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Résumé. Des variables aléatoires a queue de type Weibull sont définies comme des
variables aléatoires positives dont la queue droite se comporte de maniere similaire a celle
d’une variable aléatoire de Weibull. Nous introduisons des variables aléatoires de queue
Weibull généralisées, des extensions qui ont une propriété de stabilité. Nous étudions la
préservation des parametres de queue de ces variables aléatoires sous des opérations telles
que la multiplication, la puissance et la combinaison linéaire.

Mots-clés. Lois a queue de type Weibull, Lois généralisé a queue de type Weibull,
Sous-Weibull, Stabilité

Abstract. Weibull-tail random variables are defined as non-negative random variables
whose right tail behaves similarly to that of a Weibull random variable. We introduce
generalized Weibull-tail random variables, extensions which have a property of stability.
We study the preservation of tail parameters under operations like multiplication, power,
and linear combination.

Keywords. Weibull-tail, Generalized Weibull-tail, Sub-Weibull, Stability

1 Introduction

The study of the distributional tail behavior arises in many applied probability models of
different areas, such as hydrology (Strupczewski et al., 2011), finance (Rachev, 2003) and
insurance risk theory (Ahmad et al., 2020). Since in most cases exact distributions are not
available, deriving asymptotic relationships for their tail probabilities becomes essential.
In this context, an important role is played by so-called Weibull-tail distributions (Gardes
et al., 2011; Gardes and Girard, 2016).

A random variable X is called Weibull-tail with tail parameter 5 > 0 if its cumulative
distribution function F' satisfies

Flz)=1-F(z) =@ for z >0, (1)
where [(x) is a slowly-varying function, i.e. it is a positive function such that

. (tz)

=1, forallt > 0.



We note X ~ WT(B). The family of Weibull-tail distributions includes a variety of
fundamental distributions such as Gaussian (f = 2), exponential and gamma (8 = 1),
Weibull (8 > 0), to name a few.

Some of the commonly used techniques to study the tail behavior is to consider prob-
ability tail bounds such as sub-Gaussian, sub-Exponential, or their generalization to sub-
Weibull distributions (Vladimirova et al., 2020; Kuchibhotla and Chakrabortty, 2018).
A non-negative random variable is called sub-Weibull with tail parameter 6 > 0 if its
survival function is upper-bounded by that of a Weibull distribution:

F(r) < ae™"" for > 0 and some a,b > 0. (2)

This property ensures the existence of the moment generating function as well as bounds
on moments. In contrast, the Weibull-tail properties characterize the survival or density
functions without a hand on moments.

While tail parameters in Equation (1) and (2) of Weibull-tail and sub-Weibull prop-
erties are different, we can find some connections. Notice that for any constants a,b > 0
there exists a slowly-varying function [(x) = b — k;%“ so that ae " = ¢=#"1@) Tt means
that if random variable X is sub-Weibull with parameter § = 1/5 > 0, satisfying Equa-
tion (2), then survival function of X is upper-bounded by a Weibull-tail distribution with
tail parameter (3, satisfying Equation (1). If random variable X is Weibull-tail with tail
parameter 3, then from Potter’s bounds, for a;,as > 0 we have

ale_xﬂl S F(I) = e—wﬂl(m) S age_ﬂb,

or WT'(B) € SubW(1/p,) and WT(3) ¢ SubW(1/3;) for  big enough and V(f, 52) such
that 0 < By < B < By.

In this work, we study the properties of Weibull-tail random variables and intro-
duce their stable extensions, i.e. generalized Weibull-tail random variables. Firstly, we
show that multiplication by a constant doesn’t change a random variable tail parameter
(Lemma 2.1). A power of a Weibull-tail and generalized Weibull-tail random variable re-
sults into a distribution with a tail parameter divided by the power (Lemma 2.1). Further,
Theorem 2.1 confirms that a sum of generalized Weibull-tail random variables (includ-
ing the dependent ones) remains generalized Weibull-tail of tail parameter equal to the
minimum among those of the terms. In addition, we consider a product of independent
generalized Weibull-tail random variables in Theorem 2.2.

2 Weibull-tail properties

We begin by introducing the concept of a generalized random variable of the Weibull tail,
which has an additional stability property:



Definition 2.1 (Generalized Weibull-tail). A random variable X is called generalized
Weibull-tail with tail parameter § > 0 if its survival function F' is bounded by Weibull-
tail functions of tail parameter § with possibly different slowly-varying functions /; and
l22

e @) < Fz) < e @) for x> 0. (3)

We note X ~ GWT(5).

If X ~ WT(pB) with slowly-varying function [, then by taking I; = ly = [, we have
equality in Equation (3) and X ~ GWT(/3). Therefore, Weibull-tail family of distributions
is a subset of generalized Weibull-tail distributions of the same tail parameter: WT(5) C
GWT(p3).

Lemma 2.1 (Power and multiplication by a constant). Let non-negative random vari-
able X be Weibull-tail (generalized Weibull-tail) with tail parameter 3, then aX® is Weibull-
tail (generalized Weibull-tail) with tail parameter % for a,b > 0.

Proof. For a,b> 0, the tail of Y = aX” is P(aX’ > y) = P(X = (1)"").

If X is Weibull-tail with tail parameter (3, then P (X > z) = ¢ "/®) where [ is a
slowly-varying function. It implies

P(aXb > y) _ e_yﬁ/bi(y)’

where I(y) = % is a slowly-varying function.

If X is generalized Weibull-tail with tail parameter 3, then e=*"4@) < P (X >2) <

e’ where {; and [y are slowly-varying functions. It implies
A () < IP’(aXb > y) < e—yﬁ/”fz(y)’
where [;(y) = li(%;%l/b),i = 1,2 are slowly-varying functions. O

Theorem 2.1 (Sum of generalized Weibull-tail RVs). Let non-negative (possibly depen-
dent) random variables X and Y be generalized Weibull-tail of parameters B, and S,.
Then, X +Y is generalized Weibull-tail of the parameter min{f,, 8,}.

Proof. For any two distributions X and Y we have an upper bound
P(X+Y >2)<P(X >22UY >2-) <P(X >z2/2)+P(Y > 2/2).

For non-negative random variables X and Y we have P(X +Y > z) > P(X > z) and
P(X+Y > z) > P(Y > z). By combining these two inequalities we have a lower bound
P(X +Y > 2) > max{P(X > 2),P(Y > 2)}.



Thus, E)r survilal function F's; of sum of random variables X and Y with survival
functions F'x and F'y, the following inequality holds

max{Fx(z), Fy(2)} < Fx(z) < 2max{F x(?/2), Fy(3/2)}. (4)

If those random variables are generalized Weibull-tail with tail parameters 3, and 3,, then
there exist slowly-varying functions I; = max{l{,Y} and ly = min{l3, 15} with ¥ 15 1} 13
being slowly-varying function in the lower and upper bounds of generalized Weibull-tail
X and Y respectively, such that

e ") < max{Fy(2), Fy(z)} < e 720,
where § = min{f,, 5,}. Hence, Equation (4) is transformed into
o) < Fs(z) < e—z%(Z)7

where I(z) = 12(2# <1 — %) is slowly-varying. Thus, the survival function of the sum

X +Y is upper and lower-bounded by some Weibull-tail functions from family WT(3)
where § = min{f,, f,}. ]

Theorem 2.2 (Product of generalized Weibull-tail RVs). The product of two independent
non-negative generalized Weibull-tail random variables X and Y with tail parameters [,
and (3, is generalized Weibull-tail with tail parameter B such that % = 5% + é

Proof. Consider two independent non-negative generalized Weibull-tail random variables
with tail parameters 3, = é and 3, = é, X ~GWT <é) and Y ~ GWT <é)

We want to prove that for some slowly-varying functions /; and [y the following holds
for the product survival function :

1 1
e—z91+9y li(2) < ny(z) _ P(XY > Z) < e—zel“’y l2(2) (5)

1. Upper bound. Firstly, notice that from the concavity of the logarithm for any u,v > 0
and p € (0,1) we have In(pu+ (1 —p)v) > plnu+ (1 —p)Inv. Then pu+ (1 —p)v >
uPv'~P. The change of variables © = u”, y = v'~? implies

pr’" + (1 —p)y"" > ay. (6)
From Equation (6), the upper bound of the product tail is

P(XY > 2) <P (pX"7" + (1 —p)Y/» > 2).

Lemma 2.1 implies that pX"/» ~ GWT <%> and (1 —p)Y'/*» ~ GWT <le;f)'

Oz Oy
0r+0y Oz+0y°

Taking p = and 1 —p = on the right-hand side we have a sum of two
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1
00t0y,°
According to Theorem 2.1, this sum is generalized Weibull-tail with the same tail

parameter ewigy . It means that there exists slowly-varying function l, such that the

tail of product XY is upper-bounded by

independent generalized Weibull-tail random variables with tail parameter

P(XY Z Z) S e_zeerGy lg(z)‘ (7)
2. Lower bound. By dependence of X and Y, we have
T 9y
P(XY > 2) > P (X > 5595 ) P (Y > z+) |

Since X and Y are generalized Weibull-tail, we can define function
li(z) = lic<zez/(ez+oy)) + li/(zey/(eaﬁ»ey))

with [ and ¥ being slowly-varying functions in the lower bounds of generalized
Weibull-tail X and Y. Then, [; is slowly-varying and we have

]P)(XY > Z) > e—z%*eyh(z). (8)

Combining together Equations (7) and (8) with Definition 2.1 implies the statement
of the theorem. O

Since a Weibull-tail random variable is a particular case of a generalized Weibull-tail
random variable, a sum or a product of Weibull-tail random variables will also give a
generalized Weibull-tail random variable.

Example 2.1 (Sum of Gaussian and exponential RVs). A convolution of Gaussian N'(0, o%)
and exponential Exp(\) distributions can be written in the following form: fx(z) =
e AZe? A £ 2= . . .

o Mt s 3 log (1ent (2532 )), where erf(z) = \/%7 IS e ¥’ dy is the error function. Since

erf (%) — 1 when 2z — oo, for big enough z the convolution fx(z) ~ e ™K with

K > 0. Then, there exists a slowly-varying function [ such that fx(z) ~ e™#®). It
means that the convolution of Gaussian and exponential distributions is WT(1), like the
exponential one which is heavier among exponential and Gaussian.

3 Conclusion and discussion

We introduce a notion of a generalized Weibull-tail distribution, an extended version of
Weibull-tail distribution with a property of stability. We showed that a sum of general-
ized Weibull-tail distributions (including dependent) is generalized Weibull-tail with tail
parameter equal to a tail parameter of the heaviest distribution among them.
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Here we considered only non-negative distributions, i.e. the right tail. The theory
might be generalized to distributions on R by taking into account the left tails. In that
case one can include asymmetric distributions where left and right tails have different tail
parameters.

In application to Bayesian neural networks, Vladimirova et al. (2019) proved that
hidden units, or neurons, follow a sub-Weibull distribution (Vladimirova et al., 2020;
Kuchibhotla and Chakrabortty, 2018) where the tail parameter depends on depth. Future
work will study the applicability of Weibull-tail properties to Bayesian neural networks.
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