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Abstract—Sequence metric learning is becoming a widely
adopted approach for various applications dealing with sequen-
tial multi-variate data such as activity recognition or natural
language processing. It is most of the time tackled with sequence
alignment approaches or representation learning. In this paper,
we propose to study this subject from the point of view of dynam-
ical system theory by drawing the analogy between synchronized
trajectories produced by dynamical systems and the distance be-
tween similar sequences processed by a siamese recurrent neural
network. Indeed, a siamese recurrent network comprises two
identical sub-networks, two identical dynamical systems which
can theoretically achieve complete synchronization if a coupling
is introduced between them. We therefore propose a new neural
network model that implements this coupling with a new gate
integrated into the classical Gated Recurrent Unit architecture.
This model is thus able to simultaneously learn a similarity metric
and the synchronization of unaligned multi-variate sequences in
a weakly supervised way. Our experiments show that introducing
such a coupling improves the performance of the siamese Gated
Recurrent Unit architecture on two datasets: one dedicated to
activity recognition and another to transportation recognition.

Index Terms—Sequence Metric Learning, Recurrent Neural
Networks, Dynamical Systems, Synchronization

I. INTRODUCTION

Metric learning aims at learning an essential component for
numerous machine learning algorithms used for classification
or clustering: a similarity. It has the benefit to be usable in
weakly supervised settings where only equivalence constraints
between samples are known [1], which allows for a large
number of applications on various data types: from person re-
identification [2], object tracking [3] and gesture recognition
[4] to sentence similarity computation [5]. Among those
applications, less attention has been given to design specific
sequence metric learning algorithms, specifically with neural
networks despite the simplicity of the siamese architecture [6].

One easy way to adapt existing approaches to sequential
data is to learn representations through Sequence-to-Sequence
models [7] or Transformers [8]. However, these models would
be difficult to learn in a weakly supervised way for providing
a similarity metric and further lose temporal dependency
information inside the sequence and alignment information
between sequences. On the contrary, Dynamic Time Warping
(DTW) [9] is a classical approach to measure distance between
sequences and relies on aligning sequences. Its integration in-
side learning algorithms has been rendered difficult by its non-

differentiability and its theoretical quadratic time complexity
which badly suits the equivalence constraint framework and
some associated more complex losses [2], [10], [11]. Recent
works mitigate these drawbacks notably with virtual metric
learning [12], [13] and soft versions of DTW [14], [15].

Therefore, we aim at designing a neural network architec-
ture specifically adapted to sequence metric learning. Recur-
rent neural networks (RNN) have a temporal dynamic behavior
which allows to study them as dynamical systems. We propose
in this paper a new framework for sequence metric learning
based on dynamical system synchronization theory. We pro-
pose to replace the concept of metric in a vector space by
the concept of synchronization of trajectories in a state space.
Instead of computing distances on input representations, we
propose to measure how two dynamical systems, and precisely
two RNNs, respond to input pairs in term of synchronization.
The notion of coupling is crucial when trying to synchronize
dynamical systems. We introduce a coupled version of the
Gated Recurrent Unit (GRU) [16] to implement coupling
inside a siamese architecture. Our experimental evaluation
shows that this modification provides an improvement over
a classical siamese GRU implementation.

The paper is organized as follows: Section II outlines
the state-of-the-art approaches in sequence metric learning,
Section III describes our framework and our new siamese
architecture, Section IV shows our experimental results to
assess the performances of our approach on two datasets, and
Section V presents our conclusions and perspectives.

II. RELATED WORK

a) Recurrent neural networks and dynamical system
theory.: A main property of RNN is to exhibit a dynamic
behavior which enables them to learn temporal sequence
correlations. This behavior can therefore be studied using
dynamical system theory: an important result being that
RNN can approximate any finite-time trajectory of a
dynamical system [17]. Other early works analyzed the RNN
convergence stability [18] and helped to understand the
problem of long term dependencies [19]. Laurent et al. [20]
studied the dynamics of Long-Short Term Memory (LSTM)
Neural Networks and GRU and observed that it is chaotic
in the absence of input data. They designed a Chaos-Free
RNN architecture having a more predictable behavior. In



another recent publication, Chang et al. [21] studied RNN
trainability and established a connection with discretized
Ordinary Differential Equations stability. They identified a
criterion to guarantee that the system can preserve long-term
dependencies and proposed a new version of RNN based on
those observations. Both papers demonstrate that dynamical
system theory is a fertile soil to study and conceive new
RNN models. Finally, we would like to mention works on
the definition of metrics to compare non-linear dynamical
systems [22], [23] although our objective is not exactly the
same, as we propose to use dynamical system synchronization
theory to improve metric learning on any type of sequential
data, whereas these methods have been conceived to work
more specifically with structural data.

b) Sequence metric learning.: DTW is a classical ap-
proach for measuring distances between sequences [9]. Nu-
merous improvements have been brought to the original for-
mulation notably to improve the k-nearest neighbor perfor-
mance [24]. Abid et al. [15] proposed to learn the DTW
parameters that allow to reproduce the Euclidean distances
between sequence representations learned with a Sequence-
to-Sequence model [7]. In contrast, Su et al. [25] proposed an
alternative to DTW, the Order-Preserving Wasserstein (OPW)
distance, by viewing the problem of metric learning between
sequences as an optimal transport problem regularized to
preserve the temporal relationships between the samples, and
they solved it with the matrix scaling algorithm. In a following
paper [13], Su et al. reformulated the DTW and OPW distances
as parameterized meta-metrics of a single ground metric and
proposed an optimization process to learn the metric and
the latent alignment with virtual metric learning [12], which
reduces the number of constraints. Not only this approach
speeds up training but it also outperforms several other metric
learning approaches, notably approaches conceived for points
generalized to sequences. In comparison, we propose a pure
RNN approach similar to Müller et al. [5] who presented a
siamese neural network approach to learn sentence similarities
as a l1-norm. In their method, the LSTM network combines
the embeddings of the words of the sentence to learn a distance
between representations of sentences. Finally, Varior et al.
[26] proposed a siamese convolutional architecture for person
re-identification from video data with gates linking parallel
layers allowing to accentuate common patterns between both
representations. This leads to representations that are more
suited to distinguish some pairs of similar or dissimilar images.

In this paper, we introduce an alternative to DTW: a pure
neural network approach to sequence metric learning based
on the siamese RNN architecture. We propose to enhance the
classical siamese RNN by studying this model from dynamical
system point of view, as it has been already done for standard
RNN. The disadvantage of DTW-based approaches compared
to ours is that it can be computationally inefficient and non-
differentiable, which prevents their possible combination with
other gradient-based models.

III. SYNCHRONIZING GRU SIAMESE NETWORKS

In this section, we first draw a parallel between the concept
of synchronization for dynamical systems and the task of
sequence metric learning with siamese RNN. We then justify
from a theoretical point of view the introduction of coupling
inside the siamese architecture. We finally introduce our main
contribution in Section III-C: a modified siamese GRU model
implementing this coupling.

A. Synchronization of Chaos and Metric Learning

The concept of synchronization is generally well-understood
for time-periodic dynamical systems: this phenomenon is
called phase synchronization. However, it is less-known that
it can also occur for chaotic dynamical systems [27], that is,
systems for which resulting trajectories exponentially diverge
for infinitesimally close initial conditions. This practically
means that the behavior of such systems can become rapidly
unpredictable solely due to small variations of the initial
conditions. Common examples of such systems are the double
pendulum or the n-body problem. To formalize the concept
of synchronization for chaotic systems, Brown et al. [28]
proposed a general definition of it:

Definition 1: Let Z be a dynamical system composed of
two subsystems X and Y such that:

X :
dx(t)

dt
= f1(x(t), y(t); t)

Y :
dy(t)

dt
= f2(y(t), x(t); t),

(1)

where x(t) ∈ Rd1 and y(t) ∈ Rd2 with d1, d2 ∈ N. Let
φ(z0) be a trajectory of Z with initial conditions z0 =
[x(0), y(0)] ∈ Rd1×Rd2 . Finally let g : X (resp. Y )×R→ Rk

with k ∈ N, be a measurable property of the subsystems.
They are synchronized on the trajectory φ(z0) with respect
to the property g if there is a time independent function
h : Rk × Rk → Rk such that:

||h(g(x), g(y))|| = 0, (2)

where || · || is a norm.
From this definition, it is possible to derive several ways

to measure synchronization between two trajectories. Brown
et al. [28] report several slightly different formulations of the
synchronization error with the following being the most used.
According to them, for identical systems:

h(g(x), g(y)) = lim
t→+∞

(g(x(t))− g(y(t))), (3)

where h and g are the same as in Definition 1.
We rewrite this synchronization error for discrete systems

in a continuous form by replacing the limit by a comparison
of the last element of each trajectory x and y of length T :

h(g(x), g(y)) = x(T )− y(T ) , (4)

with g being here a function returning the coordinates of
the points. We define d as a distance on discrete dynamical
system trajectories derived from the synchronization error by



replacing the difference with the Euclidean norm (in definition
1, any norm can be used) to get only positive values:

d(x, y) = ||x(T )− y(T )||2. (5)

However, RNNs are dynamical systems, and the output se-
quences are trajectories. Thus, learning a Euclidean distance
with a siamese RNN is equivalent to trying to synchronize the
two output sequences of a siamese network for similar pairs.

While being intuitive and suitable for metric learning, the
metric of Equation 5 measures synchronization only at one
point in time, which forces the system to achieve synchroniza-
tion at this precise point. This is called dead-beat synchroniza-
tion, synchronization in a finite number of steps [29]. Even if
at first sight, this seems not really different from computing
distance on input sequence representations, synchronization
could actually be assessed at several samples of the sequence
and even continuously. We will now specify what type of
synchronization siamese RNNs are able to achieve and under
which conditions.

B. Complete Synchronization of Coupled Identical Systems

A special case of Definition 1 is when f1 and f2 are the
same function, the dynamical systems share the same param-
eters, and they are said to be identical. Analogously, the two
(or more in case of triplet inputs) sub-networks of a siamese
network also share the same parameters; only input sequences
differ [6]. To simplify, we will first study the case where the
dynamics of the RNNs are solely driven by its initial condition
(the initial hidden state) and where no input sequence is
given (i.e. a sequence of 0s). We obtain what is called the
dynamical system induced by the RNN. In this case, only
the initial conditions differ and the sub-networks are identical
dynamical systems. According to experiments conducted by
Laurent et al. [20], dynamical systems induced by RNN exhibit
a chaotic behavior. Under what conditions identical systems
can synchronize? Consider now the following two identical
systems:

X :
dx(t)

dt
= f(x; t) + C(y(t)− x(t))T

Y :
dy(t)

dt
= f(y(t); t) + C(x(t)− y(t))T ,

(6)

where x, y ∈ Rn and C is a coupling matrix in Rn×n. This
type of coupling is called diffusive because it will dissipate the
dynamics of each sub-system [30]. X and Y are bidirectionally
coupled systems1. Fujisaka et al. [31] showed that the system
described by Equation 6 can achieve complete synchronization
if C is a multiple of the Identity matrix and a constant c which
verifies the following condition:

c >
1

2
λL, (7)

where λL is the largest Liapunov exponent of the system.
The Liapunov exponents quantify the sensibility of a system

1Coupling can also be directional, only one system influences the other:
they are called in this case drive-response systems.

to initial conditions: if it has one positive Liapunov exponent,
predictability of its behavior becomes impossible beyond a
certain time horizon; it is therefore chaotic [32].

But the trajectories of RNNs are most of the time also
influenced by external inputs: the input sequence. In this case,
the dynamics of the RNNs are mostly driven by these external
inputs [20] and RNN starting from different initial conditions
but given identical input sequence will see their trajectories
synchronize, i.e. the hidden states become the same after
a few steps. Coupling is in this case not absolutely neces-
sary to achieve synchronization: regarding metric learning,
siamese LSTM actually works without coupling [5]: the model
achieves low distances for similar inputs and therefore syn-
chronization. However, coupling could allow to enforce lower
distances with sequences that have similar dynamics but are
composed of quite different data, i.e. so-called hard positive
samples, and even to force the synchronization regardless of
the input pair. Hard positive samples are samples that are
factually belonging to one class, by the label, but lie close
to the decision boundary or even beyond in terms of distance
(conversely for hard negative samples). They are particularly
studied by the metric learning community to improve the
convergence and performances of metric learning models [33].

We showed in this section the motivation and aim of imple-
menting coupling into the siamese RNN architecture. Indeed,
the induced dynamics of GRU and LSTM are chaotic and,
in this case, coupling allows their complete synchronization
as the sub-networks of a siamese network share the same
weights and represent thus identical dynamical systems. When
given input sequences, the dynamics of GRU and LSTM are
mostly driven by these external inputs. In this case, while not
being critical to achieve synchronization (and therefore low
distances between similar elements), coupling could facilitate
bringing similar inputs closer, particularly for hard positive
pairs. Moreover, complete synchronization is a special case
of more general synchronization types such as the so-called
generalized synchronization [34] for which other errors and
metrics are associated (for example, mutual interdependence
[35]). The same derivation could thus be made for these
synchronization errors, leading to different metrics. We will in
the experimental section use Equation 5 as our metric to learn,
but this is here the most straightforward case of a framework
from which more complex sequence metrics to be learned with
siamese RNN models, can be obtained.

C. Coupled GRU

We present a new neural network model that directly
implements coupling within a siamese RNN architecture. From
a machine learning perspective, this coupling needs to be
trainable such that the network learns to achieve synchroniza-
tion for similar inputs and stay desynchronized for different
ones. We propose to apply the coupling by means of two
new gates inside the GRU architecture which we call in the
following CGRU (Coupled Gated Recurrent Unit). We chose
to use GRU and not LSTM [36] because the operation of a



Fig. 1: Schema of the CGRU architecture. Blue arrows represent information coming from the input at time t, red ones are
for the hidden states and green ones for transmissions between the gates.

GRU is defined by fewer equations while showing comparable
performance in general [37]. The following equations describe
the modifications brought to the architecture. Update, Reset
and New gates are not modified. Let us notate h′t−1 and h̃′t
the states coming from the second sub-network (see Figure 1):

Hidden: ht = (1− zt)h̄t + ztht−1 (8)
Update: zt = σ(Wizxt + biz +Whzht−1 + bhz) (9)

Coupled New: h̄t = (1− ct)h̃t + cth̃
′
t (10)

Coupling: ct = σ(Whc(ht−1 + h′t−1) + bhc) (11)

New: h̃t = tanh(Wih̃xt + bih̃ + rt(Whh̃ht−1 + bhh̃))
(12)

Reset: rt = σ(Wirxt + bir +Whrht−1 + bhr).
(13)

The Coupling gate ct (see Equation 11) serves the same
purpose as zt and rt, controlling the information flow and is
thus computed in a similar manner, but only from the hidden
states. This forces the model to apply the coupling on the new
content to be added at time t solely based on the previous
inputs. Then, in Equation 10, h̃t and h̃′t are combined similarly
as h̃t and ht−1 are combined in the original GRU architecture.
This prevents h̄t and subsequently ht from exploding and
saturate the gates. Finally, in Equation 8, h̄t replaces h̃t: the
New state has been replaced by a coupled version of both
New states of the siamese GRU. Several possibilities exist to
implement this coupling. The idea behind this proposal is to
alter as little as possible the GRU architecture and to stay close
to the original purpose of each equation. Indeed, the addition
of the coupling already greatly modifies the information flow
inside the GRU and the gradient flow during training, and
RNNs are known to be difficult to train. Therefore, by staying
relatively close to the original model, a rigorous comparison
should be more effective, and the impact of the actual coupling
can be studied more reliably. In fact, if ct is a vector of

norm equal to zero, each sub-network is exactly a GRU.
This suggests to initialize the coupling weights with very
small values and to accentuate the decay. In this way, an
increase of the norm of Whc during training would signify
that coupling is useful. Another interesting configuration of
the coupling weights is when they are all equal to 0.5: in this
configuration, the Coupled New States are the same, and the
distance between the outputs will become null. That means,
theoretically, this approach can make close any pair of input
sequences, especially hard-positive samples.

IV. EXPERIMENTS

A. Experimental setup

We experiment the CGRU architecture on two datasets.
The first one is UCI HAR [38], a dataset of 6 activities2

containing 9 features: total acceleration, body acceleration
and angular velocity on 3 axes. The sequences have a length
of 128. We chose this dataset because it has been extensively
used by the activity recognition community and provides
at the same time real data and a simple and well defined
benchmark to study the behavior of CGRU and Siamese GRU
(SGRU). Moreover, several activities should look very similar
(e.g. three variants of walking or standing and sitting), and it
should make the dataset harder to process for metric learning
algorithms. Finally, walking or running exhibits dynamic
components which could be differently processed by CGRU
and SGRU. No further preprocessing has been applied. The
features are globally centered and the standard deviations
oscillate between 0.1 and 0.4. We kept the train-test split
proposed by the authors of the dataset: there are 21 users
in the training set and we therefore performed a 7-fold
validation, leaving each time 3 different users out. Finally, the
training set comprises 7352 sequences and the testing set 2947.

2walking, walking upstairs, walking downstairs, sitting, standing, laying



Fig. 2: Preprocessing steps applied to SHL dataset, we globally
followed the process proposed by Janko et al. [41].

The second dataset was the object of a challenge in 2018
[39], the Sussex-Huawei Locomotion and Transportation
(SHL) Dataset [40]. The data were recorded by a single
individual during a 4 month period for a total of 82 days:
62 for training, 20 for testing. Up to 8 hours of data are
recorded each day. This dataset proposes 8 locomotion
transportation modes: car, bus, train, subway, walk, run, bike
and standing still. It contains 20 features: accelerometer,
gyroscope, magnetometer, gravity and linear acceleration
on three axes, orientation on 4 axes and pressure. The raw
dataset is sampled at a frequency of 100 Hz, that is to say,
one hour sequences have a length of 360000. To use it for
our experiments, we roughly followed the same preprocessing
procedure as in [41], with some more steps (see Figure 2):
all signals (except pressure) were reoriented to the North-
East-Down axes convention and magnitudes were computed
for the accelerometer, the gyroscope and the magnetometer.
Orientations were converted to Euler angles. This process
extends the number of features in the dataset from 20 to
36. Then, the dataset was standardized according to the
training set to have, for a every feature, a mean of zero and
a standard deviation of 1. Finally, to speed up computations,
the 1 minute sequences we used of a length of 6000 were
resampled to a length of 300. The challenge summary paper
[39] reports that the best test accuracy result of 93.9% was
achieved by Gjoreski et al. [42] with a deep learning approach.

We compared SGRU and CGRU on learning the metric
describes in Equation 5 using the same hyperparameters for
both models, those parameters for each datasets are displays
on Table I along with some statistics on the training and
testing set. The training is stopped based on the accuracy on
the validation set (early stopping). We chose to use structural
loss [2] to train the model since it works on distances and
not embeddings. It combines a local term similarly to the n-
pair loss [11] but emphasizes the weights on the hard positive
samples, and a global term to improve the generalization. We
used the same hyperparameters for the loss as in the original

Hyperparameters UCI HAR SHL
Training set size 7352 15660
Testing set size 2947 5472

Architecture [20] [100, 100]
Batch size 36 40

Initial learning rate 0.001 0.001

TABLE I: Main hyperparameters used to train our models
on both datasets. These parameters are exactly the same for
SGRU and CGRU.

paper. We applied a general weight decay with a factor of
10−4. A stronger weight decay was applied on the coupling
by adding 1% of the coupling weight norm to the loss, which
seems to slightly improve the performances. The gradient was
clipped according to [43] to a norm of 6. The coupling weights
were initialized with a normal distribution having a mean of 0
and standard deviation of 0.1. The purpose of this initialization
is to make the model start its training close to the behavior
of an SGRU, with a very weak coupling and to let it increase
during training. Our implementation was done in Python and
CUDA with Pytorch [44].

B. Results

1) Study of the coupling weight norm: We first analyze the
evolution of the coupling weight norm during training. The
coupling is initialized very low which theoretically makes it
behave nearly as an SGRU at the beginning of training. We
can observe in Figure 3a that the norm increases quickly
during the first 20 epochs and more than doubles. Red points
indicate the iterations where validation accuracy increased.
This correlation thus indicates that the overall generalization
is improving with the increase of coupling strength. In Figure
3b, we present the evolution of the loss on the train dataset
in terms of the coupling weights on which we compute a
linear regression of the first part. We can observe an almost
linear relationship between the increase of the norm and
the decrease of the loss suggesting again that the coupling
is helpful to the model. Those figures also show that the
convergence during training is rather smooth.

2) Classification performance on UCI HAR: We now
present classification results on UCI HAR using 3 metrics:
accuracy, F1 score Macro averaged and Mean Average
Precision (MAP), similarly to [13]. The first two are
computed by classifying the test samples using 1-nearest
neighbor from training samples. The MAP is computed by
querying the training set with a test sequence to retrieve all
training samples of the same class. The value is averaged
for all test sequences. This metric shows the ability of the
algorithm to bring close every sequence of each class and
not just few references to be used as nearest neighbors. The
validation results are presented in Table IIa. We observe an
improvement of CGRU over SGRU of about 8% points for
accuracy and F1-score, and an improvement of 19% points
for the MAP. On the test set, we compared our approach
with Regressive Virtual Sequence Metric Learning (RVSML)



(a)

(b)

Fig. 3: In figure (a), evolution of the norm of the coupling
gate weights during training on UCI HAR dataset, a red point
indicates an increased accuracy for the validation set. On figure
(b), Epoch loss in terms of coupling norm during training
on UCI HAR dataset. The first part (rapid decrease) has
been approximated with a linear regression. The correlation
coefficient is -0.984.

[13], with OPW and DTW distances. We chose to compare
with this approach because it recently outperformed several
other metric learning approaches (e.g. Large Margin Nearest
Neighbors [45], Regressive Virtual Metric Learning [12],
etc.) although not all were specifically adapted for sequences,
it is not based on neural networks and uses alignment-based
distances. We keep the hyperparameter values recommended
by the authors. The test results are presented in Table IIb.
Here again we observe that CGRU outperformed SGRU with
a notable improvement of 10% points of the accuracy and F1-
score. Both neural network approaches clearly outperformed
RVSML, especially the OPW variant. This can be, among
other factors, attributed to a weak capacity to distinguish
similar activities such as standing and sitting. On the other
hand, standing was recognized perfectly by both RVSML
variants. We also remark that they reach MAP values of
the same order as in the original paper (around 0.4 ∼ 0.45)
despite the fact that the data are of a completely different
nature (signal instead of images). This could suggest that
these approaches reached some kind of saturation whereas
CGRU and SGRU are able to achieve much higher values.

Algorithms Accuracy F1 score Macro MAP
Siamese GRU 0.835±0.068 0.827±0.074 0.711±0.016
Coupled GRU 0.913±0.055* 0.916±0.054* 0.900±0.043*

(a) Validation results (21 fold average). An asterisk means a signifi-
cant result with a threshold of 1%

Algorithms Accuracy F1 score Macro MAP
RVSML (OPW) 0.597 0.568 0.438
RVSML (DTW) 0.698 0.687 0.437
Siamese GRU 0.782±0.041 0.781±0.044 0.633±0.152
Coupled GRU 0.885±0.014* 0.887±0.014* 0.899±0.01*

(b) Test results, average of 5 runs for the neural networks approaches.

TABLE II: Results on UCI HAR

Fig. 4: Evolution of the average distance between the posi-
tive/negative samples for SGRU and CGRU on more and more
noisy test sets.

3) Performances on hard positive samples: We made the
hypothesis that CGRU could perform better on hard positive
samples due to coupling theoretically being able to bring
close any input pair of sequences: with enough coupling,
both networks can output the same sequence whatever of
the input pair. We propose to verify this by observing
the evolution of the average distance between the positive
samples and between the negative samples when white noise
is gradually added to the feature sequences of the testing set.
The standard deviation of the noise goes from 0 to 2. We
also note that both models were trained up to comparable
validation accuracy. The results are presented on Figure 4.
We observe that the curves for both models evolve similarly
with positive distances gradually increasing with the noise.
The negative and positive curves join the moment too much
noise is added and the sequences become indistinguishable.
CGRU produces slightly higher distance average than SGRU
but is able to maintain higher margins more longer: up
to 1.75 units of standard deviation compared to about
1.25 for SGRU. This shows that, as theoretically possible
with the coupling, CGRU better discriminate the hard samples.

4) Transportation recognition on SHL: We finally present a
second experiment on a larger dataset with twice as much data



Algorithms Accuracy F1 score Macro MAP
Siamese GRU 0.947±0.006 0.951±0.006 0.955±0.007
Coupled GRU 0.965±0.05 0.967±0.006 0.97±0.004

(a) Validation results (10 fold average).
Algorithms Accuracy F1 score Macro MAP

Siamese GRU 0.727±0.019 0.746±0.016 0.784±0.019
Coupled GRU 0.752±0.021 0.768±0.016 0.802±0.018

(b) Test results (average of 5 runs).

TABLE III: Results on SHL dataset.

and a longer sequence size. The validation results are presented
in the Table IIIa. Both architectures achieved results above
90% for each metric but we observe a slight improvement
of CGRU over SGRU for the considered architecture. These
results are further confirmed on the test set (see Table IIIb)
with even larger improvements: 2,5% for accuracy, 2.2%
for F1-score and 1.5% for MAP, in favor of CGRU. These
results confirm the interest of our proposed approach CGRU
compared to SGRU. However, compared to the overall results
of the challenges [39], both approaches achieved similar
validation results but clearly do not demonstrate the same
generalization capacities on this dataset as the best ad-hoc
approaches.

V. CONCLUSION AND PERSPECTIVES

We presented a new framework for sequence metric learning
based on dynamical system synchronization theory. We drew
a parallel between synchronized trajectories and output
sequences of siamese recurrent neural networks produced
from similar input pairs. After characterizing Siamese GRU
as identical chaotic systems, we showed the contribution
of introducing coupling inside the siamese architecture to
achieve synchronization more easily and to increase the
capacity of the network to bring closer the embedding of
some similar input pairs, especially hard positive samples.
This coupling was implemented through a new gate inside
the siamese GRU architecture which allows the network to
mix the new content of both sides of the siamese network.
Our experiments showed that the siamese GRU architecture
benefits from the coupling, can be smoothly trained with
it and fits well with recent complex metric learning losses
such as structural loss. CGRU proved to be outperforming
SGRU with the same architecture on an activity recognition
benchmark and was able to maintain a higher margin for
hard samples. On a larger dataset made for transportation
recognition, CGRU also achieved higher performances than
SGRU.

The study of sequence metric learning with synchronization
opens several perspectives especially to design new forms
of metrics by taking inspiration from the literature of
synchronization criteria [35], [46] though non-differentiability,
notably when those metrics use mutual neighbors which are
computed using explicitly the time steps, has to be overcome
in many cases. This can be done thanks to an attention

mechanism, for example. The coupling itself could be tuned
with theoretical contributions [47]. One drawback of the
proposed architecture is that each pair has to be passed
through the network instead of just computing once each
representation and then the distance for each pair. This could
be balanced by the use of virtual metric learning during
training. Finally the coupling allows to bring any pair of
inputs close to one another if sufficiently strong and could
be use as an indicator in weakly supervised settings to invert
the equivalence constraint of some pairs dynamically if the
network is forcing the synchronization too much.
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