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Abstract: Wastewater networks are mandatory for urbanisation. Their management, including the
prediction and planning of repairs and expansion operations, requires precise information on their
underground components (manhole covers, equipment, nodes, and pipes). However, due to their
years of service and to the increasing number of maintenance operations they may have undergone
over time, the attributes and characteristics associated with the various objects constituting a network
are not all available at a given time. This is partly because (i) the multiple actors that carry out
repairs and extensions are not necessarily the operators who ensure the continuous functioning of the
network, and (ii) the undertaken changes are not properly tracked and reported. Therefore, databases
related to wastewater networks may suffer from missing data. To overcome this problem, we aim to
exploit the structure of wastewater networks in the learning process of machine learning approaches,
using topology and the relationship between components, to complete the missing values of pipes.
Our results show that Graph Convolutional Network (GCN) models yield better results than classical
methods and represent a useful tool for missing data completion.

Keywords: graph neural network; missing value imputation; wastewater network; machine learning

1. Introduction

Urbanisation has been an increasing trend over the past century [1]. OCDE [2] pre-
dicted that over 2012–2050, the global water demand will increase by 55%. Given the
predicted growth in population and water demand, Instrumentation, Control, and Au-
tomation (ICA) will become even more important and the need for system-wide ICAs
more urgent [3]. The development of smart cities [4] has encouraged the use of innovative
solutions like big data and Internet of Things (IoT) sensors and applications. One of the
sectors that takes advantage of these cutting-edge technologies is that of water and wastew-
ater [5–7]. Services are being developed for the real-time management of these systems [8]
relying on a purely technical layer (sensors, actuators, etc.) and a software layer making
use of data-mining techniques to infer the needed information and knowledge [9].

A problem often encountered when managing environmental systems, such as under-
ground databases, is missing data [7,10–12]. In wastewater network databases, missing data
may directly impact their management at both decision-making and business/scientific
domain-related levels. Planning is an important task for decision making. It helps develop
a vision of needs in space and time so as to quantify and prioritise them to direct fund-
ing towards the most necessary investments and at a reasonable cost since urgent and
unexpected operation costs are far higher than anticipated ones [13]. Decision makers use
the available databases, which generally suffer from incompleteness, thus, often leading
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to delays, traffic jams, or collateral damage on the networks. Furthermore, experts in
hydraulics who need to study the impact of external variables on the network, such as the
discharge rate of consumers into the network, use hydraulic modelling software, which
require complete databases to run successfully.

However, few studies were published to help managers and the involved entities
complete missing data. For instance, in [14], the authors map underground networks using
Bayesian fusion techniques to combine hypotheses extracted from Ground Penetrating
Radar (GPR) with the spatial location of surveyed manholes and the expectations from
the statutory records. Moreover, the authors in [15] use a Bayesian mapping model to
integrate knowledge extracted from sensors’ raw data and available statutory records
to infer underground network data including water pipes. To enhance the detection
of underground networks, [16] fuse the data collected from different radars. In [17],
the authors apply deep neural networks to detect the position of manhole covers from
high-resolution images. Although these propositions offer innovative methods to col-
lect data, they are expensive and require a long processing time and economic invest-
ments from the municipalities and the managers, which may not always be possible, espe-
cially for small towns. A solution is then to resort to Missing Value Imputation (MVI) or
Missing Data Imputation (MDI) algorithms, which try to replace the missing values of
a data set to obtain a complete one. The goal is to estimate missing values based on the
available ones. For instance, the authors in [18] used MVI techniques to estimate a missing
pipe diameter and age values, the number of service connections, and the number of valves.
They mainly used statistical descriptors such as the distribution of attributes, the mean,
the median, expectation-maximisation, or the covariance matrix. Although the results were
encouraging for some methods, this study had several limitations as outlined by the au-
thors. For instance, in addition to being restricted to numerical attributes, this proposition
was conducted on a small percentage of missing attribute values with a maximum missing
data percentage of 12.73% and a minimum percentage of 2.19%, representing 63 pipes.

Many other studies address missing value imputation in various application domains.
Their performances vary based on several parameters, such as the type of the targeted data:
Categorical, numerical, or mixed [19], the percentage of missing data [20] or the application
domain of the completion task, such as biology [21] or pattern recognition [22]. MVI has
been carried out using statistical techniques such as simple means, Multiple Linear Regres-
sions (MLR), Logistic Regressions (LR), Random Forest Decision Trees (RFD), or Bayesian
inference [10,23–27]. It now benefits from the most recent developments in Machine Learn-
ing techniques such as K-Nearest Neighbour (KNN), Support Vector Machines, Artificial
Neural Networks, Long Short-Term Memory algorithms [20,28–31], and more recently
Graph Neural Networks [32]. The latter are particularly interesting for missing value impu-
tation on urban water networks whose design rules follow topological relationships both
for network configuration and geometric properties. Indeed, a wastewater network can be
represented as a graph composed of nodes and edges, where nodes represent manholes,
equipment, repairs, etc. while edges represent the pipes.

The objective of this work is to use a Graph Neural Network to complete a wastewater
network database in view of hydraulic modelling of wastewater flow and help managers
estimate the missing values in their databases. To the best of our knowledge, this is the
first attempt to use MVI techniques based on machine learning techniques to infer the
characteristics of a wastewater network. The paper is structured as follows: Section 2 gives
an overview of the approaches and methods of machine learning on graphs. Section 3
presents the methodology, the models, and materials used in this study. The tests and the
results are described in Section 4. The conclusion and the discussion are in Section 5.

2. Background and State of the Art
2.1. Machine Learning and Graphs

In the last decade, machine learning models, particularly neural networks, have been
successfully used to accomplish a wide range of difficult tasks such as natural language
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processing [33], image classification [34], and speech recognition [35]. However, the models
behind this achievement like Recurrent Neural Networks (RNNs) and Convolutional
Neural Networks (CNNs) are only adapted to Euclidean data and cannot be applied
directly to graphs, as their structures may vary extremely from one graph to another.
For example, CNNs widely used for image applications, exploit the fixed structure of
the pixel’s neighbourhood to define convolution filters with shared weights and pooling
operators [36]. This process cannot be directly generalised to graph structures since the
number of neighbourhoods for each node might be different.

Considerable efforts have been deployed to make graphs benefit from the advance-
ment of machine learning techniques. The main goal is to exploit the structure of graphs in
the learning process, taking into consideration the topology and the relationships between
their components (nodes and edges). Historically, machine learning models relied on
handcrafted features, using approaches such as statistics to encode graph structures [37,38].
For example, in the case of graphs used to model viewers’ relationships, when the edges
between nodes represent a common watched film, one may use the number of shared edges
between two users to suggest new ones. However, these approaches are time-consuming
and inefficient since they depend strongly on the type of application and the specific
use cases. To surpass these challenges, various automatic methods have been studied.
Graph Embedding and Graph Neural Networks are the most common ones.

2.2. Graph Embedding

The goal of Graph Embedding is to use low-dimensional continuous vector repre-
sentations for graph-structured data, instead of the whole graph, as input to the machine
learning algorithms. Graph Embedding is the overlap of two problems, graph analysis,
which aims to extract useful information from graph data, and representation learning,
whose goal is to obtain a representation facilitating the extraction of useful information
that is not necessarily low dimensional [39]. Embedding techniques depend on the type
of graphs used as input (such as homogeneous/heterogeneous, directed/undirected, etc.)
and the type of desired output (nodes’ embedding, edges’ embedding, graph embed-
ding). In [39], a clear taxonomy of the different techniques and applications of graph
embedding is presented. Although graph embedding techniques have been successfully
used in many applications such as node classification using the Node2Vec algorithm [40],
they nevertheless present several drawbacks. Indeed, Refs. [38,39] identified two severe
ones: Computation inefficiency and the inability to generalise their application since they
cannot deal with dynamic graphs. In addition, the authors of [41] indicate that mapping
a graph structure into a simple representation may cause information loss. For example,
in the case of node embedding, edges are considered as additional node features, although
these links generally encode relationships between concepts or objects.

2.3. Graph Neural Networks

To operate directly on graphs, [41] proposed the first Graph Neural Network model.
Described as the extension of existing neural network methods in the graph domain,
this model considers nodes as concepts or objects and edges as relationships between
them. To accomplish supervised learning, the GNN model associates each node to a state
containing information about the node itself and its neighbourhood. Using a feedforward
network, a shared transition function is defined to update all the states iteratively until a
fixed point. The states are updated based on the current states of the nodes and the ones
of their neighbours. Then, using a feedforward network, an output function is applied
to the states to compute the outputs of each node, or a unique output for the whole
graph, depending on the application. These steps are repeated following the descent-
gradient algorithm until the desired criterion is reached. This GNN model has proven to
be efficient in some application domains, such as chemistry. However, it is not suitable for
a variety of graph problems such as knowledge graphs and semi-supervised applications,
where the goal is to predict missing data based on the graph structure. However, this model
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suffers essentially from the expensive cost of the computations while trying to reach fixed
points. To address these problems, several variants of GNN models and new approaches
have been proposed [42–44]. The most widely used is the Graph Convolutional Network
(GCN), which aims at generalising CNNs to graphs. In the next paragraph, we present
graph convolutional network models for semi-supervised learning which might be used to
complete missing data.

2.4. GCN for Semi-Supervised Learning

Graph Convolutional Network (GCN) models have achieved state of the art in many
applications. In semi-supervised learning for node applications, the objective is to use
labelled nodes to learn representations or embedding of both labelled and unlabelled nodes
and therefore use the resulting representations to predict missing labels. GCNs are classified
into two categories: Spectral approaches and spatial approaches. Spectral approaches were
first introduced in [45]. Since convolution filters, defined in the Euclidean space and used
in CNNs, cannot be applied directly on graphs, [45] have shown that they can be defined
in the Fourier domain for non-Euclidean data. This operation is defined in [38,43] as the
multiplication of a signal x ∈ RN (one scalar for each node) with a filter gθ = diag(θ)
parametrised by θ ∈ RN :

gθ ? x = UgθUTx (1)

where U is the matrix of eigenvectors of the normalised graph Laplacian L = IN −
D−1/2AD−1/2 = UΛUT , with a diagonal matrix of its eigenvalues Λ. D, A, and UT

are respectively the degree matrix, the adjacency matrix of the graph, and the graph
Fourier transform of x. However, this proposition suffers from two major drawbacks.
First, calculating the eigenvectors and eigendecomposition is computationally expensive,
especially for large graphs. Second, the defined filters in the spectral domain are non-
spatially localised, contrary to those in CNNs, i.e., filters are not necessarily applied to
spatially close nodes. To surpass these challenges, improvements have been published,
which generally consist in proposing new filters [43,46]. ChebNet [46] is the most popular
one, and uses polynomial parametrisation to compute K localised filters:

gθ(Λ) =
K−1

∑
k=0

θkΛk (2)

where the parameter θ ∈ RK is a vector of Chebyshev coefficients. To address the computa-
tion issue, ChebNet uses Chebyshev expansion [47] of order K− 1 and gθ(Λ) becomes:

gθ(Λ) =
K−1

∑
k=0

θkTk
(
Λ̃
)

(3)

where Tk
(
Λ̃
)
∈ Rn×n is the Chebyshev polynomial of order k evaluated at Λ̃ = 2Λ/λmax−

In, the rescaled eigenvalues in [−1, 1] with λmax the maximal eigenvalue. To alleviate the
problem of overfitting on local neighbourhood structures on graphs, [43] limit and simplify
the filtering to only the first-order neighbours with K = 1.

Since they depend on the eigenbasis of the graph, spectral approaches cannot be used
with graphs that have different structures. However, they are suitable for semi-supervised
learning, which involves the prediction of features of the same graph used for the learning
procedure. Thus, they are suitable for our goal, which involves the prediction of incomplete
data related to wastewater networks.

Contrary to spectral approaches, spatial ones define convolution directly on graphs.
Various propositions have been published. The authors of [48] proposed a spatial convolu-
tion network that operates directly on graphs for molecular applications. GraphSAGE [49],
one of the most popular frameworks in this category, defined as an inductive framework.
Unlike transductive approaches that generate embedding for a specific seen fixed graph in
their process, inductive ones generate low dimensional representation for unseen compo-
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nents of graphs. GraphSAGE is based on the aggregation of fixed-size node neighbourhood
features:

hk
N (v) ← AGGREGATEk

({
hk−1

u , ∀u ∈ N (v)
})

(4a)

hk
v ← σ

(
Wk ·CONCAT

(
hk−1

v , hk
N (v)

))
(4b)

where hk denotes a node’s representation at step k, N (v) is the immediate neighbourhood
of v, AGGREGATE is the aggregation function, and σ is a nonlinear activation function.
Authors in [49] defined three aggregation functions: Mean, LSTM, and pooling. To avoid
computing the spectrum of the graph Laplacian as in [45,46] and to apply CNNs on
graphs, [50] proposed TAGCN, a method based on a fixed-size K-localised filters adaptive
to the topology of graphs to replace the fixed square filters in traditional CNNs.

3. Materials and Methods

In this work, we seek to complete missing attribute values based on the structure of
wastewater networks and the database records related to them.

3.1. Models and Test Configurations

To highlight the added value of GCNs in this prediction task, we also apply algorithms
that do not take into account topology. The GCNs’ results will thus be benchmarked
against these non-topological algorithms: Support Vector Machine [51], Decision Trees [52],
feedforward Artificial Neural Networks (ANN), precisely a MultiLayer Perceptron (MLP) [53],
and four GCN models that have proven to be efficient in many applications. The GCN
models consist of two spectral models: GCN [43] and ChebNet [46] as well as two spatial
models: GraphSAGE [49] and TAGCN [50].

Given that pipe diameters and materials directly impact hydraulic modelling results,
which is the aim of our work, we chose to automatically predict the missing values for each
one of these two attributes. Nevertheless, other attributes could be targeted the same way.

The available attributes and their missing values are not necessarily similar and vary
between providers. Hence, to investigate whether GCNs are useful in real cases, we defined
two configurations based on the available data:

• Configuration 1: The network graph, a portion of the values of the targeted attribute,
and domain knowledge are provided.

• Configuration 2: The network graph, a portion of the values of the targeted attribute,
domain knowledge, and other fields of the attribute table are provided.

When no attributes are available, domain knowledge can be used to create and
add new attributes to the structure to improve the learning process. In wastewater net-
works, pipe diameters increase when moving from the upstream wastewater catchments
to the vicinity of the treatment plant. This domain knowledge can be accounted for using
Strahler’s number, a measure of the network’s branching complexity [54]. This attribute
is easily computed for each pipe since the position of treatment plants is usually known.
Thus, the first configuration is conducted using the network graph and Strahler’s number
as a domain knowledge attribute.

In the second configuration, managers possess more information about the networks,
and relevant additional fields of the attribute table are used to infer relationships. Thus, this
configuration is the richest in terms of learning material as it uses the network structure,
domain knowledge, and additional characteristics to impute missing values. In this situa-
tion, the managers seek precise information about a specific attribute for various purposes,
such as the diameter values for a hydraulic modelling simulation.

For each of the two configurations, the datasets were split into two subsets: Training
and test. The training subset includes the available attributes of the pipes and their
associated labels to be learned. However, contrary to non-topological models, in order to
operate, GCN models require the structure of the graphs. Therefore, the entire structure of
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the graph modelled by the adjacency matrix of the wastewater network pipes was provided
to this graph-based model. A total 10% of the training subset is used as a validation subset
to tune the models’ parameters, that is the number of convolution layers, the number of epochs,
etc.

For the MLP, we set the number of hidden layers to 3 with respectively 100, 50,
and 25 units for the first, second, and third hidden layers. The number of outputs is defined
by the number of classes depending on each attribute. The Rectified Linear Unit (ReLu) is
used as an activation function between the layers. All layers are formed by the linear layers
of PyTorch [55] and the output is computed using the Log Softmax function. For GCN
models (Figure 1), we set the number of convolution layers to 2, the number of hidden
units was set to 20 for the first layer, and to the number of desired classes to predict for the
second layer. We used the Rectified Linear Unit (ReLu) as an activation function between
the two convolutional layers, and the LogSoftmax as the activation function to output the
labels. For the ChebNet layers, the filter size K was varied from 10 to 40 depending on the
configuration and the size of the training subset. For the SVM model, the regularisation
parameter C is set to 1 and the Radial Basis Function (RBF) is a degree 3 polynomial kernel
function. For the DT models, the Splitter is set to “best”, the quality of the split is evaluated
by the “Gini” criterion without any max depth constraint.

We implemented the GCN models and the MLP using PyTorch [55], where the name
of the models GCN, ChebNet, GraphSAGE, and TAGCN are respectively GCNConv,
ChebConv, SAGEConv, and TAGConv. The non-topological models, SVM and DT, were
implemented using Scikit-learn [56].

Figure 1. The Graph Convolutional Network models’ architecture.

3.2. Datasets

In this study, we used two real wastewater network databases. The first one is that
of Angers Metropolis and is available through the French Government’s open access
portal (https://www.data.gouv.fr/ (accessed on 1 August 2020)). The second source is the
database of Montpellier Méditerranée Métropole (3M) (https://data.montpellier3m.fr/
(accessed on 1 August 2020)). These databases were chosen because they have two specific
fields for the pipe diameter and material (see Figure 2 for an example of attribute tables).
However, the attribute values are not all indicated and 5.9% of the total pipes of Angers
and 28.63% of those of the Montpellier datasets have a missing diameter or material values.

https://www.data.gouv.fr/
https://data.montpellier3m.fr/
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Figure 2. Example of an attribute table: Angers Metropolis in France.

At the scale of a metropolis, wastewater networks are usually formed of several sub-
networks of cities and villages, either managed separately or linked to the main treatment
plant by a unique pipe. Thus, the acquired databases are composed of several sub-graphs
that represent independent wastewater networks and Strahler’s orders may be computed
separately for each sub-graph. However, due to data imperfections, these disconnections
may also be the result of missing spatial information such as missing pipes. Hence, to vali-
date our results, this study was carried out on the sub-networks having the least missing
attribute values. Taking into consideration possible spatial imperfections, we carefully
extracted one sub-graph from each dataset (Figure 3):

• The Angers Metropolis sub-graph (Figure 3a) is composed of 754 pipes with only one
unknown pipe diameter;

• The Montpellier Metropolis sub-graph (Figure 3b) is composed of 1239 pipes, with 44 pipes
having unknown attribute values (either the diameter or material).

The different materials encountered in Angers metropolis are Polyvinyl Chloride
(PVC), Asbestos-Cement (AC), Cast Iron, and Metal. In Montpelier metropolis we found,
PVC, AC, Cast Iron, Concrete, Glass Reinforced Plastic (GRP), and Polypropylene. Ten classes
of possible diameters are present in Angers’s subgraph and Montpellier’s subgraph,
ranging from 80 to 500. However, for materials or diameters, several classes have less than
10 elements and will not be considered in the following. Figure 4 shows the distribution of
material and diameter attributes for the considered classes, for the two data sets.

(a) (b)
Figure 3. Use case graphs. (a) A sub-graph of the Angers metropolis wastewater network and (b) a
sub-graph of the Montpellier metropolis wastewater network.
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Figure 4. Diameter and material distribution for the Montpellier and Angers subsets. Only classes
with more than 10 elements are represented here.

3.3. Testing Procedure

After tuning operations, the models are trained on 90% of the data and the remaining
10% are predicted. This is the first test. To put forward the models’ ability to distinguish
between classes and assess their effectiveness regarding minority classes, we evaluate the
results of the predictions by computing the Recall, Precision, and F1-score metrics for each
class of attributes as follows:

Recall =
TruePositives

TruePositives + FalseNegatives
(5)

Precision =
TruePositives

TruePositives + FalsePositives
(6)

F1Score = 2 ∗ Precision ∗ Recall
Precision + Recall

. (7)

This prediction operation is repeated 10 times with randomly selected datasets to
estimate the models’ performance more accurately. The average of these predictions is
examined. To evaluate the performance of the models over each attribute, we compute
the Macro-Recall, the Macro-Precision, and the Macro-F1-score as follows, where N is the
number of classes of an attribute:

MacroRecall =
1
N

N

∑
i

Recalli (8)

MacroPrecision =
1
N

N

∑
i

Precisioni (9)

MacroF1Score =
1
N

N

∑
i

F1i. (10)

The training set is then sequentially reduced to increase the size of the test set, i.e.,
80% for training and 20% for testing and so forth. As shown in Figure 4, attribute values
are unbalanced, and the portion of the selected test subset may include only the dominant
classes. Therefore, the test subset is extracted as a portion of the number of occurrences in
each class. Consequently, only classes with more than 10 occurrences are considered as
test subsets. For example, the diameter class of value φ(200) having 568 occurrences in the
sub-graph of the Angers metropolis, the number of selected pipes for a 10% testing subset
(when the task is to predict pipe diameter values) will be 56.

4. Experimental Results

In this section, we show the results of atrributes’ prediction for “Diameter” and “Mate-
rial” for the two configurations described in Section 3.1. We compare the results of several
experiments using the different machine learning techniques presented in the previous
section. The purpose of comparing GCNs-based algorithms with different techniques of
machine learning, which do not use the graph’s structure to predict missing data, is to
investigate whether the network graph can facilitate missing data completion in the context
of a machine learning approach. It is important to note that thanks to its structure, a GCN
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can predict classes without being given any attributes as input. This is clearly not possible
for non-topological models. Thus, before conducting the experiments on the two defined
configurations, and in order to see the behaviour of a GCN in terms of the quality of its
results using only the structure of the graphs, we tested this possibility. The results show
that GCN models GCNConv, SAGEConv, and TAGConv predict only the dominant classes,
but the ChebConv model can identify other non-dominant classes albeit with very low
recall scores such as 10% for the diameter class φ(150) on limited randomly selected test
datasets. The prediction of minority classes with ChebConv, even with low scores, shows
that using the structure of wastewater networks is promising.

4.1. Configuration 1

In addition to the portion of the available values and the structure of the network,
in this configuration, we added Strahler’s order as an attribute to help the models distin-
guish between the classes.

Figures 5 and 6 show the results for the Angers and Montpellier datasets, respectively.
Despite having difficulties with classes with small occurrences, Strahler’s order helps
the models identify more classes than the dominant ones. Non-topological models SVM,
Decision Tree, and MLP are unable to distinguish minor classes for the Angers dataset.
Nevertheless, they predict some minor classes such as the class φ(400) with a high recall
score for the Montpellier dataset (Figure 6a,c), despite having only 37 occurrences for this
class. Unlike non-topological models, GCN models, namely, ChebConv and TAGConv,
predict more classes for both datasets. Thus, GCN models outperform non-topological
ones in terms of the number of detected classes.

(a) Diameter prediction: 30% training and 70% test. (b) Material prediction: 30% training and 70% test.

(c) Diameter prediction: 70% training and 30% test. (d) Material prediction: 70% training and 30% test.

Figure 5. Configuration 1: Diameter and Material prediction for the Angers dataset for each class of the two attributes,
evaluated using the Recall score.
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(a) Diameter prediction: 30% training and 70% test. (b) Material prediction: 30% training and 70% test.

(c) Diameter prediction: 70% training and 30% test. (d) Material prediction: 70% training and 30% test.

Figure 6. Configuration 1: Diameter and Material prediction for the Montpellier dataset for each class of the two attributes,
evaluated using Recall score.

ChebConv outperforms all models for both diameter and material prediction having
predicted 30% of missing diameter classes φ(150) and φ(250) for the Angers dataset respec-
tively with a recall of 79% and 77% (Figure 5c) despite having only 123 and 12 occurrences
for these classes. In the case of the Montpellier dataset, ChebConv, while using only 30% of
the available data, completes missing φ(150) and φ(300) diameter classes with respectively
63% and 58% recall (Figure 6a). The metric is improved when the training set is increased
to 70%, thus reaching 77% and 85% respectively for these classes (Figure 6c). In comparison,
the other models fail to detect these two classes for both datasets, except for TAGConv
which has a very low score for the class φ(150) (Figures 5a,c and 6a,c).

Similar results are obtained for material prediction. Indeed, besides having higher
scores for both datasets, only GCN models predicted the AC class for Angers (Figure 5b,d).
This shows that the structure of the graph and the choice of the GCN model have a great
impact on the learning process.

4.2. Configuration 2

In addition to the information used in the previous configuration, the attribute “mate-
rial type” is added to help predict the attribute “diameter” and vice versa. The correlation
between these attributes is 0.74 for the subgraph of Angers and 0.43 for the subgraph of
Montpellier. Adding this information to the models substantially increases their perfor-
mance regarding the number of detected classes and the recall scores. First, except for
ChebConv as it already identified all the classes in the previous configuration, the number
of predicted classes increases for all models. For instance, the non-topological models
predict the AC class for the Angers dataset (Figure 7b). Second, Figures 7 and 8, show that
recall scores have increased for the majority of the classes using the various models. Still,
ChebConv outperforms all models by predicting missing values with high scores for almost
all classes including the minor ones, using only 30% of the available data it achieved 80%
for the class φ(300), having 34 occurrences (Figure 8a) and 70% for the class φ(250), having
only 12 occurrences (Figure 7a).
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(a) Diameter prediction: 30% training and 70% test. (b) Material prediction: 30% training and 70% test.

(c) Diameter prediction: 70% training and 30% test. (d) Material prediction: 70% training and 30% test.

Figure 7. Configuration 2: Diameter and Material prediction for the Angers dataset for each class of the two attributes,
evaluated using Recall score.

(a) Diameter prediction: 30% training and 70% test. (b) Material prediction: 30% training and 70% test.

(c) Diameter prediction: 70% training and 30% test. (d) Material prediction: 70% training and 30% test.

Figure 8. Configuration 2: Diameter and Material prediction for the Montpellier dataset for each class of the two attributes,
evaluated using Recall score.

Tables 1 and 2 display the scores, Macro-Recall (MR), Macro-Precision (MP), and Macro-
F1 Score (MF1) for each attribute of the two datasets of Angers and Montpellier for con-
figurations 1 and 2 respectively, and the nine different percentages of the dataset used for
training. First, for configuration 1, for both cities, Table 1a,b show, as indicated before,
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a poor performance of the non-topological models. This has been expected since they
use only Strahler’s order to distinguish the different classes, while graph models use the
adjacency matrix. As for configuration 2, the scores increase for all models. Thus, the perfor-
mance of non-topological models relies only on the correlations (Table 3) between Strahler’s
order and the targeted attributes. Second, except for ChebConv, whose performance in-
creases when the portion of missing values decreases, all the models’ performances are
generally constant in configuration 1 for the Angers dataset (Table 1a) since they predict
only the dominant classes. This is also to be expected for non-topological models, since
there is no correlation between Strahler’s order and both attributes, diameter, and material,
for this dataset. However, for the Montpellier dataset, (Table 1b) where the correlation
between material and Strahler is 0.08 and between the diameter and Strahler the correlation
is 0.31, the non-topological models’ performances increase when the percentage of missing
data decreases for the attribute diameter. In addition, in configuration 2, the models’ perfor-
mances evolve differently for the two datasets. For Angers, all models are nearly constant,
although a small increase can be noted in ChebConv’s performance while the missing data
decreases. These scores (Table 2a) can be explained by the high correlation of the attributes
material and diameter (0.74). For the Montpellier dataset, where the correlation is lower
compared to the Angers dataset, almost all the models’ performances increase. Figure 9
illustrates this evolution using the Macro-F1Score metric. The differences in performance
related to the GCN models are detailed in the next paragraph.

(a) Attribute Diameter. (b) Attribute Material.

Figure 9. Models performances evolution (F1 score) while decreasing the amount of missing data for
the configuration 2 of the Montpellier dataset.

Our experiments show that for real-world configurations, ChebConv yields the best
results for both datasets and both predicted attributes. Spatial approaches fail to distinguish
minority classes compared to the spectral approaches (i.e., ChebConv) and slightly outper-
form non-topological approaches. The fact that SAGEConv, which is a spatial approach,
has a nearly similar evolution performance as non-topological models, and is outperformed
by ChebConv, may be explained by the fixed-size set of the neighbourhood, where not all
the neighbourhoods are explored. Furthermore, for the spectral approaches, ChebConv
surpassing GCNConv may be explained by the differences in the number of K-localised
filters since GCNConv uses only K = 1 to avoid overfitting. To confirm this assumption we
varied the values of parameter K to 1, 10, 15, and 20 for the ChebConv model and compared
the new experiments to the GCNConv. Figure 10 shows that GCNConv and ChebConv
with K = 1 have similar performances regarding the number of predicted classes and the
recall scores, when predicting the diameter values for the Montpellier dataset. Moreover,
comparing the performance of ChebConv with different K values shows that increasing the
number of neighbour nodes used in the learning process improves the prediction results.
This was also noted for TAGConv.
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Table 1. Configuration 1. Results obtained for Angers and Montpellier dataset by the seven models in terms of Macro-Recall
(MR), Macro-Precision (MP), and Macro-F1 (MF1) scores, for the two classes and with different percentages of the dataset
used for training.

(a) Angers Dataset

SVM ANN DT ChebConv GCNConv SAGEConv TAGConv

Attribute % MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1

Diameter

10 0.25 0.19 0.22 0.25 0.19 0.21 0.25 0.19 0.22 0.41 0.6 0.45 0.26 0.28 0.23 0.25 0.21 0.22 0.27 0.34 0.26

20 0.25 0.19 0.22 0.25 0.19 0.22 0.25 0.19 0.22 0.51 0.69 0.56 0.26 0.28 0.24 0.26 0.24 0.23 0.29 0.38 0.29

30 0.25 0.19 0.22 0.25 0.19 0.22 0.25 0.19 0.22 0.57 0.77 0.63 0.26 0.26 0.23 0.26 0.27 0.23 0.3 0.4 0.3

40 0.25 0.19 0.22 0.25 0.19 0.22 0.25 0.19 0.22 0.61 0.79 0.66 0.26 0.26 0.23 0.26 0.26 0.23 0.3 0.42 0.3

50 0.25 0.19 0.22 0.25 0.19 0.22 0.25 0.19 0.22 0.66 0.8 0.7 0.26 0.28 0.24 0.27 0.31 0.25 0.3 0.41 0.3

60 0.25 0.19 0.22 0.25 0.19 0.22 0.25 0.19 0.22 0.68 0.81 0.71 0.25 0.23 0.23 0.27 0.36 0.26 0.3 0.41 0.31

70 0.25 0.19 0.22 0.25 0.19 0.22 0.25 0.19 0.22 0.69 0.77 0.71 0.26 0.29 0.23 0.27 0.35 0.25 0.3 0.4 0.3

80 0.25 0.19 0.22 0.25 0.19 0.22 0.25 0.19 0.22 0.69 0.78 0.72 0.26 0.28 0.23 0.26 0.29 0.24 0.3 0.41 0.3

90 0.25 0.19 0.22 0.25 0.19 0.22 0.25 0.19 0.22 0.75 0.76 0.74 0.27 0.29 0.24 0.26 0.27 0.23 0.31 0.43 0.31

Material

10 0.5 0.42 0.45 0.5 0.41 0.45 0.49 0.43 0.45 0.62 0.78 0.66 0.54 0.69 0.53 0.52 0.63 0.5 0.56 0.73 0.57

20 0.5 0.41 0.45 0.5 0.41 0.45 0.5 0.41 0.45 0.71 0.82 0.75 0.53 0.66 0.51 0.53 0.6 0.5 0.59 0.83 0.61

30 0.5 0.41 0.45 0.5 0.41 0.45 0.5 0.42 0.45 0.78 0.86 0.81 0.54 0.74 0.53 0.54 0.71 0.53 0.59 0.81 0.6

40 0.5 0.41 0.45 0.5 0.41 0.45 0.5 0.41 0.45 0.85 0.89 0.86 0.54 0.76 0.53 0.54 0.74 0.53 0.6 0.82 0.63

50 0.5 0.41 0.45 0.5 0.41 0.45 0.5 0.41 0.45 0.86 0.88 0.87 0.54 0.76 0.53 0.55 0.77 0.54 0.6 0.87 0.63

60 0.5 0.41 0.45 0.5 0.41 0.45 0.5 0.41 0.45 0.87 0.9 0.89 0.53 0.64 0.5 0.54 0.73 0.53 0.6 0.83 0.63

70 0.5 0.41 0.45 0.5 0.41 0.45 0.5 0.41 0.45 0.87 0.92 0.89 0.52 0.6 0.49 0.52 0.61 0.49 0.61 0.85 0.63

80 0.5 0.42 0.45 0.5 0.42 0.45 0.5 0.42 0.45 0.88 0.93 0.9 0.53 0.75 0.52 0.53 0.75 0.52 0.6 0.87 0.63

90 0.5 0.41 0.45 0.5 0.41 0.45 0.5 0.41 0.45 0.91 0.95 0.93 0.53 0.64 0.5 0.53 0.64 0.5 0.62 0.91 0.65

(b) Montpellier Dataset

SVM ANN DT ChebConv GCNConv SAGEConv TAGConv

Attribute % MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1

Diameter

10 0.22 0.16 0.18 0.23 0.16 0.19 0.22 0.17 0.19 0.48 0.62 0.52 0.23 0.38 0.23 0.23 0.37 0.23 0.38 0.52 0.41

20 0.25 0.17 0.2 0.36 0.24 0.29 0.38 0.26 0.31 0.63 0.74 0.67 0.39 0.44 0.37 0.39 0.47 0.37 0.43 0.5 0.43

30 0.48 0.31 0.38 0.48 0.31 0.38 0.48 0.31 0.38 0.7 0.78 0.73 0.47 0.39 0.39 0.47 0.43 0.4 0.44 0.47 0.42

40 0.48 0.32 0.38 0.48 0.32 0.38 0.48 0.32 0.38 0.76 0.85 0.79 0.46 0.37 0.39 0.46 0.37 0.39 0.44 0.52 0.42

50 0.48 0.31 0.38 0.48 0.31 0.38 0.48 0.31 0.38 0.8 0.88 0.83 0.47 0.34 0.39 0.47 0.35 0.39 0.47 0.53 0.43

60 0.48 0.32 0.38 0.48 0.32 0.38 0.48 0.32 0.38 0.83 0.88 0.84 0.48 0.33 0.39 0.48 0.35 0.39 0.46 0.53 0.42

70 0.47 0.32 0.38 0.47 0.32 0.38 0.47 0.32 0.38 0.85 0.91 0.87 0.47 0.34 0.38 0.47 0.34 0.38 0.45 0.46 0.41

80 0.49 0.34 0.4 0.49 0.34 0.4 0.49 0.34 0.4 0.85 0.91 0.87 0.48 0.34 0.4 0.48 0.35 0.4 0.48 0.55 0.44

90 0.47 0.33 0.38 0.47 0.33 0.38 0.47 0.33 0.38 0.87 0.91 0.88 0.47 0.33 0.38 0.47 0.33 0.38 0.46 0.5 0.41

Material

10 0.36 0.33 0.33 0.35 0.29 0.31 0.36 0.33 0.32 0.43 0.55 0.45 0.36 0.33 0.34 0.36 0.33 0.33 0.35 0.36 0.34

20 0.39 0.33 0.34 0.39 0.31 0.33 0.39 0.32 0.34 0.55 0.68 0.57 0.39 0.35 0.35 0.4 0.36 0.36 0.39 0.37 0.36

30 0.39 0.32 0.35 0.39 0.28 0.32 0.39 0.33 0.35 0.6 0.69 0.62 0.4 0.37 0.36 0.4 0.35 0.36 0.41 0.39 0.37

40 0.39 0.33 0.35 0.39 0.31 0.33 0.39 0.33 0.35 0.64 0.75 0.65 0.39 0.33 0.35 0.39 0.34 0.35 0.41 0.38 0.38

50 0.39 0.32 0.34 0.39 0.27 0.31 0.39 0.33 0.34 0.68 0.84 0.71 0.39 0.33 0.35 0.39 0.33 0.34 0.42 0.4 0.38

60 0.39 0.33 0.34 0.39 0.3 0.32 0.39 0.33 0.34 0.72 0.85 0.76 0.39 0.33 0.35 0.39 0.34 0.35 0.42 0.38 0.38

70 0.39 0.32 0.34 0.39 0.3 0.33 0.39 0.32 0.34 0.72 0.83 0.75 0.39 0.33 0.35 0.4 0.35 0.35 0.42 0.36 0.38

80 0.38 0.33 0.33 0.38 0.29 0.32 0.38 0.33 0.33 0.72 0.88 0.75 0.37 0.31 0.33 0.38 0.32 0.34 0.41 0.36 0.37

90 0.39 0.33 0.33 0.38 0.28 0.31 0.39 0.34 0.32 0.74 0.78 0.75 0.4 0.35 0.36 0.39 0.33 0.34 0.44 0.4 0.41
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Table 2. Configuration 2. Results obtained for Angers and Montpellier dataset by the seven models in terms of Macro-Recall
(MR), Macro-Precision (MP), and Macro-F1 (MF1) scores, for the two classes and with different percentages of the dataset
used for training.

(a) Angers Dataset

SVM ANN DT ChebConv GCNConv SAGEConv TAGConv

Attribute % MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1

Diameter

10 0.49 0.46 0.47 0.49 0.46 0.48 0.49 0.46 0.48 0.58 0.76 0.62 0.48 0.45 0.46 0.47 0.45 0.46 0.48 0.5 0.47

20 0.49 0.46 0.48 0.49 0.46 0.48 0.49 0.46 0.48 0.64 0.74 0.66 0.48 0.45 0.46 0.48 0.45 0.46 0.48 0.46 0.47

30 0.49 0.46 0.48 0.49 0.46 0.48 0.49 0.46 0.48 0.64 0.73 0.66 0.48 0.45 0.47 0.48 0.45 0.47 0.48 0.46 0.47

40 0.49 0.46 0.48 0.49 0.46 0.47 0.49 0.46 0.47 0.68 0.76 0.7 0.48 0.45 0.47 0.48 0.45 0.47 0.49 0.46 0.47

50 0.49 0.46 0.48 0.49 0.46 0.48 0.49 0.46 0.48 0.67 0.79 0.69 0.48 0.45 0.47 0.48 0.45 0.47 0.48 0.46 0.47

60 0.49 0.46 0.48 0.49 0.46 0.48 0.49 0.46 0.48 0.68 0.8 0.7 0.48 0.45 0.47 0.48 0.45 0.47 0.48 0.46 0.47

70 0.49 0.46 0.48 0.49 0.46 0.47 0.49 0.46 0.48 0.7 0.77 0.71 0.48 0.46 0.47 0.47 0.46 0.47 0.48 0.46 0.47

80 0.5 0.46 0.48 0.5 0.46 0.48 0.5 0.46 0.48 0.66 0.71 0.66 0.48 0.45 0.46 0.48 0.45 0.46 0.48 0.46 0.47

90 0.49 0.46 0.48 0.49 0.46 0.48 0.49 0.46 0.48 0.74 0.77 0.74 0.48 0.45 0.47 0.48 0.46 0.47 0.48 0.46 0.47

Material

10 0.96 0.99 0.97 0.96 0.99 0.97 0.97 0.99 0.98 0.87 0.93 0.9 0.93 0.95 0.94 0.92 0.95 0.94 0.9 0.94 0.92

20 0.96 0.99 0.98 0.97 0.99 0.98 0.97 0.99 0.98 0.91 0.94 0.92 0.94 0.96 0.95 0.94 0.95 0.95 0.94 0.96 0.95

30 0.97 0.99 0.98 0.97 0.99 0.98 0.97 0.99 0.98 0.94 0.96 0.95 0.95 0.95 0.95 0.94 0.96 0.95 0.95 0.96 0.96

40 0.97 0.99 0.98 0.97 0.99 0.98 0.97 0.99 0.98 0.94 0.96 0.95 0.94 0.96 0.95 0.94 0.95 0.95 0.95 0.96 0.96

50 0.97 0.99 0.98 0.97 0.99 0.98 0.97 0.99 0.98 0.95 0.97 0.96 0.95 0.96 0.95 0.94 0.96 0.95 0.96 0.98 0.97

60 0.98 0.99 0.98 0.98 0.99 0.98 0.98 0.99 0.98 0.97 0.97 0.97 0.96 0.97 0.96 0.96 0.97 0.96 0.97 0.98 0.97

70 0.97 0.99 0.98 0.97 0.99 0.98 0.97 0.99 0.98 0.97 0.99 0.98 0.95 0.97 0.96 0.95 0.97 0.96 0.97 0.99 0.98

80 0.96 0.99 0.98 0.96 0.99 0.98 0.96 0.99 0.98 0.95 0.98 0.96 0.94 0.96 0.95 0.94 0.96 0.95 0.96 0.98 0.97

90 0.95 0.99 0.97 0.95 0.99 0.97 0.95 0.99 0.97 0.97 0.97 0.97 0.93 0.96 0.94 0.93 0.96 0.94 0.95 0.99 0.97

(b) Montpellier Dataset

SVM ANN DT ChebConv GCNConv SAGEConv TAGConv

Attribute % MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1 MR MP MF1

Diameter

10 0.5 0.64 0.52 0.51 0.58 0.52 0.51 0.6 0.52 0.75 0.86 0.79 0.52 0.64 0.54 0.52 0.61 0.54 0.67 0.83 0.73

20 0.54 0.64 0.55 0.64 0.69 0.64 0.59 0.68 0.6 0.82 0.89 0.85 0.7 0.81 0.72 0.68 0.82 0.71 0.77 0.84 0.79

30 0.77 0.86 0.79 0.74 0.81 0.75 0.77 0.85 0.79 0.85 0.9 0.87 0.76 0.85 0.79 0.76 0.84 0.79 0.8 0.86 0.82

40 0.77 0.85 0.77 0.77 0.81 0.75 0.78 0.84 0.77 0.88 0.92 0.9 0.79 0.83 0.79 0.78 0.82 0.78 0.81 0.85 0.82

50 0.77 0.86 0.79 0.78 0.85 0.79 0.79 0.85 0.79 0.88 0.92 0.9 0.79 0.83 0.8 0.79 0.84 0.8 0.81 0.88 0.83

60 0.8 0.86 0.81 0.77 0.83 0.78 0.8 0.85 0.81 0.9 0.93 0.91 0.82 0.83 0.82 0.82 0.83 0.81 0.85 0.86 0.85

70 0.75 0.85 0.77 0.76 0.84 0.77 0.76 0.85 0.77 0.89 0.93 0.91 0.77 0.82 0.79 0.77 0.82 0.78 0.81 0.86 0.82

80 0.75 0.81 0.76 0.77 0.86 0.78 0.75 0.81 0.76 0.89 0.93 0.91 0.79 0.82 0.79 0.79 0.82 0.79 0.85 0.87 0.85

90 0.79 0.81 0.78 0.79 0.8 0.78 0.79 0.8 0.78 0.89 0.96 0.91 0.84 0.85 0.83 0.84 0.83 0.83 0.9 0.87 0.88

Material

10 0.6 0.72 0.63 0.54 0.52 0.52 0.6 0.68 0.61 0.54 0.73 0.57 0.6 0.65 0.61 0.6 0.64 0.61 0.63 0.7 0.65

20 0.66 0.73 0.68 0.63 0.65 0.63 0.66 0.76 0.68 0.65 0.78 0.68 0.64 0.68 0.65 0.63 0.68 0.64 0.65 0.71 0.66

30 0.67 0.79 0.7 0.62 0.71 0.64 0.67 0.81 0.7 0.69 0.81 0.72 0.65 0.7 0.67 0.65 0.69 0.66 0.67 0.73 0.68

40 0.67 0.77 0.7 0.64 0.7 0.66 0.68 0.82 0.72 0.71 0.82 0.74 0.65 0.69 0.66 0.64 0.68 0.65 0.66 0.72 0.68

50 0.68 0.76 0.7 0.65 0.7 0.66 0.7 0.83 0.73 0.73 0.85 0.76 0.67 0.7 0.67 0.65 0.67 0.65 0.67 0.71 0.68

60 0.69 0.81 0.72 0.67 0.72 0.68 0.69 0.84 0.72 0.72 0.81 0.74 0.64 0.69 0.65 0.65 0.69 0.66 0.66 0.71 0.67

70 0.7 0.83 0.72 0.66 0.7 0.67 0.71 0.87 0.74 0.76 0.81 0.77 0.66 0.7 0.67 0.66 0.69 0.67 0.67 0.72 0.68

80 0.67 0.78 0.7 0.65 0.71 0.66 0.68 0.82 0.71 0.73 0.84 0.76 0.65 0.69 0.66 0.65 0.69 0.66 0.66 0.72 0.67

90 0.72 0.78 0.73 0.65 0.69 0.66 0.72 0.78 0.73 0.79 0.8 0.79 0.68 0.69 0.67 0.68 0.67 0.66 0.68 0.7 0.68
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Table 3. Attributes correlations.

Angers Dataset

Attributes Diameter Material Strahler

Diameter 1 0.74 0.06

Material 0.74 1 0.01

Strahler 0.06 0.01 1

Montpellier Dataset

Attributes Diameter Material Strahler

Diameter 1 0.43 0.31

Material 0.43 1 0.08

Strahler 0.31 0.08 1

(a) Diameter prediction: 30% training and 70% test. (b) Diameter prediction: 70% training and 30% test.

Figure 10. Comparing the GCNConv model with the ChebConv model on the Montpellier dataset.

5. Discussion and Conclusions

This study was conducted to investigate whether machine learning algorithms can
be used for Missing Value Imputation on wastewater networks. We carried out tests us-
ing seven different models; four Graph Convolutional Network models: GCN, ChebNet,
TAGCN, and GraphSAGE, and three popular non-topological models: SVM, Decision
Trees, and a MultiLayer Perceptron. The results show that machine learning models are
an efficient tool for completing missing attributes for wastewater networks when various
types of information about a network are available. This is highlighted in the second test
configuration we explored. Moreover, for extreme situations, when only the network layout
and partial attribute information are available (i.e., the first test configuration), the Cheb-
Conv spectral GCN approach, which is based on the approximation of the spectrum of the
graph Laplacian, yields the best results for the completion of attribute values in general,
and minority classes in particular. ChebConv also yields acceptable results when a small
percentage of the available data is used for training. This was demonstrated in several
studies using GCN-based models. The work of [32] demonstrated that, in comparison
with other approaches such as KNN, the performance of their GCN-based model increases
substantially when the percentage of the missing data increases. In a different application,
similar conclusions were reached by [57] when inferring users’ geo-localisation in social
media. The authors used a semi-supervised configuration combining graph structure
and text and showed that a GCN-based model performs well in scenarios with minimal
supervision by effectively using unlabelled data.

The machine learning models that we used in this application require specific condi-
tions. First, the classes to be learnt must be part of the training dataset. We complied with
this request by ignoring classes with less than 10 occurrences. However, this led to fewer
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minority classes in the test subset and therefore impacted the prediction results substan-
tially. Second, machine learning models are known to require important data quantity to
achieve satisfying results. Having achieved these scores while using such restricted datasets
shows that this approach can be even more promising with larger datasets. We would like
also to emphasise that our objective was not to determine the best GCN architecture for
wastewater network data completion, but rather to investigate the impact of the structure
of the graph as a learning factor on the prediction results. In this study, we used the default
implementation of the GCN models as described in the original papers. Although these
models showed excellent performance in various domains such as information science,
bibliometrics, water distribution systems, or biology [43,49,50,58], they can be further
adapted to the specific context of each domain to produce better results. For instance,
in [59], a novel type of GCN for road networks called Relational Fusion Network (RFN)
is put forward for driving speed estimation and speed limit classification. The results
indicate that RFN outperforms state-of-the-art GCN algorithms such as GraphSAGE in
this application.

To assess whether the structure of the graph, modelled in our case by the adjacency
matrix, has an impact on the learning process, non-topological models were trained us-
ing only the available attributes. That is Strahler’s order for the first configuration and
Strahler’s order, diameter, and material for the second configuration. Strahler’s order is
used as a proxy for network topology in these models. For the GCN models, in addition to
these attributes, the adjacency matrix is required and is also provided. The matrix is not
used for the non-topological models because they are not built to deal with graph structures
and require a pre-processing step to operate. This consists in representing or encoding the
graph in a suitable form for the targeted model. As stated in Section 2, this operation is
complex and does not guarantee the full use of the graph structure, while GCN models
can easily handle information such as adjacency or angle between pipes to perform MVI
operations. Therefore, no pre-processing was carried out in this work.

The attributes diameter, material, and Strahler’s order were used only as illustration
examples in this study. We aim to show that machine learning models can be an effi-
cient method to help all entities facing the problem of missing wastewater network data,
to overcome this challenge. The use of both numerical (diameter) and categorical (material)
attributes shows that this approach overcomes the limits of the statistical methods used
in [18]. In some instances, Strahler’s order, which is dependent on the dataset, may not be
the best descriptor. For instance, since the Angers dataset is very small, the pipe diameters
do not increase when moving from the upstream wastewater catchments to the vicinity
of the treatment plant. This leads to a lack of correlation between Strahler’s order and
diameter (Table 3). Thus, Strahler’s order does not affect the diameter predictions for
the Angers dataset, contrary to the Montpellier network. One may also use the type of
buildings near the pipes as an attribute to predict their diameter. The main idea is that,
since network construction rules vary from one country to another, and between regions of
the same country, machine learning models can easily integrate new information to make
predictions and improve them. It all depends on the available data and knowledge about
the targeted network.

Urban managers and environmental monitoring services are often faced with incom-
plete data sets and have to resort to Missing Value Imputation (MVI) or Missing Data
Imputation (MDI) algorithms. GCN models would provide managers with an additional
accessible resource to overcome data imperfection challenges and support decision makers,
be it to conduct repairs, predict future damages such as in [60], or run a hydraulic sim-
ulation model. Indeed, several urban utility networks such as gas, water, and electrical
supplies are structured as graphs with nodes and edges. Our proposition would help asset
management tasks by providing a better estimate for given characteristics of the undocu-
mented portions of the network. Another important feature of Smart City management
plans is air and water pollution monitoring. Given the spatial and temporal variability of
environmental indicators, these monitoring plans rely on a network of sensors, spread out
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over large geographical areas. As with any piece of equipment, these devices are prone to
failure and damage, resulting in missing data. By resorting to GNNs, managers would be
able to extract the most of their network’s structure and gain more accurate estimations
of the missing data. They would thus be able to better inform citizens and improve their
quality of life.
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