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 to improve the dispersion relation. We present a precise blow-up scenario of the mSGN equations and we prove the existence of a class of solutions that develop singularities in finite time. All the presented results hold, with the same proof, for the Serre-Green-Naghdi system with surface tension.

Water waves are usually described by the Euler equations. Due to their complexity, other models have been proposed in various regimes. For example, in the shallow water regime, it is assumed that the shallowness parameter σ is small, where σ is the ration of the mean water depth h to the wavelength ι (i.e., σ = h/ι 1). The Serre-Green-Naghdi equations are obtained by neglecting all the terms of order O(σ 4 ) from the water waves equations.

We consider in this paper the conservative modified Serre-Green-Naghdi system that was introduced by Clamond et al. [START_REF] Clamond | Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics[END_REF] h t + [ h u ] x = 0, (1a)

[ h u ] t + h u 2 + 1 2 g h 2 + R x = 0, (1b) 
R def = 1 3 1 + 3 2 β h 3 -u tx -u u xx + u 2 x -1 2 β g h 2 h h xx + 1 2 h 2 x , (1c) 
where h denotes the depth of the fluid, u is the depth-averaged horizontal velocity, g is the gravitational acceleration and β is a free parameter. The classical Serre-Green-Naghdi system is recovered taking β = 0. The aim of this paper is to study the local (in time) well-posedness of [START_REF] Clamond | Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics[END_REF], to obtain a precise blow-up criterion and to build smooth solutions that develop singularities in finite time.

Several modified Serre-Green-Naghdi equations have been derived and studied in the literature to optimise the linear dispersion, some of them fail to conserve the energy and do not admit a variational principle, some other equations do not satisfy the Galilean invariance. In order to improve the dispersion of the classical Serre-Green-Naghdi (cSGN) system conserving its desirable properties, Clamond et al. [START_REF] Clamond | Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics[END_REF] have modified the Lagrangian instead of modifying directly the cSGN equations to obtain the Lagrangian density (see Section 2 for more details)

L β ρ = 1 2 h u 2 + 1 6 1 + 3 2 β h 3 u 2 x -1 2 g h 2 -1 4 β g h 2 h 2 x + φ {h t + [h u] x } , (2) 
where φ is a Lagrange multiplier. The Euler-Lagrange equations of (2) lead to [START_REF] Clamond | Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics[END_REF]. Smooth solutions of the modified Serre-Green-Naghdi (mSGN) equations ( 1) satisfy the energy equation

E t + Q x = 0, (3) 
with

E def = 1 2 h u 2 + 1 6 1 + 3 2 β h 3 u 2 x + 1 2 g h -h 2 + 1 4 β g h 2 h 2 x , (4) 
Q def = u E + R + g h h -h + 1 2 β g h 3 h x u x , (5) 
where h is the mean value of the depth h of the fluid. For β > 0 and if h is far from zero (h h min > 0), the H 1 norms of both u and h -h are controlled by the energy. However, the energy of the cSGN equations (β = 0) cannot control the L 2 norm of h x . This crucial property of mSGN (1) for β > 0 is very important to build the small-energy solutions that develop singularities in finite time (Theorem 3 below). Several criteria have been proposed in [START_REF] Clamond | Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics[END_REF] to chose the parameter β. For β = 2/15 ≈ 0.1333, the dispersion relation of ( 1) coincide with the one of the full Euler system up order 4 instead of order 2 for the classical Serre-Green-Naghdi (Section 2 below). To optimise the decay of a particular solitary wave of (1) studied in [START_REF] Clamond | Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics[END_REF], one must take β = 2 3 (12π -2 -1) ≈ 0.1439. The value β ≈ 0.34560 approximates the inner angle of the crest of the solitary wave solution to the exact angle of the limiting solitary wave (120 • ). In the present paper, we consider only the case β > 0, and for the sake of simplicity we introduce

α def = 1 + 3 2 β. (6) 
The mSGN equations on the form (1) contains some terms with high-order derivatives and a term with a time derivative in the definition of R. In order to obtain a simpler form of (1), we introduce the linear Sturm-Liouville operator

L h def = h -1 3 α ∂ x h 3 ∂ x (7) 
and we apply L -1 h (the invertibility of L h is proved in Lemma 3 below) on the equation (1b) to obtain

u t + u u x + g h x = -L -1 h ∂ x 2 3 α h 3 u 2 x + 1 3 g h 3 h xx -1 4 β g h 2 h 2 x . (8) 
In Lemma 3 below, we show that we gain one derivative with the operator L -1 h ∂ x , this is not enough to control the term 1 3 gh 3 h xx in the right-hand side of (8). To get rid of this term, we use [START_REF] Dutykh | Solitary wave solutions and their interactions for fully nonlinear water waves with surface tension in the generalized Serre equations[END_REF] to rewrite [START_REF] Glassey | Singularities of a variational wave equation[END_REF] in the equivalent form

h t + [ h u ] x = 0, ( 9a 
)
u t + u u x + α-1 α g h x = -L -1 h ∂ x 2 3 α h 3 u 2 x -1 4 β g h 2 h 2 x + g 2 α h 2 . ( 9b 
)
The left-hand side of ( 9) is a symmetrisable 2 × 2 hyperbolic system and the right-hand side is a zero-order non-local term. Then, the local well-posedness of (9) in H s with s 2 can be obtained following the proof of symmetrisable hyperbolic systems. To the author's knowledge, the best blow-up criteria that have been obtained for those type of equations is "if a singularity appears in finite time, then h x L ∞ + u x L ∞ blows-up". This criteria does not show which term, or which slope blows-up. In this paper, we improve this criteria and we identify how exactly the blow-up occurs (Theorem 2 and equation (21) below). We also prove, using Riccati-type equations, the existence of a class of arbitrary small-energy initial data, such that the corresponding solutions develop singularities in finite time.

1.2. Other similar equations. In order to improve the dispersion relation of the classical Serre-Green-Naghdi equations, an interesting Whitham-Green-Naghdi (WGN) system have been proposed and studied in [START_REF] Duchêne | A new class of two-layer Green-Naghdi systems with improved frequency dispersion[END_REF][START_REF] Duchêne | Numerical study of the Serre-Green-Naghdi equations and a fully dispersive counterpart[END_REF]. The WGN system can be written as

h t + [ h u ] x = 0, (10a) u -1 3 h ∂ x F h 3 ∂ x F u t + g h x + u u x = u 3 h ∂ x F h 3 ∂ x F u + 1 2 h 2 (∂ x F u) 2
x , (10b) where F is the Fourier multiplier defined by

Fϕ(ξ) def = 3 h ξ tanh( h ξ) -3 ( h ξ) 2 φ(ξ).
The dispersion relation of the WGN system [START_REF] Guelmame | Local well-posedness of a Hamiltonian regularisation of the Saint-Venant system with uneven bottom[END_REF] is exactly the same as the one of the full Euler system. Smooth solutions of the WGN system conserve the energy E t + D x = 0 with

E def = 1 2 h u 2 + 1 6 h 3 (∂ x F u) 2 + 1 2 g h -h 2 .
Since the energy E does not control the L 2 norm of h x , the results presented in this paper cannot be generalised directly for [START_REF] Guelmame | Local well-posedness of a Hamiltonian regularisation of the Saint-Venant system with uneven bottom[END_REF]. However, the WGN equations [START_REF] Guelmame | Local well-posedness of a Hamiltonian regularisation of the Saint-Venant system with uneven bottom[END_REF] deserve to be studied more in the future.

Other equations similar to (1) have been studied in the literature. For example, the Serre-Green-Naghdi equations with surface tension [START_REF] Dias | On the fully-nonlinear shallow-water generalized Serre equations[END_REF][START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF] 

h t + [ h u ] x = 0, ( 11a 
) [ h u ] t + h u 2 + 1 2 g h 2 + S x = 0, (11b) 
S def = 1 3 h 3 -u tx -u u xx + u 2 x -γ h h xx -1 2 h 2 x , (11c) 
where γ > 0 is a constant (the surface tension coefficient divided by the density). Instead of S , the original equations involve

S def = 1 3 h 3 -u tx -u u xx + u 2 x -γ h 1 + h 2 x -3/2 h xx + 1 + h 2 x -1/2 .
Since we consider shallow water waves, any horizontal derivative is of order O(σ), using then Taylor expansion we obtain S = S -γ + O (σ 4 ). Neglecting terms of order O (σ 4 ) we obtain [START_REF] Guelmame | Global Weak Solutions of a Hamiltonian Regularised Burgers Equation[END_REF]. Smooth solutions of ( 11) conserve an H 1 -equivalent energy. Weakly singular peakon travelling wave solutions of [START_REF] Guelmame | Global Weak Solutions of a Hamiltonian Regularised Burgers Equation[END_REF] have been studied in [START_REF] Dutykh | Solitary wave solutions and their interactions for fully nonlinear water waves with surface tension in the generalized Serre equations[END_REF][START_REF] Mitsotakis | On weakly singular and fully nonlinear travelling shallow capillary-gravity waves in the critical regime[END_REF] for the critical case γ = g h2 /3. Another similar system is the dispersionless regularised Saint-Venant (rSV) system proposed by Clamond and Dutykh [START_REF] Clamond | Non-dispersive conservative regularisation of nonlinear shallow water (and isentropic Euler) equations[END_REF] that can be obtained replacing R in (1) by

T def = ε h 3 -u tx -u u xx + u 2 x -ε g h 2 h h xx + 1 2 h 2
x , where ε > 0. The classical Saint-Venant equations are recovered by taking ε = 0. The rSV equations have been studied in [START_REF] Clamond | Non-dispersive conservative regularisation of nonlinear shallow water (and isentropic Euler) equations[END_REF][START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF][START_REF] Pu | Weakly singular shock profiles for a non-dispersive regularization of shallow-water equations[END_REF] and have been generalised recently to regularise the Burgers equation [START_REF] Guelmame | Global Weak Solutions of a Hamiltonian Regularised Burgers Equation[END_REF] and the barotropic Euler equations [START_REF] Guelmame | Hamiltonian regularisation of the unidimensional barotropic Euler equations[END_REF]. In [START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF], Liu et al. have proved the local well-posedness of the rSV equations and they derived smooth solutions that cannot exist globally in time. The proofs presented in this paper for the mSGN equations can be generalised for the SGN equations with weak surface tension [START_REF] Guelmame | Global Weak Solutions of a Hamiltonian Regularised Burgers Equation[END_REF], for the rSV equations and also for the regularised barotropic Euler system [START_REF] Guelmame | Hamiltonian regularisation of the unidimensional barotropic Euler equations[END_REF]. The blow-up criterion proved here is more precise compared to the blow-up criterion in [START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF]. The key of the proof of the blow-up results in this paper is Lemma 5 below, a similar lemma have been proved in [START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF] for a short time (shorter than the existence time in general). In this paper, we show, with a shorter (and different) proof, that the same result holds true as long as the smooth solution exists.

1.3.

Outline. This paper is organised as follows. In Section 2, we present a brief derivation of the mSGN equations [START_REF] Clamond | Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics[END_REF]. The main results are introduced in Section 3. In Section 4, we prove some useful lemmas. Section 5 is devoted to obtain the precise blow-up scenario of strong solutions of the mSGN equations. In Section 6, we prove that some classical solutions cannot exist globally in time.

Derivation

2.1. Derivation. In this section, we recall briefly the derivation of the model (1) presented in [START_REF] Clamond | Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics[END_REF]. The classical Serre-Green-Naghdi equations can be derived from the Lagrangian density

L 0 ρ = 1 2 h u 2 + 1 6 h 3 u 2 x -1 2 g h 2 + φ {h t + [h u] x } . (12) 
The Euler-Lagrange equations lead to

h t + [ h u ] x = 0, u t + u u x + g h x = -1 3 h h 3 -u tx -u u xx + u 2 x x .
Those equations describe long waves in the shallow water regime, thus, any horizontal and temporal derivative is of order O(σ). This leads to

[u t + u u x + g h x ] x = -1 3 h h 3 -u tx -u u xx + u 2 x x x = O σ 4 .
In the Serre-Green-Naghdi model, all the terms of order O (σ 4 ) are neglected. Clamond et al. [START_REF] Clamond | Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics[END_REF] modified the Lagrangian ( 12) by adding a neglected term to obtain the modified Lagrangian Lβ

ρ def = L 0 ρ + β h 3 12 [u t + u u x + g h x ] x .
The choice of h 3 in the additional term is not necessary, one can replace h 3 by any increasing function of h (see [START_REF] Guelmame | Hamiltonian regularisation of the unidimensional barotropic Euler equations[END_REF] for more details). Using the conservation of the mass, one can write

h 3 [u t + u u x ] x = [h 3 u x ] t + [h 3 u , u x ] x + 3 h 3 u 2 x , h 3 h xx = [h 3 h x ] x -3 h 2 h 2 x . This leads to Lβ = L β + [• • • ] t + [• • • ] x ,
where L β is the Lagrangian density defined in [START_REF] Clamond | Non-dispersive conservative regularisation of nonlinear shallow water (and isentropic Euler) equations[END_REF]. This means that L β ≡ Lβ = L 0 + O (σ 4 ). Deriving the Lagrangian density L β we obtain [START_REF] Clamond | Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics[END_REF]. Thus, the mSGN system (1) is a suitable modification of the cSGN system that admits good properties and conserves a better energy compared to the cSGN equations for β > 0.

2.2. The dispersion relation. The choice of the free parameter β depends on the desired property. For example, in order to improve the dispersion relation of (1), one can linearise (1) around the constant state h, 0 and consider traveling waves on the form cos {k(x -ct)}. The dispersion relation then becomes

c 2 g h = 2 + β k h 2 2 + 2 3 + β k h 2 = 1 -1 3 k h 2 + 1 9 + β 6 k h 4 + • • • .
This must be compared with the exact relation

c 2 g h = tanh k h k h = 1 -1 3 k h 2 + 2 15 k h 4 + • • • .
Hence, in order to to have the same dispersion relation up to the order k 4 , one must take β = 2/15. Other criteria exits for choosing the parameter β (see [START_REF] Clamond | Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics[END_REF] for more details).

Main results

The first result of this paper is the local well-posedness of the system (9) in the Sobolev space

H s (R) def = f, f 2 H s (R) def = R 1 + |ξ| 2 s | f (ξ)| 2 dξ < +∞ ( 13 
)
where s 2 is a real number.

Theorem 1. Let β > 0, h > 0 and s 2, then, for any

(h 0 -h, u 0 ) ∈ H s (R) satisfying inf x ∈ R h 0 (x) > 0 there exists T > 0 and (h-h, u) ∈ C 0 ([0, T ], H s (R))∩C 1 ([0, T ], H s-1 (R)) a unique solution of (9) such that inf (t,x) ∈ [0,T ]×R h(t, x) > 0. ( 14 
)
Moreover, the solution satisfies the conservation of the energy

d dt R 1 2 h u 2 + 1 6 α h 3 u 2 x + 1 2 g h -h 2 + 1 4 β g h 2 h 2 x dx = 0. ( 15 
)
Remark 1. The solution given in Theorem 1 depends continuously on the initial data, i.e., If (h 0 -h, u 0 ), ( h0 -h, ũ0 ) ∈ H s , such that h 0 , h0 h * > 0, and t min{T, T }, then there exists a constant C(

( h -h, ũ) L ∞ ([0,t],H s ) , (h -h, u) L ∞ ([0,t],H s ) ) > 0, such that (h -h, u -ũ) L ∞ ([0,t],H s-1 ) C (h 0 -h0 , u 0 -ũ0 ) H s . (16) 
The proof of Theorem 1 is classic and omitted in this paper. See [START_REF] Guelmame | Hamiltonian regularisation of the unidimensional barotropic Euler equations[END_REF][START_REF] Israwi | Large time existence for 1D Green-Naghdi equations[END_REF][START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF][START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF] and Theorem 3 of [START_REF] Guelmame | Local well-posedness of a Hamiltonian regularisation of the Saint-Venant system with uneven bottom[END_REF] for more details.

Remark 2. If (h -h, u) ∈ C 0 ([0, T ], H s (R)
) and h satisfies ( 14) for some T > 0, then Theorem 1 ensures that the solution can be extended over [0, T ]. In other words, if T max is the maximum time existence of the solution, then, we have the blow-up criterion

T max < +∞ =⇒ lim inf t→Tmax inf x ∈ R h(t, x) = 0 or lim sup t→Tmax (h -h, u) H s = +∞. (17)
The blow-up criterion (17) can be improved as in [START_REF] Guelmame | Hamiltonian regularisation of the unidimensional barotropic Euler equations[END_REF][START_REF] Guelmame | Local well-posedness of a Hamiltonian regularisation of the Saint-Venant system with uneven bottom[END_REF][START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF] to

T max < +∞ =⇒ lim inf t→Tmax inf x ∈ R h(t, x) = 0 or lim sup t→Tmax (h x , u x ) L ∞ = +∞. (18)
The last blow-up criterion ensures that if h > 0 is far from zero, then, the blow-up will appear on the L ∞ norm of u x or h x . This result is improved in this paper, and we claim the two more precise criteria for blow-up mechanism.

Theorem 2. Let β > 0, and let T max be the maximum time existence of the solution given by Theorem 1, then

T max < +∞ =⇒ lim inf t→Tmax inf x ∈ R h(t, x) = 0 or        lim inf t→Tmax inf x ∈ R u x (t, x) = -∞, and lim sup t→Tmax h x (t, x) L ∞ = +∞, ( 19 
)
which is equivalent to second criterion

T max < +∞ =⇒ lim sup t→Tmax u x (t, x) L ∞ = +∞ and        lim inf t→Tmax inf x ∈ R h(t, x) = 0, or lim sup t→Tmax h x (t,x) L ∞ = +∞.
(20) Since H 1 → L ∞ and the energy ( 15) is conserved, then, |h -h| is controlled by the energy of the initial data (see Proposition 1 below). This ensures that if the initial energy is small enough then h is uniformly far from zero (min t,x h > 0). In this case, the blow-up criterion (19) becomes

T max < +∞ =⇒ lim inf t→Tmax inf x ∈ R u x (t, x) = -∞ and lim sup t→Tmax h x L ∞ = +∞. (21)
This blow-up criterion ensures that if a blow-up occurs, then u x goes to -∞. Since h is far from zero, then the conservation of the mass implies that the material derivative of the free surface goes to +∞. However, it is not clear if h x blows-up on -∞ or +∞. The following theorem shows that both scenarios are possible. Theorem 3. For any T > 0 and K ∈ 0, g

√ β 3 √ 2 
h3 , there exist

• (h 0 -h, u 0 ) ∈ C ∞ c (R) satisfying R E 0 dx K such that the corresponding solution of (9) blows-up in finite time T max T and inf [0,Tmax[×R u x (t, x) = -∞, sup [0,Tmax[×R h x (t, x) = +∞, inf [0,Tmax[×R h x (t, x) > -∞.
• ( h0 -h, ũ0 ) ∈ C ∞ c (R) satisfying R Ẽ0 dx K such that the corresponding solution of (9) blows-up in finite time Tmax T and

inf [0, Tmax[×R ũx (t, x) = -∞, inf [0, Tmax[×R hx (t, x) = -∞, sup [0, Tmax[×R hx (t, x) < +∞.
Remark 3. All the proofs presented in this paper work also for the SGN equations with surface tension [START_REF] Guelmame | Global Weak Solutions of a Hamiltonian Regularised Burgers Equation[END_REF], for the rSV equations [START_REF] Clamond | Non-dispersive conservative regularisation of nonlinear shallow water (and isentropic Euler) equations[END_REF] and also for the regularised barotropic Euler system [START_REF] Guelmame | Hamiltonian regularisation of the unidimensional barotropic Euler equations[END_REF].

Preliminaries

In this section, we recall some classical estimates and we prove some lemmas that are needed to prove Theorem 2 and Theorem 3.

Lemma 1. ([3]) Let F ∈ C m+2 (R)
with F (0) = 0 and 0 s m, then there exists a continuous function F , such that for all f ∈ H s ∩ W 1,∞ we have

F (f ) H s F ( f W 1,∞ ) f H s . ( 22 
)
Let Λ be defined such that Λf = (1 + ξ 2 ) 1 2 f , then we have the following estimate.

Lemma 2. ([13]) Let [A, B]

def = AB -BA be the commutator of the operators A and B. If r 0, then ∃C > 0 such that

f g H r C ( f L ∞ g H r + f H r g L ∞ ) , (23) 
[Λ r , f ] g L 2 C ( f x L ∞ g H r-1 + f H r g L ∞ ) . (24) 
Now, we recall the invertibility of the operator L h defined in [START_REF] Dutykh | Solitary wave solutions and their interactions for fully nonlinear water waves with surface tension in the generalized Serre equations[END_REF] and that we gain two derivatives with L -1 h . Lemma 3. Let α > 0 and 0

< h ∈ W 1,∞ with h -1 ∈ L ∞ , then the operator L h is an isomorphism from H 2 to L 2 and ∃C 1 = C 1 α, s, h -1 L ∞ , h -h W 1,∞ > 0, C 2 = C 2 (α, h -1 L ∞ , h L ∞ ) > 0 such that (1) If s 0, then L -1 h ∂ x ψ H s+1 C 1 ψ H s + h -h H s L -1 h ∂ x ψ W 1,∞ , (25a) 
L -1 h φ H s+1 C 1 φ H s + h -h H s L -1 h φ W 1,∞ . (25b) 
(2) If s 0, then

L -1 h ∂ x ψ H s+1 C 1 ψ H s 1 + h -h H s , (26a) 
L -1 h φ H s+1 C 1 φ H s 1 + h -h H s . ( 26b 
) (3) If φ ∈ C lim def = {f ∈ C(R), f (+∞), f (-∞) ∈ R}, then L -1 h φ is well defined and L -1 h φ W 2,∞ C 2 φ L ∞ . ( 27 
) (4) If ψ ∈ C lim ∩ L 1 , then L -1 h ∂ x ψ W 1,∞ C 2 ( ψ L ∞ + ψ L 1 ) . ( 28 
) (5) If h x ∈ L 2 , then L -1 h ∂ x ψ H 1 + L -1 h ψ H 1 C 2 ψ L 2 , (29a) 
L -1 h ψ W 1,∞ L -1 h ψ H 2 C 2 1 + h x 2 L 2 ψ L 2 . (29b) 
Proof. The proof of the invertibility of L h and the estimates (25), ( 26), ( 27), ( 28) and (29a) can be found in [START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF]. It remains only to prove (29b). Using the definition of L h we obtain

∂ 2 x L -1 h ψ = ∂ x h -3 L -1 h h 4 ∂ x L -1 h ψ -α 3 ∂ x h 3 ∂ x h 3 ∂ x L -1 h ψ = ∂ x h -3 L -1 h ∂ x h 4 L -1 h ψ -α 3 h 3 ∂ x h 3 ∂ x L -1 h ψ -4 ∂ x h -3 L -1 h h 3 h x L -1 h ψ = ∂ x h -3 L -1 h ∂ x h 3 ψ -4 ∂ x h -3 L -1 h h 3 h x L -1 h ψ = -3 h -2 h x L -1 h ∂ x h 3 ψ -4 L -1 h h 3 h x L -1 h ψ + h -3 ∂ x L -1 h ∂ x h 3 ψ -4 h -3 ∂ x L -1 h h 3 h x L -1 h ψ .
Using (29a) and the embedding H 1 → L ∞ we obtain

∂ 2 x L -1 h ψ L 2 C 2 h x L 2 L -1 h ∂ x h 3 ψ H 1 + L -1 h h 3 h x L -1 h ψ H 1 + C 2 ∂ x L -1 h ∂ x h 3 ψ L 2 + C 2 ∂ x L -1 h h 3 h x L -1 h ψ L 2 C 2 h x L 2 ψ L 2 + h x L 2 L -1 h ψ H 1 + C 2 ψ L 2 + C 2 h x L 2 L -1 h ψ H 1 C 2 1 + h x 2 L 2 ψ L 2 .
This with (29a) imply (29b).

The R defined in (1c) contains some terms with two order derivatives, using (9), we can write R without those high order derivatives involving the operator L -1 h . Then, using the previous lemma we show that the norm R L ∞ is controlled by (h, u, h -1 ) L ∞ . Lemma 4. Let (h -h, u) be a smooth solution of (9), then for any T < T max , there exists

C = C(β, h, (h, u, h -1 ) L ∞ ([0,T ]×R) ) > 0, such that R L ∞ ([0,T ]×R) C. ( 30 
)
Proof. From the definition of L h , we obtain that

1 + 1 3 α h 3 ∂ x L -1 h ∂ x Ψ = h 3 ∂ x L -1 h h x -∞ h -3 Ψ (31)
for any smooth function Ψ, such that Ψ(±∞) = 0. Using (1c), ( 9b) and ( 31) we obtain

R = -1 3 α h 3 ∂ x u t + u u x + α-1 α g h x + 2 3 α h 3 u 2 x -1 4 β g h 2 h 2 x = 1 + 1 3 α h 3 ∂ x L -1 h ∂ x 2 3 α h 3 u 2 x -1 4 β g h 2 h 2 x + g h 2 -h2 2 α -g h 2 -h2 2 α (32) = 1 + 1 3 α h 3 ∂ x L -1 h ∂ x 2 3 α h 3 u 2 x -1 4 β g h 2 h 2 x + g 3 h 3 ∂ x L -1 h {h h x } = h 3 ∂ x L -1 h h x -∞ 2 3 α u 2 x -1 4 β g h -1 h 2 x + g 3 h 3 ∂ x L -1 h {h h x } (33)
Using the conservation of the energy (15) we obtain

x -∞ 2 3 α u 2 x -1 4 β g h -1 h 2 x L ∞ 2 3 α u 2 x -1 4 β g h -1 h 2 x L 1 C 3 .
Then, the inequality (30) follows directly from ( 27) and (29b). Since we are considering the Serre-Green-Naghdi equations on the form (9) instead of [START_REF] Glassey | Singularities of a variational wave equation[END_REF], it is more convenient to use the following Riemann invariants 1 R, S and their corresponding speeds of characteristics λ, µ

R def = u + 2 α-1 α g h, λ def = u + α-1 α g h, (34) 
S def = u -2 α-1 α g h, µ def = u - α-1 α g h, ( 35 
)
1 Those quantities are constants along the characteristics if the right-hand side of ( 9) is zero.

rather that the Riemann invariants of the classical Saint-Venant system. Then, the system (9) can be rewritten as

R t + λ R x = -L -1 h ∂ x 2 3 α h 3 u 2 x -1 4 β g h 2 h 2 x + g 2 α h 2 , ( 36a 
)
S t + µ S x = -L -1 h ∂ x 2 3 α h 3 u 2 x -1 4 β g h 2 h 2 x + g 2 α h 2 . ( 36b 
)
Defining

P def = R x = u x + α-1 α g h -1 2 h x , Q def = S x = u x - α-1 α g h -1 2 h x ,
we have

u x = P + Q 2 , h x = √ α h 1 2 2 (α -1) g (P -Q) . ( 37 
)
Let the characteristics X a , Y a starting from a defined as the solutions of the ordinary differential equations d dt

X a (t) = λ(t, X a (t)), X a (0) = a (38) d dt Y a (t) = µ(t, Y a (t)), Y a (0) = a (39) 
Differentiation (36) with respect to x, and using (32) we obtain the Ricatti-type equations

d λ dt P def = P t + λ P x = -3 8 P 2 + 3 8 Q 2 + P Q -3 α -1 h -3 R, (40a) 
d µ dt Q def = Q t + µ Q x = -3 8 Q 2 + 3 8 P 2 + P Q -3 α -1 h -3 R, (40b) 
where d λ dt , d µ dt denote the derivatives along the characteristics with the speeds λ and µ respectively.

A key point to prove Theorem 2 and Theorem 3 is to control the term P 2 in the Ricatti equation (40b) and the term Q 2 in (40a). For that purpose, we prove in the following lemma that the integral of P 2 along the X characteristics and the integral of Q 2 along the Y characteristics are bounded. Lemma 5. Let β > 0, h > 0 and (h 0 -h, u 0 ) ∈ H 2 initial data satisfying inf x ∈ R h 0 (x) > 0 and let (h -h, u) be the corresponding solution of (9) given by Theorem 1, let also t ∈ [0, T max [, then, there exist

A β, h, (h, u, h -1 ) L ∞ ([0,t]×R) , E dx > 0, B β, h, (h, u, h -1 ) L ∞ ([0,t]×R) , E dx > 0,
such that for any x 2 ∈ R, and for

x 1 ∈] -∞, x 2 [ the solution of X x 1 (t) = Y x 2 (t) (see Figure 1) we have t 0 Q(s, X x 1 (s)) 2 ds + t 0 P (s, Y x 2 (s)) 2 ds A t + B. (41) 
Remark 4. A similar result have been proved for the so-called variational wave equation with A = 0 and B depends only on the energy of the initial data [START_REF] Glassey | Singularities of a variational wave equation[END_REF]. For the mSGN, additional terms appear, and a uniform (on time) bound cannot be obtained for large data.

x t t x 0 s Y x 2 (s) X x 1 (s) x 2 x 1 Figure 1. Characteristics. Proof. Defining B 1 def = α-1 α g h 1 2 h u 2 + 1 2 g h -h 2 -u R + g h h -h , B 2 def = α-1 α g h 1 2 h u 2 + 1 2 g h -h 2 + u R + g h h -h ,
and using (30), one can prove that the quantity

B 1 L ∞ + B 2 L ∞ is bounded. One can easily check that λ E -D = √ 6 α β g h 7 12 Q 2 + B 1 , -µ E + D = √ 6 α β g h 7 12 P 2 + B 2 . (42) 
Since

λ -µ = 2 α-1 α g h 2 α-1 α g h -1 -1 2 L ∞ > 0, then x 1 < x 2 . Integrating (3) on the set {(s, x), s ∈ [0, t], X x 1 (s) x Y x 2 (
s)}, using the divergence theorem, the energy equation ( 15) and (42) one obtains (41).

Blow-up criteria

The aim of this section is to prove Theorem 2, for that purpose, we consider s 2 and (h -h, u) the solution of [START_REF] Guelmame | Hamiltonian regularisation of the unidimensional barotropic Euler equations[END_REF] given by Theorem 1 with the initial data (h 0 -h, u 0 ) and we start by the following lemmas. Lemma 6. For T max < +∞, we consider the following properties

sup (t,x) ∈ [0,Tmax[×R u x (t, x) < +∞, (43a) inf 
(t,x) ∈ [0,Tmax[×R h(t, x) > 0, (43b) 
(h, u) L ∞ ([0,Tmax[×R) < +∞. (43c) 
Then, (43a) ⇐⇒ (43b) and (43b) =⇒ (43c).

Proof. The proof of (43b) =⇒ (43c) follows directly from the conservation of the energy [START_REF] Li | Linear stability of solitary waves of the Green-Naghdi equations[END_REF] and the embedding

H 1 → L ∞ .
Let the characteristic Z a starting from a defined as the solutions of the ordinary differential equation

d dt Z a (t) = u(t, Z a (t)), Z a (0) = a. (44) 
Denoting the derivatives along the characteristics with speed u by d u dt and using the conservation of the mass (9a) one obtains

d u dt h def = h t + u h x = -u x h, =⇒ h inf x ∈ R
h 0 e -sup t,x ux(t,x) Tmax . (45)

The proof of (43a) =⇒ (43b) follows directly from the last inequality. It only remains to prove the converse ((43b) =⇒ (43a)). Using the Young inequality

± a b 3 8 a 2 + 2 3 b 2 , (46) 
integrating (40a), (40b) along the characteristics, and using (30), (41) one obtains the existence of à > 0, B > 0 which depend on β, h, (h, u, h -1 ) L ∞ ([0,T ]×R) and E dx, such that

P (t, X x 1 (t)) P 0 (x 1 ) + Ã t + B ∀(t, x 1 ) ∈ [0, T ] × R, (47a) 
Q(t, Y x 2 (t)) Q 0 (x 2 ) + Ã t + B ∀(t, x 2 ) ∈ [0, T ] × R. (47b) 
The last inequalities imply that sup (t,x) ∈ [0,Tmax[×R P (t, x) < +∞, and sup

(t,x) ∈ [0,Tmax[×R Q(t, x) < +∞, (48) 
then, (43a) follows directly from (37).

Lemma 7. For T max < +∞, we consider the following properties

inf (t,x) ∈ [0,Tmax[×R u x (t, x) > -∞, (49a) 
h x L ∞ ([0,Tmax[×R) < +∞. ( 49b 
)
Then, (43b) =⇒ ((49a) ⇐⇒ (49b)).

Proof. We suppose that (43b) and (49a) are satisfied. Using Lemma 6 one obtains that u x L ∞ is bounded. Then (49b) follows directly from (48) and

h x = √ α h 1 2 (α -1) g (u x -Q) = √ α h 1 2 (α -1) g (P -u x ) . (50) 
To prove the converse, we suppose that (43b) and (49b) are satisfied, then, using the Young inequality ±ab -1 2 a 2 -1 2 b 2 , (40a) and 30), (41) and Gronwall lemma, we obtain that inf t,x P > -∞. Using again (49b) we obtain (49a). Now, we can prove Theorem 2. Note that Lemma 6 implies the equivalence between ( 19) and (20). Then, it only remains to prove (19). Step 1 is devoted to prove the blow-up criterion [START_REF] Pu | Weakly singular shock profiles for a non-dispersive regularization of shallow-water equations[END_REF]. The proof of ( 19) is given in Step 2.

P 2 = Q 2 + 4 α-1 α g h -1 2 u x h x = Q 2 + 2 α-1 α g h -1 2 h x (P + Q) (51) one obtains d λ dt P -7 8 P 2 -1 8 Q 2 -3 α -1 h -3 R = -Q 2 -7 4 α-1 α g h -1 2 h x P -7 4 α-1 α g h -1 2 h x Q -3 α -1 h -3 R -7 4 α-1 α g h -1 2 h x P -3 2 Q 2 -49 32 α-1 α g h -1 h 2 x -3 α -1 h -3 R. Using (49b), (
Proof of Theorem 2.

Step 1: In order to prove [START_REF] Pu | Weakly singular shock profiles for a non-dispersive regularization of shallow-water equations[END_REF], we suppose that (h x , u x ) L ∞ ([0,Tmax[×R) < +∞, (43b) and we prove that if T max < +∞, then (h -h, u) L ∞ ([0,Tmax[,H s (R) < +∞ which contradicts with the definition of T max . For that purpose, we define

W def = (h -h, u) A(W ) def = α-1 α g 0 0 h , B(W ) def = u h α-1 α g u , F (W ) def = 0 -L -1 h ∂ x 2 3 α h 3 u 2 x -1 4 β g h 2 h 2 x + g 2 α h 2 , the system (9) becomes W t + B(W ) W x = F (W ). (52) 
Let (•, •) be the scalar product in L 2 and E(W

) def = (Λ s W, A Λ s W ).
Since AB is a symmetric matrix, straightforward calculations with (52) show that

E(W ) t = -2 ([Λ s , B] W x , A Λ s W ) -2 (B Λ s W x , A Λ s W ) -2 (Λ s F , A Λ s W ) + (Λ s W, A t Λ s W ) = -2 ([Λ s , B] W x , A Λ s W ) + (Λ s W, (A B) x Λ s W ) -2 (Λ s F , A Λ s W ) + (Λ s W, A t Λ s W ) (53) 
Defining B def = B( h, 0), and using (24), (22) one obtains

|([Λ s , B] W x , A Λ s W ) | C A L ∞ W H s B x L ∞ W x H s-1 + B -B H s W x L ∞ C1 W 2 H s ,
where C1 is a positive constant that depends on W W 1,∞ and h -1 L ∞ . Using the conservation of the mass (9a) one obtains that

|(Λ s W, (A B) x Λ s W )| + |(Λ s W, A t Λ s W )| C2 W 2 H s . (54) 
From the energy conservation [START_REF] Li | Linear stability of solitary waves of the Green-Naghdi equations[END_REF], it is clear that

2 3 α h 3 u 2 x -1 4 β g h 2 h 2 x L 1 + g h 2 -h2 2 α L 2 C3 (55)
Then, using (25), ( 28), (29a), ( 23) and ( 22) we obtain

F H s C4 W H s . ( 56 
) Since (h, h -1 ) L ∞ is bounded, then, W H s C5 E(W ).
Combining all the estimates above, one obtains

E(W ) t C E(W ), (57) 
where C does not depend on W H s . Then, Gronwall lemma implies that

(h -h, u) L ∞ ([0,Tmax[,H s (R) C5 E(W ) L ∞ ([0,Tmax[) < +∞.
This ends the proof of (18).

Step 2: It remains to prove (19). We suppose that T max < +∞ and (43b) is satisfied. The blow-up criterion [START_REF] Pu | Weakly singular shock profiles for a non-dispersive regularization of shallow-water equations[END_REF] 

inf x ∈ R u x (t, x) = -∞ or lim sup t→Tmax h x L ∞ = +∞.
Finally, Lemma 7, insures that if one of the quantities above blows-up, then the other one should also blow-up at the same time. Then

lim inf t→Tmax inf x ∈ R u x (t, x) = -∞ and lim sup t→Tmax h x L ∞ = +∞.

Blow-up results

The goal of this section is to prove Theorem 3, for that purpose, we consider smooth solutions with small energy. In the following proposition we prove that if the energy is small enough, then, the quantity (h, u, h -1 ) L ∞ is uniformly bounded. Proposition 1. For β > 0, h > 0, let E be a positive number such that

0 < E < g √ β 3 √ 2 h3 , Defining h min def = h -3 √ 2 E g √ β h , h max def = h + 3 √ 2 E g √ β h , u max def = -u min def = (3/α) 1 4 √ E/h min .
Then, for any

(h -h, u) ∈ H 1 , if E dx E, we have 0 < h min h h max < 2 h, u min u u max , (58) 
Remark 5. The conservation of the energy [START_REF] Li | Linear stability of solitary waves of the Green-Naghdi equations[END_REF] and Proposition 1 insure that if the initial data satisfy E 0 dx E, then, as long the the solution exist, the quantity (h, u, h -1 ) L ∞ is bounded by a constant that depends only on g, γ, h and E. Thence, all the constants given in ( 27), ( 28), (30), ( 41) and ( 47) are universal and do not depend on the initial data and the solution.

Proof of Proposition 1. The Young inequality 1 2 a 2 + 1 2 b 2 ±ab implies that

E R E dy R 1 2 g h -h 2 + 1 4 β g h 2 h 2 x dx g β 2 x -∞ (h -h) h h x dy - +∞ x (h -h) h h x dy g 3 β 2 h -h 2 2 h + h g 3 β 2 h h -h 2 ,
which implies that h min h h max . Doing the same estimates with u one obtains Let T > 0, and let Ã, B be the constants given in (47). From (30) we obtain that |α -1 h -3 R| C2 for some C > 0. If the initial data satisfy E 0 dx E, then, the constants Ã, B and C are universal and depend only on g, β, h and E (Remark 5). We 

and we choose the initial data (h 0 -h, u 0 ) ∈ C ∞ c (R) such that there exist x 1 ∈ R satisfying R E 0 dx E, Q 0 ≡ 0, P 0 (x 1 ) < -2 D T + 1 , P 0 (x 1 ) < -8 T . (60)

Let t < min{ T , T max }, then (40b) with the Young inequality P Q

-3 8 P 2 -2 3 Q 2 imply that d µ dt Q -25 24 Q 2 -3 α -1 h -3 R -3 Q 2 + C2 . ( 61 
)
The last inequality with (47b) imply that for all x 1 ∈ R, we have

-C -C tan 3 C t Q(t, Y x 2 (t)) Ã T + B, (62) 
which implies that Q cannot blow-up before t = min T , T max and Q L ∞ D/4( T + 1). Using (40a) and the Young inequality P Q 2 . The last inequality follows from P (t, X x 1 (t)) 2 4 D( T + 1) 2 , which is true initially and holds because the map t → P (t, X x 1 (t)) is decreasing and negative. Then T max T T and from (47a) we obtain that inf 

x dy α 3 h 2 min |u| 2 ,

 2 the last inequality ends the proof of u min u u max .Proof of Theorem 3. Since the proofs of the two parts of Theorem 3 are the same, we only prove the first part.

  Ã2 , B2 , C2 ,

[ 0 ,

 0 Tmax[×R P (t, x) = -∞, sup [0,Tmax[×R P (t, x) < +∞, sup [0,Tmax[×R |Q(t, x)| < +∞.

  1 8 P 2 + 2Q 2 one obtains d λ dt P (t, X x 1 (t)) -1 4 P (t, X x 1 (t)) 2 + 19 8 Q(t, X x 1 (t)) 2 + 3 C2 -1 4 P (t, X x 1 (t)) 2 + D T + 1

2

-

1 

8 P (t, X x 1 (t))
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