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MULTIVARIATE HAWKES PROCESSES ON INHOMOGENEOUS

RANDOM GRAPHS

ZOÉ AGATHE-NERINE

Abstract. We consider a population of N interacting neurons, represented by a mul-
tivariate Hawkes process : the firing rate of each neuron depends on the history of the
connected neurons. Contrary to the mean-field framework where the interaction occurs
on the complete graph, the connectivity between particles is given by a random possi-
bly diluted and inhomogeneous graphs where the probability of presence of each edge
depends on the spatial position of its vertices. We address the well-posedness of this
system and the behaviour as N →∞. A crucial issue will be to understand how spatial
inhomogeneity influences the large time behaviour of the system.

Keywords. Multivariate nonlinear Hawkes processes, Mean-field systems, Neural net-
works, Spatially extended system, Random graph, Graph convergence.
AMS Classification. 60F15, 60G55, 44A35,92B20.

1. Introduction

1.1. Biological and mathematical context. Neurons are cells specialised in the recep-
tion, integration and transfer of information in the brain. A propagating electrical signal
is transmitted from a neuron to the others in terms of all-or-none emission of action poten-
tial also called spike which is a stereotyped phenomenon. More precisely, neurons possess
a permeable membrane which allows ion exchanges. Without stimulus, the difference of
respective ion concentrations induces a voltage gradient called resting potential. This po-
tential evolves depending on the information received from other neurons : a presynaptic
neuron emitting a spike leads to the release of neurotransmitters, and induces a change
in the ions distribution around the membrane of post-synaptic neurons. If the stimulus
reaches a sufficient threshold, the neuron generates an action potential, the synaptic inte-
gration.

The progress of monitoring methods as MRI (Magnetic Resonance Imaging) and ECG
(Electrocardiography) since the 50’s led to a better understanding of the physiology of
a neuron. As a result, the implementation of mathematical models started with the
Hodgkin-Huxley model [39] (in 1952) describing the evolution of the membrane potential
in terms of a system of four ODEs, further simplified in two equations by FitzHugh [33]
and Nagumo [52] (in 1962).

Stochasticity is intrinsic to the neuronal activity : noise in neuronal systems may come
from different sources. To name a few, randomness accounts for the emergence of sponta-
neous spikes [31], failed propagation [62], and the stochastic opening and closing of the ion
channels (the probability of the channel being open or closed depends on the membrane
potential). Stochasticity is also present at the scale of a whole population in the large vari-
ability of synaptic connections between neurons. From a mathematical perspective, this
naturally led to diffusion models : mean-field Hodgkin-Huxley and FitzHugh-Nagumo’s
models in [3], mean-field Piecewise Deterministic Markov Processes (PDMP) in [48, 19].
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Another popular model is the integrate-and-fire dynamic, first introduced in the seminal
work of Lapicque [43], and still studied mathematically, as e.g. in [22].

The previous approach on the modeling of the membrane potential, and typically leads
to non-linear Fokker–Planck equations whose large time behaviour is often hard to deter-
mine analytically. A usual approach in this context (that we follow here) leads to more
tractable and explicitely solvable models : as spikes are stereotyped, all the information
is coded in the duration of time between the spikes. Hence we model the activity of a
neuron by a point process where each point represents the time of a spike. In this context,
the framework of Hawkes processes is particularly relevant since it can account for the
dependence of the activity of a neuron on the past of the whole population : the spike of
one neuron can trigger others spikes. Hawkes processes have been first introduced in [34]
in 1971 to model earthquakes, and have been thoroughly studied since (with applications
to seismology [54] and finance [37]). It is not possible to account for the vast mathematical
literature on Hawkes processes since the seminal works of [34, 35, 11], we refer nonetheless
to [23, 38, 14] and references therein.

In this paper, the main issue we concentrate on is the structure of interaction between
neurons. There is indeed experimental evidences that neurons are spatially organized
[10, 51]. The first approach which does not take into account this spatial structure assumes
a complete graph of interaction (mean-field framework). Mean-field analysis goes back to
[49, 63], originally for diffusion models as in [3]. The litterature on mean-field analysis
is huge and does not restrict to neuroscience applications (see the following references as
far as neurosciences are concerned: integrate and fire models [22], PDMP [48, 19]). As
for mean-field Hawkes processes, similar models have been considered in [23, 36, 38] and
expanded with additional features (age dependence in [14, 59], inhibition in [20, 30, 60]).
What makes the mean-field analysis for Hawkes processes particularly tractable is that
the large population limit is given in terms of an inhomogeneous Poisson process whose
intensity solves a convolution equation [23].

The spatial organization in the brain has been originally analysed mathematically from
a phenomenological perspective : we may refer to the celebrated neural field equation
[66, 1, 12], which has given a macroscopic description of excitable units with non-local
interaction. Several works have extended the mean-field framework to take into account
the presence of a macroscopic spatial structure in the interaction (originally for diffusion
models [64, 47, 13], as well as for Hawkes processes [28, 15]). More specifically, [15] has
given a mesoscopic interpretation of the neural field equation in terms of the limit of
spatially extended Hawkes processes interacting through a mesoscopic spatial kernel.

The main contribution of this paper is to go further and provide a microscopic interpre-
tation of this spatial structure in terms of random graphs. We assume that the interaction
between neurons is given by a possibly inhomogeneous and diluted graph, where the prob-
ability of presence of an edge depends on the positions of its vertices. The main example
that we have in mind concerns the class of W -random graph (see [26, 44, 41, 8, 9] for
the theory behind), that includes homogeneous Erdös Rényi graphs. The only previous
works so far on particle systems with similar interaction address the case of diffusions.
Laws of Large Numbers (LLN) and large deviations results on homogeneous Erdös Rényi
graphs have been considered in [24, 18, 55] and further extended to the inhomogenous
case in [5, 46, 4, 50] on a bounded time interval. The behaviour of such systems on time
scale that is no longer bounded (but may depend on the size of the population) is more
difficult, and remains largely open so far (in this direction, see [17]). The present work is,
to the best of our knowledge, the first paper to address similar issues to Hawkes processes.
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We prove here quenched LLN results on a bounded time interval. The behaviour of the
system on unbounded time scale will be the object of future works. Note also that all the
present works address the case where the graph of interaction has diverging degrees. The
case with sparse interaction (see [56, 42] in the diffusive case) remains open for Hawkes
processes and will be the object of future works.

1.2. Our model. The aim of this paper is to describe the behavior in large population
and large time of a network of particles interacting on a spatially structured random
graph. Let N be the size of the population, consider the multivariate Hawkes process(
Z

(N)
1 (t), · · · , Z(N)

N (t)
)
t>0

: for i = 1 · · ·N , the ith neuron is located on xi ∈ I where

I ⊂ Rd is a spatial domain, Z
(N)
i (t) counts the number of spikes during the time interval

[0, t]. Its conditional intensity at time t is given by

λ
(N)
i (t) = f

u0(t, xi) +
1

N

N∑
j=1

w
(N)
ij

∫ t−

0
h(t− s)dZ(N)

j (s)

 . (1.1)

Here, f : R −→ R+ represents the synaptic integration, u0 : R+×I −→ R a spontaneous
activity of the neuron, h : R+ −→ R a memory function which models how a past jump of

the system affects the present intensity. The novelty here is w
(N)
ij , representing the random

inhomogeneous interaction between the neurons i and j that depends on their positions
xi and xj . I represents the spatial domain of the neuron (suppose e.g. that I = [0, 1] or

I = Rd). We refer to Section 2 for precise definitions.

We study the behavior of the process
(
Z

(N)
1 (t), · · · , Z(N)

N (t)
)
t>0

as N →∞ and t→∞.

The large population limit is described in terms of an inhomogeneous Poisson process
whose intensity involves the macroscopic spatial structure of the graph. Note that the
large population convergence is considered for a fixed realization of the graph (quenched
model). A second aspect of the present work of independent interest will be to analyse
the long time dynamics of the macroscopic process. We generalise the phase transition
already observed for mean-field linear Hawkes processes [23]. An important issue will be
to understand how the inhomogeneity of the graph influences the long time dynamics.
This will be illustrated by different examples and simulations.

1.3. Organisation of the paper. After introducing some general notations, we start in
Section 2 by defining formally the process of interest (2.2). The well-posedness of such
process is treated by Proposition 2.5. We study the large population behavior of the

process
(
Z

(N)
1 (t), · · · , Z(N)

N (t)
)
t>0

in Section 2.3. We show, under suitable hypotheses on

the parameters, that the behavior of a neuron located in x ∈ I in a infinite system is
described by the intensity λ(·, x) solving

λ(t, x) = f

(
u0(t, x) +

∫
I
W (x, y)

∫ t

0
h(t− s)λ(s, y)ds ν(dy)

)
. (1.2)

Here, W : I × I −→ R+ is seen as the limit interaction kernel, and ν describes the
macroscopic law of the distribution of the positions. Well-posedness and regularity of
(1.2) is considered in Proposition 2.7. In Section 3, we study the behaviour of the process
(2.2) in large population in Theorems 3.10 and 3.12. The behaviour of the empirical
measure and respectively the spatial profile (Definition 3.16) is analysed in Section 3.4
(resp. Section 3.5). In Section 4, we study the behavior of (1.2) in the linear case, that
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is when f = Id. We extend the phase transition observed without spatial structure seen
in [23] to a general interaction kernel W . Finally in Section 5, we apply our results to
concrete cases and present some simulations. The proofs are gathered in the last Sections.

Acknowledgements. This is a part of my PhD thesis. I would like to thank my PhD
supervisors Eric Luçon and Ellen Saada for introducing this subject, for their useful
advices and for their encouragement. This research has been conducted within the FP2M
federation (CNRS FR 2036).

2. A system of N interacting particles on a graph and its limit

2.1. Notation. We write ‖ · ‖ for the usual Euclidian norm in Rn, ‖ (x1, · · · , xn) ‖ =(
|x1|2 + · · ·+ |xn|2

) 1
2 . For (E,A, µ) a measured space, for a function h in Lp(E,µ) with

p ≥ 1, we write ‖h‖E,µ,p :=
(∫
E |h|

pdµ
) 1
p . When p = 2, we write as < f, g >E,µ=

∫
E fgdµ

the scalar product. Without ambiguity, we may omit the notation (E,µ) or µ. For

instance, for T > 0 and h in Lp([0, T ]), we write ‖h‖[0,T ],p :=
(∫ T

0 |h(t)|pdt
) 1
p
. When we

omit the notation [0, T ], the integration is on R+. For a real-valued bounded function g on
a space E, we write ‖g‖∞ := ‖g‖E,∞ = supx∈E |g(x)|. If d is a distance on E, we denote
by ‖f‖L = supx 6=y |f(x)− f(y)|/d(x, y) the Lipchitz seminorm of a real-valued function f
on E. We also denote by ‖f‖BL := ‖f‖L + ‖f‖E,∞ the bounded Lipschitz norm of f . For
µ and ν measures on E, we define

dBL(µ, ν) := sup
g,‖g‖BL≤1

∣∣∣∣∫
E
g (dµ− dν)

∣∣∣∣ . (2.1)

We denote by D ([0, T ],N) the space of càdlàg (right continuous with left limits) func-
tions defined on [0, T ] and taking values in N.

2.2. The model.

2.2.1. Definitions. The graph of interaction of (1.1) is constructed as follows :

Definition 2.1. On a common probability space
(

Ω̃, F̃ ,P
)

, we consider a sequence(
x

(N)
i

)
N≥1,i∈J1,NK

of positions (possibly random) and a family of random variables ξ(N) =(
ξ

(N)
ij

)
N≥1,i,j∈J1,NK

on Ω̃ such that under P, for any N ≥ 1 and i, j ∈ J1, NK, con-

ditionned on the positions (x1, . . . , xN ), ξ(N) is a collection of mutually independent

Bernoulli random variables such that for 1 ≤ i, j ≤ N , ξ
(N)
ij has parameter WN (xi, xj).

We assume that the particles in (1.1) are connected according to the oriented graph

G(N) =
(
{1, · · · , N} , ξ(N)

)
. For any i and j, ξ

(N)
ij = 1 encodes for the presence of the

edge j → i and ξ
(N)
ij = 0 for its absence.

It is possible to construct by coupling this graph for all N simultaneously : consider a se-

quence of fixed positions in I (x1, . . . , xN , . . .) (for each N ≥ 1, x
(N)
i = xi) and a sequence

(Uk)k∈N of i.i.d. variables of distribution U (0, 1). Fix an arbitrary bijection φ : N2 7→ N,

and define ξ
(N)
ij = 1{Uφ(i,j)≤WN (xi,xj)}: conditioned on the positions (x1, . . . , xN ), ξ(N) is

indeed a collection of independent Bernoulli random variables and ξ
(N)
ij ∼ B (WN (xi, xj)).
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We now fix these sequences, and work on a filtered probability space
(

Ω,F , (Ft)t≥0 ,P
)

rich enough for all the following processes can be defined. We denote by E the expectation
under P.

Definition 2.2. Let (πi(ds, dz))1≤i≤N be a sequence of i.i.d. Poisson random measures

on R+ × R+ with intensity measure dsdz. A (Ft)-adapted multivariate counting process

defined on
(

Ω,F , (Ft)t≥0 ,P
)

, denoted by
(
Z

(N)
1 (t) , ..., Z

(N)
N (t)

)
t≥0

is called a multivari-

ate Hawkes process with parameters
(
N, f, ξ(N),WN , u0, h

)
associated with the positions(

x
(N)
1 , ..., x

(N)
N

)
if P-almost surely, for all t ≥ 0 and i ∈ J1, NK :

Z
(N)
i (t) =

∫ t

0

∫ ∞
0

1{z≤λ(N)
i (s)}πi(ds, dz) (2.2)

with λ
(N)
i (t) defined by

λ
(N)
i (t) = f

u0(t, xi) +
κ

(N)
i

N

N∑
j=1

ξ
(N)
ij

∫ t−

0
h(t− s)dZ(N)

j (s)

 . (2.3)

We denote by κ
(N)
i ≥ 0 a non-negative dilution parameter which can depend on x(N),

and ξ(N). The idea behind this dilution parameter is that κ
(N)
i ' N

E[degN (i)]
(so that

the interaction term remains of order 1 as N → ∞). The interaction in (1.1) is fixed as

w
(N)
ij = κ

(N)
i ξ

(N)
ij .

Remark 2.3. Note that (see Proposition 3 of [23]) the process
(
Z

(N)
1 (t) , ..., Z

(N)
N (t)

)
t≥0

defined by (2.2) is such that P-almost surely, Z
(N)
i and Z

(N)
j do not jump imultaneously

for all i 6= j, and for all i ∈ J1, NK, the compensator of Z
(N)
i (t) is

∫ t
0 λ

(N)
i (s)ds.

2.2.2. Existence. We first provide well-posedness results of
(
Z

(N)
1 , . . . , Z

(N)
N

)
given by

(2.2). We require the following assumptions :

Hypothesis 2.4. We suppose that f is Lipschitz continuous with Lipschitz constant Lf ≥
0, that h is locally square integrable on [0,+∞). We also suppose that (t, x) 7→ u0(t, x)
is continuous in t and Lipschitz continuous in x (uniformly in t) with Lipschitz constant
Lu0 ≥ 0. Moreover u0 is supposed bounded uniformly in (t, x) : there exists ‖u0‖∞ ≥ 0
such that for all t ≥ 0 and x ∈ Rd, |u0(t, x)| ≤ ‖u0‖∞.

Proposition 2.5. Under Hypothesis 2.4, for a fixed realisation of (πi)1≤i≤N , there exists

a pathwise unique multivariate Hawkes process (in the sense of Definition 2.2) with param-

eters
(
N, f, ξ(N),WN , u0, h, x

(N)
)

such that
(

sup1≤i≤N E[Z
(N)
i (t)]

)
t≥0

is locally bounded.

The proof of Proposition 2.5 will be given in Section 6.1.

2.3. Large population limit process. We want to study the behavior of the process
defined in Definition 2.2 when N →∞. After some heuristics, we show the well-posedness
of the limit of the system 2.2.
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2.3.1. Heuristics. The point of the paragraph is to motivate the proper limit for the par-
ticle system (2.2) as N →∞.

A minimal requirement for the macroscopic limit of (2.2) asN →∞ is that the empirical

distribution of the positions ν(N) := 1
N

∑N
i=1 δxi has itself a macroscopic limit ν. We will

consider below different scenarios under which such LLN effectively holds. Concerning
the macroscopic behavior of the graph, another minimal requirement needed is that in
a certain way to define later, the graph G(N) given in Definition 2.2 converges towards
a macroscopic interaction kernel W : I × I −→ R+. We refer to Section 3.2 for more
precise statements.

Then, as N →∞, an informal LLN argument shows that the empirical mean in (2.3) will

become an expectation w.r.t both the candidate limit for Z
(N)
i and w.r.t the macroscopic

law ν of the positions. Hence, the macroscopic description of a neuron at position x ∈ I
should be described in terms of its intensity λ(t, x) solving (1.2).

This heuristics provides with a limit process for a particle located in x in terms of an
inhomogeneous Poisson point process with deterministic intensity λ(·, x) satisfying (1.2).

2.3.2. Well-posedness of the macroscopic limit. We propose a framework under which
(1.2) is well-posed, with more hypotheses on the regularity of the parameter functions we
consider.

Hypothesis 2.6. Define the macroscopic indegree at position x by

D(x) =

∫
I
W (x, y)ν(dy). (2.4)

We assume that it has a Hölder regularity : there exist Cw > 0 and ι ∈]0, 1] such that for
all (x, x′) ∈ I × I, W verifies∫

I
|W (x, y)−W (x′, y)|ν(dy) ≤ Cw‖x− x′‖ι. (2.5)

Moreover, it is uniformly bounded on I:

sup
x∈I

D(x) =: CW1 <∞. (2.6)

Proposition 2.7. Let T > 0. Under Hypotheses 2.4 and 2.6, there exists a unique solution
λ solution of (1.2) continuous and bounded on [0, T ] × I. Moreover, there exists Cλ > 0
depending on (f, u0,W, h, ν, T ) such that for all (t, x, z) ∈ [0, T ]× I × I,

|λ(t, x)− λ(t, z)| ≤ Cλ (‖x− z‖+ ‖x− z‖ι) =: Cλφ (‖x− z‖) . (2.7)

Moreover, if u0 is continuously differentiable in time and
∂u0

∂t
is bounded on [0, T ]×I, h is

continuous and piecewise continuously differentiable, and f = Id, then λ is differentiable
in time and

∂λ

∂t
(t, x) =

∂u0

∂t
(t, x)+h(t)

∫
I
W (x, y)λ(0, y)ν(dy)+

∫
I

∫ t

0
h(t−s)W (x, y)

∂λ

∂t
(s, y)ν(dy)ds,

(2.8)

and

∣∣∣∣∂λ∂t
∣∣∣∣ is bounded on [0, T ]× I.

The proof of Proposition 2.7 will be given in Section 6.2. Note that Proposition 2.7
provides the existence of a unique solution λ of (1.2) that is continuous on R+ × I and
locally bounded.
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3. Convergence of the model in large population

3.1. Coupling. To verify that our heuristics about the large population behavior is cor-
rect, we introduce a suitable coupling between the process defined in (2.2) and a multi-

variate Poisson process with intensity λ(·, x) solving (1.2) for x ∈ x(N).

Definition 3.1. Let (πi (ds, dz))1≤i≤N be the same family of i.i.d. Poisson random mea-

sure on R+ × R+ as in Definition 2.2. For this family, we construct for all i in J1, NK:

Zi(t) =

∫ t

0

∫ ∞
0

1{z≤λ(s,xi)}πi(ds, dz) (3.1)

with λ satisfying (1.2). Each process Zi is an inhomogenous Poisson process with (deter-
ministic) intensity λ(·, xi), and as the family (πi) is independent, the processes

(
Zi
)
i=1,··· ,N

are also independent.

3.2. Hypotheses. Regarding the behavior of the graph when N → ∞, we use here the
formalism of graph convergence developped in [44] and introduce different norms on I2.
The key notion is to represent graphs in term of graphons, that are positive kernels defined
on I2. Note that we will not necessarily restrict ourselves to the case usually considered
in the literature, that is symmetric and bounded graphons.

Definition 3.2. Let W be a R-valued function defined on I × I, where I is a measured
space endowed with some probability measure ν. When the following terms are correctly
defined, we write :

‖W‖2,ν : = sup
S,T⊂I

∣∣∣∣∫
S×T

W (x, y) ν(dx)ν(dy)

∣∣∣∣ , (3.2)

‖W‖∞→1,ν : = sup
‖g‖∞≤1

∫
I

∣∣∣∣∫
I
W (x, y)g(y)ν(dy)

∣∣∣∣ ν(dx), (3.3)

‖W‖∞→∞,ν : = sup
‖g‖∞≤1

sup
x∈I

∣∣∣∣∫
I
W (x, y)g(y)ν(dy)

∣∣∣∣ . (3.4)

These norms go back to the formalism of graph convergence introduced in [44, 26] and
further developed in [7, 8, 9] (and references therein). The last two norms can be seen as
the norms of the linear operator TW : g 7→

(
x 7−→

∫
IW (x, y)g(y)ν(dy)

)
when considering

respectively TW : L∞(I, ν)→ L1(I, ν) and TW : L∞(I, ν)→ L∞(I, ν). We also define the
cut-distance between two functions by

d2,ν (W1,W2) = ‖W1 −W2‖2,ν .

Remark 3.3. Lemma 8.11 of [44] gives that ‖ · ‖2,ν and ‖ · ‖∞→1,ν are equivalent: if W
is a function defined on I2 with values in R, then

‖W‖2,ν ≤ ‖W‖∞→1,ν ≤ 4‖W‖2,ν . (3.5)

Usual representations of graphon consists in taking I = [0, 1] endowed with Lebesgue
measure. We extend this definition to the general case where ν is a general probability on
I. To do this, we require the following assumption.

Hypothesis 3.4. The measure ν is absolutely continuous w.r.t Lebesgue measure on Rd.
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It implies that, for every N ≥ 1, we can find
(
B

(N)
1 , · · · , B(N)

N

)
⊂ IN such that

ν
(
B

(N)
i

)
=

1

N
for all i = 1, · · · , N , and I = tNi=1B

(N)
i . We denote this partition as

PN . Without ambiguity, we will forget the index (N) and only write (B1, · · · , BN ).

Example 3.5. If I = Rd, we denote by ν(1), · · · , ν(d) the marginals densities ν. The
probability measure ν(1) is then absolutely continuous w.r.t Lebesgue measure on R. For
i = 1 · · ·N , define yi as the quantile of order i

N of the distribution ν(1)and set y0 = −∞

and yN = +∞ : ν(1) ((yi, yi+1)) =
1

N
for all i = 0, · · · , N − 1. We take then Bi :=

(yi−1, yi]× Rd−1.

With this partition, we define the following step-function on I2 associated with a di-
rected graph AN with weight aij on the edge j → i as :

WAN (u, v) =

N∑
i=1

N∑
j=1

aij1Bi(u)1Bj (v), (u, v) ∈ I2. (3.6)

Definition 3.6. We denote by G(1)
N the directed weighted graph with vertices {1, · · · , N}

such that every edge j → i is present, and with weight κ
(N)
i WN (xi, xj).

Here G(1)
N represents the average version of the graph G(N) (where ξij ∼ B (WN (xi, xj))

has been replaced by E (ξij)), renormalized by the dilution coefficient κ
(N)
i . A key argument

of Theorems 3.10 and 3.12 will be to show that G(N) and G(1)
N are close as N →∞ through

concentration arguments that require the following assumptions on WN .

Hypothesis 3.7. We suppose some uniformity in the parameters: there exist κN ≥ 1 and
wN ∈]0, 1] such that :

max
i∈J1,NK

(
κ

(N)
i

)
≤ κN , (3.7)

max
i,j∈J1,NK

(WN (xi, xj)) ≤ wN , (3.8)

1

κN
≤ wN ≤ 1, (3.9)

and asymptotically:

κ2
NwN =

N→∞
o

(
N

log(N)

)
and

κN
N
−−−−→
N→∞

0. (3.10)

We also suppose that there exists CW > 0 independent of N such that

sup
i∈J1,NK

1

N

N∑
j=1

κ
(N)
i WN (xi, xj) ≤ CW . (3.11)

To illustrate the above conditions, think of the case where WN is a constant equal to
ρN with ρN −−−−→

N→∞
0. This corresponds to a diluted Erdös-Rényi graph random graph.

In this case, we can take wN = ρN and κ
(N)
i = κN = 1

ρN
. Then (3.10) boils down to

ρN �
log(N)

N
. Inequality (3.11) is the microscopic counterpart of (2.6) : we require that

the indegrees of vertices in G(1)
N are uniformly bounded.
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3.3. Convergence. We study the proximity between the particle systems (2.2) and its
macroscopic limit (3.1). We show two theorems that require different sets of hypotheses
on the parameter functions, under two main scenarios.

Definition 3.8. We consider different frameworks for the choices of the positions:

(1) Random spatial distribution : We consider a random sequence (x̃1, x̃2, · · · , x̃N , · · · )
of i.i.d variables distributed according to ν on I, and we set for all N ≥ 1 xN =
(x1, · · · , xN ) as the lexical re-ordering of the N first positions (x̃1, x̃2, · · · , x̃N ). We
also assume that there exists some χ > 5 such that ‖W‖Lχ(I2,ν⊗ν) <∞.

(2) Deterministic regular distribution of the positions : For every N ≥ 1 and

1 ≤ i ≤ N , x
(N)
i = i

N and I = [0, 1] endowed with ν(dx) = dx. We also assume

that W is piecewise continuous on [0, 1]2.

3.3.1. First case : convergence in average.

Hypothesis 3.9. We suppose that the annealed graph G(1)
N converges to W for the cut-

distance :

d2,ν

(
W G

(1)
N ,W

)
−−−−→
N→∞

0, (3.12)

as well as

sup
j∈J1,NK

1

N

N∑
i=1

κ
(N)
i WN (xi, xj) ≤ CW . (3.13)

Note that (3.12) implies that ‖W G
(1)
N −W‖∞→1,ν −−−−→

N→∞
0 (see Remark 3.3). Note that

the hypothesis (3.13) differs from (3.11) in the sense that (3.13) asks for a uniform bound
on the outdegree (that is, the number of tail ends adjacent to a vertex) whereas (3.11)
relates to a uniform bound on the indegree.

Theorem 3.10. Let T > 0. Suppose that the sequence of positions (xN )N satisfies one of
the scenarios of Definition 3.8. Then, under the set of Hypotheses 2.4 , 2.6, 3.7 , 3.4 and
3.9, we have

1

N

N∑
i=1

E

[
sup
t∈[0,T ]

∣∣∣Z(N)
i (t)− Zi(t)

∣∣∣] −−−−→
N→∞

0 (3.14)

for P-almost realisations of the connectivity sequence
(
ξ(N)

)
N≥1

and positions (xN )N≥1.

The proof of Theorem 3.10 will be given in Section 7.2.

3.3.2. Second case : convergence of the supremum.
Some graphs do not satisfy (3.13), see the examples of Section 5.1.2. We propose here

another result of convergence that does not require the control (3.13), but ask in return
for a stronger convergence of the graphons.

Hypothesis 3.11. We suppose that

‖W G
(1)
N −W‖∞→∞,ν −−−−→

N→∞
0. (3.15)

Theorem 3.12. Let T > 0. Suppose that the sequence of positions (xN )N satisfies one of
the scenarios of Definition 3.8. Consider the coupling introduced in Definition 3.1. Then,
under the set of Hypotheses 2.4, 2.6 , 3.7 and 3.11, we have

max
1≤i≤N

E

[
sup
t∈[0,T ]

∣∣∣Z(N)
i (t)− Zi(t)

∣∣∣] −−−−→
N→∞

0. (3.16)
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P-almost surely.

The proof of Theorem 3.12 will be given in Section 7.3.

Remark 3.13. Theorems 3.10 and 3.12 are quenched results, valid for fixed realisations
of the graph. In this case, the speed convergence is unknown. Nevertheless, if we integrate
also with respect to the graph (annealed case), one can obtain explicit speed of convergence
as follows :

max
1≤i≤N

EE

[
sup
t∈[0,T ]

∣∣∣Z(N)
i (t)− Zi(t)

∣∣∣] ≤ CT κN√wN√
N

,

1

N

N∑
i=1

EE

[
sup
t∈[0,T ]

∣∣∣Z(N)
i (t)− Zi(t)

∣∣∣] ≤ CT κN√wN√
N

.

Working in the annealed case simplifies considerably the proof (left to the reader), the
previous estimate can be easily derived from the calculation done in the proofs of the
previous theorems.

3.4. Consequence on the empirical measure. A direct consequence of Theorems 3.10
and 3.12 concerns the behavior as N → ∞ of the empirical distribution on the space of
trajectories associated with a position S := D ([0, T ],N)× I.

Definition 3.14. We define the following measures on S :

µN (dη, dx) :=
1

N

N∑
i=1

δ(
Z

(N)
i ([0,T ]),x

(N)
i

)(dη, dx), and (3.17)

µ∞(dη, dx) := P[0,T ],∞ (dη|x) ν(dx), (3.18)

where P[0,T ],∞ (·|x) is the law of an inhomogeneous Poisson point process with intensity
(λ(t, x))0≤t≤T (solution of (1.2)). Note that µ∞ (resp. µN ) is a probability measure (resp.

random probability measure) on D ([0, T ],N)× I.

Theorem 3.15. Under the assumptions of Theorem 3.10 or Theorem 3.12, we have

E [dBL (µN , µ∞)] −−−−→
N→∞

0. (3.19)

for P-almost realisations of the connectivity sequence
(
ξ(N)

)
N≥1

and positions (xN )N≥1

under Scenarios of Definition 3.8, where dBL is the bounded Lipschitz distance introduced
in (2.1).

The proof of Theorem 3.15 will be given in Section 8.1. We can see this result as an
extension of Theorems 1 and 2 of [15], where the memory function is an exponential kernel
and the interaction comes from a fixed interaction kernel that depends on the positions.

3.5. Spatial profile. We consider here that we are under the conditions of Scenario (2)
of Definition 3.8.

Definition 3.16. Define the following random profile

UN (t, x) :=

N∑
i=1

Ui,N (t)1x∈( i−1
N
, i
N ], where (3.20)
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Ui,N (t) := u0(t, xi) +
κ

(N)
i

N

N∑
j=1

ξ
(N)
ij

∫ t−

0
h(t− s)dZ(N)

j (s), (3.21)

and the deterministic profile

u(t, x) := u0(t, x) +

∫
I
W (x, y)

∫ t

0
h(t− s)λ(s, y)ds ν(dy). (3.22)

We see from Proposition 2.7 that u is continuous and bounded.

Note that λ
(N)
i (t) = f (Ui,N (t)) and that Ui,N (t) describes the accumulated activity of

neuron i up to time t. Similar quantity has already been considered in [15] in the case
h(t) = e−αt with a deterministic graph of interaction. Note also that in this case, (3.22)
is the solution of the scalar neural field equation

∂tu(t, x) = −αu(t, x) +

∫
I
W (x, y)f(u(t, y))ν(dy).

It has been extensively studied in the literature as an important example of macroscopic
structured model with non local interaction (see [1, 66, 12]).

We study the closeness between UN and u.

Proposition 3.17. Under the Hypotheses of Theorem 2.18,

E

[∫ T

0

∫ 1

0
|UN (t, x)− u(t, x)| dx dt

]
−−−−→
N→∞

0, (3.23)

for P-almost realisations of the connectivity sequence
(
ξ(N)

)
N≥1

and positions (xN )N≥1.

The proof of Proposition 3.17 will be given in Section 8.2.

4. Large time behavior of the limit process in the linear case

We want to see how the limiting intensity (1.2) behaves as t→∞. We restrict here to
the following linear case, that is when f = Id :

λ(t, x) = u0(t, x) +

∫
I
W (x, y)

∫ t

0
h(t− s)λ(s, y)ds ν(dy) (4.1)

on R+ × I. The case without spatial interaction, that is λ(t) = u0 +
∫ t

0 h(t − s)λ(s)ds
is standard and has been studied in details in the literature ([23], Theorems 10 and 11).
Depending on the value of ‖h‖1, there is a phase transition in the behavior of such λ when

t → ∞ : in the subcritical case (‖h‖1 < 1), λ(t) −−−→
t→∞

u0

1− ‖h‖1
and in the supercritical

case (‖h‖1 > 1), λ(t) −−−→
t→∞

∞. The point of the present paragraph is to extend this result

to the spatial case. We require the following assumptions :

Hypothesis 4.1. In addition to the Hypotheses 2.4 and 2.6, we suppose that h is non-
negative, in L1(R+) and piecewise continuously differentiable. We also suppose that u0 is

positive, continuously differentiable in time with
∂u0

∂t
bounded on any [0, T ]× I, and that

there exists u Lipschitz continuous on I such that supx∈I |u0(t, x)− u(x)| −−−→
t→∞

0.
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To describe the phase transition, we introduce the following linear operator

TW : L∞(I) −→ L∞(I)
g 7−→

(
TW g : x 7−→

∫
IW (x, y)g(y)ν(dy)

)
.

(4.2)

The continuity of TW follows directly from (3.11), and we have ‖TW ‖ ≤ CW1 . We denote
by r∞(TW ) the spectral radius of TW :

r∞ := r∞(TW ) = sup
σ∈Sp(TW )

|σ| = lim
n→∞

‖TnW ‖
1
n .

The phase transition is given in terms of ‖h‖1r∞ < 1 (subcritical) and ‖h‖1r∞ > 1
(supercritical). The two cases are described separately below,

4.1. The exponential case. Previous works [15] have considered the case h(t) = e−αt

with α > 0. The term α is then called the leakage rate. Note that in this case, the dynamics
becomes markovian [27]. At the large population limit, the spatial profile seen in Section
3.5 is in this case linked to the scalar neural field equation [15]. In the exponential case,
with the introduction of the operator TW we can give an explicit solution of (4.1).

Proposition 4.2. In the exponential case h(t) = e−αt, the solution of (4.1) when u0 does
not depend on time is explicitly given by

λ(t, x) = e−αtetTW u0(x) + α

∫ t

0
e−α(t−s)e(t−s)TW u0(x)ds, (4.3)

where etTW , t ≥ 0 is the semigroup of the bounded operator TW defined as etTW u :=
∞∑
k=0

tk

k!
T kWu, u ∈ L∞(I).

Proof. Define for t ≥ 0 A(t) := x 7→ eαtλ(t, x). It solves in L∞(I)
d

dt
A(t) = αeαtu0 +

TWA(t) with A(0) = λ(0, ·) = u0. A variation of constants formula gives A(t) = etTW u0 +

α
∫ t

0 e
(t−s)TW eαsu0ds, and (4.3) follows by definition of A. �

Example 4.3. Consider the particular case of Expected Degree Distribution (EED) (see
[16, 58]): where W (x, y) = f(x)g(y) with f and g two positive functions on I such
that f, g ∈ L2(I, ν). Without any loss of generality, we assume

∫
I gdν = 1 and then

D(x) = f(x). In this case, for u0(t, x) = u0(x), we have explicitly that for k ≥ 1
T kWu = f〈g, u〉〈f, g〉k−1 so that the solution of (4.3) is given by

λ(t, x) = u0(x) +
〈g, u〉

α− 〈f, g〉

(
1− et(〈f,g〉−α)

)
f(x).

The large time behavior depends then explicitly on the sign of 〈f, g〉 − α:

〈f, g〉 > α⇒ ∀x ∈ I, λ(t, x) −−−→
t→∞

+∞ and

〈f, g〉 < α⇒ ∀x ∈ I, λ(t, x) −−−→
t→∞

u0(x) +
〈g, u〉

α− 〈f, g〉
f(x).

We now consider the general case.
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4.2. Subcritical case. We assume that we are in the subcritical case:

‖h‖1r∞ < 1. (4.4)

The main result is the following

Theorem 4.4. Suppose that we are in the subcritical case (4.4). Under Hypotheses 2.6
and 4.1

• there exists a unique function ` : I 7→ R+ solution of

`(x) = u(x) + ‖h‖1
∫
I
W (x, y)`(y)ν(dy), (4.5)

continuous and bounded on I. Moreover, there exists C` > 0 such that for all
(x, y) ∈ I2,

|`(x)− `(y)| ≤ C`φ (‖x− y‖) , (4.6)

where φ is given in (2.7).
• for any x ∈ I, we have the convergence

λ(t, x) −−−→
t→∞

`(x) (4.7)

The proof of Theorem 4.4 will be given in Section 9.1. We are now in position to
address the question that motivates our paper : to what extent the inhomogeneity of the
underlying graph influences the microscopic dynamics ?

Proposition 4.5. In the subcritical case (4.4), ` solution of (4.5) is explicitly defined by

` =
∞∑
k=0

‖h‖k1T kWu. (4.8)

In particular, if u0 is constant, ` is uniform (i.e. `(x) = ` for every x ∈ I) if and only
if the indegree is uniform (D(x) =

∫
IW (x, y)ν(dy) = D for every x ∈ I). In such case,

r∞ = D.

Note that (4.8) informs us about the influence of the macroscopic graph W on the
dynamics : with u0 constant, we have

`(x) = u0

( ∞∑
k=0

‖h‖k1D(k)(x)

)
, (4.9)

where D(0) = 1, D(1) = D(x) and D(k+1) = TWD
(k). We see from (4.9) that in order to

understand `(x), one need to explore the structure of the macroscopic graph around x.

Proof. (4.5) can be written ` = u + ‖h‖1TW ` which leads to ‖h‖1
(

Id
‖h‖1 − TW

)
` =

u. As r∞ < 1
‖h‖1 in the subcritical case,

(
Id
‖h‖1 − TW

)
is invertible (recall that r∞ =

supσ∈Sp(TW ) |σ|) and then ` = (Id− ‖h‖1TW )−1 u =
∑∞

k=0 ‖h‖k1T kWu.
We take now u0 constant. Theorem 4.4 gives the existence of a unique ` satisfying

(4.5). Assume that this solution is a constant function `0, then for all x ∈ I we have from
(4.5) `0 = u0 + ‖h‖1`0

∫
IW (x, y)ν(dy) thus

∫
IW (x, y)ν(dy) is constant and is equal to

`0 − u0

`0‖h‖1
. Respectively, assume

∫
IW (x, y)ν(dy) constant and equal to D. Then, a direct

computation gives ‖TW f‖∞ ≤ ‖f‖∞D hence (as r∞ = limn→∞ ‖TnW ‖
1
n ) r∞ ≤ D. As

TW1 = D1 (where 1(x) ≡ 1), we have D ≤ r∞ thus D = r∞. The subcritical case can
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then be written as ‖h‖1D < 1 and we can define `0 :=
u0

1− ‖h‖1D
> 0. The constant

function `0 is continuous, bounded and solution of (4.5) which is unique : thus the solution
of (4.5) is indeed constant. �

4.3. Supercritical case. We assume that we are in the supercritical case :

‖h‖1r∞ > 1. (4.10)

Note again that, in the case without space interaction (W = 1), (4.10) reduces to
‖h‖1 > 1 and it can be shown (see [23], Theorem 11) that λ(t) ∼ αeβt → ∞ for some
α, β > 0. In our context with nontrivial W , note that one does not expect to have
λ(t, x) −−−→

t→∞
∞ uniformly on x as one can see from the obvious following example :

take W (x, y) = α1[0, 1
2

)2(x, y) + β1[ 1
2
,1]2(x, y) for α > β, then r∞ = α

2 . This corresponds

to the case of two disconnected mean-field components A (for neurons with positions in
IA = [0, 1

2)) and B (for neurons with positions in IB = [1
2 , 1]). The critical parameter for

population A (resp. B) is hence αc = 2
‖h‖1 (resp. βc = 2

‖h‖1 ). Taking now α > αc and

β < βc, (4.10) is satisfied but one does not have λ(t, x) −−−→
t→∞

∞ uniformly on x as the

population B is subcritical, we only have λ(t, x) −−−→
t→∞

∞ for x ∈ IA.

In order to avoid such trivial examples, we assume that the graphon W is sufficiently
connected in the following way. Defining for k ≥ 1:

W (k)(x, y) :=

∫
I×···×I

W (x, x1) · · ·W (xk−1, y)dx1 · · · dxk−1,

we assume primitivity of W i.e. that there exists k such that

W (k) > 0. (4.11)

Note that W (k) is the kernel of the operator T kW . To understand (4.11), think of the finite
dimensional case with N particles interacting through a connectivity matrix A. In this
context, A being primitive means the existence of some k ≥ 1 such that Ak(i, j) > 0 for
all i, j. Hypothesis (4.11) is the exact counterpart in infinite dimension. We also assume
the more technical assumptions :

Hypothesis 4.6.

sup
x

∫
I
W (x, y)2ν(dy) =: CW2 <∞, (4.12)

and

∀(x, y) ∈ I2, W (x, y) = W (y, x). (4.13)

We also assume that we can define the Laplace transform of h for any z ≥ 0 : L(h)(z) :=∫∞
0 e−tzh(t)dt. Having h of polynomial growth works for instance.

Proposition 4.7. Suppose that we are in the subcritical case (4.10). Under Hypotheses
4.1 and (4.6),

∫
I λ(t, x)2ν(dx) −−−→

t→∞
∞.

The proof of Proposition 4.7 will be given in Section 9.2.

Remark 4.8. Proposition 4.7 provides a divergence result in L2 norm, that is not uniform
in x. But with more restrictive hypotheses on the connectivity of W (without supposing
W symmetric), one can easily derive uniform divergence result. Assume 0 < infx∈I u(x) =:
u < ∞ and ‖h‖1 infx∈I ‖W (x, ·)‖1,ν > 1, we have then that infx∈I limt→∞ λ(t, x) = +∞.
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Note that by Fatou Lemma, infx∈I ‖W (x, ·)‖1,ν ≤ r∞, hence it also implies the result of
Proposition 4.7.

Proof. Let v(t, x) := infs≥t λ(s, x). For all x ∈ I, set `(x) = lim inft→∞ λ(t, x). We have
for all t > 0

λ(t, x) = u0(t, x) +

∫ t
2

0

∫
I
W (x, y)h(t− s)λ(s, y)ν(dy)ds︸ ︷︷ ︸

≥0

+

∫ t

t
2

∫
I
W (x, y)h(t− s) λ(s, y)︸ ︷︷ ︸

≥v( t2 ,y)

ν(dy)ds

≥ u0(t, x) +

∫ t
2

0
h(s)ds

∫
I
W (x, y)v

(
t

2
, y

)
ν(dy),

then taking lim inf
t→∞

, we obtain as v(·, y) is non decreasing by monotone convergence

inf
x∈I

`(x) ≥ u+ inf
y∈I

`(y)‖h‖1 inf
x∈I

∫
I
W (x, y)ν(dy).

As u is positive and ‖h‖1 infx∈I ‖W (x, ·)‖1,ν > 1 (subcritical case), it implies that infx∈I `(x) =
infx∈I limt→∞ infs≥t λ(s, x) = +∞ hence the result.

�

5. Applications

The point of the present section is to give examples of graphs
(
G(N)

)
and corresponding

graphons that satisfy the hypothesis of the paper. The main class of examples we have in
mind fall into the framework of W -random graphs, see [45].

5.1. A general class of examples. We give a general class of graph that fulfills the
hypotheses of our model, it can be found in [46] . Given a positive measurable kernel
(x, y) 7→ P(x, y) on I2, for any N ≥ 1 we consider the interaction kernel

WN (x, y) := ρN min

(
1

ρN
,P(x, y)

)
(5.1)

with ρN ∈ [0, 1] fixed. If P is bounded, by modifying ρN we can suppose ‖P‖∞ = 1 and
then WN (x, y) = ρNP(x, y). Then, one needs to distinguish two cases here: the dense
case when limN→∞ ρN = ρ > 0 and the diluted case when ρN → 0.

5.1.1. Uniformly bounded degrees. Suppose supx
∫
I P(x, y)ν(dy) < ∞. On the choice of

κ
(N)
i , recall that this prefactor in (2.3) was here to ensure that the interaction remains

of order 1 as N → ∞. In the dense case renormalization is not necessary, one can take

κ
(N)
i = 1; and in the diluted case we can take κ

(N)
i = 1

ρN
. In either case, we take wN = ρN .

To satisfy Hypothesis 3.7, we require NρN −−−−→
N→∞

∞ and
1

ρN
=

N→∞
o

(
N

log(N)

)
. Note that

Hypothesis 3.9 or Hypothesis 3.11 with W = P are satisfied under regularity assumption
on P, see Prop. 3.2, 3.4, 3.6 and 3.9 of [46]. Note that if ρN = 1, it is a direct consequence

of Proposition 7.4 as W G
(1)
N = W G

(2)
N then.

Typical examples include the classic Erdös-Rényi graph with P = 1 (hence WN = ρN is
uniform), interaction with the P-nearest neighbors (see [57]), or the EDD model previously
defined in Example 4.3. These examples are thoroughly detailed in the next part.
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5.1.2. Unbounded degrees. Suppose that P satisfies for all x ∈ I :
∫
I P(x, y)2ν(dy) < ∞

and P∗ := infz∈I
∫
P(z, y)ν(dy) > 0, but supx

∫
I P(x, y)ν(dy) =∞. Then we take κ

(N)
i =

N

ρN
∑N

j=1 min

(
1

ρN
,P(xi, xj)

) , and the macroscopic interaction kernel isW (x, y) =
P(x, y)∫

I P(x, z)ν(dz)
.

Some examples in this situation can be found in [46], Section 3.4. For instance, consider

P(x, y) =
1

xα
g(y) with g a probability measure on [0, 1] and α < 1

2 .

We present in the following different concrete examples of application of our results. We

focus on the framework I = [0, 1] with the regular distribution of the positions x
(N)
i = i

N ,
1 ≤ i ≤ N and ν the Lebesgue measure. We take f = Id to apply the results of Section 4.

5.2. Example : Erdös-Rényi graph. We can consider two different frameworks for the
Erdös-Rényi graph. First, we can consider (5.1) with WN (x, y) = ρN (and P = 1) for

any (x, y) ∈ I2 for some ρN ∈ (0, 1). G(N) is then a Erdös–Rényi random graph. Keeping

the previous normalization κ
(N)
i = κN :=

1

ρN
, as seen previously the sequence of graphs

converges toward the graphon W = 1 when NρN −−−−→
N→∞

∞ and
1

ρN
=

N→∞
o

(
N

log(N)

)
, as

the threshold obtained in [18].
Following the previous framework we suppose here that we have either (ρN → ρ > 0, κi ≡ 1)

or
(
ρN → 0, κi ≡ 1

ρN

)
. Note that in both case the natural limiting graphon W is given

by W ≡ ρ (with ρ = 1 in the diluted case). Note that (2.5) is satisfied, and we can apply
Theorems 3.10 and 3.12 (the convergence of graphs is seen in Proposition 7.4). As the
degree is constant, Proposition 4.5 gives r∞ = ρ. As Hypothesis 4.6 is satisfied, there is a
transition phase around ρc = 1

‖h‖1 .

5.2.1. Subcritical case : ‖h‖1ρ < 1. Theorem 4.4 gives that for any x ∈ I,

λ(t, x) −−−→
t→∞

`(x) =
u(x)(1− ‖h‖1ρ) + ‖u‖I,ν,1‖h‖1ρ

1− ‖h‖1ρ
,

and we give an example of simulation in Figure 1. Note that if u0 is constant, then

` =
u

1− ‖h‖1ρ
. We give an example of simulation in this case in Figure 2.

5.2.2. Supercritical case : ‖h‖1ρ > 1. As W is constant, we can directly apply Remark
4.8 and obtain infx∈I limt→∞ λ(t, x) = +∞.

5.3. Example : P-nearest neighbor model [57]. Consider the kernel W (x, y) =
1dS1 (x,y)<r for any (x, y) ∈ I2 for some fixed r ∈ (0, 1

2) and with

dS1(x, y) = min(|x− y|, 1− |x− y|). (5.2)

It means that the particles at positions x and y interacts if and only if they are at dis-
tance less than r on the circle S1 := R/[0,1]. Note that this corresponds to a determin-

istic graph. As (2.5) is satisfied - for any (x, x′) ∈ I2,
∫
I |W (x, y) − W (x′, y)|ν(dy) =∫ 1

0

∣∣1|x−y|<r − 1|x′−y|<r
∣∣ dy ≤ 4|x− x′|, we can apply Theorems 3.10 and 3.12.

As for any x ∈ I,
∫
IW (x, y)dy = 2r, Proposition 4.5 gives that r∞ = 2r. The

assumptions (4.12) and (4.13) are trivially verified, and as W (k) is positive for k :=



MULTIVARIATE HAWKES PROCESSES ON INHOMOGENEOUS RANDOM GRAPHS 17

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 0.0

0.2

0.4

0.6

0.8

1.0

(a) Matrix of G(N)

0.0 0.2 0.4 0.6 0.8 1.0
Position (x)

1.6

1.8

2.0

2.2

2.4

In
te

ns
ity

 a
t t

im
e 

T

lambda_N(T,x)
Limiting intensity in time and population

(b) Each dot represents λN (T, x) for x ∈ x(N), and
the plain line corresponds to the macroscopic limit
`(x).
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(c) Evolution of microscopic and macroscopic intensities of three
particles at positions x =0.25 (blue - the lowest), 0.5 (red) and
0.75 (green - the highest). In each case, the colored line repre-
sents λN (t, x), the dashed line represents λ(t, x) and the dotted
line represents the limit `(x).

Figure 1. Simulation of Example 5.2 with inhomogeneous u0

We chose h(t) = e−αt with α = 2, p = 0.5 for the Erdös Rényi graph and u0(t, x) = x+1.
We are then in the subcritical case as ‖h‖1p < 1 and the limiting intensity is given by
`(x) = x + 1

2
. We run a simulation for N = 1000 particles and a final time T = 5 : in

1a, we show the matrix of the Erdös-Rényi graph G(N). In 1b, we represent the spatial
distribution of intensities at fixed time T . In 1c, we show the time evolution of the
intensities for different positions. Note here that the inhomogeneity of `(x) is due to the
inhomogeneity of the u0, not of the graph.

inf
{
n ≥ 0, nr ≥ 1

2

}
, Hypothesis 4.6 is satisfied and there is a transition phase around

rc = 1
2‖h‖1 . In the subcritical case (r < rc), Proposition 4.5 gives that when u0 is constant

the limiting intensity is explicit and ` =
u0

1− 2r‖h‖1
. We give an example of simulation in
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(c) Evolution of microscopic and macroscopic intensities of two
particles at positions x =0.5 (red) and 0.75 (blue). The colored
lines represent λN (t, x), the dashed line represents λ(t) and the
dotted line represents the limit `.

Figure 2. Simulation of Example 5.2 with homogeneous u0

We chose h(t) = e−αt with α = 2, p = 0.5 for the Erdös Rényi graph and u0(t, x) = 1,
we are then in the subcritical case (‖h‖1p = 1

4
< 1). As the graph is homogeneous in

space and the self-activity is constant, the limit solution of (1.2) dos not depend of the

position: λ(t) = 4
3
− 1

3
e−

3
2
t. The limiting intensity is then constant ` = 4

3
. We run a

simulation for N = 1000 particles and a final time T = 5. In 2a, we show the matrix
of the Erdös-Rényi graph G(N). In 2c, we show the time evolution of the intensities for
different positions. In 2b, we represent the spatial distribution of intensities at fixed time
T .

this case in Figure 3. In the supercritical case (r > rc), as the degree is constant, we can
directly apply Remark 4.8 and obtain infx∈I limt→∞ λ(t, x) = +∞.

5.4. Example : Inhomogeneous graph with EDD [16]. Recall Example 4.3: W (x, y) =
f(x)g(y) with f and g two positive bounded functions on I such that f, g ∈ L2(I, ν) and
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(b) Evolution of microscopic and macroscopic intensities of two
particles at positions x =0.5 (red) and 0.1 (blue). The colored
lines represent λN (t, x), the dashed line represents λ(t) and the
dotted line represents the limit `.

Figure 3. Simulation of Example 5.3 in the subcritical case

We chose h(t) = e−2t, r = 0.1 and u0(t, x) = 1, hence we are in the subcritical case
as 2r‖h‖1 < 1. The graph is not homogeneous in space but has a symmetry and the
self-activity u0 is constant, hence the solution of (1.2) does not depend of the position :

λ(t) = 10
9
− 1

9
e−

9
5
t. The limiting intensity is constant ` = 10

9
. We run a simulation for

N = 500 particles and a final time T = 10 : in 3a, we show the matrix of the graph G(N)

obtained. In 3b, we show the matrix of the Erdös-Rényi graph G(N). In 2c, we show
the time evolution of the intensities for different positions. We see that the simulated
intensities follow indeed the behavior expected, as they are close to λ(t, x) and converge
toward a constant limit `.

∫
I gdν = 1. We also suppose that f satisfies a Hölder condition for ι ∈ (0, 1] and is

bounded. Note that the indegree is D(x) = f(x). Hypothesis 2.6 is satisfied and we can
apply Theorems 3.10 and 3.12. The operator TW is then defined as TWk(x) = f(x)〈g, k〉
for k ∈ L∞. An iteration gives TnW = 〈f, g〉n−1TW for all n ≥ 1, and then r∞ = 〈f, g〉.
The following results generalize Example 4.3 where h is fixed as a decreasing exponential
(h(t) = e−αt, ‖h‖1 = 1

α) : the transition phase described with the sign of 〈f, g〉 − α can
be written with the quantity r∞‖h‖1.

5.4.1. Subcritical case : ‖h‖1〈f, g〉 < 1. Theorem 4.4 gives that for any x ∈ I, λ(t, x) −−−→
t→∞

`(x) where ` is the solution of (4.5), that is

`(x) = u(x) + ‖h‖1
f(x)〈u, g〉

1− ‖h‖1〈f, g〉
.

5.4.2. Particular case : f=g. Suppose that f is positive on I, then Hypothesis 4.6 is
satisfied and there is a transition phase at ‖h‖1〈f, f〉 = 1. We give an example of simulation
in this case in Figure 3.
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(d) Evolution of microscopic and macroscopic intensities of two
particles at positions x =0.5 (blue - the highest) and 0.3 (red -
the lowest). In each case, the colored line represents λN (t, x),
the dashed line represents λ(t, x) and the dotted line represents
the limit `(x).

Figure 4. Simulation of Example 5.4

We chose h(t) = e−αt with α = 2, u0(t, x) = 1 and f = g = Id, that is W (x, y) = xy : we
are in the subcritical case (‖h‖1〈f, f〉 < 1) and the limiting intensity is `(x) = 1 + 3

10
x.

We run a simulation for N = 500 particles and a final time T = 10 : in 4b, we represent
the graphon W , and in 4a we show the matrix random graph G(N) obtained. In 4c, we
represent the spatial distribution of intensities at fixed time T . In 4d, we show the time
evolution of the intensities for different positions. Note here that the inhomogeneity of
`(x) is only due to the inhomogeneity of the kernel W .

5.5. Example : Multi-class interaction populations. Another interesting case con-
cerns the case of deterministic and inhomogeneous graphs modeling the macroscopic or-
ganization of neurons into vertical colomns. A generic construction is the following :
divide I = (0, 1] into P consecutive subintervals Ij with respective length αj > 0, that is
Ij = (α1 + · · ·+ αj−1, α1 + · · ·+ αj ] and α1 + · · ·+ αP = 1. Take any connectivity matrix
M between there P populations, M = (mij)1≤i,j≤P with mij ∈ {0, 1} modeling the deter-
ministic connection between subpopulations i and j. Take the self-activity fixed for each
population, described by u0(t) = (u0,i(t))1≤i≤P and converging towards u = (ui)1≤i≤P as
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t → ∞. Define finally W (x, y) =
∑P

i,j=1mij1x∈Ii1y∈Ij , as well as M̃ = (αjmij)1≤i,j≤P .

Then r∞ = ρ(M̃) where ρ(M̃) is the spectral radius of M̃ so that the phase transition

described above is given here in terms of ρ(M̃)‖h‖1 < 1 or ρ(M̃)‖h‖1 > 1.
The limiting intensity λ(t, x) in constant on each population, and can then be described

by the vector λ̃(t) = (λi(t))1≤i≤P which solves λ̃(t) = u0(t) +
∫ t

0 h(t − s)M̃λ̃(s)ds. In

the subcritical case, the limit ` is piecewise constant (on each population) and is de-

scribed by the vector ` = (`i)1≤i≤P solving ` = u + ‖h‖1M̃`. In the supercritical case,∑P
i=1 αiλi(t)

2 t→∞−−−→∞ when M̃ is symmetric and primitive.

Remark. Note that a closer look to the proof of Theorem 2.3 and (2.5) of [2] shows that
λi(t) → ∞ for all i = 1...p in the simpler case when M is only irreducible but not
necessarily symmetric nor primitive (e.g. the case considered in [28]).

6. Proofs : existence and uniqueness of the model and its limit

6.1. Proof of Proposition 2.5. We study the pathwise uniqueness by considering the
total variation distance between two such processes. We show the existence by constructing
a Cauchy sequence adapted and using a Picard iteration argument.

We follow the structure of the proof proposed in [23] (Theorem 6). We consider a family
of independent Poisson measures (πi (ds, dz))1≤i≤N with intensity dsdz. In this proof, we

denote κ
(N)
i ξ

(N)
ij by wij . We start by showing uniqueness and we omit the notation (N)

for simplicity. We set (Zi (t))i∈J1,NK,t≥0 and (Zi (t))i∈J1,NK,t≥0 two solutions of the system

(2.2) such that E [Zi (t)] < +∞ and E [Zi (t)] < +∞ for any i ∈ J1, NK and t ≥ 0.
For any i ∈ J1, NK, we consider the total variation distance between Zi and Zi on [0, t]:

∆i(t) :=

∫ t

0
|d (Zi(s)− Zi(s)) |.

∆i(t) counts the number of unshared jumps between Zi and Zi on [0, t]. We denote
respectively by λi and λi the stochastic intensities of Zi and Zi. As they are constructed
on the same Poisson measure πi, the unshared jumps are the points of πi located between
the two intensities, thus we have

∆i(t) =

∫ t

0

∫ +∞

0

∣∣1{z≤λi(s)} − 1{z≤λi(s)}
∣∣πi (ds, dz) .

Setting δi(t) := E [∆i(t)], we obtain with Fubini’s Theorem

δi(t) = E

[∫ t

0

∫ +∞

0

∣∣1{z≤λi(s)} − 1{z≤λi(s)}
∣∣ dzds] =

∫ t

0
E [|λi(s)− λi(s)|] ds.

Using (2.3) and as f is Lipschitz continuous (Hypothesis 2.4), we have

δi(t) =

∫ t

0
E

∣∣∣∣∣∣f
u0 (s, xi) +

1

N

N∑
j=1

wij

∫
]0,s[

h (s− u) dZ
(N)
j (u)


−f

u0 (s, xi) +
1

N

N∑
j=1

wij

∫
]0,s[

h (s− u) dZ
(N)
j (u)

∣∣∣∣∣∣
 ds

≤ Lf
1

N

N∑
j=1

wijE

[∫ t

0

∫
]0,s[
|h (s− u)| d∆j(u)ds

]
.
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We apply Lemma A.1 (∆i is with finite variations, ∆i(0) = 0 and h is locally integrable)
and obtain

δi(t) ≤ Lf
1

N

N∑
j=1

wij

∫ t

0
|h (t− s)| δj (s) ds.

We set δ(t) =
∑N

i=1 δi(t) and WN = max(i,j)∈J1,NK2 wij . Then, summing on i, we have

δ(t) ≤ Lf WN

∫ t

0
|h (t− s)| δ (s) ds.

Since h is locally integrable, δ is non-negative and locally bounded, we can apply Lemma
A.3 (i) and obtain that δ(t) = 0 for all t ≥ 0. As each ∆i is non-negative, we obtain that
for all i ∈ J1, NK and t ≥ 0, ∆i(t) = 0 almost surely. Hence Zi(t) = Zi(t) almost surely
for all i ∈ J1, NK and t ≥ 0, which gives the uniqueness.

We show now the existence of a process satisfying (2.2). To do it, we procede by
iteration : for all i ∈ J1, NK and t ≥ 0 : let Zi,0(t) = 0. Then, for all n ≥ 0 we set:

Zi,n+1(t) =

∫ t

0

∫ +∞

0
1{z≤f(u0(t,xi)+

1
N

∑N
j=1 wij

∫ s−
0 h(s−u)dZj,n(u))}πi(ds, dz).

With i and n fixed, such a process (Zi,n+1) exists : it is a counting process with stochastic

intensity λi,n+1(t) = f
(
u0 (t, xi) + 1

N

∑N
j=1wij

∫ t−
0 h (t− u) dZj,n (u)

)
. As for the unique-

ness, we set for all i ∈ J1, NK, n ≥ 0 and t ≥ 0, δi,n(t) = E
[∫ t

0 |dZi,n+1(s)− dZi,n(s)|
]

and

δn(t) =
∑N

i=1 δi,n(t).
As it was done previously, we find :

δi,n+1(t) = E

[∫ t

0
|dZi,n+2(s)− dZi,n+1(s)|

]
= E

[∫ t

0

∫ +∞

0

∣∣∣1{z≤λi,n+2(s)} − 1{z≤λi,n+1(s)}

∣∣∣ dzds]

≤
∫ t

0
E

Lf
∣∣∣∣∣∣ 1

N

N∑
j=1

wij

∫
]0,s[

h (s− u) (dZj,n+1 (u)− dZj,n (u))

∣∣∣∣∣∣
 ds.

Summing on i and using Lemma A.1 we obtain

δn+1(t) ≤ Lf WN

∫ t

0
|h (t− s)| δn(s)ds. (6.1)

We want to apply Lemma A.3(ii), but for this we have to show that δn is locally bounded.

We note mi,n(t) = E [Zi,n(t)] and vn(t) =
∑N

i=1mi,n(t). By construction,

mi,n+1(t) = E

[∫ t

0

∫ +∞

0
1{z≤f(u0(s,xi)+

1
N

∑N
j=1 wij

∫ s−
0 h(s−u)dZj,n(u))}πi(ds, dz)

]
.

As πi is a random Poisson measure with intensity dsdz, we have

mi,n+1(t) = E

∫ t

0
f

u0 (s, xi) +
1

N

N∑
j=1

wij

∫ s−

0
h (s− u) dZj,n (u)

 ds

 .
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By Hypothesis 2.4, we have that f(y) ≤ f(0) + Lf |y| for all y so that :

mi,n+1(t) ≤ f(0)t+ Lf‖u0‖∞t+
1

N

N∑
j=1

wij

∫ t

0

∫ s−

0
|h (s− u)| dmj,n(u)ds.

Applying Lemma A.1 and summing on i we obtain

vn+1(t) ≤ Nt (f(0) + Lf‖u0‖∞) +WN

∫ t

0
|h (t− s)| vn(s)ds. (6.2)

As v0 = 0 and h is locally integrable, by induction vn is locally bounded for all n ≥ 0. Yet

δn(t) =
∑N

i=1 E
[∫ t

0 |dZi,n+1(s)− dZi,n(s)|
]
≤ vn+1(t) + vn(t) hence δn is indeed locally

bounded for all n. Lemma A.3(ii) and (6.1) give then that for all T > 0, there exists CT
such that supt∈[0,T ]

∑
n≥0 δn(t) ≤ CT <∞. Thus we have

sup
t∈[0,T ]

∑
n≥0

N∑
i=1

E

[∫ t

0
|dZi,n+1(s)− dZi,n(s)|

]
≤ CT <∞.

Thus for i fixed, the sequence of random variables (Zi,n)n is Cauchy in L1 on the space
D([0, t],R) with the expectation of the total variation distance. Then there exists Zi such

that E
[∫ T

0 |dZi,n(s)− dZi(s)|
]
−−−→
n→∞

0. From this convergence and a diagonal argument,

there exists an extraction ϕ such that for all i,∫ T

0

∣∣dZi,ϕ(n)(s)− dZi(s)
∣∣ −−−→
n→∞

0.

Since
∫ T

0 |dZi,ϕi(n)(s) − dZi(s)| is an integer, Zi,ϕi(n) is a.s. stationnary and one obtain
from this that the righthand of

Zi,ϕ(n)+1(t) =

∫ t

0

∫ +∞

0
1{z≤f(u0(t,xi)+

1
N

∑N
j=1 wij

∫ s−
0 h(s−u)dZj,ϕ(n)(u))}πi(ds, dz) (6.3)

is equal to
∫ t

0

∫ +∞
0 1{z≤f(u0(t,xi)+

1
N

∑N
j=1 w(xj ,xi)

∫ s−
0 h(s−u)dZj(u))}πi(ds, dz). Hence the left-

hand of (6.3) converges too, towards some Z̃i(t). It remains to show that Z̃ = Z. Fatou’s
Lemma gives

E

[∫ T

0
|dZi(s)− dZ̃i(s)|

]
≤ lim inf

n→∞
E

[∫ T

0
|dZi,ϕ(n)(s)− dZi,ϕ(n)+1(s)|

]
= 0

as (Zi,n)n is a Cauchy sequence. We have then that the limit process verifies a.s.

Zi(t) =

∫ t

0

∫ +∞

0
1{z≤f(u0(t,xi)+

1
N

∑N
j=1 wij

∫ s−
0 h(s−u)dZj(u))}πi(ds, dz).

This gives the existence of multivariate Hawkes process (Z1(t), ..., ZN (t))t≥0 satisfying

(2.2). Now let us verify that t 7→ sup1≤i≤N E[Zi(t)] is locally bounded. Recall (6.2) :
as vn is locally bounded, by Lemma A.3(iii) for all T > 0, there exists CT such that
supt∈[0,T ] supn≥0 vn(t) ≤ CT < +∞ hence

sup
t∈[0,T ]

sup
n≥0

N∑
i=1

E [Zi,n(t)] ≤ CT < +∞
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and by dominated convergence, for all T > 0, supt∈[0,T ]

∑N
i=1 E [Zi(t)] < +∞ and the

proof is concluded.
�

6.2. Proof of Proposition 2.7. We show existence and uniqueness of a continuous and
bounded solution to equation (1.2). We follow the proof proposed in [15] (Proposition 5),
with major changes to accomodate our hypotheses.

We show existence and uniqueness of λ by applying Banach fixed-point Theorem. We
consider the map F defined on Cb ([0, T ]× I,R+) (the set of bounded continuous functions
defined on [0, T ]× I taking non-negative values) by, for any g ∈ Cb ([0, T ]× I,R+) :

F (g)(t, x) = f

(
u0(t, x) +

∫
I
W (x, y)

∫ t

0
h(t− s)g(s, y)ds ν(dy)

)
for all (t, x) ∈ [0, T ]×I.

First, we check that F takes values in Cb ([0, T ]× I,R+) : consider g ∈ Cb ([0, T ]× I,R+).
Let us show that F (g) is bounded. Fix (t, x) ∈ [0, T ]× I. As f is Lipschitz continuous,
we have :

F (g)(t, x) ≤ f(0) + Lf‖u0‖∞ + Lf

∫
Rd
|W (x, y)|

∫ t

0
|h(t− s)|g(s, y)ds ν(dy).

As g is bounded and h is locally integrable (Hypothesis 2.4), we have

sup
t∈[0,T ], x∈I

F (g)(t, x) ≤ f(0) + Lf‖u0‖∞ + Lf‖h‖[0,T ],1‖g‖∞ sup
x∈I

∫
Rd
W (x, y) ν(dy) <∞,

where we used Hypothesis (2.6).

We check now that F (g) is continuous. We show the sequential continuity : we fix
(t, x) ∈ [0, T ]×I and a sequence (tn, xn) converging to (t, x). As f is Lipschitz continuous,
we have :

|F (g)(tn, xn)− F (g)(t, x)| ≤ Lf |u0(tn, xn)− u0(t, x)|

+ Lf

∣∣∣∣∫
I
W (xn, y)

∫ tn

0
h(tn − s)g(s, y)dsν(dy)−

∫
I
W (x, y)

∫ t

0
h(t− s)g(s, y)dsν(dy)

∣∣∣∣ .
(6.4)

The first term Lf |u0(tn, xn)− u0(t, x)| tend to 0 when n tends to infinity as u0 is
continuous in time and space by Hypothesis 2.4. To show the convergence of the second
term, we use the following bound :∣∣∣∣∫

I
W (xn, y)

∫ tn

0
h(tn − s)g(s, y)dsν(dy)−

∫
Rd
W (x, y)

∫ t

0
h(t− s)g(s, y)dsν(dy)

∣∣∣∣
≤
∣∣∣∣∫
I

(W (xn, y)−W (x, y))

∫ tn

0
h(tn − s)g(s, y)dsν(dy)

∣∣∣∣
+

∣∣∣∣∫
I
W (x, y)

(∫ tn

0
h(tn − s)g(s, y)ds−

∫ t

0
h(t− s)g(s, y)ds

)
ν(dy)

∣∣∣∣ =: An +Bn

As h is locally integrable, g bounded, we can upper bound An immediately :

An ≤ ‖h‖[0,T ],1‖g‖∞
∫
I
|W (xn, y)−W (x, y)| ν(dy) ≤ ‖h‖[0,T ],1‖g‖∞Cw‖x− xn‖ι −−−→

n→∞
0,
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using (2.5). To study the convergence of Bn, we do a substitution and split the integral
in two :

Bn ≤
∫
|W (x, y)|

∣∣∣∣∫ tn

0
h(u)g(tn − u, y)du−

∫ t

0
h(u)g(t− u, y)ds

∣∣∣∣ ν(dy)

≤
∫
|W (x, y))|

(∫ t

0
|h(u)| |g(tn − u, y)− g(t− u, y)| du

)
ν(dy)

+

∫
|W (x, y)|

(∫ max(t,tn)

min(t,tn)
|h(u)|g(tn − u, y)du

)
ν(dy) =: an + bn.

Since g is continuous, for all y ∈ I,
∫ t

0 |h(u)| |g(tn − u, y)− g(t− u, y)| du −−−→
n→∞

0,

and since
∫ t

0 |h(u)| |g(tn − u, y)− g(t− u, y)| du ≤ 2‖h‖[0,T ],1‖g|∞, we see from dominated
convergence theorem that an −−−→

n→∞
0. We focus on the term bn∫ max(t,tn)

min(t,tn)
|h(u)|g(tn − u, y)du ≤ ‖g‖∞

∫ T

0
|h(u)|1[min(t,tn),max(t,tn)](u)du.

Yet |h(u)|1[min(t,tn),max(t,tn)](u) −−−→
n→∞

0, and we obtain bn −−−→
n→∞

0 by dominated con-

vergence as h is locally integrable. We have shown that for all (t, x) ∈ [0, T ] × I,
limn→∞ |F (g)(tn, xn)− F (g)(t, x)| = 0 for any sequence (tn, xn) tending to (t, x): F (g) is
continuous.

We show now that there exists a constant C > 0 such that for all (t, x, z) ∈ [0, T ]× I2 :

|F (g)(t, x)− F (g)(t, z)| ≤ C (‖x− z‖+ ‖x− z‖ι) . (6.5)

Let (t, x, z) ∈ [0, T ] × I × I. As done previously (f and u0 are Lipschitz continuous),
we have :

|F (g)(t, x)− F (g)(t, z)| ≤ LfLu0‖x− z‖+ Lf

∫
I

∫ t

0
|h(t− s)|g(s, y)ds |W (x, y)−W (z, y)|ν(dy).

Since g is bounded, h is locally integrable, using (2.5)

|F (g)(t, x)− F (g)(t, z)| ≤ LfLu0‖x− z‖+ Lf‖g‖∞‖h‖[0,T ],1Cw‖x− z‖ι,

which gives (6.5) .

Hence, Cb ([0, T ]× I,R+) is stable by F . We are going to prove that F admits a unique
fixed point, which is λ satisfying (1.2). To do it, we show that some iteration of F is
contractive, and then the Banach fixed-point Theorem gives the result.

Let t ∈ [0, T ], g and g̃ be two functions in Cb ([0, t]× I,R+). We use the distance
Dt(g, g̃) := sups∈[0,t] supx∈I |g(s, x)− g̃(s, x)| which makes the space Cb ([0, t]× I,R+) com-

plete. Naturally, for all s ≤ t, Ds(g, g̃) ≤ Dt(g, g̃). Let x ∈ Rd. As previously,

|F (g)(t, x)− F (g̃)(t, x)| ≤ Lf
(

sup
z∈I

∫
I
|W (z, y)|ν(dy)

)∫ t

0
|h(t− s)|Ds(g, g̃)ds.

Using Cauchy-Schwarz inequality, as h is in L2
loc under Hypothesis 2.4

|F (g)(t, x)− F (g̃)(t, x)| ≤ Lf
(

sup
z∈I

∫
I
|W (z, y)|ν(dy)

)
‖h‖[0,T ],2

(∫ t

0
(Ds(g, g̃))2 ds

) 1
2

.
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Using (2.6), we have then shown the existence of a constant C(f, w, ν, h, T, p) such that
for all mappings g and g̃, for all t ∈ [0, T ]:

Dt(F (g), F (g̃)) ≤ C
(∫ t

0
(Ds(g, g̃))2 ds

) 1
2

. (6.6)

By induction on k ∈ N, with (6.6), we show that for all t ∈ [0, T ] and for any mappings g

and g̃ : Dt(F
k(g), F k(g̃)) ≤ Ck

(
tk

k!

) 1
2

Dt(g, g̃). The initialisation is immediate, and then

for k ≥ 0:

Dt(F
k+1(g), F k+1(g̃)) ≤ C

(∫ t

0

(
Ds(F

k(g), F k(g̃))
)2
ds

) 1
2

by (6.6)

≤ C
(∫ t

0
C2k s

k

k!
Ds(g, g̃)2ds

) 1
2

by induction hypothesis

≤ Ck+1

(
tk+1

(k + 1)!

) 1
2

Dt(g, g̃),

which concludes the induction. We have then for all k and any functions g and g̃ of

Cb ([0, T ]× I,R+), the k-th iteration of F verifiesDT (F k(g), F k(g̃)) ≤ Ck
(
T k

k!

) 1
2

DT (g, g̃).

Hence there exists a rank k such that F k is contractive, thus has a unique fixed point which
is also then the unique fixed point of F in Cb ([0, T ]× I,R+) that we call λ. Furthermore,
we have shown that any image by F verifies the property (6.5), so in particular λ verifies
it too and (2.7) is then true (with Cλ the constant of equation (6.5) for g = λ).

We focus now on the second part of Proposition 2.7 under restricted hypotheses on the

parameter functions: we consider u0 continuously differentiable in time and
∂u0

∂t
bounded

on [0, T ] × I, h continuous and piecewise continuously differentiable, and f = Id. First,
we ensure that (2.8) admits a unique continuous bounded solution. Then, by studying a
sequence of functions that converges towards λ, we show that λ is differentiable in time

and
∂λ

∂t
satisfies (2.8).

Using the same method as done above, one can show that the map G defined on
Cb ([0, T ]× I,R+) by

G(g)(t, x) =
∂u0

∂t
(t, x)+h(t)

∫
I
W (x, y)λ(0, y)ν(dy)+

∫
I

∫ t

0
h(t−s)W (x, y)g(s, y)ν(dy)ds ∀(t, x) ∈ [0, T ]×I

admits a unique fixed point called µ. Moreover, we can introduce a sequence of function
(µn)n that converges uniformly towards µ defined by iteration, µ0 = 0 and

µn+1(t, x) :=
∂u0

∂t
(t, x)+h(t)

∫
I
W (x, y)λ(0, y)ν(dy)+

∫
I

∫ t

0
h(t−s)W (x, y)µn(s, y)ν(dy)ds.

Similarly, we can introduce a sequence of function (λn)n that converges uniformly towards
λ defined by iteration, λ0 = 0 and

λn+1(t, x) := u0(t, x) +

∫
I

∫ t

0
h(t− s)W (x, y)λn(s, y)ν(dy)ds.
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By induction, for every n, λn is differentiable in time and bounded and then, by inte-
gration by part we obtain

∂λn+1

∂t
(t, x) =

∂u0

∂t
(t, x) + h(t)

∫
I
W (x, y)λn(0, y)ν(dy) +

∫ t

0

∫
I
W (x, y)h(t− s)∂λn

∂s
(s, y)ν(dy)ds.

(6.7)

Now, we can compare µn and
∂λn
∂t

: for any (t, x) ∈ [0, T ]× I,∣∣∣∣µn+1(t, x)− ∂λn+1

∂t
(t, x)

∣∣∣∣ =

∣∣∣∣h(t)

∫
I
W (x, y) (λ(0, y)− λn(0, y)) ν(dy)

+

∫ t

0

∫
I
W (x, y)h(t− s)

(
µn(s, y)− ∂λn

∂s
(s, y)

)
ν(dy)ds

∣∣∣∣∣∣∣∣∣∣∣∣µn+1(t, ·)− ∂λn+1

∂t
(t, ·)

∣∣∣∣∣∣∣∣
∞
≤ h(t)CW1‖λ(0, ·)− λn(0, ·)‖∞ + CW1

∫ t

0
h(t− s)

∣∣∣∣∣∣∣∣µn(s, ·)− ∂λn
∂s

(s, ·)
∣∣∣∣∣∣∣∣
∞
ds.

We obtain, as (λn) converges uniformly to λ,

lim sup
n→∞

∣∣∣∣∣∣∣∣µn+1(t, ·)− ∂λn+1

∂t
(t, ·)

∣∣∣∣∣∣∣∣
∞
≤ CW1

∫ t

0
h(t− s) lim sup

n→∞

∣∣∣∣∣∣∣∣µn(s, ·)− ∂λn
∂s

(s, ·)
∣∣∣∣∣∣∣∣
∞
ds.

This gives from Lemma A.3 (i), provided that lim sup
n→∞

∣∣∣∣∣∣∣∣µn(s, ·)− ∂λn
∂s

(s, ·)
∣∣∣∣∣∣∣∣
∞

is fi-

nite, that sup
t∈[0,T ]

lim sup
n→∞

∣∣∣∣∣∣∣∣µn(t, ·)− ∂λn
∂t

(t, ·)
∣∣∣∣∣∣∣∣
∞

= 0. It implies that, as (µn) converges

uniformly to µ, so does

(
∂λn
∂t

)
n

, and then as λ is differentiable, λn
uniformly−−−−−−→
n→∞

λ and

∂λn
∂t

uniformly−−−−−−→
n→∞

µ, we obtain
∂λ

∂t
= µ. It remains to check that lim sup

n→∞

∣∣∣∣∣∣∣∣µn(s, ·)− ∂λn
∂s

(s, ·)
∣∣∣∣∣∣∣∣
∞

is finite. As (λn) converges to λ, it is uniformly bounded and as
∂u0

∂t
is bounded, we

can find g locally bounded such that, from (6.7),

∣∣∣∣∣∣∣∣∂λn+1

∂t
(t, ·)

∣∣∣∣∣∣∣∣
∞
≤ g(t) + CW1

∫ t
0 h(t −

s)

∣∣∣∣∣∣∣∣∂λn∂s (s, ·)
∣∣∣∣∣∣∣∣
∞
ds. Lemma A.3 (iii) gives then that sup

s∈[0,T ]
sup
n≥0

∣∣∣∣∣∣∣∣∂λn∂s (s, ·)
∣∣∣∣∣∣∣∣
∞
< ∞. We

can do the same for (µn) and obtain sup
s∈[0,T ]

sup
n≥0
||µn(s, ·)||∞ < ∞ which concludes to

lim sup
n→∞

∣∣∣∣∣∣∣∣µn(s, ·)− ∂λn
∂s

(s, ·)
∣∣∣∣∣∣∣∣
∞
<∞ for any s ∈ [0, T ].

�

7. Proofs : Convergence of the process (2.2)

7.1. Toolbox. We present useful results that come up in the main proofs.

Proposition 7.1. Recall the definitions of κN and wN in Hypothesis 3.7. Let (αij) and
(αijk) such that for every (i, j, l) ∈ J1, NK3, |αlj | ≤ 1 and |αijl| ≤ 1. Define

Xj :=
κN
N

N∑
l=1

αljξlj , X̃i :=
κN
N

N∑
l=1

αilξil, Xij :=
κN
N

N∑
l=1

αijlξil,
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with ξlk := ξ
(N)
lk −WN (xl, xk). Then, under Hypothesis 3.7, P-almost surely if N is large

enough :
sup

1≤j≤N
|Xj | ≤ εN , sup

1≤i≤N
|X̃i| ≤ εN and sup

1≤i,j≤N
|Xij | ≤ εN ,

for εN := 32
κ2
NwN
N

log(N).

Note that under Hypothesis 3.7, εN −−−−→
N→∞

0.

Proof. The proof relies on the use of Lemma A.7.
We derive a uniform bound on (Xj)j∈J1,NK : fixing j, we apply Lemma A.7 for the

choice Ul = ξ
(N)
lj , pl = WN (xl, xj) (note that (3.8) yields that pl ≤ wN ), vl = αlj and the

constant κN > 0. We obtain, taking the supremum on j and a union bound :

P

(
sup

j∈J1,NK
|Xj | > εN

)
≤ 2N exp

(
−16 log(N)B

(
4
√

2

(
log(N)

NwN

) 1
2

))
.

AsB(u) = u−2 ((1 + u) log (1 + u)− u)→ 1

2
when u→ 0 and

log(N)

NwN
≤ log(N)

N
κ2
NwN →

0 when N → ∞ using (3.9) and (3.10), we can choose a deterministic p such that for all

N ≥ p, B

(
4
√

2

(
log(N)

NwN

) 1
2

)
≥ 3

16
. We then have if N ≥ p :

P

(
sup

j∈J1,NK
|Xj | > εN

)
≤ 2N exp (−3 log(N)) =

2

N2
.

Hence, by Borel-Cantelli Lemma, there exists Õ ∈ F such that P(Õ) = 1 and on Õ,

there exists Ñ < ∞ such that if N ≥ Ñ , supj∈J1,NK |Xj | ≤ εN . We can show similarly

that sup1≤i≤N |X̃i| ≤ εN . To show the result on (Xij), we use the same Lemma A.7 but

we need to lower-bound B

(
4
√

2

(
log(n)

nwn

) 1
2

)
differently : we can choose a deterministic

p̃ for all n ≥ p, B

(
4
√

2

(
log(n)

nwn

) 1
2

)
≥ 1

4
and then the same argument as before works to

obtain P
(

supi,j∈J1,NK |Xij(T )| > εN

)
≤ 2N2 exp

(
−16 log(N)

1

4

)
≤ 2

N2
, and we conclude

by Borel-Cantelli Lemma. �

Corollary 7.2. Under the set of Hypothesis 3.7, we have P-almost surely if N is large
enough :

sup
1≤j≤N

(
N∑
i=1

κ
(N)
i

N
ξ

(N)
ij

)
≤ 1 + sup

1≤j≤N

(
N∑
i=1

κ
(N)
i

N
WN (xi, xj)

)
(7.1)

sup
1≤i≤N

 N∑
j=1

κ
(N)
i

N
ξ

(N)
ij

 ≤ 1 + sup
1≤i≤N

 N∑
j=1

κ
(N)
i

N
WN (xi, xj)

 (7.2)

1

N3

N∑
i,j=1

(
κ

(N)
i

)2
ξ

(N)
ij ≤ κN

N

1 +

N∑
i,j=1

κ
(N)
i

N2
WN (xi, xj)

 . (7.3)
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Proof. It is a direct application of Proposition 7.1 (as for any i,

∣∣∣∣∣κ(N)
i

κN

∣∣∣∣∣ ≤ 1 with (3.7)),

as εN defined in Proposition 7.1 tends to 0 as N →∞ under Hypothesis 3.7, hence for N
large enough εN ≤ 1. �

We introduce an auxilliary graph that intervenes in the proofs.

Definition 7.3. We denote by G(2)
N the directed weighted graph with vertices {1, · · · , N}

such that every edge j → i is present, and with weight W (xi, xj).

The following Proposition is technical, and its proof is postponed in Section 7.4.

Proposition 7.4. Under the Scenarios of Definition 3.8,

d2,ν

(
W G

(2)
N ,W

)
−−−−→
N→∞

0, (7.4)

‖W G
(2)
N −W‖∞→∞,ν −−−−→

N→∞
0, (7.5)

max
1≤i≤N

∫ T

0

∣∣∣∣∫
I
W (xi, x)γ(s, x)

(
ν(N)(dx)− ν(dx)

)∣∣∣∣ ds −−−−→N→∞
0 (7.6)

and

1

N

N∑
i=1

∫ T

0

∣∣∣∣∫
I
W (xi, x)γ(s, x)

(
ν(N)(dx)− ν(dx)

)∣∣∣∣ ds −−−−→N→∞
0, (7.7)

where γ(s, x) :=
∫ s

0 h(s− u)λ(u, x)du.

Note that if (7.4) and (7.7) are satisfied in anoter configuration of positions that in
the Scenarios of Definition 3.8, Theorem 3.10 still applies. Likewise, if (7.5) and (7.6) are
satisfied, Theorem 3.12 still applies.

7.2. Proof of Theorem 3.10. Recall the definitions of Z
(N)
i and Zi in (2.2) and (3.1).

We remind that we consider the sequences (xN )N≥1 and
(
ξ

(N)
ij

)
N≥1

i,j∈J1,NK
fixed (our result is

quenched). Let t ∈ [0, T ]. For each i ∈ J1, NK, let ∆
(N)
i (t) be the total variation distance

between Z
(N)
i and Zi on [0, t]:

∆
(N)
i (t) =

∫ t

0

∣∣∣d(Z(N)
i (s)− Zi(s)

)∣∣∣ . (7.8)

Remark that we always have supt∈[0,T ]

∣∣∣Z(N)
i (t)− Zi(t)

∣∣∣ ≤ ∆
(N)
i (t).

We then have, using the Lipschitz continuity of f :

E
[
∆

(N)
i (t)

]
= E

[∫ t

0

∫ ∞
0
|1{

z≤λ(N)
i (s)

} − 1{z≤λ(s,xi)}|πi(ds, dz)
]

=

∫ t

0
E
[∣∣∣λ(N)

i (s)− λ(s, xi)
∣∣∣] ds

≤ Lf
∫ t

0
E

∣∣∣∣∣∣κ
(N)
i

N

N∑
j=1

ξ
(N)
ij

∫ s−

0
h(s− u)dZ

(N)
j (u)−

∫
I
W (xi, y)

∫ s−

0
h(s− u)λ(u, y)duν(dy)

∣∣∣∣∣∣
 ds

≤ Lf

(
5∑

k=1

A
(N)
i,t,k

)
(7.9)

where
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A
(N)
i,t,1 :=

∫ t

0
E

∣∣∣∣∣∣κ
(N)
i

N

N∑
j=1

ξ
(N)
ij

∫ s−

0
h(s− u)

(
dZ

(N)
j (u)− dZj(u)

)∣∣∣∣∣∣
 ds, (7.10)

A
(N)
i,t,2 :=

∫ t

0
E

∣∣∣∣∣∣κ
(N)
i

N

N∑
j=1

ξ
(N)
ij

∫ s−

0
h(s− u)

(
dZj(u)− λ(u, xj)du

)∣∣∣∣∣∣
 ds, (7.11)

A
(N)
i,t,3 :=

∫ t

0

∣∣∣∣∣∣κ
(N)
i

N

N∑
j=1

(
ξ

(N)
ij −WN (xi, xj)

)∫ s

0
h(s− u)λ(u, xj)du

∣∣∣∣∣∣ ds, (7.12)

A
(N)
i,t,4 :=

∫ t

0

∣∣∣∣∣∣ 1

N

N∑
j=1

(
κ

(N)
i WN (xi, xj)−W (xi, xj)

)∫ s

0
h(s− u)λ(u, xj)du

∣∣∣∣∣∣ ds and (7.13)

A
(N)
i,t,5 :=

∫ t

0

∣∣∣∣∣∣ 1

N

N∑
j=1

W (xi, xj)

∫ s

0
h(s− u)λ(u, xj)du−

∫
Rd
W (xi, y)

∫ s

0
h(s− u)λ(u, y)du ν(dy)

∣∣∣∣∣∣ ds.
(7.14)

We are going to control each term 1
N

∑N
i=1A

(N)
i,t,k.

A
(N)
i,t,1 captures the proximity between the particle system Z

(N)
i with its meanfield coun-

terpart Zi at the same position. We have, as the graph
(
ξ(N)

)
is fixed,

A
(N)
i,t,1 =

∫ t

0
E

∣∣∣∣∣∣κ
(N)
i

N

N∑
j=1

ξ
(N)
ij

∫ s−

0
h(s− u)

(
dZ

(N)
j (u)− dZj(u)

)∣∣∣∣∣∣
 ds

≤ 1

N

N∑
j=1

κ
(N)
i ξ

(N)
ij E

[∫ t

0

∫ s−

0
|h(s− u)|

∣∣∣d(∆
(N)
j (u)

)∣∣∣ ds] .
We use the Lemma A.1 so that

A
(N)
i,t,1 ≤

1

N

N∑
j=1

κ
(N)
i ξ

(N)
ij E

[∫ t

0
|h(t− s)|∆(N)

j (s)ds

]
,

then we have, summing :

1

N

N∑
i=1

A
(N)
i,t,1 ≤

1

N

N∑
j=1

(
N∑
i=1

κ
(N)
i

N
ξ

(N)
ij

)∫ t

0
|h(t− s)|E

[
∆

(N)
j (s)

]
ds

≤ sup
1≤j≤N

(
N∑
i=1

κ
(N)
i

N
ξ

(N)
ij

)∫ t

0
|h(t− s)|E

 1

N

N∑
j=1

∆
(N)
j (s)

 ds.
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We use (7.1) and (3.13) to obtain P-almost surely if N is large enough the bound

1

N

N∑
i=1

A
(N)
i,t,1 ≤ (1 + CW )

∫ t

0
|h(t− s)|E

 1

N

N∑
j=1

∆
(N)
j (s)

 ds. (7.15)

A
(N)
i,t,2 captures the proximity between the limit process and its expectation. We have

that

A
(N)
i,t,2 =

∫ t

0
E

∣∣∣∣∣∣ 1

N

N∑
j=1

(
V i
j (s)−E

[
V i
j (s)

])∣∣∣∣∣∣
 ds,

where V i
j (s) = κ

(N)
i ξ

(N)
ij

∫ s−
0 h(s − u)dZj(u) is a family of independent random variables

(by independence of the πi). Note that E
[
V i
j (s)

]
= κ

(N)
i ξ

(N)
ij

∫ s
0 h(s−u)λ(u, xj)du. Define

M i
j(s) := V i

j (s)−E
[
V i
j (s)

]
, which can also be written as

M i
j(s) =

∫ s

0

∫ ∞
0

1{z≤λ(u,xj)}κ
(N)
i ξ

(N)
ij h(s−u)πi(du, dz)−

∫ s

0

∫ ∞
0

1{z≤λ(u,xj)}κ
(N)
i ξ

(N)
ij h(s−u)dudz.

It is a square integrable martingale and

Var
(
V i
j (s)

)
= E

[
M i
j(s)

2
]

= E

[∫ s

0

∫ ∞
0

(
1{z≤λ(u,xj)}κ

(N)
i ξ

(N)
ij h(s− u)

)2
dudz

]
=

∫ s

0

(
κ

(N)
i

)2
ξ

(N)
ij h(s− u)2λ(u, xj)du.

Thus summing on i and using Lemma A.2,

1

N

N∑
i=1

A
(N)
i,t,2 ≤

1

N

N∑
i=1

∫ t

0

1

N

√√√√ N∑
j=1

∫ s

0

(
κ

(N)
i

)2
ξ

(N)
ij h(s− u)2λ(u, xj)du ds.

We use then Jensen inequality to both uniform measures on {1, . . . , N} and [0, t] to
obtain :

1

N

N∑
i=1

A
(N)
i,t,2 ≤

t

N

∫ t

0

√√√√ 1

N

N∑
i=1

N∑
j=1

∫ s

0

(
κ

(N)
i

)2
ξ

(N)
ij h(s− u)2λ(u, xj)du

ds

t

≤ t

N

√√√√ 1

Nt

N∑
i,j=1

(
κ

(N)
i

)2
ξ

(N)
ij

∫ t

0

∫ s

0
h(s− u)2λ(u, xj)duds

By Hypothesis 2.4 on h, we have

1

N

N∑
i=1

A
(N)
i,t,2 ≤ t‖h‖t,2

√
‖λ‖[0,t]×I,∞

√√√√ 1

N3

N∑
i,j=1

(
κ

(N)
i

)2
ξ

(N)
ij .

We use (7.3) and (3.11) to obtain P-almost surely if N is large enough the bound :

1

N

N∑
i=1

A
(N)
i,t,2 ≤ t‖h‖t,2

√
‖λ‖[0,t]×I,∞

√
κN
N

(1 + CW ). (7.16)
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A
(N)
i,t,3 captures the proximity between the realization of the graph

(
ξ(N)

)
and its expec-

tation. We define for (s, x, y) ∈ [0, T ]× I × I :

γ(s, x) :=

∫ s

0
h(s− u)λ(u, x)du, (7.17)

ΓT (x, y) :=

∫ T

0
γ(s, x)γ(s, y)ds. (7.18)

Note that we always have |γ(s, x)| ≤ ‖h‖s,1‖λ‖[0,s]×I,∞ =: γs,∞ and 0 ≤ ΓT (x, y) ≤

Tγ2
T,∞. Recall that ξij := ξ

(N)
ij −WN (xi, xj). Then A

(N)
i,t,3 =

∫ t

0

∣∣∣∣∣∣κ
(N)
i

N

N∑
j=1

ξijγ(s, xj)

∣∣∣∣∣∣ ds ≤∫ T

0

∣∣∣∣∣∣κ
(N)
i

N

N∑
j=1

ξijγ(s, xj)

∣∣∣∣∣∣ ds. Note that one cannot apply Proposition 7.1 directly in the

integrand since the a.s. would depend on s ∈ [0, T ]. Therefore, we control its square, by
Jensen inequality :

A
(N)
i,t,3

2
≤ T

∫ T

0

κ(N)
i

N

N∑
j=1

ξijγ(s, xj)

2

ds = T 2γ2
T,∞

κ
(N)
i

N

N∑
j=1

ξijXij ,

with Xij :=
κ

(N)
i

N

N∑
l=1

ξil
ΓT (xj , xl)

Tγ2
T,∞

. By Proposition 7.1, P-almost surely for N large

enough, sup1≤i,j≤N |Xij | ≤ εN , thus

A
(N)
i,t,3

2
≤ T 2γ2

T,∞
κ

(N)
i

N

N∑
j=1

(
ξ

(N)
ij +WN (xi, xj)

)
sup
i,j
|Xij |

≤ T 2γ2
T,∞εN

κ
(N)
i

N

N∑
j=1

(
ξ

(N)
ij +WN (xi, xj)

)
.

Taking the square root then summing on i, we use the discrete Jensen inequality to obtain

1

N

N∑
i=1

A
(N)
i,t,3 ≤

√
εNTγT,∞

1

N

N∑
i=1

√√√√κ
(N)
i

N

N∑
j=1

(
ξ

(N)
ij +WN (xi, xj)

)

≤
√
εNTγT,∞

√√√√ N∑
i=1

κ
(N)
i

N2

N∑
j=1

(
ξ

(N)
ij +WN (xi, xj)

)
,

if N is large enough P-almost surely. Using (7.2) and (3.11), we have
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1

N

N∑
i=1

A
(N)
i,t,3 ≤

√
εNTγT,∞

√√√√ 1

N

N∑
i=1

κ
(N)
i

N

N∑
j=1

ξ
(N)
ij +

1

N

N∑
i=1

κ
(N)
i

N

N∑
j=1

WN (xi, xj)

≤
√
εNTγT,∞

√√√√√1 + CW + sup
i∈J1,NK

κ(N)
i

N

N∑
j=1

WN (xi, xj)

 =
√
εNTγT,∞

√
1 + 2CW .

(7.19)

A
(N)
i,t,4 captures the proximity between the law of the graph on N particles and the limit

graphon W . Recall the definition of γ in (7.17) the graphs introduced in Definitions 3.6

and 7.3. Denoting by c(s) = (cj(s))1≤j≤N =

(
γ(s, xj)

γt,∞

)
1≤j≤N

∈ [−1, 1]N , we obtain using

the notations (3.6) and introducing for any c = (c1, · · · , cN ) ∈ [−1, 1]N the step function

gc(v) =
∑N

l=1 cl1Bl(v) for ∈ I, after summation :

1

N

N∑
i=1

A
(N)
i,t,4 = γt,∞

∫ t

0

∫ ∣∣∣∣∫ (W G(1)N (u, v)−W G
(2)
N (u, v)

)
gc(s)(v)ν(dv)

∣∣∣∣ ν(du)ds

= TγT,∞‖W G
(1)
N −W G

(2)
N ‖∞→1,ν ,

where ‖ · ‖∞→1,ν is defined in (3.3). Hence, with Remark 3.3 we obtain :

1

N

N∑
i=1

A
(N)
i,t,4 ≤ 4TγT,∞

(
d2,ν

(
W G

(1)
N ,W

)
+ d2,ν

(
W G

(2)
N ,W

))
(7.20)

We use (7.4) to deal with d2,ν

(
W G

(2)
N ,W

)
.

1
N

∑N
i=1A

(N)
i,t,5 captures the proximity between the empirical measure of the positions of

N particles µ(N) and its limit ν. We denote by A
(N)
t,5 = 1

N

∑N
i=1A

(N)
i,t,5, it is controlled with

(7.7).
Combining (7.15), (7.16), (7.19) and (7.20), we obtain if N is large enough P-almost

surely for every t ∈ [0, T ]:

E

[
1

N

N∑
i=1

∆
(N)
i (t)

]
≤ C1

∫ t

0
|h(t− s)|E

 1

N

N∑
j=1

∆
(N)
j (s)

 ds+ C2

√
κN
N

+ C3
√
εN

+ C4d2,ν

(
W G

(1)
N ,W

)
+ C4γT,∞d2,ν

(
W G

(2)
N ,W

)
+ LfA

(N)
t,5 (7.21)

with C1, C2, C3, C4 constants depending on Lf , CW , h and T .

We apply Lemma A.5 with u(t) = E

[
1

N

∑N
i=1 ∆

(N)
i (t)

]
on [0, T ], and remind that

supt∈[0,T ]

∣∣∣Z(N)
i (t)− Zi(t)

∣∣∣ ≤ ∆
(N)
i (t) to obtain P-almost surely on the realisation of

(
ξ(N)

)
if N is large enough :
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1

N

N∑
i=1

E

[
sup
t∈[0,T ]

∣∣∣Z(N)
i (t)− Zi(t)

∣∣∣] ≤ C (√κN
N

+
√
εN + d2,ν

(
W G

(1)
N ,W

)
+ d2,ν

(
W G

(2)
N ,W

)
+A

(N)
T,5

)
(7.22)

with C =
√

2 max (C2, C3, C4, Lf ) exp
(
C2

1‖h‖2T,2T
)

.

By(3.10), εN −−−−→
N→∞

0, by (3.10)
κN
N
−−−−→
N→∞

0 and by (3.12) d2,ν

(
W G

(1)
N ,W

)
−−−−→
N→∞

0.

Combining with Proposition 7.4, it concludes the proof of (3.14).
�

7.3. Proof of Theorem 3.12. The following proof is almost the same as the proof of
Theorem 3.10 with changes due to the fact that we take now the maximum on i. Let us

go back to the inequality (7.9). We are going to control each term max1≤i≤N A
(N)
i,t,k.

Concerning A
(N)
i,t,1, the same estimate as in the proof of Theorem 3.10 leads now to

max
1≤i≤N

A
(N)
i,t,1 ≤ max

1≤i≤N

 1

N

N∑
j=1

κ
(N)
i ξ

(N)
ij

∫ t

0
|h(t− s)| max

1≤i≤N
E
[
∆

(N)
i (s)

]
ds.

We use (7.2) and (3.11) to obtain P-almost surely if N is large enough : (7.2)

max
1≤i≤N

A
(N)
i,t,1 ≤ (1 + CW )

∫ t

0
|h(t− s)| max

1≤i≤N
E
[
∆

(N)
i (s)

]
ds. (7.23)

Note that here, we do not use the same control as is the proof of Theorem 3.10, we only
need the uniformly bounded indegree.

Concerning A
(N)
i,t,2, we obtain as in the proof of Theorem 3.10

A
(N)
i,t,2 ≤

∫ t

0

1

N

√√√√ N∑
j=1

∫ s

0

(
κ

(N)
i

)2
ξ

(N)
ij h(s− u)2λ(u, xj)du ds.

We use Jensen inequality on the probability measure 1
t dt on [0, t] and then the bound-

edness of h and λ to obtain

A
(N)
i,t,2 ≤

t

N
√
t
κ

(N)
i

√√√√ N∑
j=1

ξ
(N)
ij

∫ t

0

∫ s

0
h(s− u)2λ(u, xj)du ds

≤ ‖h‖t,2
√
‖λ‖[0,t]×Rd,∞

√
t

N
κ

(N)
i

√√√√ N∑
j=1

ξ
(N)
ij ,

and taking the maximum leads to

max
1≤i≤N

A
(N)
i,t,2 ≤

√
κN
N

√√√√ max
1≤i≤N

κ
(N)
i

N

N∑
j=1

ξ
(N)
ij ‖h‖t,2

√
t‖λ‖[0,t]×Rd,∞.

Using as before (7.2) and (3.11), we obtain P-almost surely if N is large enough

max
1≤i≤N

A
(N)
i,t,2 ≤

√
κN
N

√
1 + CW ‖h‖t,2

√
t‖λ‖[0,t]×Rd,∞. (7.24)
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Concerning A
(N)
i,t,3, we obtain as in the proof of Theorem 3.10 that P-almost surely

A
(N)
i,t,3 ≤ TγT,∞

√√√√εN
κ

(N)
i

N

N∑
j=1

(
ξ

(N)
ij +WN (xi, xj)

)
,

hence taking the maximum and using (7.2) and (3.11), we obtain P-almost surely if N is
large enough

max
1≤i≤N

A
(N)
i,t,3 ≤ TγT,∞

√
εN
√

1 + 2CW . (7.25)

Concerning A
(N)
i,t,4, we recognise

A
(N)
i,t,4 = γt,∞

∫ t

0

∣∣∣∣∣∣ 1

N

N∑
j=1

(
κ

(N)
i WN (xi, xj)−W (xi, xj)

)
cj(s)

∣∣∣∣∣∣ ds.
We obtain, using Definitons 3.6 and 7.3 with Example 3.5 that as

sup
1≤i≤N

∣∣∣∣∣∣ 1

N

N∑
j=1

(
κ

(N)
i WN (xi, xj)−W (xi, xj

)
cj(s)

∣∣∣∣∣∣
= sup

u∈I

∣∣∣∣∫ (W G(1)N (u, v)−W G
(2)
N (u, v)

)
gc(s)(v)ν(dv)

∣∣∣∣ ,
we have

sup
1≤i≤N

A
(N)
i,t,4 = γt,∞ sup

1≤i≤N

∫ t

0

∣∣∣∣∣∣ 1

N

N∑
j=1

(
κ

(N)
i WN (xi, xj)−W (xi, xj)

)
cj(s)

∣∣∣∣∣∣ ds
≤ γt,∞

∫ t

0
sup

g,‖g‖∞≤1
sup
u∈I

∣∣∣∣∫ (W G(1)N (u, v)−W G
(2)
N (u, v)

)
g(v)ν(dv)

∣∣∣∣ ds
≤ TγT,∞‖W G

(1)
N −W G

(2)
N ‖∞→∞,ν ≤ TγT,∞

(
‖W G

(1)
N −W‖∞→∞,ν + ‖W −W G

(2)
N ‖∞→∞,ν

)
.

(7.26)

Concerning A
(N)
i,t,5, we denote by Ã

(N)
t,5 = max1≤i≤N A

(N)
i,t,5. It is controlled with (7.6).

Combining (7.23), (7.24), (7.25) and (7.26), we obtain if N is large enough P-almost
surely for every t ∈ [0, T ]:

E

[
max

1≤i≤N
∆

(N)
i (t)

]
≤ C1

∫ t

0
|h(t− s)|E

[
max

1≤i≤N
∆

(N)
j (s)

]
ds+ C2

√
κN
N

+ C3
√
εN + C4‖W G

(1)
N −W‖∞→∞,ν + C4‖W G

(2)
N −W‖∞→∞,ν + Lf Ã

(N)
t,5 (7.27)

with C1, C2, C3 and C4 constants depending on h, f , CW and T .

We apply the Lemma A.5 with u(t) = E
[
max1≤i≤N ∆

(N)
i (t)

]
on [0, T ], and remind

supt∈[0,T ]

∣∣∣Z(N)
i (t)− Zi(t)

∣∣∣ ≤ ∆
(N)
i (t) to obtain P-almost surely on the realisation of

(
ξ(N)

)
if N is large enough :
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max
1≤i≤N

E

[
sup
t∈[0,T ]

∣∣∣Z(N)
i (t)− Zi(t)

∣∣∣] ≤ C (√κN
N

+
√
εN + ‖W G

(1)
N −W‖∞→∞,ν

+‖W G
(2)
N −W‖∞→∞,ν + Ã

(N)
t,5

)
(7.28)

with C =
√

2 max (C2, C3, C4, Lf ) exp
(
C2

1‖h‖2T,2T
)

.

By(3.10), εN −−−−→
N→∞

0, by (3.10)
κN
N
−−−−→
N→∞

0 and by (3.15) ‖W G
(1)
N −W‖∞→∞,ν −−−−→

N→∞
0. Combining with Proposition 7.4, it concludes the proof of (3.16).

�

7.4. Proofs : Application to the Scenarios of Definition 3.8. In this section, we
prove Proposition 7.4. We start by presenting a toolbox of results that come up in the
main proof.

7.4.1. Toolbox.

Lemma 7.5. Let (x̃i)i≥1 be a sequence of i.i.d positions on [0, 1] with law U [0, 1]. For all
N ≥ 1 and for i = 1, · · · , N , define xi = x̃(i) as the order statistics of (x̃1, · · · , x̃N ) (i.e.
{x̃1, · · · , x̃N} = {x1, · · · , xN} and x1 < · · · < xN ). Then, for any borelian sets A and B
of ]0, 1],

1

N

N∑
i=1

1xi∈A, iN ∈B
−−−−→
N→∞

λ(A ∩B) a.s. (7.29)

where λ denotes the Lebesgue measure on [0, 1].

Proof. It is sufficient to show that for all (t, t′) ∈]0, 1]2,

1

N

N∑
i=1

1xi≤t, iN≤t′
−−−−→
N→∞

min(t, t′) a.s.

We introduce the uniform sample quantile function as in [21] : define for any y ∈ [0, 1]

UN (y) =

{
0 if y = 0

xk if
k − 1

N
< y ≤ k

N
, k ∈ J1, NK.

(7.30)

First, we show that lim
N→∞

1

N

N∑
i=1

1xi≤t, iN≤t′
= lim

N→∞

∫ t′

0
1UN (y)≤tdy. We note k the

integer such that xk ≤ t < xk+1 (and k = 0 if x1 > t).
If t′ ≥ k

N , then

1

N

N∑
i=1

1xi≤t, iN≤t′
=

1

N

N∑
i=1

1xi≤t,i≤Nt′ =
1

N

Nt′∑
i=1

1xi≤t =
k

N
,

and
∫ t′

0 1UN (y)≤tdy =
∫ t′

0 1y≤ k
n
dy =

k

N
. If t′ < k

N ,
∫ t′

0 1UN (y)≤tdy =
∫ t′

0 1y≤ k
n
dy = t′, and

1

N

N∑
i=1

1xi≤t, iN≤t′
=

1

N

k∑
i=1

1i≤Nt′ =
bNt′c
N

−−−−→
N→∞

t′.
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Then, we know from [21] that sup
0≤y≤1

|UN (y)− y| a.s.−−−−→
N→∞

0, and hence almost surely, for

any fixed y ∈ [0, 1], UN (y)
p.s.−−−−→

N→∞
y and by dominated convergence∫ t′

0
1UN (y)≤tdy −−−−→

N→∞

∫ t′

0
1y≤tdy = min(t, t′),

which concludes the proof. �

Proposition 7.6. Under the Scenario (1) of Definition 3.8, for any function g such that
‖g‖Lχ(I×I),ν×ν <∞ with χ > 5,

sup
1≤i≤N

∫
I
g(xi, y)

(
ν(N)(dy)− ν(dy)

)
−−−−→
N→∞

0 (7.31)

P-almost surely on the realisation of the sequence
(
x(N)

)
N

.

Proof. Fix M > 0, and define the function pM (u) = u1|u|≤M +M1u>M −M1u<−M on R.
Set gM = pM ◦ g. The following arguments come from [46] in the proof of Proposition 3.4.
We have

sup
1≤i≤N

∫
I
g(xi, y)

(
ν(N)(dy)− ν(dy)

)
≤ sup

1≤i≤N

1

N

N∑
j=1

|g(xi, xj)− gM (xi, xj)|

+ sup
1≤i≤N

∫
I
|g(xi, y)− gM (xi, y)| ν(dy) + sup

1≤i≤N

∫
I
gM (xi, y)

(
ν(N)(dy)− ν(dy)

)
=: (I) + (II) + (III).

To study (I), note that |g(x, y)− gM (x, y)| = |g(x, y)− gM (x, y)|1|g(x,y)|>M ≤ 2|g(x, y)|1|g(x,y)|>M ,
and that for any independent X,Y with law ν

E
[
|g(X,Y )|1|g(X,Y )|>M

]
=

+∞∑
l=0

E
[
|g(X,Y )|12lM<|g(X,Y )|≤2l+1M

]
≤

+∞∑
l=0

2l+1M
(
P
(
|g(X,Y )| > 2lM

)
− P

(
|g(X,Y )| > 2l+1M

))
= 2MP (|h(X,Y )| > M) +

+∞∑
l=1

2lMP
(
|g(X,Y )| > 2lM

)
≤ E [|g(X,Y )|χ]

(
2

Mχ−1
+

+∞∑
l=1

2lM

(2lM)
χ

)
≤ 3E [|g(X,Y )|χ]

Mχ−1
,

where we used Markov inequality. As E

[
1

N

N∑
l=1

|g(xi, xl)− gM (xi, xl)|

]
≤ 2

N

N∑
l=1

E
[
|g(xi, xl)|1|g(xi,xl)|>M

]
,

it implies, for the choice of M = N δ1 with δ1 > 0 to define later, using Markov inequality
and a union bound that

P
(

(I) >
1

N δ2

)
≤ 6E [|g(X,Y )|χ]

N δ1(χ−1)−δ2−1
.

Similarly, we can show that

P
(

(II) >
1

N δ2

)
≤ 6E [|g(X,Y )|χ]

N δ1(χ−1)−δ2−1
.
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We will use the two precedent bounds with Borel-Cantelli Lemma to deduce that P-
almost surely, (I) + (II) −−−−→

N→∞
0 by asking δ1(χ − 1) − δ2 − 1 > 1. To deal with (III)

we use the boundedness of gM . Note that (III) can be re-written sup
1≤i≤N

1

N

N∑
l=1

Y
(i),M
l

with Y
(i),M
l := gM (xi, xl) −

∫
I gM (xi, y)ν(dy) = gM (xi, xl) − E [gM (xi, Y )|xi]. We set

F (i)
l = σ (xi, x1, . . . , xl). We have for l 6= i

E
[
Y

(i),M
l

∣∣∣F (i)
l−1

]
= E

[
UM (xi, xl)− EY [UM (xi, Y )|xi]

∣∣∣F (i)
l−1

]
= 0.

As
∣∣∣Y (i),M
l

∣∣∣ ≤ 2M , we can then apply Lemma A.6 : for any x > 0,

P

 1

N − 1

N∑
l=1
l 6=i

Y
(i),M
l

2M
≥ x

 ≤ exp

(
−(N − 1)

x2

2
B(x)

)

with the function B defined in (A.2). We consider a sequence εN such that εN −−−−→
N→∞

0

(we precise later which one), and apply the precedent result with x =
εNN

2M(N − 1)
. As

B(u) = u−2 ((1 + u) log (1 + u)− u) → 1

2
when u → 0, we can choose a deterministic p

such that for all N ≥ p, B
(

εNN

2M(N − 1)

)
≥ 1

4
. We then have if N ≥ p :

P

 1

N

N∑
l=1
l 6=i

Y
(i),M
l ≥ εN

 ≤ exp

(
− 1

32M2

ε2
NN

2

N − 1

)
,

doing the same for −Y (i)
l and with a union bound we obtain

P

 sup
1≤i≤N

∣∣∣∣∣∣∣∣
1

N

N∑
l=1
l 6=i

Y
(i),M
l

∣∣∣∣∣∣∣∣ ≥ εN
 ≤ 2N exp

(
− 1

32M2

ε2
NN

2

N − 1

)
.

It is sufficient to find εN such that εN −−−−→
N→∞

0 and
∑

2N exp

(
− 1

32M2

ε2
NN

2

N − 1

)
<∞ to

conclude by Borel-Cantelli’s Lemma, P-almost surely ifN is large enough sup1≤i≤N

∣∣∣∣∣∣∣
1

N

N∑
l=1
l 6=i

Y
(i),M
l

∣∣∣∣∣∣∣ ≤
εN . We set then ε2

N := 32M2(N −1)Nγ , and require γ > −2 and γ < −1−2δ1. As Y
(i),M
i

is bounded (by 2M), adding the term 1
N Y

(i),M
i does not change the convergence if δ1 < 1

which is already asked for the conditions on εN (recall M = N δ1).
All we remain to find is parameters (δ1, δ2, γ) such that δ1 > 0, δ2 > 0, δ1(χ−1)−δ2−1 >

1, γ > −2 and γ < −1− 2δ1 (to ensure that the probabilities obtained with (I), (II) and
(III) are summable and the sufficient conditions on ε). As χ > 5, any choices such that
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δ1 ∈ (0, 1
2) and δ2 ∈ (0, 1) work (as δ1(χ − 1) − 1 < 1) with γ ∈ (−2,−1 − 2δ1), and we

obtain (7.31) P-almost surely.
�

Corollary 7.7. Under Scenario (1) of Definition 3.8, we define

εi,1 :=

∫
I×I

W (xi, y)W (xi, z)Γ(y, z)
(
ν(N)(dy)ν(N)(dz)− ν(dy)ν(N)(dz)

)
(7.32)

εi,2 :=

∫
I×I

W (xi, y)W (xi, z)Γ(y, z)
(
ν(dy)ν(N)(dz)− ν(dy)ν(dz)

)
, (7.33)

where Γ is defined in (7.18). Then under Hypothesis 3.7, P-almost surely,

sup
1≤i≤N

εi,1 −−−−→
N→∞

0 and sup
1≤i≤N

εi,2 −−−−→
N→∞

0.

Proof. Note that εi,2 =
∫
I φ(xi, z)

(
ν(N)(dz)− ν(dz)

)
, with φ(x, z) := W (x, z)

∫
IW (x, y)Γ(y, z)ν(dy).

As Γ is bounded, |φ(x, z)| ≤ |W (x, z)| ‖Γ‖∞CW1 and sinceW ∈ Lχ(I2, ν×ν), ‖φ‖Lχ(I×I),ν×ν <
∞, (7.33) is an immediate application of Proposition 7.6. Similarly, note that εi,1 =∫
I gN (xi, y)

(
ν(N)(dy)− ν(dy)

)
, with gN (x, y) := W (x, y)

∫
IW (x, z)Γ(y, z)ν(N)(dz). De-

fine also g(x, y) := W (x, y)
∫
IW (x, z)Γ(y, z)ν(dz), and then

εi,1 =

∫
I

(gN (xi, y)− g(xi, y))
(
ν(N)(dy)− ν(dy)

)
+

∫
I
g(xi, y)

(
ν(N)(dy)− ν(dy)

)
.

We have immediatly (as done with (7.33)) that sup1≤i≤N
∫
I g(xi, y)

(
ν(N)(dy)− ν(dy)

)
−−−−→
N→∞

0. For the other term, that we denote by εi,3, we have εi,3 =
∫
IW (xi, y)αN (xi, y)

(
ν(N)(dy)− ν(dy)

)
where αN (xi, y) :=

∫
IW (xi, z)Γ(y, z)

(
ν(N)(dz)− ν(dz)

)
. As Γ is bounded, Proposition

7.6 (and its proof) gives that αN (xi, y) −−−−→
N→∞

0 uniformly in i and y. Another application

of Proposition 7.6 gives then that sup1≤i≤N εi,3 −−−−→
N→∞

0 which concludes the proof.

�

7.4.2. Proof of Proposition 7.4 for Scenario (1). We treat the estimates (7.4), (7.5), (7.6)
and (7.7) separately.

Proof of (7.4). We remind that we want to prove d2,ν

(
W G

(2)
N ,W

)
−−−−→
N→∞

0, when the

positions are i.i.d according to ν on I. Recall the definition of (x1, · · · , xN ) as the lexico-
graphic reordering of the i.i.d. sample (x̃1, x̃2, · · · , x̃N ). The proof is organised as follow
: we start by looking at the case d = 1, I = [0, 1] and ν is the Lebesgue measure on I,

and then extend to the general case. We start by approximating W by W̃ continuous in
L1(I2, ν).

Step 1 - Approximation of W in norm L1. We first prove that for ε > 0, there exists
m ≥ 1 sufficiently large such that ‖W −WPm‖L1(I2) ≤ ε.

We fix ε > 0. As W ∈ L1(I2, ν), there exists W̃ continuous such that ‖W − W̃‖1,ν ≤
ε

3
.

As W̃ is also uniformly continuous, there exists η > 0 such that if ‖u−u′‖+ ‖v− v′‖ ≤ η,∣∣∣W̃ (u, v)− W̃ (u′, v′)
∣∣∣ ≤ ε

3
. We fix m large enough such that 1

m ≤ η, and denote by Pm =

tmi=1Ji the partition Ji =
(
i−1
m , im

]
. It verifies then, for each i ∈ (1, · · · ,m) Diam(Ji) ≤ η.

We define the step function (which average the values of W over cells obtained with the
partition)
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WPm(u, v) := m2
m∑

i,j=1

∫
Ji×Jj

W (x, y)ν(dx)ν(dy)1Ji(u)1Jj (v). (7.34)

We note G(3)
N the directed weighted graph with vertices {1, · · · , N} such that every edge

j → i is present, with weight WPm(xi, xj). We use it to upper-bound the cut-distance

between W and W G
(2)
N :

d2,ν

(
W G

(2)
N ,W

)
≤ ‖W G

(2)
N −W‖1,ν

≤ ‖W G
(2)
N −W G

(3)
N ‖1,ν + ‖W G

(3)
N −WPm‖1,ν + ‖WPm −W‖1,ν . (7.35)

We are going to control each of these terms in (7.35) in the following steps.
Step 2 - Control of ‖WPm −W‖1,ν . We have

‖WPm −W‖1,ν ≤ ‖WPm − W̃Pm‖1,ν + ‖W̃Pm − W̃‖1,ν + ‖W̃ −W‖1,ν .

As ‖W − W̃‖1,ν ≤
ε

3
, and as for any partition P, ‖WP‖1,ν ≤ ‖W‖1,ν , we have ‖WPm −

W̃Pm‖1,ν ≤
ε

3
and

‖W̃Pm − W̃‖1,ν =
m∑

i,j=1

∫
Ji

∫
Jj

∣∣∣∣∣W̃ (u, v)−m2

∫
Ji

∫
Jj

W̃ (x, y)ν(dx)ν(dy)

∣∣∣∣∣ ν(du)ν(dv)

≤
m∑

i,j=1

∫
Ji

∫
Jj

m2

∫
Ji

∫
Jj

∣∣∣W̃ (u, v)− W̃ (x, y)
∣∣∣ ν(dx)ν(dy) ν(du)ν(dv) ≤ ε

3
,

hence ‖WPm −W‖1,ν ≤ ε.
Step 3 - Control of ‖W G

(2)
N −W G

(3)
N ‖1,ν . For all N ≥ 1, we recall

(
B

(N)
1 , · · · , B(N)

N

)
the

partition of I with Bi =

(
i− 1

N
,
i

N

]
(we omit by simplicity the (N)). Using the notation

introduced in (3.6) we have

‖W G
(2)
N −W G

(3)
N ‖1,ν =

N∑
i,j=1

∫
Bi

∫
Bj

|W (xi, xj)−WPm(xi, xj)| ν(du)ν(dv)

=
1

N2

N∑
i,j=1

|W (xi, xj)−WPm(xi, xj)| =:
1

N2

N∑
i,j=1

F (xi, xj). (7.36)

We use the following proposition to show that it converges almost surely to ‖WPm −
W‖1,ν .

Proposition 7.8 (Hoeffding [40]). Let X1, X2, · · · be a sequence of i.i.d random variables
with distribution ν, and f a real-valued measurable function. Then if E [|f(X1, X2|] < +∞,

1

N(N − 1)

N∑
i,j=1
i 6=j

f(Xi, Xj)
a.s.−−−−→

N→∞
E [f(X1, X2)] =

∫ ∫
f(x, y)ν(dx)ν(dy). (7.37)
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We have indeed

1

N2

N∑
i,j=1

F (xi, xj) =
1

N2

N∑
i=1

F (xi, xi) +
N(N − 1)

N2︸ ︷︷ ︸
→1

1

N(N − 1)

N∑
i,j=1
i 6=j

F (xi, xj)

︸ ︷︷ ︸
→
∫ ∫

F (x,y)ν(dx)ν(dy) a.s.

,

and

1

N2

N∑
i=1

F (xi, xi) ≤
1

N

(
1

N

N∑
i=1

|W (xi, xi)|+
1

N

N∑
i=1

|WPm(xi, xi)|

)
−−−−→
N→∞

0

as the sums are controlled by Hypothesis 2.6.

Step 4 - Control of ‖W G
(3)
N −WPm‖1,ν . We have

‖W G
(3)
N −WPm‖1,ν =

N∑
i,j=1

∫
Bi

∫
Bj

|WPm(xi, xj)−WPm(x, y)| ν(dx)ν(dy). (7.38)

Recalling (7.34) and setting αkl = m2
∫
Jk×JlW (u, v)ν(du)ν(dv) we have

‖W G
(3)
N −WPm‖1,ν =

∑
k,l

∑
k′,l′

|αkl − αk′l′ |
N∑

i,j=1

1Jk×Jl(xi, xj)ν(Jk′ ∩Bi)ν(Jl′ ∩Bj).

We consider N large enough (N > m) such that every box Bi =
]
i−1
N , iN

]
(of size 1

N )

is inside a larger box Jk′ =
]
k′−1
m , k

′

m

]
(of size 1

m) (note that there might be some Bi that

are on two different parts of the partition Pm, but we can neglect this contribution - at

most of order m
N −−−−→N→∞

0). Then ν(Jk′ ∩Bi) = 1{Bi⊂Jk′}ν(Bi) =
1{ iN ∈Jk′}

N
, and

‖W G
(3)
N −WPm‖1,ν ≤

m∑
k,l=1

m∑
k′,l′=1

|αkl − αk′l′ |
N∑

i,j=1

1

N2
1{(xi,xj)∈Jk×Jl,Bi⊂Jk′ ,Bj⊂Jl′}

≤
m∑

k,l=1

m∑
k′,l′=1

|αkl − αk′l′ |

(
1

N

N∑
i=1

1{xi∈Jk, iN ∈Jk′}

) 1

N

N∑
j=1

1{xj∈Jl, jN ∈Jl′}

 .

Then, from Lemma 7.5,
1

N

∑N
i=1 1{xi∈Jk, iN ∈Jk′}

a.s.−−−−→
N→∞

λ(Jk ∩ Jk′) =
1

m
1k=k′ , thus

almost-surely (on the realisation of the sequence of positions) we have ‖W G
(3)
N −WPm‖1,ν −−−−→

N→∞
0.

Conclusion when the positions are uniformly drawn - From (7.35), we have shown then

that lim supN→∞ d2,ν

(
W G

(2)
N ,W

)
≤ ε which concludes the proof for the case xi ∼ U(0, 1).

Generalisation : from [0, 1] to [0, 1]d - Consider the case xi =
(
u

(1)
i , · · · , u(d)

i

)
where(

u
(j)
i

)
1≤j≤d

are drawn uniformly on (0, 1] (but not necessarily independent), and the
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partition I = (0, 1]d =
N⊔
i=1

B
(N)
i =

N⊔
i=1

((
i− 1

N
,
i

N

]
× (0, 1]d−1

)
. Proposition 7.8 still

apply, and the treatment of the terms ‖W G
(2)
N − ‖W G

(3)
N ‖1,ν and ‖WPm −W‖1,ν in (7.35)

remains the same. For the term ‖W G
(3)
N −WPm‖1,ν , it suffices to note that the chosen

partition
⊔
B

(N)
i only affects the first coordinates to conclude by the same arguments.

Generalisation : from [0, 1]d to Rd - Consider the case I ⊂ Rd. From Sklar’s theorem
(originally in [61], see Theorem 2.3.3 of [53]) we have :

fν(x(1), · · · , x(d)) = c(F1(x(1)), · · · , Fd(x(d)))f1(x(1)) · · · fd(x(d)),

where c is the copula density function of ν, fi the i-th marginal probability density func-
tions, Fi the i-th marginal cumulative distribution functions and fν the joint probability
function of the law ν (that satisfies ν(dx) = fν(x(1), · · · , x(d))dx(1) · · · dx(d)). It implies

that, for the change of variables u =
(
F1(x(1), · · · , Fd(x(d))

)
, we have c(u)du = fν(x)dx.

Define also ui =
(
F1(x

(1)
i , · · · , Fd(x

(d)
i )
)

and

WF (u, v) := W
((
F−1

1 (u(1)), · · · , F−1
d (u(d))

)
,
(
F−1

1 (v(1)), · · · , F−1
d (v(d))

))
,

the previous change of variable gives then

‖W G
(2)
N −W‖1,ν =

N∑
i,j=1

∫
Bi

∫
Bj

|W (xi, xj)−W (x, y)| ν(dx)ν(dy)

=

N∑
i,j=1

∫
( i−1
N
, i
N ]×Rd−1

∫
( j−1
N
, j
N ]×Rd−1

|WF (ui, uj)−WF (u, v)| c(u)c(v)du dv.

The precedent case gives immediately the result.

Proof of (7.5). We remind that we want to prove ‖W G
(2)
N −W‖∞→∞,ν −−−−→

N→∞
0. As in the

proof of (7.4), we start with the case I = [0, 1], x̃i ∼ U (0, 1) i.i.d. (then ν is the Lebesgue
measure). What changes is that we no longer integrate with respect to the first variable,
but we take the supremum. The approximation in L1(I2) is not adapted anymore, thus
we approximate W differently. Recall that

‖W G
(2)
N −W‖∞→∞,ν = sup

g,‖g‖∞≤1
sup
u∈I

∣∣∣∣∫
I

(
W G

(2)
N (u, v)−W (u, v)

)
g(v)ν(dv)

∣∣∣∣ .
Step 1 - A first bound. Fixing g such that ‖g‖∞ ≤ 1 and u ∈ I, for any N there exists

a unique i such that u ∈ B(N)
i =

(
i− 1

N
,
i

N

]
. Then

∣∣∣∣∫
I

(
W G

(2)
N (u, v)−W (u, v)

)
g(v)ν(dv)

∣∣∣∣ =

∣∣∣∣∣∣
N∑
j=1

∫
Bj

(W (xi, xj)−W (u, v)) g(v)ν(dv)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
N∑
j=1

∫
Bj

(W (xi, xj)−W (xi, v)) g(v)ν(dv)

∣∣∣∣∣∣
+

∣∣∣∣∫
I

(W (xi, v)−W (u, v)) g(v)ν(dv)

∣∣∣∣ =: A(g, u) +B(g, u).
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Step 2 - Upper-bound of A(g, u) by approximated functions independent of g. As ‖g‖∞ ≤
1, we have A(g, u) ≤

∑N
j=1

∫
Bj
|W (xi, xj)−W (xi, v)| dv. Note that is does not depend

anymore on g and it depends on u only by the index i. To control this term, we first
approximate W by a stepfunction in L1(I), W̃Pm . Introduce (ϕη)η>0 as ϕη(x) = η−1φ(xη )

where φ is a non-negative continuous function of I with
∫
φ = 1. Define for all x ∈ I

W̃η(x, ·) := W (x, ·) ∗ ϕη. Note that y 7→ W̃η(x, y) ∈ R is a continuous function for all x ∈
[0, 1]. As for any (x, x′) ∈ I2, ‖W (x, ·)−W (x′, ·)‖1 ≤ Cw‖x−x′‖ι using (2.5), x 7→W (x, ·)
is continuous from [0, 1] to L1(I), so that the set of functions F := {W (x, ·), x ∈ [0, 1]} is
compact. Hence, for ε > 0, we can then find p ≥ 1 and p positions y1, · · · , yp such that

F ⊂ ∪pk=1BL1 (W (yk, ·), ε). Then, there exists η > 0 such that for all k ≤ p, ‖W̃η(yk, ·)−
W (yk, ·)‖I,1 ≤ ε. From now, we may omit the notation η for W̃ .

Let m ≥ 1 and Pm = tmi=1Ji for Jr =

(
r − 1

m
,
r

m

]
the regular partition of I of order m.

For any kernel H on I2, define

HPm (x, v) := m
m∑
r=1

(∫
Jr

H(x, y)dy

)
1Jr(v). (7.39)

Note that H 7→ HPm is continuous : ‖HPm‖L1(I2) ≤ ‖H‖L1(I2). Note that this definition
is different from the one used in the proof of (7.4) where we integrated on both variables.

By continuity of y 7→ W̃ (yk, y) for all k = 1 · · · p, there exists m ≥ 1 such that

sup1≤l≤p ‖W̃ (yl, ·)− W̃Pm (yl, ·) ‖∞ ≤ ε, and thus sup
1≤l≤p

∫ ∣∣∣W̃ (yl, y)− W̃Pm (yl, y)
∣∣∣ dy ≤ ε.

Then, for any x ∈ I,

‖W (x, ·)− W̃Pm(x, ·)‖I,1 ≤ ‖W (x, ·)−W (yl, ·)‖I,1︸ ︷︷ ︸
≤ε by the cover of F

+ ‖W (yl, ·)− W̃ (yl, ·)‖I,1︸ ︷︷ ︸
≤ε by the choice of η

+ ‖W̃ (yl, ·)− W̃Pm(yl, ·)‖I,1︸ ︷︷ ︸
≤ε by the choice of m

+‖W̃ηPm(yl, ·)− W̃Pm(x, ·)‖I,1

≤ 3ε+ ‖W̃ (yl, ·)− W̃ (x, ·)‖I,1 ≤ 4ε,

where we used the fact that for any partition P, ‖W̃P‖I,1 ≤ ‖W̃‖I,1 and ‖ (W (x, ·)−W (yl, ·))∗
ϕη‖I,1 ≤ ‖W (x, ·)−W (yl, ·)‖I,1.‖ϕη‖I,1 ≤ ε.

Using this approximation, we can now upper bound A(g, u) independently of the choice

of g and relying on the choice of u only by the index i such that u ∈ B(N)
i : we have

A(g, u) ≤ 1

N

N∑
j=1

∣∣∣W (xi, xj)− W̃Pm(xi, xj)
∣∣∣+

N∑
j=1

∫
Bj

∣∣∣W̃Pm(xi, xj)− W̃Pm(xi, v)
∣∣∣ dv

+

N∑
j=1

∫
Bj

∣∣∣W̃Pm(xi, v)−W (xi, v)
∣∣∣ dv =: A

(i)
1 +A

(i)
2 +A

(i)
3 .

Step 3 - Uniform control of the A
(i)
k . As A

(i)
3 = ‖W̃Pm(xi, ·)−W (xi, ·)‖I,1, we control it

by the work done previously independently of the index i (see Step 2): supiA
(i)
3 −−−−→

N→∞
0.

Set g(x, y) := W (x, y) − W̃Pm(x, y), and as W ∈ Lχ(I2), so does g. We can then apply
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Proposition 7.6 and we obtain sup1≤i≤N

∣∣∣A(i)
3 −A

(i)
1

∣∣∣ = sup1≤i≤N
∫
I g(xi, y)

(
ν(N)(dy)− ν(dy)

)
−−−−→
N→∞

0.

We focus now on A
(i)
2 and show that sup

x

N∑
j=1

∫
Bj

∣∣∣W̃Pm(x, xj)− W̃Pm(x, v)
∣∣∣ dv tends to

0 : denoting by αk(x) = m
∫
Jk
W̃ (x, y)dy, we have

N∑
j=1

∫
Bj

∣∣∣W̃Pm(x, xj)− W̃Pm(x, v)
∣∣∣ dv =

N∑
j=1

∫
Bj

∣∣∣∣∣
m∑
k=1

αk(x)1Jk(xj)−
m∑
k′=1

αk′(x)1Jk′ (v)

∣∣∣∣∣ dv
≤

m∑
k,k′=1

|αk(x)− αk′(x)|
N∑
j=1

1Jk(xj) |Jk′ ∩Bj | .

Similarly at what has been done in Step 4 for the proof of (7.4), we consider N large

enough (N > m) such that every box Bi =
]
i−1
N , iN

]
is inside a larger box Jk′ =

]
k′−1
m , k

′

m

]
,

then ν(Jk′ ∩Bj) = 1{Bj⊂Jk′}ν(Bj) =
1{ jN ∈Jk′}

N
and

N∑
j=1

∫
Bj

∣∣∣W̃Pm(x, xj)− W̃Pm(x, v)
∣∣∣ dv ≤ m∑

k,k′=1
k 6=k′

|αk(x)− αk′(x)|
N∑
j=1

1

N
1{xj∈Jk, jN ∈Jk′}.

As αk(x) ≤ m
∫
I W̃ (x, y)dy ≤ mCW1 which is independent of x and k,

N∑
j=1

∫
Bj

∣∣∣W̃Pm(x, xj)− W̃Pm(x, v)
∣∣∣ dv ≤ 2mCW1

m∑
k,k′=1
k 6=k′

N∑
j=1

1

N
1{xj∈Jk, jN ∈Jk′}.

From Lemma 7.5,
1

N

∑N
j=1 1{xj∈Jk, jN ∈Jk′}

a.s.−−−−→
N→∞

λ(Jk ∩ Jk′) =
1

m
1k=k′ , thus almost-

surely (on the realisation of the sequence of positions)

N∑
j=1

∫
Bj

∣∣∣W̃Pm(x, xj)− W̃Pm(x, v)
∣∣∣ dv

tends to 0 independently on the choice of x. We have shown that sup
g,‖g‖∞≤1

sup
u∈I

A(g, u) −−−−→
N→∞

0 P-almost surely.
Step 4 - Control of B(g, u) and conclusion. Using(2.5) from Hypothesis 2.6, we have

B(g, u) ≤
∫
I
|W (xi, v)−W (u, v)| ‖g‖∞ν(dv) ≤ Cw‖xi − u‖ι.

Let us show that sup
x∈I

N∑
i=1

1Bi(x)‖xi−x‖ι −−−−→
N→∞

0. Recall (7.30) : we have
N∑
i=1

1Bi(x)‖xi−

x‖ι = ‖UN (x)−x‖ι by definition of UN , the uniform sample quantile function. As we know

from [21] that sup
0≤y≤1

|UN (y)− y| a.s.−−−−→
N→∞

0, almost surely sup
g,‖g‖∞≤1

sup
u∈I

B(g, u) −−−−→
N→∞

0.

It concludes the proof for (7.5).
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Proof of (7.7) and (7.6). The term of interest is A
(N)
i,T,5, defined in (7.14), we have by

Jensen’s inequality

A
(N)
i,T,5

2
≤
(∫ T

0

∣∣∣∣∫
I
F (xi, y, s)

(
ν(N)(dy)− ν(dy)

)∣∣∣∣ ds)2

≤ T
∫ T

0

 1

N

N∑
j=1

(
F (xi, xj , s)−

∫
I
F (xi, y, s)ν(dy)

)2

ds.

≤ T

N2

N∑
j,l=1

∫ T

0

(
F (xi, xj , s)F (xi, xl, s) +

(∫
I
F (xi, y, s)ν(dy)

)2

−2F (xi, xj , s)

∫
I
F (xi, y, s)ν(dy)

)
ds.

As for any y and z, F (xi, y, s)F (xi, z, s) = W (xi, y)W (xi, z)γ(s, y)γ(s, z), setting Γ(y, z) =∫ T
0 γ(s, y)γ(s, z)ds we obtain

A
(N)
i,T,5

2
≤ T

N2

N∑
j,l=1

W (xi, xj)W (xi, xl)Γ(xj , xl)−
2T

N

N∑
j=1

∫
I
W (xi, xj)W (xi, y)Γ(xj , y)ν(dy)

+ T

∫
I2
W (xi, y)W (xi, z)Γ(y, z)ν(dy)ν(dz)

= T

∫
I×I

W (xi, y)W (xi, z)Γ(y, z)
(
ν(N)(dy)ν(N)(dz)− 2ν(N)(dy)ν(dz) + ν(dy)ν(dz)

)
= T (εi,1 + εi,2) (7.40)

where εi,1 and εi,2 are defined and studied in Corollary 7.7. Taking the square root and
then summing on i or taking the supremum, (7.7) and (7.6) follow.

Remark 7.9. If we ask for more regularity of W , we can have a more direct proof of
(7.7). Assume that there exist LW > 0 and MW > 0 such that

sup
x∈I

sup
y 6=y′

|W (x, y)−W (x, y′)|
‖y − y′‖

≤ LW and sup
x,y∈I

|W (x, y)| ≤MW .

Remark then that Hypothesis 2.6 is trivially satisfied with ι = 1 and Cw = LW , which
implies that λ is uniformly Lipschitz continuous in the second variable (in (2.7), φ(x) =
2‖x‖). We show first that F defined above in (7.36) is also uniformly Lipschitz continuous
in the second variable : for any (x, y, y′, s) ∈ I3 × [0, T ],

F (x, y, s)−F
(
x, y′, s

)
=
(
W (x, y)−W (x, y′)

)
γ(s, y)+W (x, y′)

∫ s

0
h(s−u)

(
λ(u, y)− λ(u, y′)

)
du,

then∣∣F (x, y, s)− F
(
x, y′, s

)∣∣ ≤ ∣∣W (x, y)−W (x, y′)
∣∣ |γ(s, y)|+ |W (x, y′)|

∫ s

0
|h(s− u)|

∣∣λ(u, y)− λ(u, y′)
∣∣ du

≤ ‖h‖T,1‖y − y′‖
(
‖λ‖[0,T ]×I,∞LW + 2MWCλ

)
=: LF ‖y − y′‖,

with LF > 0 independent of the choice of s and x.
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As A
(N)
i,t,5 =

∫ t
0

∣∣∫
I F (xi, y, s)

(
ν(N)(dy)− ν(dy)

)∣∣ ds and F is uniformly Lipschitz contin-
uous in the second variable with constant LF , we have

1

N

N∑
i=1

A
(N)
i,T,5 ≤ LF sup

g∈BL

∫ T

0

∣∣∣∣∫
I
g(y)

(
ν(N)(dy)− ν(dy)

)∣∣∣∣ ds ≤ TLFdBL (ν(N), ν
)
−−−−→
N→∞

0

by Varadarajan Theorem (see [29] Theorem 11.4.1 and [65]).

7.4.3. Proof of Proposition 7.4 for Scenario (2). As the positions are regularly distributed,

we use regularity on the interaction kernel W . Recall that I = [0, 1], x
(N)
i = i

N , and
ν(dx) = dx. We focus on the case W continuous. When W is piecewise continuous, the
same results follow as we can work on each rectangles where W can be extended in a
continuous function, and these rectangles are in finite number.
Proof of (7.4). Using Remark 3.3 and (3.3), we have

d2

(
W G

(2)
N ,W

)
≤ ‖W G

(2)
N −W‖∞→1 = sup

‖f‖∞,‖g‖∞≤1

∣∣∣∣∫ ∫ (W G(2)N −W
)

(x, y)f(x)g(y)dxdy

∣∣∣∣
≤
∫ ∫ ∣∣∣(W G(2)N −W

)
(x, y)

∣∣∣ dxdy = ‖W G
(2)
N −W‖L1,[0,1]2

=
N∑

i,j=1

∫ i
N

i−1
N

∫ j
N

j−1
N

∣∣∣∣W (
i

N
,
j

N

)
−W (x, y)

∣∣∣∣ dxdy.
As W is continuous on the compact [0, 1]2 in this scenario, it is uniformly continuous due

to Heine-Cantor theorem thus for any ε > 0, there exists η > 0 such that |x−x′|+|y−y′| ≤
η ⇒ |W (x, y)−W (x′, y′)| < ε. For N large enough, 1

N < η and then (7.4) holds as

d2

(
W G

(2)
N ,W

)
≤
∑N

i,j=1

∫ i
N
i−1
N

∫ j
N
j−1
N

ε dxdy = ε.

Proof of (7.5). Remind that

‖W G
(2)
N −W‖∞→∞,ν = sup

g,‖g‖∞≤1
sup
u∈[0,1]

∣∣∣∣∫ 1

0

(
W G

(2)
N (u, v)−W (u, v)

)
g(v)dv

∣∣∣∣ .
As done for (7.4), we use the uniform continuity of W : fon any ε > 0, we take η > 0

such that |x − x′| + |y − y′| ≤ η ⇒ |W (x, y)−W (x′, y′)| < ε. Fix g such that ‖g‖∞ ≤ 1

and u ∈]0, 1], for any N there exists a unique i such that u ∈ B(N)
i =

(
i− 1

N
,
i

N

]
. For N

large enough, 2
N < η and we have then

∣∣∣∣∫ 1

0

(
W G

(2)
N (u, v)−W (u, v)

)
g(v)dv

∣∣∣∣ =

∣∣∣∣∣∣
N∑
j=1

∫
Bj

(
W

(
i

N
,
j

N

)
−W (u, v)

)
g(v)dv

∣∣∣∣∣∣
≤

N∑
j=1

∫ j
N

j−1
N

∣∣∣∣W (
i

N
,
j

N

)
−W (u, v)

∣∣∣∣ |g(v)|dv ≤ ε.

independently from the choices of g and u : we have shown for this Scenario that ‖W G
(2)
N −

W‖∞→∞,ν −−−−→
N→∞

0.
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Proof of (7.7) and (7.6). As W is continuous on [0, 1]2 and (s, y) 7→ γ(s, y) =
∫ s

0 h(s −
u)λ(u, y)du is also continuous on [0, T ]×[0, 1] as a convolution between h locally integrable
and λ continuous, the application (x, y, s) 7→ F (x, y, s) = W (x, y)γ(s, y) is continuous on
the compact K = [0, 1] × [0, 1] × [0, T ], it is uniformly continuous due to Heine-Cantor
theorem. Then, for ε > 0, there exists η > 0 such that for any (x, y, s) and (x′, y′, s′) in
K, |x− x′|+ |y − y′|+ |s− s′| ≤ η ⇒ |F (x, y, s)− F (x′, y′, s′)| < ε. For N large enough,
1
N < η and we have then

A
(N)
i,T,5 =

∫ T

0

∣∣∣∣∣∣
N∑
j=1

∫ j
N

j−1
N

F (xi, xj , s) dy −
N∑
j=1

∫ j
N

j−1
N

F (xi, y, s)dy

∣∣∣∣∣∣ ds
≤
∫ T

0

N∑
j=1

∫ j
N

j−1
N

|F (xi, xj , s)− F (xi, y, s)| dy ds ≤ Tε. (7.41)

Summing on i or taking the supremum, (7.7) and (7.6) follow.

8. Proofs : the empirical measure and the spatiale profile

8.1. Proof of Theorem 3.15. We prove the convergence of E [dBL(µN , µ∞)] −−−−→
N→∞

0.

Proof. Some of the following arguments come from [15]. We consider D ([0, T ],N) with the
distance d0 introduced in [6] (§14) which makes it complete, and we have for any η, ζ in
D ([0, T ],N) , d0(η, ζ) ≤ supt≤T |η(t)− ζ(t)|. Recall

dBL (µN , µ∞) = sup
φ,‖φ‖BL≤1

∣∣∣∣∫ φdµN −
∫
φdµ∞

∣∣∣∣ .
We start by proving that for any φ fixed, E

∣∣∫ φ (dµN − dµ∞)
∣∣ −−−−→
N→∞

0. By an argument

of compactness, we show how it implies (3.19).
Step 1 - Convergence when φ is fixed. We fix φ a real-valued function on S such that

‖φ‖BL ≤ 1. Then with the coupling introduced in Definition 3.1 :

E

∣∣∣∣∫ φ (dµN − dµ∞)

∣∣∣∣ = E

∣∣∣∣∣ 1

N

N∑
i=1

φ
(
Z

(N)
i , xi

)
−
∫
φ(η, x)P[0,T ],∞ (dη|x) ν(dx)

∣∣∣∣∣
≤ E

∣∣∣∣∣ 1

N

N∑
i=1

(
φ
(
Z

(N)
i , xi

)
− φ

(
Zi, xi

))∣∣∣∣∣
+ E

∣∣∣∣∣ 1

N

N∑
i=1

(
φ
(
Zi, xi

)
−
∫
φ (η, xi)P[0,T ],∞ (dη|xi)

)∣∣∣∣∣
+ E

∣∣∣∣∣ 1

N

N∑
i=1

∫
φ (η, xi)P[0,T ],∞ (dη|xi)−

∫
φ(η, x)P[0,T ],∞ (dη|x) ν(dx)

∣∣∣∣∣
:= A+B + C.
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The term A is treated easily with Theorems 3.10 or 3.12 : as φ is Lipschitz continuous
and ‖φ‖L ≤ 1,

A ≤ 1

N

N∑
i=1

E
[
d0

(
Z

(N)
i , Zi

)]
≤ 1

N

N∑
i=1

E

[
sup
t≤T

∣∣∣Z(N)
i (t)− Zi(t)

∣∣∣] −−−−→
N→∞

0.

To treat B, we set for each i ∈ J1, NK Gi := φ
(
Zi, xi

)
, it is a random variable with

expectation
∫
φ (η, xi)P[0,T ],∞ (dη|xi). We have then applying Lemma A.2

B ≤ 1

N

√√√√ N∑
i=1

V ar(Gi).

To calculate V ar(Gi), let
(
Z̃i(t)

)
0≤t≤T

be an independent copy of
(
Zi(t)

)
0≤t≤T and set

G̃i := g
(
Z̃i, xi

)
, then with Ẽ the expectation taken with respect to G̃i, we have

V ar(Gi) = E
[
(Gi −E [Gi])

2
]

= E

[
Ẽ
[
Gi − G̃i

]2
]
≤ E

[
Ẽ

[(
Gi − G̃i

)2
]]

by Jensen’s inequality. We have, as ‖g‖L ≤ 1 :

Ẽ

[(
Gi − G̃i

)2
]
≤ Ẽ

[
d0

(
Zi, Z̃i

)2
]
≤ Ẽ

( sup
0≤t≤T

∣∣∣Zi(t)− Z̃i(t)∣∣∣)2
 ≤ 2Zi(T )2+2Ẽ

[
Z̃i(T )2

]
as the processes are increasing. Thus we obtain

V ar(Gi) ≤ 4E
[
Zi(T )2

]
.

As Zi(T ) is a Poisson random variable with rate
∫ T

0 λ(t, xi)dt,

E
[
Z̃i(T )2

]
= V ar

(
Z̃i(T )

)
+
(
E
[
Z̃i(T )

])2
=

∫ T

0
λ(t, xi)dt+

(∫ T

0
λ(t, xi)dt

)2

which is finite as λ is bounded (Proposition 2.7). We have then shown that B −−−−→
N→∞

0.

To treat C, note that it can be rewritten

C =

∣∣∣∣∫ ∫ φ(η, x)P[0,T ],∞(dη|x)
(
ν(N)(dx)− ν(dx)

)∣∣∣∣ .
We denote by h the function bounded on I such that h(x) =

∫
φ(η, x)P[0,T ],∞(dη|x). Un-

der Scenarios (1), C =

∣∣∣∣ 1

N

∑N
i=1 h(xi)−

∫
I h(x)ν(dx)

∣∣∣∣ −−−−→N→∞
0 by the Law of Large Num-

bers. Under Scenario (2), we recognise a Riemann sum with C =

∣∣∣∣ 1

N

∑N
i=1 h

(
i
N

)
−
∫ 1

0 h(x)dx

∣∣∣∣:
it suffices to show that h is continuous to have C −−−−→

N→∞
0. Fix x in I and consider a

sequence (xn) such that xn −−−→
n→∞

x. We have

|h(xn)− h(x)| ≤
∫
|φ(η, xn)− φ(η, x)|P[0,T ],∞(dη|xn) +

∣∣∣∣∫ φ(η, x)
(
P[0,T ],∞(dη|x)− P[0,T ],∞(dη|xn)

)∣∣∣∣ .
We deal with the first term : by the Lipschitz continuity of φ and the fact that

P[0,T ],∞(·|xn) is a probability measure, we have
∫
|φ(η, xn)− φ(η, x)|P[0,T ],∞(dη|xn) ≤ ‖x−

xn‖ −−−→
n→∞

0. As x is fixed, to have the second term
∣∣∫ φ(η, x)

(
P[0,T ],∞(dη|x)− P[0,T ],∞(dη|xn)

)∣∣ −−−→
n→∞
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0, we show that for any function ψ with Lipschitz constant ‖ψ‖L ≤ 1 defined on D ([0, T ],N),
the fonction ρ(y) :=

∫
ψ(η)P[0,T ],∞(dη|y) is continuous on I : let π be a random Poisson

measure with intensity dsdz on R+×R+, and for each y ∈ I construct a Poisson point pro-

cess Z
y

on [0, T ] with intensity λ(·, y) by taking Z
y
(t) =

∫ t
0

∫∞
0 1z≤λ(s,y)π(ds, dz). Then,

as ψ is Lipschitz continuous,

|ρ(x)− ρ(xn)| =
∣∣E [ψ (Zxn)− ψ (Zx)]∣∣ ≤ E

[
d0

(
Z
xn
, Z

x)]
≤ E

[
sup

0≤t≤T

∣∣Zxn(t)− Zx(t)
∣∣] ≤ E

[∫ t

0

∣∣d (Zxn(s)− Zx(s)
)∣∣]

≤ E

[∫ t

0

∫ ∞
0

∣∣1z≤λ(s,xn) − 1z≤λ(s,x)

∣∣π(ds, dz)

]
≤
∫ t

0
|λ(s, xn)− λ(s, x)| ds ≤ T‖x− xn‖ι −−−→

n→∞
0,

where we used (2.7). Then ρ is indeed continuous on I, and so is h and then C =∣∣∣∣ 1

N

∑N
i=1 h

(
i
N

)
−
∫ 1

0 h(x)dx

∣∣∣∣ −−−−→N→∞
0. We have then shown that for any function φ on S

such that ‖φ‖BL ≤ 1, we have

E

∣∣∣∣∫ φ (dµN − dµ∞)

∣∣∣∣ −−−−→N→∞
0. (8.1)

Step 2 - Approximation of any φ by a finite set of functions and conclusion. To have
(3.19), we use an argument that can be found in Lemma 4.5 of [46] and Theorem 11.3.3
of [29].

For all ε > 0, there exists a compact set K ∈ S with µ∞(K) > 1 − ε. The set
of functions B :=

{
φ|K , ‖φ‖BL ≤ 1

}
, restricted to K is a compact set by Arzela-Ascoli

Theorem, hence there exists k ≥ 1 and k functions in B φ1, · · · , φk such that for any φ
satisfying ‖φ‖BL ≤ 1, there exists j ≤ k that verifies supy∈K |φ(y)− φj(y)| ≤ ε. We denote
by Kε := {z ∈ S, dS (z,K) < ε}. Then supz∈Kε |φ(z)− φj(z)| < 3ε as for any z ∈ Kε, we
can find yz ∈ K such that dS(z, yz) < ε and

|φ(z)− φj(z)| ≤ |φ(z)− φ(yz)|+ |φ(yz)− φj(yz)|+ |φj(yz)− φj(z)|
≤ ‖φ‖LdS(z, yz) + ε+ ‖φj‖LdS(z, yz) ≤ 3ε.

We introduce the function on S : g(z) = max

(
0, 1− dS(z,K)

ε

)
. Note that 1K ≤

g ≤ 1Kε and g is bounded and Lipschitz continuous. Then, integrating on µN , we obtain
µN (Kε) ≥

∫
gdµN . We put together all the precedent bounds to have, for any φ such that

‖φ‖BL ≤ 1 :∣∣∣∣∫ φ (dµ∞ − dµN )

∣∣∣∣ ≤ ∫ |φ− φj | (dµ∞ + dµN ) +

∣∣∣∣∫ φj (dµ∞ − dµN )

∣∣∣∣
≤
∫
Kε

|φ− φj | (dµ∞ + dµN ) +

∫
S−Kε

|φ− φj | (dµ∞ + dµN ) +

∣∣∣∣∫ φj (dµ∞ − dµN )

∣∣∣∣
≤ 3ε.2 + 2µ∞ (S −Kε) + 2µN (S −Kε) +

∣∣∣∣∫ φj (dµ∞ − dµN )

∣∣∣∣ .
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Hence, taking the supremum on such function φ we obtain

sup
φ,‖φ‖BL≤1

∣∣∣∣∫ φ (dµN − dµ∞)

∣∣∣∣ ≤ 8ε+ 2

(
1−

∫
gdµN

)
+ max

1≤j≤k

∣∣∣∣∫ φj (dµ∞ − dµN )

∣∣∣∣ .
Using (8.1), for N large enough E

[∫
gdµN

]
>
∫
gdµ∞ − ε and as

∫
gdµ∞ ≥ µ∞(K) ≥

1− ε, we have E
[∫
gdµN

]
> 1− 2ε and then

E [dBL (µN , µ∞)] ≤ 12ε+ E

[
max

1≤j≤k

∣∣∣∣∫ φj (dµ∞ − dµN )

∣∣∣∣]
and using (8.1), E

[
max1≤j≤k

∣∣∫ φj (dµ∞ − dµN )
∣∣] −−−−→

N→∞
0 as there is a finite number of

functions considered, which concludes the proof of (3.19).
�

8.2. Proof of Proposition 3.17. We show the convergence of the spatial profil UN ,
when the positions are regularly distributed on [0, 1] and W continuous. We have

E

[∫ T

0

∫ 1

0
|UN (t, x)− u(t, x)| dx dt

]
≤ E

[∫ T

0

∫ 1

0

∣∣∣∣∣
N∑
i=1

1( i−1
N
, i
N ](x) (Ui,N (t)− u(t, x))

∣∣∣∣∣ dxdt
]

≤ E

[∫ T

0

1

N

N∑
i=1

|Ui,N (t)− u(t, xi)| dt

]
+

∫ T

0

∫ 1

0

∣∣∣∣∣
N∑
i=1

1( i−1
N
, i
N ](x) (u(t, xi)− u(t, x))

∣∣∣∣∣ dxdt.
The first term is dealt with the proof of Theorem 3.10 : recall (7.9), we recognise∫ T

0
E [|Ui,N (t)− u(t, xi)|] dt ≤

(
5∑

k=1

A
(N)
i,t,k

)
,

and we have showed that each
1

N

N∑
i=1

A
(N)
i,t,k −−−−→N→∞

0 P-almost surely. We then have

E

[∫ T
0

1

N

∑N
i=1 |Ui,N (t)− u(t, xi)| dt

]
−−−−→
N→∞

0 P-almost surely.

The other term is treated easily : as u is continuous on the compact set [0, T ]× [0, 1] it is
uniformly continuous. Fix ε > 0, then there exists η > 0 such that if ‖t−t′‖+‖x−x′‖ ≤ η,

|u(t, x)− u(t′, x′)| ≤ ε

T
. We have then for N large enough (such that

1

N
≤ η) :

∫ T

0

∫ 1

0

∣∣∣∣∣
N∑
i=1

1( i−1
N
, i
N ](x) (u(t, xi)− u(t, x))

∣∣∣∣∣ dxdt =

∫ T

0

N∑
i=1

∫ i
N

i−1
N

|u(t, xi)− u(t, x)| dxdt ≤
∫ T

0

ε

T
dt = ε,

which concludes the proof. �

9. Proofs : Behavior in large time limit - Linear case

9.1. Proof of Theorem 4.4. We show that in the subcritical case, λ(·, x) has a large
time limit that is the solution of (4.5). The subcritical case implies that there exists n0

such that ‖h‖n0
1 ‖T

n0
W ‖ < 1.
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Step 1 - We show existence and uniqueness of ` by applying Banach fixed-point Theorem.
We consider the map defined on Cb (I,R+) (the set of bounded continuous functions defined
on I taking non-negative values) :

F : g 7−→ F (g) such that for all x ∈ I,

F (g)(x) = u(x) + ‖h‖1
∫
I
W (x, y)g(y)ν(dy).

As u is bounded on I, F (g) is bounded for any g ∈ Cb (I,R+) by ‖u‖∞+‖h‖1‖g‖∞CW1 <
∞.

We check now that for any g, F (g) is continuous. Let (x, z) ∈ I × I. We have as u is
Lipschitz continous and using (2.5), for any g ∈ Cb (I,R+):

|F (g)(x)− F (g)(z)| ≤ |u(x)− u(z)|+ ‖h‖1
∣∣∣∣∫
I

(W (x, y)−W (z, y)) g(y)ν(dy)

∣∣∣∣
≤ ‖u‖L‖x− z‖+ ‖h‖1‖g‖∞‖x− z‖ι

We have then shown the existence of a constant Cg independent of the choice of (x, z)
such that |F (g)(x)− F (g)(z)| ≤ Cgφ (‖x− z‖) .

Hence, Cb (I,R+) is stable by F . We are going to prove that F admits an unique
fixed point, which is ` satisfying (4.5). To do it, we show that some iteration of F
is contractive, and then the Banach fixed-point Theorem gives the result. Let g and
g̃ be two functions in Cb (I,R+). As Fg = u + ‖h‖1TW g, we have immediately that

Fn0g =
∑n0−1

k=0 ‖h‖k1T kWu+ ‖h‖n0
1 Tn0

W g. Then

‖Fn0g − Fn0 g̃‖ = ‖h‖n0
1 Tn0

W (g − g̃) ≤ ‖h‖n0
1 ‖T

n0
W ‖‖g − g̃‖∞.

As n0 is chosen such that ‖h‖n0
1 ‖T

n0
W ‖ < 1, Fn0 is contractive, thus has an unique fixed

point which is also the unique fixed point of F in Cb (I,R+) that we call `, solution to
(4.6).

Step 2 - Let us show that under the present hypotheses, supt≥0 supx∈I |λ(t, x)| <∞. As

λ(t, x) = u0(t, x)+h∗(TWλ) (t, x), TWλ(t, x) = TWu0(t, x)+h∗T 2
Wλ(t, x) and the iteration

gives λ(t, x) =
(∑n0−1

k=0 h∗k ∗ T kWu0

)
(t, x)+h∗n0 ∗Tn0

W λ(t, x) for any (t, x) ∈ R+× I, hence

‖λ(t, ·)‖∞ ≤ C(u0, h,W )+‖h‖n0
1 ‖T

n0
W ‖‖λ(t, ·)‖∞ with C(u0, h,W ) a positive constant. As

we are in the subcritical case, it gives then supt≥0 ‖λ(t, ·)‖∞ ≤
C(u0, h,W )

1− ‖h‖n0
1 ‖T

n0
W ‖

< ∞.

As λ is then continuous and bounded on R+ × I, we can define its (temporal) Laplace
transform : for any x ∈ I and z > 0, let

Λ(z, x) :=

∫ ∞
0

e−tzλ(t, x)dt. (9.1)

Let us study zΛ(z, x). We have, for any x ∈ I and z > 0, zΛ(z, x) =

∫ ∞
0

ze−tzλ(t, x)dt =

λ(0, x)+

∫ ∞
0

e−tz
∂λ

∂t
(t, x)dt. Suppose that we are able to show that I(x) :=

∫ ∞
0

∣∣∣∣∂λ∂t (t, x)

∣∣∣∣ <
∞ for some x. Then, by dominated convergence theorem,

∫ ∞
0

e−tz
∂λ

∂t
(t, x)dt converges

as z → ∞ to the finite limit

∫ ∞
0

∂λ

∂t
(t, x)dt. This implies in particular that λ(t, x) has a

finite limit as t→∞, and we have in this case lim
z→0

Λ(z, x) = lim
t→∞

λ(t, x).
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We have, by integrating by parts

∂λ

∂t
(t, x) =

∂u0

∂t
(t, x) + h(0)

∫
I
W (x, y)λ(t, y)ν(dy) +

∫ t

0

∫
I
W (x, y)h′(t− s)λ(s, y)ν(dy) ds

=
∂u0

∂t
(t, x) +

∫
I
W (x, y)h(t)λ(0, y)ν(dy) +

∫ t

0

∫
I
W (x, y)h(t− s)∂λ

∂s
(s, y)ν(dy) ds,

where we used Proposition 2.7 for the regularity of
∂λ

∂s
. We also know from Proposition

2.7 that (t, x) → ∂λ

∂t
(t, s) is bounded of [0, T ] × I for any T > 0, which implies that for

any A > 0, sup
x∈I

∫ A

0

∣∣∣∣∂λ∂t (t, x)

∣∣∣∣ dt <∞. Integrating on [0, A], we have

∫ A

0

∣∣∣∣∂λ∂t (t, x)

∣∣∣∣ dt ≤ 2‖u0‖∞ + ‖h‖1‖λ‖∞D(x) +

∫ A

0

∫ t

0

∫
I
W (x, y)h(t− s)

∣∣∣∣∂λ∂s (s, y)

∣∣∣∣ dt ds ν(dy).

Yet with a change of variable∫ A

0

∫ t

0

∫
I
W (x, y)h(t− s)

∣∣∣∣∂λ∂s (s, y)

∣∣∣∣ dt ds ν(dy) =

∫
I
W (x, y)

∫ A

0

(∫ A

s
h(t− s)dt

) ∣∣∣∣∂λ∂s (s, y)

∣∣∣∣ dsν(dy)

≤ ‖h‖1
∫
I
W (x, y)

∫ A

0

∣∣∣∣∂λ∂t (t, y)

∣∣∣∣ dtν(dy).

Setting IA(x) :=

∫ A

0

∣∣∣∣∂λ∂s (s, x)

∣∣∣∣ and C = 2‖u0‖∞+ ‖h‖1‖λ‖∞CW1 , we have shown that

IA(x) ≤ C + ‖h‖1 (TW IA) (x) and by iteration

IA(x) ≤
n0−1∑
k=0

C‖h‖k1CkW1
+ ‖h‖n0

1 Tn0
W IA(x) ≤

n0−1∑
k=0

C‖h‖k1CkW1
+ ‖h‖n0

1 ‖T
n0
W ‖‖IA‖∞,

and then ‖IA‖∞ ≤
C(h, u0,W )

1− ‖h‖n0
1 ‖T

n0
W ‖

= C ′, with C ′ a positive constant independent of A.

We can then make A→∞ to obtain supx∈I I(x) <∞. Hence by dominated convergence
limz→0 zΛ(z, x) exists for any x ∈ I and is equal to limt→∞ λ(t, x) =: `(x) that can now
be defined.

Coming back to the definition on Λ, we do the same for u0 and define for any x ∈ I and
z > 0 U(z, x) :=

∫∞
0 e−tzu0(t, x)dt. As u0(t, x) −−−→

t→∞
u(x), note that limz→0 zU(z, x) =

u(x). As h is integrable in this framework, we can also define its Laplace transform for
any z ≥ 0 by H(z) :=

∫∞
0 e−tzh(t)dt, with H(0) = ‖h‖1. Using the fact that the Laplace

transform of a convolution is the product of the Laplace transforms, we have for any x ∈ I
and z > 0

zΛ(z, x) = u(x) +H(z)

∫
I
W (x, y)zΛ(z, y)ν(dy). (9.2)

Doing z → 0 in (9.2), we obtain that ` is solution of the equation (4.5).
�
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9.2. Proof of Proposition 4.7. We show that in the supercritical case,
∫
I λ(t, x)2ν(dx) −−−→

t→∞∞.
We start by giving some properties on the operator TW under Hypothesis 4.6. We

consider now TW from L2 to L2 : for any g in L2(I), using Cauchy Schwarz inequality

‖TW g‖22 =

∫ (∫
W (x, y)g(y)ν(dy)

)2

ν(dx)

≤
∫ (∫

W (x, y)2ν(dy)

)(∫
g(y)2ν(dy)

)
ν(dx) ≤ ‖g‖22CW2 .

As TW : L2 → L2 is compact, and so is T 2
W . Let us show that T 2

W : L∞ → L∞ is also
compact. Consider (fn)n a bounded sequence of L∞. It is then also bounded in L2, and as
TW : L2 → L2 is compact, there exists a subsequence

(
fφ(n)

)
such that TW fφ(n) converges

in L2 to a certain g. Then for any x ∈ I,

|T 2
W fφ(n)−TW g|(x) ≤

∫
I
W (x, y)

∣∣TW fφ(n)(y)− g(y)
∣∣ dy ≤√Cw2‖TW fφ(n)− g‖2 −−−→

n→∞
0,

hence T 2
W : L∞ → L∞ is compact. Note that T 2

W : L2 → L2 and T 2
W : L∞ → L∞

have the same spectral radius : denote by σ∞(T 2
W ) and σ2(T 2

W ) their spectrum. Let
µ ∈ σ2(T 2

W )− {0}, there exists g ∈ L2(I) such that µg = T 2
W g. As

∣∣T 2
W g(x)

∣∣ =

∣∣∣∣∫
I
W ′x, y)

∫
I
W (y, z)g(z) ν(dz)ν(dy)

∣∣∣∣ ≤ CW1

√
CW2‖g‖2 <∞,

g = 1
µT

2
W g ∈ L∞(I) and µ ∈ σ∞(T 2

W ). Let µ ∈ σ∞(T 2
W ) − {0}, there exists g ∈ L∞(I)

such that µg = T 2
W g. As L∞ ⊂ L2, µ ∈ σ2(T 2

W ). We denote now by r(T 2
W ) =

r∞(T 2
W ) = r2(T 2

W ). We have also that TW : L∞ → L∞ is compact and as
√
r(T 2

W ) =(
limn→∞ ‖T 2n

W ‖
1
n

) 1
2

= limn→∞ ‖T 2n
W ‖

1
2n = r∞(TW ) = r, we similarly have r∞ = r∞(TW ) =

r2(TW ). With (4.13), TW is moreover a self-adjoint compact operator.

Now, we focus on the proof of 4.7. First, we consider the case where k = 1 (recall (4.11)).
Then, under Hypothesis 4.6, Jentzsch/Krein–Rutman Theorem (which can be found in
[67] as Theorem 1 of and its consequences) gives that r∞ = r∞(TW ) is a single eigenvalue of
TW and every other eigenvalue µ verifies |µ| < r∞, and there exists h0 ∈ L2(I) eigenvector
of r∞ such that h0(x) > 0 ν-almost everywhere. As ‖TWh0‖∞ ≤

√
CW2‖h0‖2 (using

Cauchy-Schwarz inequality) and h0 = 1
r(TW )Th0, h0 is bounded. With (2.5), it implies

that TWh0 is continuous on I (it satisfies a Hölder condition), hence h0 is a positive
continuous function on I. As TW is self-adjoint, we can complete h0 in a Hilbert basis
(h0, h1, · · · ) of eigenvector functions of L2(I) associated of the eigenvalues (r∞, r1, r2, · · · )
with supk≥1 |rk| =: r̃(TW ) < r∞. We denote by P0 the projection on Vect(h0) and P1 =

Id − P0 : for any g ∈ L2(I), P0g =
< g, h0 >

‖h0‖22
h0 =: p0(g)h0 (with p0(g) ∈ R) and

P1g =
∑

n≥1

< g, hn >

‖hn‖22
hn.
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Using (4.1), as T and P0 commutes,

P0λ(t, ·) = P0u0(t, ·) +

∫ t

0
h(t− s)TWP0λ(s, ·)ds

= p0(u0(t, ·))h0 +

∫ t

0
h(t− s)TW p0(λ(s, ·))h0ds

= p0(u0(t, ·))h0 +

∫ t

0
h(t− s)p0(λ(s, ·))r∞h0ds

p0(λ(t, ·))h0 = p0(u0(t, ·))h0 + r∞

∫ t

0
h(t− s)p0(λ(s, ·))dsh0.

As h0(x) > 0 everywhere (since continuous), we obtain that p0(λ(t, ·)) solves the con-
volution equation in R

p0(λ(t, ·)) = p0(u0(t, ·)) + r∞

∫ t

0
h(t− s)p0(λ(s, ·))ds. (9.3)

We show that p0(λ(t, ·)) ∼t→∞ Ceσrt where C > 0 depends on the parameter functions
and σr > 0 verifies r∞

∫∞
0 e−σrth(t)dt = 1. To do this, we apply Theorem 4 of [32] and

its Remark with (4.10) : we need to have t → e−σrth(t) of bounded total variation and
e−σrtp0(u0(t, ·))→ 0 as t→∞, and both conditions are true as we are under Hypothesis
4.1: h is piecewise continuously differentiable and u0 is uniformly bounded.

Now, we project on the rest of the space and take the norm L2(I):

P1λ(t, ·) = P1u0(t, ·) +

∫ t

0
h(t− s)TWP1λ(s, ·)ds

‖P1λ(t, ·)‖2 ≤ ‖P1u0(t, ·)‖2 +

∫ t

0
h(t− s)‖TWP1λ(s, ·)‖2ds.

As TWP1λ(s, ·) = TW

∑
n≥1

< P1λ(s, ·), hn >
‖hn‖22

hn

 =
∑
n≥1

< P1λ(s, ·), hn >
‖hn‖22

rnhn, we have

that ‖TWP1λ(s, ·)‖22 =
∑
n≥1

|< P1λ(s, ·), hn >|2

‖hn‖22
|rn|2 ≤ r̃(TW )2‖P1λ(s, ·)‖22 and then

‖P1λ(t, ·)‖2 ≤ ‖P1u0(t, ·)‖2 + r̃(T )

∫ t

0
h(t− s)‖P1λ(s, ·)‖2ds.

We compare ‖P1λ(t, ·)‖2 to β solution of the equation βr̃(t) = ‖P1u0(t, ·)‖2 + 1 +

r̃(TW )
∫ t

0 h(t − s)βr̃(s)ds: Lemma A.4 gives ‖P1λ(t, ·)‖2 ≤ βr̃(t) for all t ≥ 0. We want

know to show that βr̃(t) = O
(
eσrt

)
when t→∞.

- If ‖h‖1r̃(TW ) > 1, we apply (as done for P0) Theorem 4 of [32] and obtain

βr̃(t) ∼t→∞ C̃eσr̃t where C̃ > 0 depends on the parameter functions and σr̃ > 0
verifies r̃(TW )

∫∞
0 e−σr̃th(t)dt = 1. Note that in this case, σr̃ < σr as r̃(TW ) < r∞,

and βr̃(t) = O
(
eσrt

)
follows.

- If ‖h‖1r̃(TW ) ≤ 1, as ‖h‖1r∞ > 1, we can find r such that r̃(TW ) < r < r∞ and

‖h‖1r > 1. Then, considering δ satisfying δr(t) = ‖P1u0(t, ·)‖2 + 2 + r
∫ t

0 h(t −
s)δr(s)ds, as done before Lemma A.4 gives βr̃(t) ≤ δr(t) and Theorem 4 of [32]
gives δr(t) ∼t→∞ Ceσrt where C > 0 depends on the parameter functions and
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σr > 0 verifies r
∫∞

0 e−σrth(t)dt = 1. We have then that βr̃(t) ≤ δr(t) ∼t→∞
Ceσrt = O

(
eσrt

)
.

In any case, we obtain ‖P1λ(t, ·)‖2 = O
(
eσrt

)
, and as Parseval equality gives

‖λ(t, ·)‖22 = ‖P0λ(t, ·)‖22 + ‖P1λ(t, ·)‖22,
it implies that ‖λ(t, ·)‖2 ∼t→∞ Ceσrt −−−→

t→∞
+∞, with C a positive constant.

To treat the case k > 1, we deal with k = 2 and leave the generalisation to the reader.
Hypothesis 4.6 (4.11) is then that the kernel of T 2

W is positive. As λ(t, x) = u0(t, x) +∫ t
0 h(t−s)TWλ(s, ·)(x)ds, we have TWλ(t, ·)(x) = TWu0(t, ·)(x)+

∫ t
0 h(t−s)T 2

Wλ(s, ·)(x)ds
and

λ(t, x) = u0(t, x) +

∫ t

0
h(t− s)TWu0(s, ·)(x)ds+

∫ t

0
h(t− s)

∫ s

0
h(s− u)T 2

Wλ(u, ·)(x)duds

= v0(t, x) +

∫ t

0
h̃(t− s)T 2

Wλ(s, ·)(x)ds. (9.4)

with h̃ = h ∗ h = h∗2 and v0(t, x) = u0(t, x) +
∫ t

0 h(t − s)TWu0(s, ·)(x)ds. As ‖h̃‖1 =∫∞
0

∫ t
0 h(t−s)h(s)dsdt =

∫∞
0 h(s)

∫∞
s h(t−s)dtds = ‖h‖21 and

√
r(T 2

W ) =
(

limn→∞ ‖T 2n
W ‖

1
n

) 1
2

=

limn→∞ ‖T 2n
W ‖

1
2n = r(TW ), the condition (4.10) implies ‖h̃‖1r(T 2

W ) = ‖h‖21r(TW )2 > 1.
Then, we can apply the precedent case (k = 1) on λ satisfying (9.4).

�
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Appendix A. Useful results

We remind here different useful results that we use frequently in this paper.
The proof of the following lemma can be found in Lemma 22 of [23].

Lemma A.1. Let φ : [0,∞[ −→ R be locally integrable and α : [0,∞[ −→ R with finite
variations on compact intervals such that α(0) = 0. Then for all t ≥ 0, we have∫ t

0

∫ s−

0
φ (s− u) dα (u) ds =

∫ t

0

∫ s

0
φ (s− u) dα (u) ds =

∫ t

0
φ (t− s)α (s) ds.

Lemma A.2. Let (Xi)1≤i≤N be a family of N independent random variables. Then

E

[∣∣∣∣∣ 1

N

N∑
i=1

(Xi −E [Xi])

∣∣∣∣∣
]
≤ 1

N

√√√√ N∑
i=1

Var (Xi).

Proof. We set Y :=
1

N

∑N
i=1Xi, then E [Y ] =

1

N

∑N
i=1 E[Xi] and Var(Y ) =

1

N2

∑N
i=1 Var(Xi)

by independence. We have

E

[∣∣∣∣∣ 1

N

N∑
i=1

(Xi −E [Xi])

∣∣∣∣∣
]

= E [|Y −E[Y ]|] = E

[√
(Y −E[Y ])2

]

≤
√

E
[
(Y −E[Y ])2

]
=
√

Var(Y )

using Jensen’s inequality, and the result follows with the expression of Var(Y ). �

Lemma A.3. Let φ : [0,∞[ −→ [0,∞[ be a locally integrable function and g : [0,∞[ −→
[0,∞[ a locally bounded function.

(i) Let u be a locally bounded nonnegative function such that for all t ≥ 0:

u(t) ≤ g(t) +

∫ t

0
φ(t− s)u(s)ds.

Then for all T ≥ 0 there exists CT (depending on T and φ) verifying

sup
[0,T ]

u(t) ≤ CT sup
[0,T ]

g(t).

(ii) Let (un) be a sequence of locally bounded non-negative functions such that for all
t ≥ 0 and n ≥ 0:

un+1(t) ≤
∫ t

0
φ(t− s)un(s)ds.

Then for all T ≥ 0 there exists CT (depending on T , φ and u0) verifying

sup
[0,T ]

∑
n≥0

un(t) ≤ CT .

(iii) Let (un) be a sequence of locally bounded non-negative functions such that for all
t ≥ 0 and n ≥ 0:

un+1(t) ≤ g(t) +

∫ t

0
φ(t− s)un(s)ds.

Then for all T ≥ 0 there exists CT (depending on T , φ, u0 and g) verifying

sup
[0,T ]

sup
n≥0

un(t) ≤ CT .
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Proof. See Lemma 23 of [23]. �

Lemma A.4. Let r > 0, h be a nonnegative locally integrable function, u, α and β be
locally bounded nonnegative continuous functions such that for all t ≥ 0:

α(t) ≤ u(t) + r

∫ t

0
h(t− s)α(s)ds,

β(t) = u(t) + 1 + r

∫ t

0
h(t− s)β(s)ds.

Then α(t) ≤ β(t) for all t ≥ 0.

Proof. Let t∗ = inf {s > 0, α(s) > β(s)}. Note that t∗ > 0 as β(0) − α(0) ≥ 1. Suppose

t∗ < ∞, then β(t∗) − α(t∗) ≥ 1 +
∫ t∗

0 h(t − s) (β(s)− α(s)) ds ≥ 1 which is impossible,
then necessarily t∗ = +∞ and α(t) ≤ β(t) for all t ≥ 0. �

Lemma A.5. Let u and h be locally square integrable functions, u non-negative, T > 0
and α, β two constants. Assume that for any t ∈ [0, T ],

u(t) ≤ α
∫ t

0
h(t− s)u(s)ds+ β.

Then u satisfies the following Grönwall’s inequality :

u(T ) ≤
√

2β exp
(
α2‖h‖2T,2T

)
Proof. Using Cauchy-Schwarz inequality, u(t)2 ≤ 2α2‖h‖2T,2

∫ t
0 u(s)2ds + 2β2. Then, ap-

plying standard Grönwall lemma to u2 and taking the square root (since u ≥ 0) concludes
the proof. �

Lemma A.6. Fix N > 1 and (Yl)l=1,...,n real valued random variables defined on a prob-

ability space (Ω,F ,P). Suppose that there exists ν > 0 such that, almost surely, for all
l = 1, . . . , n− 1, Yl ≤ 1, E [Yl+1 |Yl ] = 0 and E

[
Y 2
l+1 |Yl

]
≤ ν. Then for all x ≥ 0,

P
(
n−1 (Y1 + . . .+ Yn) ≥ x

)
≤ exp

(
−nH

(
x+ ν

1 + ν

∣∣∣∣ ν

1 + ν

))
,

where H(p|q) = p log(p/q) + (1− p) log((1− p)/(1− q)), for p, q ∈ [0, 1].

Proof. See Corollary 2.4.7 of [25] and Lemma 4.2 of [46]. �

Lemma A.7. Fix N ≥ 1, (p1, . . . , pN ) in [0, 1] and a sequence (v1, . . . , vN ) such that
|vl| ≤ 1 for any l ∈ J1, NK. Suppose that there exists κN > 0 and wN ∈]0, 1] such

that pl ≤ wN for any l ∈ J1, NK. Then, setting εn := 32
κ2
NwN
N

log(N) for (U1, . . . , UN )

independent random variables with Ul ∼ B(pl), we have

P

(∣∣∣∣∣κNN
N∑
l=1

(Ul − pl) vl

∣∣∣∣∣ > εN

)
≤ 2 exp

(
−16 log(N)B

(
4
√

2

(
log(N)

NwN

) 1
2

))
(A.1)

with
B(u) := u−2 ((1 + u) log (1 + u)− u) . (A.2)

Proof. Lemma 4.3 of [46], as a consequence of Lemma A.6. �
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diffusions on erdős–rényi graphs. Stochastics and Dynamics, 20(02):2050010, July 2019.
[19] Q. Cormier, E. Tanré, and R. Veltz. Long time behavior of a mean-field model of interacting neurons.

Stochastic Processes and their Applications, 130(5):2553–2595, May 2020.
[20] M. Costa, C. Graham, L. Marsalle, and V. C. Tran. Renewal in Hawkes processes with self-excitation

and inhibition. Advances in Applied Probability, 52(3):879–915, Sept. 2020.
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