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Introduction

The study of the distributional tail behavior arises in many applied probability models of different areas, such as hydrology [START_REF] Strupczewski | On the tails of distributions of annual peak flow[END_REF], finance [START_REF] Rachev | Handbook of heavy-tailed distributions in finance: handbooks in finance[END_REF] and insurance risk theory [START_REF] Ahmad | New methods to define heavy-tailed distributions with applications to insurance data[END_REF]. Since in most cases exact distributions are not available, deriving asymptotic relationships for their tail probabilities becomes essential. In this context, an important role is played by so-called Weibull-tail distributions [START_REF] Gardes | Weibull tail-distributions revisited: a new look at some tail estimators[END_REF][START_REF] Gardes | On the estimation of the functional Weibull tailcoefficient[END_REF].

A random variable X is called Weibull-tail with tail parameter β > 0 if its cumulative distribution function F satisfies F (x) = 1 -F (x) = e -x β l(x) , for x > 0,

(1)

where l(x) is a slowly-varying function, i.e. it is a positive function such that lim x→∞ l(tx) l(x) = 1, for all t > 0.

1

We note X ∼ WT(β). The family of Weibull-tail distributions includes a variety of fundamental distributions such as Gaussian (β = 2), exponential and gamma (β = 1), Weibull (β > 0), to name a few. Some of the commonly used techniques to study the tail behavior is to consider probability tail bounds such as sub-Gaussian, sub-Exponential, or their generalization to sub-Weibull distributions [START_REF] Vladimirova | Sub-Weibull distributions: generalizing sub-Gaussian and sub-Exponential properties to heavier tailed distributions[END_REF][START_REF] Kuchibhotla | Moving beyond sub-Gaussianity in high-dimensional statistics: applications in covariance estimation and linear regression[END_REF]. A non-negative random variable is called sub-Weibull with tail parameter θ > 0 if its survival function is upper-bounded by that of a Weibull distribution: F (x) ≤ ae -bx 1/θ , for x > 0 and some a, b > 0.

(2)

This property ensures the existence of the moment generating function as well as bounds on moments. In contrast, the Weibull-tail properties characterize the survival or density functions without a hand on moments. While tail parameters in Equation ( 1) and (2) of Weibull-tail and sub-Weibull properties are different, we can find some connections. Notice that for any constants a, b > 0 there exists a slowly-varying function l(x) = b -log a

x β so that ae -bx β = e -x β l(x) . It means that if random variable X is sub-Weibull with parameter θ = 1/β > 0, satisfying Equation (2), then survival function of X is upper-bounded by a Weibull-tail distribution with tail parameter β, satisfying Equation (1). If random variable X is Weibull-tail with tail parameter β, then from Potter's bounds, for a 1 , a 2 > 0 we have

a 1 e -x β 1 ≤ F (x) = e -x β l(x) ≤ a 2 e -x β 2 , or WT(β) ⊂ SubW(1/β 2 ) and WT(β) ⊂ SubW(1/β 1 ) for x big enough and ∀(β 1 , β 2 ) such that 0 < β 2 < β < β 1 .
In this work, we study the properties of Weibull-tail random variables and introduce their stable extensions, i.e. generalized Weibull-tail random variables. Firstly, we show that multiplication by a constant doesn't change a random variable tail parameter (Lemma 2.1). A power of a Weibull-tail and generalized Weibull-tail random variable results into a distribution with a tail parameter divided by the power (Lemma 2.1). Further, Theorem 2.1 confirms that a sum of generalized Weibull-tail random variables (including the dependent ones) remains generalized Weibull-tail of tail parameter equal to the minimum among those of the terms. In addition, we consider a product of independent generalized Weibull-tail random variables in Theorem 2.2.

Weibull-tail properties

We begin by introducing the concept of a generalized random variable of the Weibull tail, which has an additional stability property: Definition 2.1 (Generalized Weibull-tail). A random variable X is called generalized Weibull-tail with tail parameter β > 0 if its survival function F is bounded by Weibulltail functions of tail parameter β with possibly different slowly-varying functions l 1 and l 2 : e -x β l 1 (x) ≤ F (x) ≤ e -x β l 2 (x) , for x > 0.

(3)

We note X ∼ GWT(β).

If X ∼ WT(β) with slowly-varying function l, then by taking l 1 = l 2 = l, we have equality in Equation ( 3) and X ∼ GWT(β). Therefore, Weibull-tail family of distributions is a subset of generalized Weibull-tail distributions of the same tail parameter: WT(β) ⊂ GWT(β).

Lemma 2.1 (Power and multiplication by a constant). Let non-negative random variable X be Weibull-tail (generalized Weibull-tail) with tail parameter β, then aX b is Weibulltail (generalized Weibull-tail) with tail parameter β b for a, b > 0.

Proof. For a, b > 0, the tail of Y = aX b is P aX b ≥ y = P X ≥ y a 1/b .
If X is Weibull-tail with tail parameter β, then P (X ≥ x) = e -x β l(x) , where l is a slowly-varying function. It implies P aX b ≥ y = e -y β/bl (y) , where l(y) = l((y/a) 1/b ) a β/b is a slowly-varying function. If X is generalized Weibull-tail with tail parameter β, then e -x β l 1 (x) ≤ P (X ≥ x) ≤ e -x β l 2 (x) , where l 1 and l 2 are slowly-varying functions. It implies e -y β/bl 1 (y) ≤ P aX b ≥ y ≤ e -y β/bl 2 (y) , where li (y) = l i ((y/a) 1/b ) a β/b , i = 1, 2 are slowly-varying functions.

Theorem 2.1 (Sum of generalized Weibull-tail RVs). Let non-negative (possibly dependent) random variables X and Y be generalized Weibull-tail of parameters β x and β y . Then, X + Y is generalized Weibull-tail of the parameter min{β x , β y }.

Proof. For any two distributions X and Y we have an upper bound

P(X + Y ≥ z) ≤ P(X ≥ z /2 ∪ Y ≥ z /2) ≤ P(X ≥ z /2) + P(Y ≥ z /2).
For non-negative random variables X and Y we have P(X + Y ≥ z) ≥ P(X ≥ z) and P(X + Y ≥ z) ≥ P(Y ≥ z). By combining these two inequalities we have a lower bound

P(X + Y ≥ z) ≥ max{P(X ≥ z), P(Y ≥ z)}.
independent generalized Weibull-tail random variables with tail parameter 1 θx+θy . According to Theorem 2.1, this sum is generalized Weibull-tail with the same tail parameter 1 θx+θy . It means that there exists slowly-varying function l 2 such that the tail of product XY is upper-bounded by

P(XY ≥ z) ≤ e -z 1 θx+θy l 2 (z) . (7) 
2. Lower bound. By dependence of X and Y , we have

P(XY ≥ z) ≥ P X ≥ z θx θx+θy P Y ≥ z θy θx+θy .
Since X and Y are generalized Weibull-tail, we can define function l 1 (z) = l x 1 (z θx/(θx+θy) ) + l y 1 (z θy/(θx+θy) )

with l x 1 and l y 1 being slowly-varying functions in the lower bounds of generalized Weibull-tail X and Y . Then, l 1 is slowly-varying and we have

P(XY ≥ z) ≥ e -z 1 θx+θy l 1 (z) . (8) 
Combining together Equations ( 7) and ( 8) with Definition 2.1 implies the statement of the theorem.

Since a Weibull-tail random variable is a particular case of a generalized Weibull-tail random variable, a sum or a product of Weibull-tail random variables will also give a generalized Weibull-tail random variable.

Example 2.1 (Sum of Gaussian and exponential RVs). A convolution of Gaussian N (0, σ 2 ) and exponential Exp(λ) distributions can be written in the following form:

f Σ (z) = e -λz+ λ 2 σ 2 2 +log λ 2 +log 1+erf z-λσ 2 √ 2σ
, where erf(x) = 2 √ π

x 0 e -y 2 dy is the error function. Since erf z-λσ 2 √ 2σ

→ 1 when z → ∞, for big enough z the convolution f Σ (z) ∼ e -λz+K with K > 0. Then, there exists a slowly-varying function l such that f Σ (z) ∼ e -zl (z) . It means that the convolution of Gaussian and exponential distributions is WT(1), like the exponential one which is heavier among exponential and Gaussian.

Conclusion and discussion

We introduce a notion of a generalized Weibull-tail distribution, an extended version of Weibull-tail distribution with a property of stability. We showed that a sum of generalized Weibull-tail distributions (including dependent) is generalized Weibull-tail with tail parameter equal to a tail parameter of the heaviest distribution among them.

Here we considered only non-negative distributions, i.e. the right tail. The theory might be generalized to distributions on R by taking into account the left tails. In that case one can include asymmetric distributions where left and right tails have different tail parameters.

In application to Bayesian neural networks, [START_REF] Vladimirova | Understanding priors in Bayesian neural networks at the unit level[END_REF] proved that hidden units, or neurons, follow a sub-Weibull distribution [START_REF] Vladimirova | Sub-Weibull distributions: generalizing sub-Gaussian and sub-Exponential properties to heavier tailed distributions[END_REF][START_REF] Kuchibhotla | Moving beyond sub-Gaussianity in high-dimensional statistics: applications in covariance estimation and linear regression[END_REF] where the tail parameter depends on depth. Future work will study the applicability of Weibull-tail properties to Bayesian neural networks.

Thus, for survival function F Σ of sum of random variables X and Y with survival functions F X and F Y , the following inequality holds max{F X (z), F Y (z)} ≤ F Σ (z) ≤ 2 max{F X ( z /2), F Y ( z /2)}.

(4)

If those random variables are generalized Weibull-tail with tail parameters β x and β y , then there exist slowly-varying functions l 1 = max{l x 1 , l y 1 } and l 2 = min{l x 2 , l y 2 } with l x 1 , l x 2 , l y 1 , l y 2 being slowly-varying function in the lower and upper bounds of generalized Weibull-tail X and Y respectively, such that z) , where β = min{β x , β y }. Hence, Equation ( 4) is transformed into

is slowly-varying. Thus, the survival function of the sum X + Y is upper and lower-bounded by some Weibull-tail functions from family WT(β) where β = min{β x , β y }.

Theorem 2.2 (Product of generalized Weibull-tail RVs). The product of two independent non-negative generalized Weibull-tail random variables X and Y with tail parameters β x and β y is generalized Weibull-tail with tail parameter β such that 1 β = 1 βx + 1 βy . Proof. Consider two independent non-negative generalized Weibull-tail random variables with tail parameters β x = 1 θx and β y = 1 θy , X ∼ GWT 1 θx and Y ∼ GWT 1 θy . We want to prove that for some slowly-varying functions l 1 and l 2 the following holds for the product survival function :

(5)

1. Upper bound. Firstly, notice that from the concavity of the logarithm for any u, v > 0 and p ∈ (0, 1) we have ln(pu

From Equation ( 6), the upper bound of the product tail is

Lemma 2.1 implies that pX 1 /p ∼ GWT p θx and (1 -p)Y 1 /1-p ∼ GWT 1-p θy .

Taking p = θx θx+θy and 1 -p = θy θx+θy , on the right-hand side we have a sum of two