx 1 dx 2 .
So, if r n is a solution for problem (2.7), then p n too is a solution for problem (2.7). Consequently, problem (2.6) is equivalent with the following one

                   (u n , p n ) ∈ (H 1 0 (Ω n )) 2 × (L 2 (Ω n )/R) , div(u n ) = 0 in Ω n , Ωn h 2 n µDu n D (v -u n ) + h n g|Dv| -h n g|Du n | dx 1 dx 2 ≥ Ωn (f n (v -u n ) + p n div (v -u n )) dx 1 dx 2 ∀v ∈ H 1 0 (Ω n ) 2 (2.9)
In a similar way, setting

q n = r n - 1 |Ω b n | Ω b n r n dx 1 dx 2 , (2.10) 
the function q n ∈ L 2 (Ω n ) satisfies

Ω b n q n dx 1 dx 2 = 0 and ∇r n , v -u n (H -1 (Ωn)) 2 ,(H 1 0 (Ωn)) 2 = ∇q n , v -u n (H -1 (Ωn)) 2 ,(H 1 0 (Ωn)) 2 = Ωn q n div (v -u n ) dx 1 dx 2 .
Moreover, the couple (u n ,

q n ) ∈ (H 1 0 (Ω n )) 2 × (L 2 (Ω n )/R
) is a solution of problem (2.9) with q n instead of p n .

The rescaled problem

Set now

           Ω a = - 1 2 , 1 2 
× ]0, 1[ , Ω b = - 1 2 , 1 2 × ]-1, 0[ , Γ a = ∂Ω a \ - 1 2 , 1 2 × {0} , Γ b n = ∂Ω b \ - h n 2 , h n 2 × {0} n ∈ N. (3.1) 
In order to pass to the limit, the first step consists in the reformulation of problems (2.6) and (2.9) in the domain Ω a ∪ Ω b , independent of n. This is done as usual, by a domain dilatation technique (see [START_REF] Ciarlet | A justification of the two-dimensional linear plate model[END_REF]), through the maps

x = (x 1 , x 2 ) ∈ Ω a -→ (h n x 1 , x 2 ) ∈ Int(Ω a n ), x = (x 1 , x 2 ) ∈ Ω b -→ (x 1 , h n x 2 ) ∈ Ω b n , (3.2) 
where Int(Ω a n ) denotes the interior of Ω a n (and the analogous for Ω b n ). More precisely, for every n ∈ N we set

                     D a n : v a ∈ H 1 (Ω a ) 2 -→ 1 h n ∂ x 1 v a , ∂ x 2 v a ∈ (L 2 (Ω a )) 2 × (L 2 (Ω a )) 2 , D b n : v b ∈ H 1 (Ω b ) 2 -→ ∂ x 1 v b , 1 h n ∂ x 2 v b ∈ L 2 Ω b 2 × L 2 Ω b 2 , div a n : v a = (v a 1 , v a 2 ) ∈ H 1 (Ω a ) 2 -→ 1 h n ∂ x 1 v a 1 + ∂ x 2 v a 2 ∈ L 2 (Ω a ), div b n : v b = v b 1 , v b 2 ∈ H 1 (Ω b ) 2 -→ ∂ x 1 v b 1 + 1 h n ∂ x 2 v b 2 ∈ L 2 (Ω b ), (3.3) 
   f a n : x = (x 1 , x 2 ) ∈ Ω a -→ f n (h n x 1 , x 2 ), f b n : x = (x 1 , x 2 ) ∈ Ω b -→ f n (x 1 , h n x 2 ), (3.4) 
       V n = (v a , v b ) ∈ (H 1 (Ω a )) v a (x 1 , 0) = v b (h n x 1 , 0) on -1 2 , 1 2 , (3.5) 
and

V n = (v a , v b ) ∈ V n : div a n (v a ) = 0 in Ω a , div b n (v b ) = 0 in Ω b . (3.6)
Now, if u n solves (2.6) (or equivalently (u n , p n ) solves problem (2.9)), then (u a n , u b n ), (p a n , p b n ) defined by

   u a n (x 1 , x 2 ) = u n (h n x 1 , x 2 ) in Ω a , u b n (x 1 , x 2 ) = u n (x 1 , h n x 2 ) in Ω b , p a n (x 1 , x 2 ) = p n (h n x 1 , x 2 ) in Ω a , p b n (x 1 , x 2 ) = p n (x 1 , h n x 2 ) in Ω b , (3.7) 
solves

                             u n = (u a n , u b n ) ∈ V n , Ω a h 2 n µD a n u a n D a n (v a -u a n ) + h n g|D a n v a | -h n g|D a n u a n | dx 1 dx 2 + Ω b h 2 n µD b n u b n D b n v b -u b n + h n g|D b n v b | -h n g|D b n u b n | dx 1 dx 2 ≥ Ω a f a n (v a -u a n ) dx 1 dx 2 + Ω b f b n v b -u b n dx 1 dx 2 ∀v = (v a , v b ) ∈ V n . (3.8) 
or equivalently 

                                         u n = (u a n , u b n ) ∈ V n , p n = (p a n , p b n ) ∈ L 2 (Ω a ) × L 2 (Ω b ) /R, Ω a h 2 n µD a n u a n D a n (v a -u a n ) + h n g|D a n v a | -h n g|D a n u a n | dx 1 dx 2 + Ω b h 2 n µD b n u b n D b n v b -u b n + h n g|D b n v b | -h n g|D b n u b n | dx 1 dx 2 ≥ Ω a (f a n (v a -u a n ) + p a n div a n (v a -u a n )) dx 1 dx 2 + Ω b f b n v b -u b n + p b n div b n v b -u b n dx 1 dx 2 ∀v = (v a , v b ) ∈ V n , (3.9 
Ω a p a
n dx 1 dx 2 = 0. In a similar way, according to (2.10), there exists a solution (q a n , q b n ) of problem (3.9) such that the function q b n satisfies

Ω b q b n dx 1 dx 2 = 0. Conversely, if (u a n , u b n ), (p a n , p b n ) solves (3.8) (or equivalently (3.9)), then (u n , p n ) defined by            u n (x 1 , x 2 ) = u a n x 1 h n , x 2 in Ω a n , u n (x 1 , x 2 ) = u b n x 1 , x 2 h n in Ω b n , p n (x 1 , x 2 ) = p a n x 1 h n , x 2 in Ω a n , p n (x 1 , x 2 ) = p b n x 1 , x 2 h n in Ω b n ,
solves (2.6) (or equivalently (2.9)). Therefore, the goal of this paper becomes to study the asymptotic behavior, as n diverges, of problem (3.9). To this aim, we assume

   f a n → f a = (f a 1 , f a 2 ) strongly in (L 2 (Ω a )) 2 , f b n → f b = f b 1 , f b 2 strongly in L 2 Ω b 2 .
(3.10)

The main results

In order to give the main result of our paper, namely the convergence of the rescaled initial problem to a limit problem stated in some anisotropic spaces, according to [START_REF] Bunoiu | Fluide de Bingham dans une couche mince[END_REF] we first introduce the two applications

T a : w ∈ L 2 (Ω a ) → T a (w) ∈ L 2 (]0, 1[) and T b : w ∈ L 2 (Ω b ) → T b (w) ∈ L 2 -1 2 , 1 2 defined by T a (w) : x 2 ∈]0, 1[→ 1 2 -1 2 w(x 1 , x 2 )dx 1 and T b (w) : x 1 ∈ -1 2 , 1 2 → 0 -1 w(x 1 , x 2 )dx 2 , (4.1) 
respectively. Let

W a = w a ∈ L 2 (Ω a ) : ∂ x 1 w a ∈ L 2 (Ω a ), w a = 0 on ± 1 2 ×]0, 1[, T a (w a ) ∈ H 1 0 (]0, 1[) , W b = w b ∈ L 2 (Ω b ) : ∂ x 2 w b ∈ L 2 (Ω b ), w b = 0 on -1 2 , 1 2 × {-1, 0}, T b (w b ) ∈ H 1 0 ( -1 2 , 1 2 ) . 
W a and W b are two anisoptropic Hilbert spaces equipped with the inner products

(w a , z a ) = Ω a (w a z a + ∂ x 1 w a ∂ x 1 z a ) dx 1 dx 2 + 1 0 (T a (w a )) (T a (z a )) dx 2 and (w b , z b ) = Ω b w b z b + ∂ x 2 w b ∂ x 2 z b dx 1 dx 2 + 1 2 -1 2 T b (w b ) T b (z b ) dx 1 , respectively. Let    W a 0 = {w a ∈ W a (Ω a ) : T a (w a ) = 0 in ]0, 1[} , W b 0 = w b ∈ W b (Ω b ) : T b (w b ) = 0 in - 1 2 , 1 2 . (4.2) 
Theorem 4.1. Assume (1.2) and (3.10). For every n ∈ N let (u a n , u b n ), (p a n , p b n ) and (u a n , u b n ), (q a n , q b n ) be two solutions of problem (3.9) such that

Ω a p a n dx 1 dx 2 = 0, Ω b q b n dx 1 dx 2 = 0 ∀n ∈ N. Let W a 0 (Ω a ) and W b 0 (Ω b ) be defined in (4.2). Then, there exist u a 2 ∈ W a 0 (Ω a ) and u b 1 ∈ W b 0 (Ω b ) such that            u a n (0, u a 2 ) weakly in (L 2 (Ω a )) 2 , ∂ x 1 u a n (0, ∂ x 1 u a 2 ) weakly in (L 2 (Ω a )) 2 , h n u a n 0 weakly in (H 1 (Ω a )) 2 ,              u b n (u b 1 , 0) weakly in L 2 (Ω b ) 2 , ∂ x 2 u b n (∂ x 2 u b 1 , 0) weakly in L 2 (Ω b ) 2 , h n u b n 0 weakly in H 1 (Ω b ) 2 .
There exist an increasing sequence of positive numbers, still denoted by {n}, p a ∈ L 2 (Ω a ) independent of x 1 , and q b ∈ L 2 (Ω b ) independent of x 2 (in possible dependence on the subsequence), such that

1 0 p a dx 2 = 0, 1 2 -1 2 q b dx 1 = 0, p a n p a weakly in L 2 (Ω a ), q b n q b weakly in L 2 (Ω b ).
Moreover,

u a = 0 on ± 1 2 ×]0, 1[, u b = 0 on -1 2 , 1 2 × {-1}, (5.9 
)

u b = 0 on -1 2 , 1 2 × {0}, (5.10) 
u a 1 = 0 in Ω a , u b 2 = 0 in Ω b , (5.11) 
T a (u a 2 ) = 0 in ]0, 1[, T b (u b 1 ) = 0 in -1 2 , 1 2 .
(5.12)

Proof. Statements in (5.8) and in (5.9) follow from Proposition 5.1.

Statement in (5.10) is obtained taking into account that up to a subsequence we have the convergences

u b n (•, 0) u b (•, 0) weakly in L 2 ( -1 2 , 1 2 ) 2 and χ ]-hn 2 , hn 2 [ → 0 strongly in L 2 ( -1 2 , 1 
2 ), and then passing to the limit, as n diverges, in

1 2 -1 2 u b n (x 1 , 0)ϕ(x 1 )dx 1 = 1 2 -1 2 χ ]-hn 2 , hn 2 [ (x 1 )u b n (x 1 , 0)ϕ(x 1 )dx 1 ∀ϕ ∈ C ∞ 0 (] -1 2 , 1 2 [) 2 , ∀n ∈ N, which holds true since u b n = 0 on -1 2 , 1 2 \ -hn 2 , hn 2 
× {0}. The first equality in (5.11) is obtained passing to the limit in

∂ x 1 (u a n ) 1 + h n ∂ x 2 (u a n ) 2 = h n div a n (u a n ) = 0 in Ω a , ∀n ∈ N,
and taking into account the last two convergences in the left-hand side of (5.8), and the left-hand side in (5.9). Similarly, one proves the right-hand side in (5.11).

As far as the proof of the left-hand side in (5.12) is concerned, equality

div a n (u a n ) = 0 in Ω a , ∀n ∈ N,
gives

Ω a 1 h n ∂ x 1 (u a n ) 1 + ∂ x 2 (u a n ) 2 ϕ(x 2 )dx 1 dx 2 = 0 ∀ϕ ∈ C ∞ 0 (]0, 1[), ∀n ∈ N. (5.13)
On the other side, the boundary conditions on u a n give

       Ω a ∂ x 1 (u a n ) 1 ϕ(x 2 )dx 1 dx 2 = ∂Ω a (u a n ) 1 ϕ(x 2 )n 1 dx 1 dx 2 = 0 ∀ϕ ∈ C ∞ 0 (]0, 1[), ∀n ∈ N, (5.14) 
where n 1 is the first component of the exterior unit normal on ∂Ω a . Combining (5.13) and (5.14) provides

1 0 ∂ x 2 (T a ((u a n ) 2 )) ϕ(x 2 )dx 2 = Ω a ∂ x 2 (u a n ) 2 ϕ(x 2 )dx 1 dx 2 = 0 ∀ϕ ∈ C ∞ 0 (]0, 1[), ∀n ∈ N.
Consequently, one has

∂ x 2 (T a ((u a n ) 2 )) = 0 in ]0, 1[, ∀n ∈ N, which implies T a ((u a n ) 2 ) = 0 in ]0, 1[, ∀n ∈ N, (5.15) 
since T a ((u a n ) 2 ) (1) = 0. Finally, combining the first convergence in the left-hand side in (5.8) and (5.15) proves the left-hand side in (5.12), since T a is weakly continuous, being strongly continuous.

The proof of the right-hand side in (5.12) is more sophisticated, since one does not know if u b n = 0 on ] -hn 2 , hn 2 [×{0}. As above,

div b n (u b n ) = 0 in Ω b , ∀n ∈ N,
gives

Ω b ∂ x 1 u b n 1 + 1 h n ∂ x 2 u b n 2 ϕ(x 1 )dx 1 dx 2 = 0 ∀ϕ ∈ C ∞ 0 (] -1, 1[), ∀n ∈ N. (5.16) Now, fix δ ∈]0, 1 2 [. The boundary conditions on u b n give        Ω b ∂ x 2 u b n 2 ϕ(x 1 )dx 1 dx 2 = ∂Ω b u b n 2 ϕ(x 1 )n 2 dx 1 dx 2 = 0 ∀ϕ ∈ C ∞ 0 ] -1 2 , -δ[∪]δ, 1 2 [ , ∀n ∈ N : hn 2 < δ, (5.17) 
where n 2 is the second component of the exterior unit normal on ∂Ω b . Combining (5.16) and (5.17) provides

         1 2 -1 2 ∂ x 1 T b u b n 1 ϕ(x 1 )dx 1 = Ω b ∂ x 1 u b n 1 ϕ(x 1 )dx 1 dx 2 = 0 ∀ϕ ∈ C ∞ 0 ] -1 2 , -δ[∪]δ, 1 2 [ , ∀n ∈ N : hn 2 < δ.
Consequently, one has

∂ x 1 T b u b n 1 = 0 in ] -1 2 , -δ[∪]δ, 1 2 [, ∀n ∈ N : hn 2 < δ, which implies T b u b n 1 = 0 in ] -1 2 , -δ[∪]δ, 1 2 [, ∀n ∈ N : hn 2 < δ, (5.18) since T b u b n 1 (± 1 
2 ) = 0. Combining the first convergence in the right-hand side of (5.8) and (5.18) provides

T b u b 1 = 0 in ] -1 2 , -δ[∪]δ, 1 2 [, (5.19) 
since T b is weakly continuous, being strongly continuous. Finally, the right-hand side in (5.12) follows from (5.19) by the arbitrary choice of δ ∈]0, 1 2 [.

6

A priori estimates and a convergence result for the pressure Proposition 6.1. For every n ∈ N let (u a n , u b n ), (p a n , p b n ) be a solution of (3.9). Then there exists a positive constant c independent on n such that

∂ x 1 p a n H -1 (Ω a ) ≤ h n c, ∂ x 2 p a n H -1 (Ω a ) ≤ c, p a n L 2 (Ω a ) ≤ c 1 + Ω a p a n dx 1 dx 2 , (6.1) ∂ x 1 p b n H -1 (Ω b ) ≤ c, ∂ x 2 p b n H -1 (Ω b ) ≤ ch n , p b n L 2 (Ω b ) ≤ c 1 + Ω b p b n dx 1 dx 2 , (6.2)
for every n ∈ N.

Proof. Choosing (v a , v b ) = (w a + u a n , u b n ) as test functions in (3.9), with w a ∈ (H 1 0 (Ω a )) 2 , gives          Ω a h 2 n µD a n u a n D a n w a + h n g|D a n (w a + u a n )| -h n g|D a n u a n | dx 1 dx 2 ≥ Ω a (f a n w a + p a n div a n w a ) dx 1 dx 2 ∀w a ∈ (H 1 0 (Ω a )) 2 , ∀n ∈ N. (6.3) 
Applying the Hölder inequality in (6.3) provides The first two estimates in (6.1) follow from (6.5) and (6.6), respectively. The third one follows from Lemma 6.1 in [START_REF] Temam | Navier-Stokes equations. Theory and numerical Analyis[END_REF] and from the first two estimates in (6.1). Similarly, one can prove (6.2).

               Ω a
tensor becomes σ ij (u n , r n ) = -r n δ ij + 2µh 2 n e ij (u n ), which corresponds to a newtonian fluid. The initial problem corresponds in this case to the following Stokes system which admits a unique solution (u n , r n ). By performing a similar analysis, we obtain to the limit the following partial differential equation stated in the domain Ω b -µ

       (u n , r n ) ∈ (H 1 0 (Ω n )) 2 × (L 2 (Ω n )/R) , div(u n ) = 0 in Ω n ,
∂ 2 u 1 b (x 1 , x 2 ) ∂x 2 2 = f b 1 -q b
and the corresponding limiting stress tensor

σ 12 = -∂ x 1 q b + µ∂ x 2 u b 1 .
For an asymptotic analysis of the Stokes system with the method of "partial asymptotic decomposition of domain" we refer to [START_REF] Blanc | Asymptotic analysis and partial asymptotic decomposition of domain for Stokes equation in tube structure[END_REF] .

Figure 1 :

 1 Figure 1: the thin two-dimensional T-like shaped domain Ω n
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)

  Remark 3.1. Due to relation (2.8), a change of variables shows that the solution (p a n , p b n ) of problem (3.9) is such that

µ

  Ωnh 2 n Du n Dvdx 1 dx 2 = Ωn f n vdx 1 dx 2 -∇r n , v (H -1 (Ωn)) 2 ,(H 1

	0 (Ωn)) 2	∀v ∈ H 1 0 (Ω n )	2

× H 1 (Ω b ) 2 : v a = 0 on Γ a , v b = 0 on Γ b n ,
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Moreover, (u a 2 , p a ) solves

and (u b 1 , q b ) solves

where f a 2 and f b 1 are given by (3.10). Furthermore, u a 2 and u b 1 are unique.

A priori estimates and a convergence result for the velocity

In order to use compactness results for passing to the limit in the terms involving the velocity, we first derive a priori estimates for this function.

Proposition 5.1. Assume (1.2) and (3.10). For every n ∈ N let (u a n , u b n ) be the solution of (3.8). Then there exists a positive constant c independent on n such that

and

respectively. The comparison of (5.3) and (5.4) implies

(5.5)

On the other hand, the homogeneous boundary conditions of u a n on Γ a and of

(5.6)

The use of the Hölder inequality in the right-hand side of (5.5) and estimates (5.6) imply

(5.7)

Finally, (5.1) follows from (5.7), (3.10), and the following inequality

2) follows from (5.6) and (5.1).

Proposition 5.1 implies the following result.

Proposition 5.2. Let T a and T b be defined in (4.1). Assume (1.2) and (3.10). For every n ∈ N let (u a n , u b n ) be the solution of (3.8). Then there exist a subsequence of N, still denoted by {n}, u a ∈ (L 2 (Ω a ))

(in possible dependence on the subsequence), such that

(5.8) Proposition 5.2 and Proposition 6.1 imply the following result.

Corollary 6.2. Assume (1.2) and (3.10). For every n ∈ N let (u a n , u b n ), (p a n , p b n ) and (u a n , u b n ), (q a n , q b n ) be two solutions of (3.9) such that

Then there exist an increasing sequence of positive numbers, still denoted by {n}, p a ∈ L 2 (Ω a ) independent of x 1 , and q b ∈ L 2 (Ω b ) independent of x 2 (in possible dependence on the subsequence), such that

7 Proof of Theorem 4.1

Proof. By virtue of Proposition 5.2 and Corollary 6.2, there exist an increasing sequence of positive numbers, still denoted by {n}, and u a ∈ (L 2 (Ω a ))

independent of x 2 (in possible dependence on the subsequence), such that (5.8)-(5.12), (6.7) and (6.8) hold true. It remains to prove that (u a 2 , p a ) solves the variational inequality in (4.3) and (u b 1 , q b ) solves the variational inequality in (4.4). The uniqueness of u a 2 and u b 1 respectively can be proved as in [START_REF] Bunoiu | Asymptotic behaviour of a Bingham fluid in thin layers[END_REF]. In (3.8) choosing (v a , v b ) = ((0, 0), (0, 0)) first, then (v a , v b ) = (2u a n , 2u b n ), and comparing provide

Combining (3.9) and (7.1) gives

2) Passing to the limit in a suitable subsequence of (7.2), as n → +∞, with test functions (v a , v b ) = ((0, w a ), (0, 0)) such that w a ∈ H 1 0 (Ω a ), and using (5.8), (6.8), and assumption (3.10) provide

By a density argument (7.3) holds true also with w a belonging to space W a defined in Section 4. In particular, choosing w a = u a 2 ∈ W a 0 ⊂ W a in (7.3) gives

since p a is independent of x 1 and T a (u a 2 ) = 0 in ]0, 1[. Now replacing q a n with q b n in (3.9) gives formula (7.2) with q a n replaced by q b n . Then, passing to the limit in a suitable subsequence of this new formula, as n → +∞, with test functions (v a , v b ) = ((0, 0), (w b , 0)) such that w b ∈ H 1 0 (Ω b ), and arguing as above provide

) and consequently

Adding (7.6) to (7.4) gives

(7.7)

Now passing to the limit in (7.1) and using a l.s.c. argument, (5.8), and (3.10) provide

(7.8) Comparing (7.7) and (7.8) implies

(7.9)

Now comparing (7.4), (7.6), and (7.9) implies

(7.10)

Eventually, (7.3), (7.5), (7.10), and a density argument (see [START_REF] Bunoiu | Asymptotic behaviour of a Bingham fluid in thin layers[END_REF]) ensure that (u a 2 , p a ) solves the variational inequality in (4.3) and(u b 1 , q b ) solves the variational inequality in (4.4).

Analysis of the limit problem

This section is devoted to the analysis of limit problems (4.3) and (4.4) obtained in Theorem 4.1.

Remark 8.1. We first notice that these two problems are not coupled and consequently they can be treated independently. From a physical point of view, this behavior can be explained with the presence of a recirculation zone close to the junction that reduces the passage area through the two branches. The formation of this zone is due to the separation of the flow in a 90 0 bend (see [START_REF] Lamb | Hydrodynamics[END_REF]). In our limit problem the effect of such a recirculation produces the decoupling of the two branches. We next remark that, up to a permutation of the axes, both limit problems (4.3) and (4.4) are of the same type and for this reason we focus our attention on problem (4.4), that we recall below.

where Ω b = -1 2 , 1 2 × ]-1, 0[. According to [START_REF] Bunoiu | Fluide de Bingham dans une couche mince[END_REF], this problem is equivalent to the following problem

By choosing in the variational formulation (8.2) a test function w b ∈ W b 0 (Ω b ), the right hand side vanishes, as follows:

Then the problem becomes to find

We remark that u b 1 = 0 satisfies this last inequality for any w

This last inequality being always satisfied and the solution u b 1 of problem (8.2) being unique, we obtain the result. Remark 8.3. Let f b 1 be dependent on x 2 . Then, if u b 1 = 0 is solution of the limit problem (8.2), one has g 

According to [START_REF] Bunoiu | Asymptotic behaviour of a Bingham fluid in thin layers[END_REF], one can derive from problem (8.1) the following differential equation stated in the domain Ω

which is valid if ∂ x 2 u 1 b = 0 and where sgn states for the signum function. As in [START_REF] Bunoiu | Asymptotic behaviour of a Bingham fluid in thin layers[END_REF] and [START_REF] Bunoiu | Fluide de Bingham dans une couche mince[END_REF], we define, up to an additive function of x 1 , the limiting stress tensor σ 12 by

with σ * 12 = µ∂ x 2 u b 1 +g sgn ∂ x 2 u b 1 . This is to be compared with the following lower-dimensional "Bingham-like" law, used in the engineering literature for describing Bigham flow in thin domains, as for instance in [START_REF] Liu | Approximate equations for the slow spreading of a thin sheet of Bingham plastic fluid[END_REF]:

where τ represents the constraint. We notice that, if ∂ We end our analysis by recalling that the newtonian fluid can be seen as a particular case of the Bingham fluid, corresponding to g = 0. Indeed, taking g = 0 in (2.1), the stress