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Abstract

Numerous theories propose a key role for brain oscillations in visual perception. Most of these theories postu-
late that sensory information is encoded in specific oscillatory components (e.g., power or phase) of specific
frequency bands. These theories are often tested with whole-brain recording methods of low spatial resolution
(EEG or MEG), or depth recordings that provide a local, incomplete view of the brain. Opportunities to bridge
the gap between local neural populations and whole-brain signals are rare. Here, using representational simi-
larity analysis (RSA) in human participants we explore which MEG oscillatory components (power and phase,
across various frequency bands) correspond to low or high-level visual object representations, using brain rep-
resentations from fMRI, or layer-wise representations in seven recent deep neural networks (DNNs), as a tem-
plate for low/high-level object representations. The results showed that around stimulus onset and offset,
most transient oscillatory signals correlated with low-level brain patterns (V1). During stimulus presentation,
sustained b (;20 Hz) and g (.60 Hz) power best correlated with V1, while oscillatory phase components cor-
related with IT representations. Surprisingly, this pattern of results did not always correspond to low-level or
high-level DNN layer activity. In particular, sustained b band oscillatory power reflected high-level DNN layers,
suggestive of a feed-back component. These results begin to bridge the gap between whole-brain oscillatory
signals and object representations supported by local neuronal activations.

Key words: brain oscillations; deep neural networks; fMRI; MEG; object recognition; representational similarity
analysis

Significance Statement

Brain oscillations are thought to play a key role in visual perception. We asked how oscillatory signals relate
to visual object representations in localized brain regions, and how these representations evolve over time
in terms of their complexity. We used representational similarity analysis (RSA) between MEG oscillations
(considering both phase and amplitude) and (1) fMRI signals (to assess local activations along the cortical
hierarchy), or (2) feedforward deep neural network (DNN) layers (to probe the complexity of visual represen-
tations). Our results reveal a complex picture, with the successive involvement of different oscillatory com-
ponents (phase, amplitude) in different frequency bands and in different brain regions during visual object
recognition.
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Introduction
Oscillatory neuronal activity is thought to underlie a va-

riety of perceptual functions. Different frequency bands
can carry information about different stimulus properties
(e.g., whether the stimulus consists of coarse or fine ob-
ject features; Smith et al., 2006; Romei et al., 2011), feed-
forward or feedback signals (van Kerkoerle et al., 2014;
Bastos et al., 2015), or may reflect neuronal communica-
tion between different neuronal populations (Fries, 2005;
Jensen and Mazaheri, 2010). Other studies have shown
that different components of an oscillation (e.g., its power
or phase) encode different types of sensory information
(Smith et al., 2006).
Although neuronal oscillations are observed in different

brain regions, and key theories hold that they reflect proc-
essing within, and communication between, brain regions
(Fries, 2005; Jensen and Mazaheri, 2010), it has been dif-
ficult to pin down how large-scale brain oscillations are re-
lated to local patterns of neural activity, and how this
relationship unfolds over time. This is because oscillatory
activity is often studied with methods such as EEG or
MEG, which have low spatial resolution. Although oscilla-
tory signals with high spatial specificity can be recorded
via local field potential recordings in humans or animals,
these methods usually only target specific brain regions,
and thus can only provide a partial view of oscillatory ac-
tivity and its role in large-scale brain function. A direct link
between large-scale oscillations and local neural activity
is missing.
Here, we combine large-scale oscillatory signals re-

corded by MEG with local patterns of neural activity re-
corded with fMRI to bridge the gap between oscillatory
components and different dimensions of object represen-
tation in the brain. Using representational similarity analy-
sis (RSA; Kriegeskorte et al., 2008), we investigate the
information carried by whole-brain oscillations obtained
from MEG, and examine how this information evolves
over time during an object recognition task.
We define three distinct dimensions of interest along

which neural representations may unfold, and which are
often conflated in the literature. First, we use the terms
“early” and “late” to denote the temporal evolution of repre-
sentations. Second, we differentiate between “low-level”
and “high-level” stages of a processing hierarchy. Third, we
consider the complexity of representations by distinguishing
between “low-complexity” and “high-complexity”

information (for example, higher-complexity might be char-
acterized by additional nonlinear transformations of the
input). In many information processing systems and in many
typical experimental situations, these three dimensions are
directly related to one another, as input information propa-
gates over time through a succession of hierarchical stages,
becoming more and more complex along the way. In such
situations, the three dimensions of interest are in fact re-
dundant and need not be further distinguished. But in
systems with recurrence and feedback loops (like the
brain), time, space, and information complexity are not
always linearly related. For example, a lower hierarchi-
cal level (e.g., V1) can carry higher-complexity repre-
sentations, later in time, as a result of feedback loops or
lateral connections (Lamme and Roelfsema, 2000). In
our terminology, such a representation would be classi-
fied as late in time, low-level in the hierarchy, yet high-
complexity.
In this work, we consider two main hierarchical sys-

tems. We are interested in understanding information
processing in the human brain, so we use V1 and IT fMRI
brain representations, as done in a number of recent stud-
ies (Cichy et al., 2014; Khaligh-Razavi and Kriegeskorte,
2014). Representational similarity between MEG oscilla-
tions and this fMRI-based hierarchy can be interpreted in
terms of early and late representations (based on the tim-
ing of the MEG oscillations), and in terms of low-level (V1)
versus high-level (IT) hierarchical stages. To assess the
complexity of representations independent of temporal
evolution and cortical hierarchy of processing, we re-
lated our data to a second class of hierarchical systems:
artificial feed-forward deep neural networks (DNNs), as
done also in numerous recent studies (Cichy et al., 2016;
Bankson et al., 2018; Hebart et al., 2018; Khaligh-Razavi
et al., 2018; Kuzovkin et al., 2018). In these artificial net-
works, the hierarchical level (low-level vs high-level) is di-
rectly related to feature complexity (low-complexity vs
high-complexity representations), because of the ab-
sence of feed-back or recurrent loops: the layer number
directly reflects the number of nonlinear input transfor-
mations. For any MEG oscillatory signal, representation-
al similarity with DNN activation patterns can thus inform
us about representational complexity. In turn, any differ-
ence between DNN-based and brain-based RSA may be
suggestive of feed-back or recurrent influences in the
MEG oscillatory signals.
With this dual approach, we find an intricate picture of

transient and sustained oscillatory signals that can be
related to V1 and IT representations. Transient oscilla-
tory components around stimulus onset and offset, as
well as sustained b (;20 Hz) and g (.60 Hz) power
components resemble V1 representations, while phase-
dependent sustained activity correlates best with IT
representations. However, when compared with DNNs,
some low-level V1-like components actually correlate
more with higher DNN layers, suggesting that stimulus
representations in primary brain regions may already in-
clude high-complexity information, presumably as a re-
sult of feedback or top-down influences (Kar et al.,
2019; Kietzmann et al., 2019).
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In effect, our results narrow the gap between the de-
scription of neural dynamics in terms of whole-brain oscil-
latory signals and local neural activation patterns.
Disentangling temporal evolution, hierarchical stage of
processing and complexity of representations from each
other, our approach allows for a more nuanced view on
cortical information flow in human object processing.

Materials and Methods
Experimental paradigm and data acquisition
The data analyzed in this study was obtained from

(Cichy et al., 2014), and detailed methods can be obtained
from that paper.
Fifteen human subjects of either sex performed sepa-

rate MEG and fMRI sessions while they viewed a set of 92
images. The image set consisted of human and non-
human faces and bodies, and artificial and natural every-
day objects. The 92-image stimulus set was taken from
the Kiani image set (Kiani et al., 2007), which consists of
cutout objects on a gray background (Fig. 1A).
In the MEG sessions, each image was presented for 0.5

s followed by an interstimulus interval (ISI) of 1.2 or 1.5 s.
Every three to five trials, a target paperclip object was pre-
sented, and subjects’ task was to press a button and
blink whenever they detected this target image. Subjects
performed two MEG sessions, of 2 h each. In each ses-
sion they performed between 10 and 15 runs. Each image
was presented twice in each run, in random order.
In each of two fMRI sessions, each image was pre-

sented for 0.5 s followed by an ISI of 2.5 or 5.5 s.
Subjects’ task in the fMRI sessions was to press a button
when they detected a color change in the fixation cross
on 30 null trials, when no image was presented. Each
image was presented once in each fMRI run, and subjects
performed 10–14 runs in each session.
The MEG data were acquired from 306 channels (204 pla-

nar gradiometers, 102 magnetometers, Elekta Neuromag
TRIUX, Elekta) at the Massachusetts Institute of Technology.
The MRI experiment was conducted on a 3T Trio scanner
(Siemens), with a 32-channel head coil. The structural
images were acquired using a T1-weighted sequence
(192 sagittal slices, FOV= 256 mm2, TR= 1900 ms,
TE = 2.52ms, flip angle = 9°). For the fMRI runs, 192 im-
ages were acquired for each participant (gradient-echo
EPI sequence: TR= 2000 ms, TE = 32ms, flip angle = 80°,
FOV read = 192 mm, FOV phase = 100%, ascending ac-
quisition gap = 10%, resolution = 2 mm, slices = 25).

MEG analysis, preprocessing
MEG trials were extracted with a 600-ms baseline be-

fore stimulus onset until 1200ms after stimulus onset. A
total of 20–30 trials were obtained for each stimulus con-
dition, session, and participant. Each image was consid-
ered as a different stimulus condition.
Data were analyzed using custom scripts in MATLAB

(MathWorks) and FieldTrip (Oostenveld et al., 2011). Data
were downsampled offline to 500Hz. For each trial and
sensor, we computed the complex time-frequency (TF)
decomposition using multitapers. Parameters used were:

50 distinct frequencies increasing logarithmically from 3
to 100Hz, over a time interval of –600 to 700ms with re-
spect to stimulus onset, in steps of 20ms. The length of
the sliding time window was chosen such that there were
two full cycles per time window. The amount of smoothing
increased with frequency (0.4 * frequency).
From the complex number at each TF coordinate, we

extracted two measures for each sensor and each stimu-
lus condition: the power and the phase of the oscillation.
For each channel and stimulus condition, on each trial,
the power was first expressed in decibels, and then aver-
aged across trials to obtain one power value per stimulus
condition. The phase of the oscillation was obtained by
first normalizing each trial to make each trial’s vector in
the complex domain of unit length, and then averaging
across trials for each stimulus condition. The resultant av-
erage vector was then normalized to unit length, and the
sine (real) and cosine (imaginary) components were ex-
tracted for each stimulus condition and each sensor.

MEG analysis, multivariate analysis (Fig. 1B)
At each TF coordinate and for each stimulus condition,

we next arranged the 306 power values from the 306
MEG sensors into a 306-dimensional vector representing
the power pattern vector for that stimulus condition.
Similarly, at each TF coordinate and for each stimulus
condition we concatenated the 306 sine and 306 cosine
values into a 612-dimensional phase pattern vector for
that stimulus condition.
We next computed two representational dissimilarity mat-

rices (RDMs): one for power and one for phase, at each TF
point. For each pair of stimulus conditions, the power
(phase) pattern vectors were correlated using the Pearson
correlation measure, and the resulting 1-correlation value
was assigned to a 92� 92 power (phase) RDM, in which the
rows and columns corresponded to the images being com-
pared. This matrix is symmetric across the diagonal. This pro-
cedure results in one power (phase) RDM at each TF point.

fMRI analysis (Fig. 1C)
The preprocessing steps for the fMRI data are de-

scribed in detail in Cichy et al. (2014). For the multivariate
analysis, two regions of interest (ROIs) were defined: V1
and IT. In each subject, for each ROI, voxel activation val-
ues were extracted for each stimulus condition, and the
resulting values were arranged in a pattern vector for each
stimulus condition. Then, in each ROI, for each pair of
stimulus conditions, the corresponding pattern vectors
were correlated using the Pearson correlation measure,
and the resulting 1-correlation value was assigned to the
92� 92 fMRI RDM. For further analysis, the fMRI RDMs
were averaged across the 15 subjects, resulting in one
RDM per ROI. The fMRI RDMs were provided by R. Cichy,
D. Pantazis, and A. Oliva (Cichy et al., 2014).

MEG-fMRI RSA (Fig. 1D)
RSA consists in comparing two (or more) RDMs. RSA

between the MEG and fMRI RDMs was performed by
computing the partial Pearson’s correlation between each
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MEG (phase or power) RDM with each fMRI RDM (V1 or
IT), while partialling out any contribution from the other
fMRI RDM (IT or V1). We chose to perform a partial corre-
lation because the V1 and IT RDMs were positively corre-
lated with each other (r ;0.3); compared with a standard

correlation, the partial correlation allowed us to isolate the
unique correlation of each fMRI RDM with the MEG RDM,
while discarding their joint contribution.
This procedure resulted in four RSA maps per subject

(power/phase MEG RDMs � V1/IT fMRI RDMs). Each

Figure 1. MEG-fMRI RSA analysis. A, Examples from our 92-image set (B) MEG analysis and MEG RDMs. From the MEG signals,
the complex TF transform was computed for each of the 306 MEG sensors. The amplitude and phase (separated into cosine and
sine) values were extracted from the complex number at each TF coordinate, and a MEG RDM was constructed, reflecting the dis-
tance between oscillatory activation patterns for every pair of images (i,j; for details, see Materials and Methods). As a result, we ob-
tained a power and phase MEG RDM at each TF coordinate for each participant. C, fMRI RDMs were obtained from (Cichy et al.,
2014). Two ROIs were defined: V1 and IT and one fMRI RDM was obtained for each ROI, and each participant, reflecting the dis-
tance between BOLD activation patterns for every pair of images (i,j). D, RSA consists in comparing two (or more) RDMs. The MEG
power or phase RDMs were compared with the fMRI RDMs (V1 or IT) by computing the partial Pearson’s R. This step was per-
formed at each TF coordinate, resulting in an RSA map of R values at each TF coordinate, for each subject and ROI.
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RSA map shows the R value between the MEG signals
and the V1/IT activation patterns at each TF point (Figure
4). Significance of the RSA result was evaluated with a
paired t test against 0, FDR corrected, a=0.05. The time-
course of these effects is shown in Figure 5.

Clustering analysis
The MEG TF RDMs are heavily correlated with each

other. To facilitate the interpretation of the information con-
tent of oscillatory signals, and to determine which features
co-vary and which are independent, K-means clustering
was performed on the MEG power and phase RDMs (Figure
2). Clustering was performed on the 4186-dimensional [(92
� 92–92)/2] RDMs across all (66) time points and (46) fre-
quency points, combining the power and phase signals (re-
sulting in 46 � 66 � 2=6072 data points to cluster in a
4186-dimensional space). K-means was implemented with
the MATLAB function kmeans, with the correlational dis-
tance measure, five replicates, and the number of clusters
going from 1 to 20. The optimal number of clusters was then
determined with the elbow criterion defined as the point just
before the local maximum of the second derivative of the re-
sidual sum of squares (corresponding to the point at which
adding another cluster would only provide a marginal gain in
variance explained). With this method, the first elbow oc-
curred at k=7 clusters.
The chosen clusters could be visualized by plotting

the correlation distance (in the 4186-dimensional RDM
space) between the cluster’s centroid and every TF
point, for both power and phase signals, resulting in
two TF maps of “distance to cluster centroid” for each
cluster (Figs. 6, 7).
RSA (using partial Pearson’s correlation) was per-

formed between each cluster’s centroid and each of the fMRI
RDMs (see below). For RSAwith fMRI, this procedure resulted
in two RSA values RV1 and RIT (one each for V1 and IT). Since
each cluster centroid could correspond to both V1 and IT to
different degrees, the “cortical level” L of the cluster was posi-
tioned somewhere between V1/low-level and IT/high-level
using the following equation:

L ¼ s ðRIT�RV1Þ�
ðRIT 1RV1Þ

� �
; (1)

where s denotes the sigmoid function. The measure L
could vary between 0 (when the cluster’s representational
content was perfectly similar to V1) and 1 (when it was
perfectly similar to IT).
Significance of RSA between the cluster centroids and

the fMRI RDMs was computed with a surrogate test. On
each iteration, the cluster centroid RDM was randomly
shuffled and the partial correlation was computed be-
tween this shuffled RDM and the true RDM. This proce-
dure was repeated for 105 iterations, and the proportion
of iterations on which the shuffled RSA values were higher
than the true RSA values was counted.

DNNRDMs
The MEG phase/power representations were also com-

pared with representations in seven DNNs (so as to

ensure that conclusions were not dependent on one spe-
cific network architecture): AlexNet (Krizhevksy et al.,
2012), VGG16 (Simonyan and Zisserman, 2015),
GoogleNet (Szegedy et al., 2015), InceptionV3 (Szegedy
et al., 2017), ResNet50 (He et al., 2016), DenseNet121
(Huang et al., 2017), and EfficientNetB3 (Tan and Le,
2019), processing the same 92 images as in our MEG and
fMRI data. However, in contrast to our 92-image stimulus
set, which consisted of cutout objects on a gray back-
ground, the DNNs had been trained on images from
ImageNet (millions of photographs with one or more ob-
jects in natural backgrounds). The networks had thus
learned optimal representations for their training set, but
in this representation space our 92 images tended to clus-
ter into a remote “corner” (Fig. 3), with low dissimilarity (1-
Pearson’s R) values between images, and a resulting
RDM of poor quality. To retrieve meaningful distances be-
tween the representations of the 92 images, we first per-
formed a centering procedure: we centered the activation
of each layer of each DNN by subtracting the mean acti-
vation of an independent set of 368 images from the Kiani
image set. This independent image set consisted of four
images from each of the categories in our 92-image set.
Importantly, because the image set used for centering did
not include any of the 92 images from our study, there
was no circularity in the centering operation, nor any leak-
age of information between the representations of our 92
images. This centering procedure contributed to minimize
the potential problems arising from differences between
our dataset and the standard ImageNet dataset, but it did
not completely alleviate these differences, as can be seen
in Figure 3C.
RDMs were constructed for several convolutional layers of

each network based on the layer activation values. There
were five layers for AlexNet, 13 for VGG16, 12 for GoogleNet,
16 for InceptionV3, 17 for ResNet50 (hereafter referred to as
ResNet), 14 for DenseNet121 (hereafter DenseNet), and eight
for EfficientNetB3 (hereafter EfficientNet). These layers were
chosen so as to span the entire network hierarchy, without
making the analysis computationally intractable (as some net-
works can contain .200 layers to choose from). RSA was
then performed (with the Spearman correlation) between
these RDMs and the centroid of each cluster (see above for
details of the clustering analysis). The layer with maximum
RSA, normalized by the number of layers for this DNN, was
taken to reflect the information content of this cluster be-
tween 0 (in the terminology defined in the Introduction, low-
complexity corresponding to the DNN’s first layer) and 1
(high-complexity, corresponding to the DNN’s last layer), and
finally averaged across the seven DNNs.

Code accessibility
Custom code can be made available on request.

Results
Fifteen participants viewed the same set of 92 images

while fMRI and MEG data were recorded (in separate ses-
sions). The image set consisted of human and non-human
bodies and faces, and artificial and natural stimuli. Each
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stimulus was presented for 0.5 s, followed by a 1.2- or
1.5-s baseline period.
To assess oscillatory components, we extracted stimu-

lus-related activity from –600 to 1200ms relative to stimu-
lus onset from the MEG data. For each trial, and each
sensor a TF decomposition was performed, and a power
and phase value extracted at each time and frequency
point. These values were used to compute RDMs at each
TF point, separately for power and phase (Materials and
Methods; Fig. 1A). Each element in the MEG RDMs indi-
cates how distinct the corresponding images are in the
MEG power or phase spaces, and the entire MEG RDM is
a summary of how the 92-image stimulus set is repre-
sented in the MEG oscillatory power or phase at each TF
point.
To assess local patterns of neural activity, we generated

fMRI RDMs by performing comparisons between the local
BOLD activation patterns of pairs of images in V1 and IT
(Cichy et al., 2014). Two fMRI RDMs were obtained (Fig.
1B), one for V1 and one for IT. The fMRI RDMs are a mea-
sure of the representation of the image set in the voxel
space of V1 and IT local neural activity.

Bridging the space, time, and frequency gap in object
recognition
How similar is the oscillatory representation of the im-

ages to their representation in each brain region? The
MEG RDMs (power and/or phase) at each TF point

represent the stimulus set in a large-scale brain oscillatory
activity space, while the fMRI RDMs represent the same
image set via BOLD activity in a local population of neu-
rons in two brain regions (V1 or IT). We evaluated the simi-
larity of representations in the TF domain with those in the
fMRI activation patterns by computing the partial
Pearson’s correlation between the MEG RDMs (phase or
power) with the fMRI RDMs (V1/IT), at each TF point (Fig.
1C). This analysis resulted in four TF maps of R values (or
RSA maps), which provide the unique correspondence
between whole-brain oscillations and local patterns of
neural activity in V1 and IT, at each TF point (Fig. 4). With
these maps we can ask whether and when stimulus infor-
mation contained in oscillatory phase or power at each TF
point resembles BOLD activations in a given brain region
(V1/IT), and potentially, which region it resembles more.
The advantage of measuring partial correlation (instead of
a standard correlation) is to discard the (potentially large)
portion of the variance in oscillatory representations that
is explained equally well by V1 or IT BOLD representa-
tions, owing to the fact that V1 and IT signals already
share similarities. This way, we concentrate on the part of
oscillatory representations that is uniquely explained by
each brain ROI.
Our results show that different oscillatory components

map to different brain regions at different moments in
time. Overall, the absolute maximum of representational
similarity with brain area V1 occurred in the a band
;120ms after stimulus for oscillatory power, whereas the

Figure 2. K-means clustering analysis procedure. Starting from the MEG RDM representations (top left, as described in Fig. 1A), we
flatten each RDM data point into a vector. The entire set of vectors (across all TF coordinates and power/phase conditions) is en-
tered into a K-means clustering algorithm (right), resulting in N clusters and their centroids. By measuring the distance of these cent-
roids to all initial RDM data points, we obtain TF maps of “distance to centroid” (bottom left) that capture the main TF components
(across both power and phase) of each cluster.
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Figure 3. A, B, t-distributed stochastic neighbor embedding (t-SNE) visualizations of 500 ImageNet samples and the 92-image stim-
ulus-set used in this study, across representative layers of two networks (A, AlexNet; B, EfficientNet). To obtain these visualizations,
the feature values of all images were subjected to a principal component analysis (PCA) of which only the first 100 dimensions were
retained (so as to limit computational demands); then, t-SNE was applied, as implemented in the scikit-learn Python library, with pa-
rameters: [perplexity = 30, n_iter = 1000, learning_rate = 1.0, min_grad_norm=0]. The DNNs used in this study had been trained on
images from ImageNet, which consists of millions of photographs of one or more objects in natural backgrounds. In contrast, our
92-image stimulus set consists of cut-out images on a gray background. The DNNs learn optimal representations for the training im-
ages from ImageNet, i.e., different images from different categories are mapped to different regions of the representation space,
and the whole space tends to be equally occupied by the training samples. However, as the t-SNE visualizations show, our 92 im-
ages are all projected into a remote corner of this space, meaning that the RDM distances between the 92 images are confounded
by the mean vector (the pairwise Pearson distance depends more on the alignment with the mean vector, and less on the true phys-
ical distance between points). Inset images show the most stereotypical image of our 92-stimulus set (highlighted in green), the
closest image from the ImageNet set (characterized, as expected, by an empty gray background), as well as one ImageNet sample
near the space origin, and one on the opposite side of the feature space. To circumvent this problem, we used a re-centering ap-
proach as described in Materials and Methods. C, The same layer of AlexNet as shown in A, after re-centering. The 92-stimulus set
is now closer to the center of the feature space. D, Systematic measurement of the distance between the centroid of our 92-stimu-
lus set and the space origin (normalized by the SD across our 92 images), for each layer of each DNN. The two DNN layers depicted
in A, B are labeled (a) and (b) on the corresponding curves. As a baseline, the dashed lines reflect the same distance measure, ap-
plied to the 500 ImageNet samples.
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absolute maximum related to area IT occurred for u and a
phase;200–300 ms. More generally, a strong increase in
representational similarity was observed shortly after
stimulus onset in all four maps. The frequency, latency
and duration of these similarity effects depended however
on the exact oscillatory signal (power, phase) and brain
region (V1, IT). In terms of MEG power (Fig. 4A,B), the la-
tencies (see also Fig. 5) respected the hierarchical order
of visual processing (Nowak and Bullier, 1998) with an in-
crease in representational similarity in the lower (,20Hz)
frequency bands occurring around the evoked response
first for RSA with V1, and ;20–30 ms later for RSA with IT
(paired t test against 0, FDR corrected, a=0.05). This la-
tency difference is similar to that reported in Cichy et al.
(2014), where the peak correspondence between the av-
erage MEG signal and V1 activity occurs ;30ms before
the peak with IT activity. The onset response in the V1
RSA map also consisted of high g frequencies (.70 Hz),
whereas this high-g activity was not observed in the IT
RSA map. This is compatible with recent findings showing
that g oscillations in early visual cortex are particularly
prominent for certain stimuli, yet can be entirely absent
for others (Hermes et al., 2015). A sustained low-b (20Hz,
200–500 ms) and an offset high-b (30Hz, ;600 ms)
response also corresponded to V1 representations,
although neither of these effects were observed in the IT
RSA map (see also Fig. 5). In terms of stimulus represen-
tations in the MEG oscillatory phase (Fig. 4C,D), after an
initial broadband (3–100 Hz) transient peak at stimulus

onset corresponding to V1 representations, stimulus in-
formation carried by sustained oscillatory phase re-
sembled IT representations in the low (,20 Hz) and high
frequency (60Hz) bands, and this resemblance persisted
until the end of the trial. Phase representations corre-
sponding to V1 patterns were observed again around
stimulus offset, at a (;10 Hz) and b (20–30 Hz) frequen-
cies (see also Fig. 5), in line with the known involvement of
V1 neurons in OFF responses (Jansen et al., 2019).
These results thus suggest that different oscillatory

components correspond to different brain regions at dif-
ferent TF points. However, since the RDMs in the TF
space are heavily correlated with each other, it is difficult
to ascertain from this analysis which power/phase fea-
tures co-vary, and which effects occur independently. To
better interpret the results shown in Figure 4, we turned to
a clustering analysis. The clustering analysis allowed us to
reduce the dimensionality of the dataspace and to deter-
mine which oscillatory signals occurred jointly, and which
are independent. We performed k-means clustering jointly
on the power and phase RDMs. That is, each RDM (one
for each time point, frequency, and phase/power signal),
was considered as an input data point for the clustering
analysis, which returned the corresponding cluster index
assigned to each point (see Fig. 2). The results of the clus-
tering analysis for k=7 clusters (the optimal number of
clusters for our dataset) are shown in Figure 6 (see also
Fig. 7). The first cluster (ranked by smallest average dis-
tance from cluster centroid) corresponded to early
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Figure 4. Results of the 2�2 RSA comparisons (MEG power/phase � fMRI V1/IT), averaged over all subjects. (A) MEG-Power x
fMRI V1, (B) MEG-Power x fMRI-IT, (C) MEG-Phase x fMRI-V1, (D) MEG-Phase x fMRI-IT. The purple contours mark those regions
in the maps that are significantly different from zero (paired t test against 0 across N=15 subjects, FDR correction, a=0.05). Note
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broadband (0–100Hz) phase and power RDMs, followed
by sustained g power (.60 Hz), and b power (20–30 Hz)
at stimulus offset. The second cluster corresponded to
broadband (0–100 Hz) and sustained (0.1–0. 4s) phase ef-
fects after stimulus onset, without any noticeable power
effects. The third cluster consisted primarily of sustained
(0.1–0.6 s) b (10–30 Hz) and low-g (,60 Hz) power, with-
out any noticeable phase effects. The fourth cluster re-
flected broadband phase effects (0–100 Hz) at stimulus
offset (without associated power effects). The last three
clusters (5–7) all displayed prestimulus effects in a-b
power, or a or g phase, characteristic of spontaneous,
stimulus-unrelated activity that we did not investigate fur-
ther (Fig. 7). The clustering analysis performed on the
MEG RDMs thus identified four main clusters of power
and phase oscillatory components that occurred at differ-
ent time points and in different frequency bands after
stimulus onset.
How do the oscillatory representations in each cluster,

and their different time and frequency profiles relate to
local processing in V1 and IT as measured by fMRI repre-
sentations? To address this question, we performed RSA
between the cluster centroids and the V1 and IT RDMs.
The cluster centroids correlated to different degrees with
both V1 and IT (all partial R values between 0.12 and
0.49; all significant at p, 1e-5 with a surrogate test; see
Materials and Methods). To directly contrast the repre-
sentational similarity of each brain area (V1, IT) to the

cluster centroid, we combined the two RSA partial R
values into a single scale (see Materials and Methods,
Eq. 1). According to this scaling (Fig. 6, insets), the tran-
sient broadband phase and power effect with sustained
g power in cluster 1 corresponded best with V1 repre-
sentations (i.e., low-level). Conversely, the broadband
sustained phase effects of cluster 2 corresponded best to
IT representations (high-level). The other two clusters (sus-
tained b -g power in cluster 3, broadband offset-transient
phase in cluster 4) had more balanced similarity to both V1
and IT, with a slight inclination toward V1. Thus, transient os-
cillatory components occurring around stimulus onset cor-
respond more closely to V1 representations, whereas the
more sustained components could be either more IT-like, or
less localized depending on the frequency of the oscilla-
tions. These results thus suggest a complex link between
oscillatory representations and local processing in V1 or IT.
To try to clarify these relationships we next turned to using
DNNs as a template for object representations.

Assessing representational complexity with DNNs
The fMRI RDMs are a representation of the image set in

the multi-voxel space of V1 and IT. However, these fMRI
representations are static because the fMRI BOLD signal
used to construct the RDMs was measured over a period
of several seconds. Neuronal activity in these regions, on
the other hand, is known to evolve over fairly rapid
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timescales, on the order of hundreds of milliseconds as a
result of feedback and top-down signals (Roelfsema et
al., 1998; Lamme and Roelfsema, 2000). The fMRI RDMs
are thus limited representations of the image set, poten-
tially mixing low-complexity and high-complexity brain
activity from different moments in each trial. Therefore,
while it is tempting to interpret the oscillatory signals
composing cluster 1 as low-complexity, because they
are more V1-like, and those forming cluster 2 as high-
complexity (more IT-like), such a conclusion would be
premature as it ignores the dynamics of neural re-
sponses within and across brain regions, and how
these neural responses evolve over different time-
scales. To obtain a complementary picture of low and
high-level object representations, we considered the
representations of our image set in different layers of
feed-forward DNNs pretrained on a large dataset of nat-
ural images. To ensure the generality of our results we
assessed seven different DNNs: AlexNet (Krizhevksy et
al., 2012), VGG16 (Simonyan and Zisserman, 2015),
GoogleNet (Szegedy et al., 2015), InceptionV3
(Szegedy et al., 2017), ResNet (He et al., 2016),
DenseNet (Huang et al., 2017), and EfficientNet (Tan
and Le, 2019). Activity in each layer of these DNNs is
not influenced by top-down or recurrent connections,

and consequently represents a truly hierarchical evolu-
tion in the complexity of image representations, from
low to high complexity. Indeed, several studies have
suggested that DNN representations approximate the
feed-forward cascade of the visual processing hierar-
chy in the brain (Khaligh-Razavi and Kriegeskorte,
2014; Cichy et al., 2016). Performing RSA between
MEG oscillatory RDMs and DNN layer RDMs should
thus reveal which features of the MEG oscillatory repre-
sentations correspond to low-complexity vs high-com-
plexity object representations.
An RDM was obtained for several representative convo-

lutional layers of the seven DNNs. RSA was then per-
formed between the cluster centroids of the MEG RDMs
and the DNN RDMs. For each cluster and DNN, the layer
with maximum RSA was determined, and scaled between
0 (lowest layer, low-complexity information) and 1 (highest
layer, high-complexity information) based on the number
of layers in the DNN hierarchy. Despite notable differen-
ces between the seven DNNs, the analysis revealed that
clusters 2 and 3 mapped best to higher DNN layers, clus-
ter 1 to intermediate layers, and only cluster four had simi-
larity to lower layers. This is in stark contrast with the
results of fMRI RSA, which had ranked clusters 2, 4, 3,
and 1 in order of decreasing complexity. The most striking

Figure 6. Clustering analysis. K-means clustering was performed on the MEG power and phase RDMs. Each TF plot shows the dis-
tance of each RDM from the centroid of the corresponding cluster. The purple lines correspond to the cluster boundaries as re-
turned by the k-means algorithm, indicating that all points within the purple lines are assigned to this specific cluster based on their
distance to the different cluster centroids. The distance to centroid (color scale) reflects how “stereotypical” each RDM is for the
corresponding cluster (i.e., how close to the cluster centroid), a continuous scale that complements the discrete cluster assignment.
For example, although cluster 3 simultaneously encompasses oscillatory power across many frequencies from 10 to 65Hz, we can
see that low-b frequencies (13–20 Hz) are the most stereotypical for this cluster. The insets show the relative degree of RSA be-
tween the cluster centroid and V1/IT (top), or the cluster centroid and the DNN layer hierarchy (bottom). For the DNNs, the layer with
maximum RSA, normalized by the number of layers in the DNN hierarchy, and averaged across the seven DNN types (colored
ticks), was taken as the layer that corresponded to each cluster centroid (black arrowhead).
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difference is obtained for cluster 3 (sustained b -g power):
a high-complexity representation according to DNNs, but
closer to V1 than to IT according to fMRI. Based on the
logic above, this cluster is likely to reflect feed-back sig-
nals that carry high-complexity object information (visible
in high DNN layers) down to lower brain regions (visible in
V1 BOLD signals).

Discussion
Our results (summarized in Fig. 8) show that MEG oscil-

latory components at different frequencies carry stimulus-
related information at specific times, which can be linked,
via RSA, to stimulus representations in different brain
regions (V1, IT), and with different representational com-
plexity (as measured by DNNs). Importantly, the represen-
tational dynamics of brain oscillations can be very
differently expressed by power versus phase signals. At
stimulus onset and offset, broadband phase transients
(possibly related to fluctuations in evoked potential

latencies) carry mainly low-complexity or intermediate-
complexity information (Fig. 6, clusters 1 and 4). However,
during stimulus presentation, sustained phase informa-
tion is visible across all frequencies, and consistently
maps to high-level and high-complexity representations
(IT and high DNN layers, cluster 2). Oscillatory power
components (clusters 1 and 3) tend to correlate with both
V1 and IT fMRI representations (with an inclination toward
V1); however, onset-transient low-frequency (,20 Hz)
power together with sustained high-frequency (.60 Hz)
power (i.e., cluster 1) correspond best to intermediate
DNN layers, whereas sustained b -g power (20–60 Hz)
clearly maps to the highest DNN layers (cluster 3).
It is important to note that some of the TF components re-

vealed here could be specific to the conditions of our experi-
ment. For example, brain oscillations are often modulated
by the subjective state, the participant’s attention or the task
instructions. As such, it is likely that different oscillatory pat-
terns would be obtained for tasks involving active behavior
rather than passive viewing of the images. Similarly,

Figure 7. Clustering results for clusters 5–7. We identify these clusters as noise components because (1) their distance to the
cluster centroid is typically higher than for other clusters, and (2) they mainly map onto prestimulus oscillatory activity.
Prestimulus oscillations, while accounting for a sizeable portion of the (notoriously noisy) MEG signal variance, cannot possibly
encode the identity of a stimulus that has not been presented yet. Prestimulus a is a well-studied oscillatory component reflect-
ing the attention state of the observer, and whose phase is known to modulate the subsequent ERP amplitudes and latencies;
as such, it is not surprising that the phase of this oscillatory component would induce a separate cluster of RDM patterns (clus-
ter 5). Similarly, prestimulus a-b power (cluster 6) and g phase (cluster 7) could reflect preparatory attention or motor signals
(including muscular artifacts) not related to stimulus identity. Notations as in Figure 6. Note that for consistency with the previ-
ous figure, we continue to report the V1-IT RSA scaling value in the insets; however, the corresponding correlation values were
systematically lower for these clusters, and should thus be interpreted with caution (V1 partial correlations for clusters 5–7:
[0.04, 0.00, 0.08], IT partial correlations: [0.00, 0.04, 0.03]). In comparison, V1 partial correlations for clusters 1–4 ranged from
0.14 to 0.43, and IT partial correlations from 0.12 to 0.44. Similarly, we also report the DNN layer for which the correlation to
the cluster centroid was maximal; however, this maximal correlation was consistently lower than in the previous figure, as ex-
pected for a prestimulus component (peak correlations averaged across DNNs for clusters 5–7: [0.02, 0.03, 0.16], compared
with values ranging from 0.24 to 0.45 for clusters 1–4).
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spurious muscular activity (including ocular saccades or mi-
crosaccades) could be an important contribution to the ob-
served TF components (Yuval-Greenberg et al., 2008), as
long as this activity would systematically differ between the
different stimulus classes.
Our findings complement those reported in an earlier

study that contrasted oscillatory power measured from in-
tracranial electrodes with object representations across
various layers of AlexNet (Kuzovkin et al., 2018). These
authors linked g power in lower visual areas to object
content in lower DNN layers, while g power in higher
visual areas (as well as u -band activity) was related to
higher DNN layers. Possible differences with our own
observations could be explained by the spatial scale of
the electro-magnetic signals recorded (more localized
in intracranial electrodes, more widespread in MEG),
our consideration of phase in addition to power compo-
nents, our use of 6 other DNNs in addition to AlexNet,
or by more specific aspects of our analysis pipeline
such as the DNN layer centering procedure (Fig. 3) or
the K-means clustering (Fig. 2).
In our study, we found no simple mapping between

low/high-level (or low/high-complexity) representations
and oscillatory components (power/phase) or frequency.
Both low-frequency (u , a) and high-frequency (b , g ) os-
cillatory signals can carry either low- or high-level/com-
plexity representations at different times (e.g., clusters
2 vs 4). Similarly, both phase and power signals can
carry either low or high-level representations (e.g., clus-
ters 1 vs 3). The picture that emerges is a rather intricate
one, in which successive interactions between different
oscillatory components in different brain regions and at
different frequencies reflect the different stages of neu-
ral processing involved in object recognition.
How can the representational content of a given oscil-

latory component (phase or power) be interpreted in
functional terms, at the level of neural populations and
their interactions? For example, a sustained phase
component (such as the broadband component in clus-
ter 2) means that for some extended period of time
(here, roughly between 150 and 350ms), the exact
phase of oscillatory signals (here, across multiple fre-
quency bands, from d to high g ) will systematically vary
with the stimulus identity. Note that this is not about in-
creased phase locking, but about the phase values
themselves, and their differences between images.
Such systematic phase differences between stimulus
classes could arise if the underlying oscillatory proc-
esses come into play with different delays, e.g., as a re-
sult of information routed through slightly distinct
circuits. As for oscillatory power, the differences (for ex-
ample, the sustained b power differences summarized
in Cluster 3) would imply that some image classes tend
to result in higher amplitudes and others in weaker am-
plitudes. This could arise, for example, in a scenario
where the oscillation is selectively triggered by certain
images (those that the neural population is selective to,
e.g., animate vs inanimate, natural vs man-made, etc.).
Our results highlight the importance of complementing

MEG-fMRI RSA with another measure of representational

content such as feed-forward DNNs (Cichy et al., 2016;
Bankson et al., 2018; Hebart et al., 2018; Khaligh-Razavi
et al., 2018). fMRI BOLD signals are often analyzed such
that they reflect a single static representation. Thus, they
cannot distinguish dynamics in local patterns as, for ex-
ample, early feedforward and later feedback activity. By
design, feedforward DNN layers cannot be dynamically
influenced by feedback signals, and could be considered
to provide a template for low-complexity versus high-
complexity representations during the different stages of
image processing. Perhaps the best illustration of this no-
tion stems from the discrepancy between fMRI and DNN
RSA for MEG cluster 3, which suggests that sustained
b -g power during stimulus presentation could reflect
feedback signals: best corresponding to V1 fMRI ac-
tivity (low-level), but higher DNN layers (high-complex-
ity). Without this additional information (e.g., looking at
Fig. 4A alone), one might have interpreted sustained b
power as a strictly low-level signal. The observed
distinction between sustained power effects at lower
frequencies (b and low-g , cluster 3) versus higher fre-
quencies (high-g , cluster 1) is consistent with a large
number of recent studies that reported a functional
distinction between g-band and b -band signals, re-
spectively supporting feed-forward and feedback com-
munication (Fontolan et al., 2014; van Kerkoerle et al.,
2014; Bastos et al., 2015; Michalareas et al., 2016).
Future work could attempt to separate feedforward
from feedback signals (e.g., with backward masking
and/or layer-specific fMRI), to confirm the differential
contribution of g-band and b -band oscillatory frequen-
cies to feedforward versus feedback object representa-
tions, as determined with RSA.
In addition to their involvement in the transmission of

feedforward and feedback signals, several studies have
shown that different oscillatory signals can carry distinct
information about stimulus properties (Smith et al., 2006;
Romei et al., 2011; Schyns et al., 2011; Mauro et al.,
2015). Here, we considered whether oscillatory

Figure 8. Illustrative summary. The different clusters identified
are plotted schematically as a function of time, and their main
oscillatory characteristics (frequency band, power/phase) are
indicated, together with the corresponding brain region (V1/IT)
and the corresponding DNN layer (low/mid/high-complexity).
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components in different frequencies correspond to lower-
complexity or higher-complexity stimulus processing
stages. Our results suggest that most oscillatory brain ac-
tivity, at least at the broad spatial scale that is measured
with MEG, reflects already advanced stimulus processing
in object detection tasks. This result can be seen in Figure
6, where most oscillatory components are more related to
higher-level DNN layer representations, with the excep-
tion of the offset-transient (cluster 4). Indeed, one might
have expected that stimulus representations at both stim-
ulus onset and offset are more reflective of transient low-
level and low-complexity processing. However, while
both onset and offset signals (clusters 1 and 4) are better
matched to V1 than IT (low-level; see also Fig. 4C,D), in
terms of DNN activations the offset-transient (cluster 4)
appears to be of much lower-complexity and the onset-
transient of higher-complexity (cluster 1). A tentative ex-
planation could be that the continued presence of the
stimulus after the onset-transient supports a rapid refine-
ment of object representations, which would not be the
case for the offset-transient (because the stimulus is ab-
sent from the retina). Indeed, it is remarkable that, aside
from this offset-transient broadband phase activity (clus-
ter 4), no other oscillatory signal was found to reflect low-
level DNN layers (i.e., low-complexity information).
One possible explanation for the relative dearth of oscil-

latory components reflecting low-level DNN layers could
be that neural oscillations are a circuit-level property,
rather than a single-neuron property; this could provide a
better match for high-level DNN layers that pool across
large numbers of inputs. In any case, such a bias, if it ex-
ists, would only be relative, as we did find at least one os-
cillatory component (related to cluster 4) that better
matched low-level DNNs.
In conclusion, our results help characterize the repre-

sentational content of oscillatory signals during visual ob-
ject perception. By separately considering hierarchical
level (V1/IT) and representational complexity (based on
DNNs), we narrow the gap between whole-brain oscilla-
tions and visual object representations supported by local
neural activation patterns.
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