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Introduction

Polynomial system solving can be performed by doing several eliminations. If the variables are x 1 , .., x n , after eliminating x 1 , ..., x n-1 , one has to solve one (large degree) univariate polynomial, and then one finds other unknowns by back substitution, gcd computations and univariate polynomial solving. Unfortunately this method (a regular chain type method), requires building tower of algebraic extensions over Q, which is computation intensive.

It is more efficient to build one algebraic extension of Q (or more if the system factors) such that all components of the solutions of the system will live in this extension. This can be performed by computing a Gröbner basis of I, the ideal spanned by the multivariate polynomials of the system. Then, if the ideal is 0 dimensional, select one variable (say x n ), find the minimal polynomial of this variable. If this polynomial m has the right degree (the dimension of the polynomials modulo the ideal as a vector space) and is square free, for all other variables, find P i such that x i -P i (x n ) is inside the ideal. Then the system solutions are P 1 (x n ), P 2 (x n ), ..., x n for all roots x n of m.

Rouillier ( [START_REF] Rouillier | Solving zero-dimensional systems through the rational univariate representation[END_REF]) found that it is more efficient to compute 1 , and this is called rational univariate representation.

Q i such that x i -Q i (x n )/m ′ (x n ) is inside the ideal
If for all unknowns, the minimal polynomial degree is too small, a linear separating form (linear combination of the x i ), must be found such that the minimal polynomial is of degree the dimension of the vector space of the polynomials modulo the ideal. If the ideal is not radical (i.e. if there is a polynomial P that does not belongs to I but P k ∈ I for some k > 0), the method must be adapted.

Modular algorithms are well known techniques in CAS to make efficient computations, they are also good candidates for parallelization. In our context, algorithms were presented early, like in [START_REF] Noro | A modular method to compute the rational univariate representation of zerodimensional ideals[END_REF] (A Modular Method to Compute the Rational Univariate Representation of Zero-dimensional Ideals). For more recent results, see [START_REF] Berthomieu | msolve: A Library for Solving Polynomial Systems[END_REF].

We will review some of these algorithms as well as some algorithms of Faugère and Mou ( [START_REF] Faugère | Sparse fglm algorithms[END_REF]) for rur computation in Z/pZ in Section 2 (to be more precise, we will compute the rur for the radical ideal spanned by the polynomials of the system). In subsection 2.5 we will precise how we can certify a rur. Section 3 will give more informations on the implementation inside Giac/Xcas and gives some benchmarks.

2 Algorithms for RUR computations 2.1 Gröbner basis over Z/pZ (degree rev. lex. ordering)

For a basis computation without additional hypothesis, it seems that F4 ( [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases (F4)[END_REF]) is a very good algorithm choice. Since the same basis is computed several times for different primes, we can store some informations during the first run, like s-pairs reducing to 0, in order to speed up computation for the next primes, this is described in more details in [START_REF] Parisse | A probabilistic and deterministic modular algorithm for computing groebner basis over Q[END_REF] (A probabilistic and deterministic modular algorithm for computing Groebner basis over Q).

From Gröbner basis to RUR over Z/pZ

If the ideal I spanned by the polynomials of the system is 0-dimensional, the polynomials modulo I belong to V , a vector space of finite dimension d. We can compute a basis of V by collecting all the monomials smaller than the leading ones in G.

The reduction of 1, x n , .., x d n with respect to the Gröbner basis is not free, there is a minimal polynomial m of degree at most d such that m(x n ) = 0 (mod I). Computing m is a linear algebra kernel computation (for a matrix with columns the components of the reduction mod I of x i n ). This is an O(d 3 ) computation with a naive Gauss pivoting method. Fortunately, it can be computed faster, by observing that if i m i x i n = 0 (mod I) then it's still true after multiplication by a power of x n , and therefore the scalar product of a fixed vector and the reduced vector is 0, then the m i coefficients can be found by mean of the Berlekam-Massey algorithm, using the half-gcd fast version in O(d log(d)) operations (see e.g. [START_REF] Yap | Fundamental problems of algorithmic algebra[END_REF], Yap), once the scalar products are computed.

There is still a naive O(d 3 ) part in this algorithm, computing the x k n (mod I). This is done by computing the matrix of the multiplication by x n (mod I) in the basis of V , by reducing all monomials of this basis multiplied by x n . In many situations, the multiplication by x n will give a monomial of the basis of V , and the corresponding column of M is trivial (one 1 and all other coefficients 0). Or the multiplication by x n will return the leading monomial of one element of G and the reduction is trivial (take the opposite of all remaining monomials of this element of G). The remaining products by x n must be reduced mod G, this can be done simultaneously for all these products like in the F4 algorithm. The multiplication of a vector by M is still O(d 2 ), but it becomes faster if the matrix has many trivial columns, and it's a simple operation that can benefit from the CPU instruction set.

In a generic situation, the minimal polynomial of x n is of maximal degree d the dimension of V the vector space of polynomials modulo I and every element of V (i.e. any polynomial modulo the ideal I) can be expressed as a polynomial in x n , of degree < d. Finding the polynomial corresponding to x 1 , .., x n-1 will give the solution to the initial system. It can be seen as a linear system of matrix with columns the powers 0 to d -1 of x n reduced modulo I and with second member x i modulo I. Which means solving n -1 systems with the same d × d matrix, where n << d, at a O(d 3 ) cost (naive algorithm). Fortunately, this can be improved, by observing that if x i = P i (x n ) (mod I) then x k n x i = x k n P i (x n ) (mod I), then one can do the scalar product of this equation with any fixed vector, and get a linear equation in the coefficients of P i that we are computing. Doing that for k = 0, ..., d -1 will bring a linear system with a structured matrix. This matrix is named a Hankel matrix, it's coefficients are already computed: it's the coefficients of the Berlekamp-Massey algorithm that returned the minimal polynomial of x n . Hankel matrices can be inverted using an extended GCD and a Bezoutian matrix, cf. for example wikipedia and the cost for computing a Bezoutian matrix is O(d 2 ), cf. e.g. [START_REF] Chionh | Fast computation of the bezout and dixon resultant matrices[END_REF] (Fast computation of the Bezout and Dixon resultant matrices)

Non generic situations

If the minimal polynomial of x n is not of maximal degree, one can try the other monomials x 1 to x n-1 and if it does not work, a random linear combination of x 1 , ..., x n , this is called a separating linear form. Finding a linear separating form may be hard, see. for example [START_REF] Bouzidi | Solving bivariate systems using rational univariate representations[END_REF] for bivariate systems.

If the minimal polynomial is of maximal degree d but is not squarefree, then the ideal I is not radical, in that case one can add the squarefree part of the minimal polynomial to the generators of the ideal and compute a new Gröbner basis, until the ideal is radical (it is not mandatory to reconstruct a radical rur, but it is convenient for a software like Giac/Xcas where we are interested in system solutions and not multiplicities). Cf. Faugère and Mou ([6]) for alternative methods.

Rational reconstruction

It is of course possible to compute a Gröbner basis over Q and run the same kind of computations, but field operations in Q are not performed in O(1) time, that's why a multi-modular algorithm is most of the time more efficient.

The first step is to cancel denominators so that the coefficients belong to Z. A prime p is said to be a good reduction prime if the steps of the computation over Z/pZ are the reduction modulo p of the steps over Q. This is true if the leading monomials of the s-pairs do not cancel mod p, if the basis of the vector space of the polynomials modulo the ideal remains the same, if the degree of the minimal polynomial of the separating linear form remains d. Therefore before trying to reconstruct a rur in Q from several primes, we must check the consistency of these primes. Two primes are compatible if the leading monomials of the Gröbner basis have the same power exponents. If one prime has a gbasis with less elements, or a basis of V with less elements, it must be discarded.

My estimate for the probability to have a bad prime for a today-large computation is less than 1e-4 (with about 1e4 leading coefficients for a prime of size about 5e8 in Giac), hence if a few thousands primes are required to stabilize the computation over Q, the probability to meet one bad prime would be less than 0.1.

Reconstruction is done coefficient by coefficient using Farey algorithm. If the reconstructed rur modulo the next prime p matches the computation over Z/P Z (where P is the product of the previous primes), then the probability of a bad rur reconstruction is very low and can be as low as desired by checking with a few other primes rur computations. Certifying a rur is somewhat costly, because we must either reduce the rur elements modulo the Q-gbasis (which must be certified as well) or check that the solutions verify the initial system. We will show in the next section that the second method can be done efficiently by reformulating a large computation with univariate fractions with rational coefficients as a large computation with integer coefficients.

Certifying a rur

In this section, we explain how we can certify that our rur gives all the solutions of the original system if the ideal is radical.

The idea is very simple: just replace in the original system all variables by their rur fraction representation

Q i (x n )/m ′ (x n )
and check if we get 0. Then we are sure that all roots we will compute with the rur are solutions of the system. In the other direction, we must check that we do not miss solutions. If the ideal is radical, this is a consequence of theorem 7.1 of Arnold [START_REF] Arnold | Modular algorithms for computing Gröbner bases[END_REF] that states that in order to check the reconstruction of a gbasis by a modular algorithm, we must check that the reconstruction is a Groebner basis (i.e. check that all s-polynomials of a pair reduces to 0) and that the initial generators belong to the ideal spanned by the reconstruction (that's precisely what we do in the substitution check).

Here we just have to translate rur properties into Groebner basis properties. We add a variable t that is the common separating linear form common to all primes used for reconstruction and add t minus the linear form to the ideal generators (generically t = x n and we add tx n to the initial polynomial system). Then the set S of (P i ) 1≤i≤n :=

x i -rem(Q i (t)(m ′ (t)[m]) -1 , m
) and m(t) is a Groebner basis with respect to lexicographic ordering x 1 , .., x n , t modulo each prime used for reconstruction, and it is also a Groebner basis over Q, indeed if we compute the spolynomial of two elements of S, we get if m is not in the pair :

x j P i -x i P j = x j (x i -Q i (t)(m ′ (t)[m]) -1 [m]) -x i ((x j -Q j (t)(m ′ (t)[m]) -1 [m]) = x i Q j (t)(m ′ (t)[m]) -1 [m] -x j Q i (t)(m ′ (t)[m]) -1 [m] → 0
or if m(t) is one of the two polynomials, then

t d P i -x i m = (t d -m)x i -t d Q i (t)(m ′ (t)[m]) -1 [m]) → (t d -m)(Q i (t)(m ′ (t)[m]) -1 [m]) -t d Q i (t)(m ′ (t)[m]) -1 [m] → 0
In order to avoid rational computations, we write Q i as a quotient Qi /q i where Qi ∈ Z[X] and q i ∈ Z and m ′ = D/ d. The size of the coefficients is proportionnal to N the number of primes that were necessary to reconstruct the rur over Q. The degree is ≤ d.

Let P j ∈ Z[x 1 , ..., x n ] be a polynomial equation in the system, of total degree δ. We can perform all computations in Z[X] by multiplying the equation by m ′δ .

Indeed, replacing values in a monomial c k l x α l l will lead to computing

c k ( D/ d) δ-α l l ( Ql /q l ) α l = c k Dδ-α l l Qα l l dδ-α l l q α l l
We will have less than δ products of a polynomial of degree less than δd with a polynomial of degree less than d and coefficients size are bounded by δN , this is O(δ 3 dN ) (up to logarithmic terms) using FFT. With a divide and conquer product algorithm, the cost becomes O(δ 2 dN ). Indeed if T (δ) is a bound for this cost, for δ even

T (δ) ≤ 2T ( δ 2 ) + M ( δ 2 , d, N )
where M (δ, d, N ) is the cost to multiply to univariate polynomials of degree δd with integer coefficients of size ≤ δN . Proof : if the coefficients are smaller than B then the product coefficients are smaller than B = δdB2 . The product degree is ≤ 2δd. Then we make O(log( B)) FFT product of degree ≤ 2δd modulo small primes and recover the integer polynomial product by chinese remaindering.

If N ≥ d 2 , we can choose l and the smallest possible r such that

2δd ≥ 2 l > δd, 2 r2 l > B
and make a unique FFT product of the polynomials modulo n = 2 r2 l + 1 (so that reduction modulo n is easy), using 2 r as a 2 l+1 root of unity. The ring operations are done in O(log(n)) = O(log( B) = 2dN ) operations and there are up to logarithmic terms O(2 l+1 ) operations. Hence for δ a power of 2 :

T (δ) ≤ 2T ( δ 2 ) + Cdδ 2 N ≤ 4T ( δ 4 ) + Cd δ 2 2 N + Cdδ 2 N ≤ ... ≤ CdN δ 2 (1 + 1 2 + 1 4 + ...)
Then we add monomials by applying :

A a + B b = A b g + B a g g a g b g , g = gcd Z (a, b)
For the cost analysis, observe that if q is the lcm of the denominators of the Q j polymomials, then a and b are divisors of (q d) δ , we could therefore replace monomial additions above by monomial additions over Z[X]. The coefficients of A and B would be multiplied by at most (q d) δ , this adds δN to a size already O(δN ), and the size remains an O(δN ).

Hence a monomial addition cost is in O(δN δd). The total cost of computing P j is therefore an O(δ 2 dN l(P j )) where l(P j ) is the number of monomials of P j (assumed to be represented as a sparse distributed polynomial), δ the total degree of P j , d the dimension of the vector space V (the polynomials modulo the ideal), N the number of primes 3 .

The memory required is proportionnal to O(δ 2 dN ). If δ is large, the bottleneck for checking will be memory instead of time, since it will become (much) more than the memory required to store the rur in O((n + 2)dN ) where n is the number of variables, especially if this step is parallelized : care must be taken to bound the number of parallel threads running simultaneously (δ 2 • #threads should be of the same size order than n). Another option (not tested) would be to adopt a dense recursive representation for the polynomials of the system if it is dense.

And at the end we compute the euclidean division with the primitive part of the minimal polynomial m. Since it is highly probable that the remainder of the division is 0, the quotient should belong to Z[X], therefore we can reconstruct the quotient in Z[X] by a multi-modular algorithm (with fast modular univariate division algorithms for each prime) and we do the final check by a product. Therefore if the certification does not fail, this division has the same cost as multiplying two polynomials of degree δd and d and coefficient sizes δN and N , again an O(δ 2 dN ) up to logarithmic terms and the check can be performed efficiently. We get : Theorem 2 The time cost of a successfull check by substitution that the rur (rational univariate representation) is a solution of a polynomial system may be bounded by O(δ 2 dN l) up to logarithmic terms, where δ is the total degree of the polynomial system, d is the dimension of V (the vector space of polynomials modulo the ideal I spanned by the polynomials of the system), N the number of (fixed bit size) primes required for modular reconstruction of the rur, and l the number of monomials in the polynomial system. The memory cost may be bounded by O(δ 2 dN ).

If the substitution check is successfull for all the polynomials of the system and if the ideal is radical, then the rur is certified (if the ideal is not radical, solutions are certified, but it is not proved that additional solutions do not exist).

If the ideal is not radical, the probability to miss solutions is extremly small, because it would imply that • either all primes used for reconstruction are bad primes and have at least one common leading coefficient(s) of the s-polynomials used to compute the gbasis is 0 modulo these primes.

• or if m is the minimal polynomial of the separating linear form and P = m/gcd Q (m, m ′ ) it's square-free part, then resultant(P, P ′ ) is 0 modulo all these primes.

For example in the benchmarks section below, phuoc is the only example that is not radical. Reconstruction requires 781 primes larger than 5e8, the probability to miss solutions is smaller than 1e-6700.

3 Giac/Xcas implementation and benchmarks

Implementation

• Step 1: compute the gbasis for revlex order modulo a prime p . Giac implementation details of the gbasis algorithm with learning are described in [START_REF] Parisse | A probabilistic and deterministic modular algorithm for computing groebner basis over Q[END_REF]. If p is not the first prime, compare if the current prime is compatible with previous one (leading monomials of the gbasis must be the same), if not discard it (or all previous primes). Following a suggestion of F. Rouillier, step 1 can be replaced by a modular reduction of the gbasis over Q if it has been already computed. If reconstructing the gbasis over Q requires less primes than reconstructing the rur, this speeds up a little bit the computation (up to a factor 2 on Katsura examples below) but it requires more memory. However the rur reconstruction requires often much less primes than the gbasis reconstruction (it probably means that representing variables as fractions instead of polynomials is really effective in terms of coefficient sizes, in other words that the rur is really efficient) and doing that would require much more time.

Giac/Xcas has a fine-tuning command rur_gbasis(n) for that purpose, if n==0, no reconstruction of the gbasis (default), if n==1, reconstruction of the gbasis but leave as soon as the rur is reconstructed, and if n>1, reconstruction happens only if the number of monomials of the gbasis is less than n.

• Step 2 (for the first prime): find the dimension and a basis of V made of monomials. We collect the leading monomials of the gbasis. For every variable x i we search a leading monomial x di i that is a power of this variable. This will bound any monomial exponent in V by

(d 1 , ..., d n ). The dimension d of V is smaller than D the product of d i . For any integer 0 ≤ i < D, write i in multi-basis d 1 , ..., d n i = (..(i 1 d 2 + i 2 )d 3 + ... + i n-1 )d n + i n , 0 ≤ i k < d k and check if x i1
1 ...x in n is greater than a leading monomial of the gbasis, if not add it to the basis.

• Step 3: compute the matrix of multiplication by x n in our basis of V . If x n times the monomial is itself a monomial in V , we do not store a column with one 1 and d -1 zeros, instead we store the pairs of indices of the monomials, this is a mixed storage (dense part/sparse part).

• Step 4: compute the coefficients of the Hankel matrix (the dense multiplication part can take advantage of the AVX2 instruction set if available). For the dense part of the multiplication, we avoid divisions (except the final one) by computing representants 0 ≤ r < p 2 , after an addition of a multiplication of coefficients in [0, p) we substract -p 2 and add p 2 if the result is negative without testing (for a 63 bits signed integer i this is done by i += (i>>63) & p2). In Giac, we do that for 4 additions at a time (using representants in [0, 4p 2 ) where p < 2 29 ).

• Step 5: find m the minimal polynomial of x n by the halfgcd Berlekamp-Massey algorithm. If it is not of maximal degree d, replace x n by another variable x 1 , .., x n-1 and go to step 3. If none of the variables fill the degree condition, try with a random integer linear combination of x i . The separating linear form will be recorded for further primes.

• Step 6: if the minimal polynomial m is not squarefree, add the square free part m/gcd(m,m') to the gbasis, and go to step 1.

• Step 7: find the polynomials P i such that x i -P i (x n ) = 0 (mod I) by solving Hankel systems (using fast inversion of the Hankel matrix with bezoutians).

• Step 8: compute

Q i = P i m ′ (mod m)
• Step 9: (if not at the first prime) Check if the Farey rational reconstruction for previous primes matches this prime for Q i (mod p) (check for a few monomials before doing a complete reconstruction check). If so, return the Farey reconstruction. Otherwise, apply the Chinese Remainder Theorem for Q i (mod p) and previous primes and go to step 1 for a next prime.

• Certification. The default is to certify all equations. Running rur_certify(0)will not run any certification, rur_certify(1)will run all certifications while rur_certify(n) will certify only equations of total degree δ < n (for n > 1). For example running rur_certify(19) for the phuoc example below will only certify one of the 22 equations of the system (requires about one day of CPU) since the total degrees are 22 (1 occurence), 20 (1 occurence), 19 (19 occurences) and 18 (1 occurence, with 1330 monomials).

Steps 1 to 8 can be parallelized. Trying to parallelize step 9 does not speed up the computation because it requires a lot of memory allocations, and this seems to always be thread-mutually exclusive.

Certification can be parallelized but is limited to 6 threads by default to spare memory. The maximal number of threads t for this step is configurable by running the command rur_certify(-t).

Benchmarks

• Giac/Xcas 1.7.0-17 timings are for a rur computation with AVX2 enabled, on an Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz. The computation were run with 16 threads in parallel, with a few exceptions with 8 threads in order to spare memory. Certification is run with 6 threads in order to spare memory.

• In order to compile Giac/Xcas with AVX2 support with gcc, install VCL vectorclass by Agner Fog and run export CXXFLAGS='-O2 -g -mfma -mavx2 -fabi-version=0' before running ./configure in the Giac/Xcas source root directory.

• The Giac/Xcas script files for these benchmarks are available here

• The threads column is the number of threads for this computation.

• The next two columsn are real time for the computation without certification and for certification. For * examples, gbasis reconstruction was enabled4 with the gbasis_rur(1) command, for other examples, it was not.

• msolve timings are for fglm computation (not certified) with AVX2 enabled, on an Intel (R) Xeon (R) CPU E7-4820v4 @ 2.00GHz, as reported by the msolve authors, they should be multipled by about 0.77 to account for the different frequencies. On the other hand, CPU time for multi-threaded implementations are always greater than for one-threaded implementations, especially for relatively small computations or for computations requiring much memory for each prime • The next 2 columns are CPU timings without certification and for certification.

• the next column N d δ 2 is the sum for all monomials of the total degree squared, we will see that it gives a relatively good guess of the certification execution time.

• The RAM column is with certification (max certification threads 6).

• The N column is the number of primes (these primes have a bitsize of 30), δ is the total degree of the initial system, d the dimension of the polynomials modulo the ideal, l the number of monomials of the system. Timings are given is seconds (sometimes rounded) with a relative precision of a few percents (execution time depends on server load and RAM available). Large computation times are reported with a 1e5 exponent, this corresponds to a little more than 1 day (since one day=86400 seconds, i.e. 0.864e5). This leads to the following observations :

• If we plot the points (x =logarithm of N d δ 2 , y =logarithm of the certification execution time), we get The points are well grouped around the linear regression line (of equation y = 1.06 • x -7.26 with an R 2 = 0.984). Therefore the value N d δ 2 (known after the probabilistic reconstruction of the rur is done) gives a good guess of the order size of the time that will effectively be required for certification.

• One bad prime (over 1352) was observed for noon7, p = 534856027, and 5 bad primes (over 4060) for noon8.

• Some examples above do not require as many primes as reported by msolve authors. I'm confident there is no bug inside Giac results since they are certified.

• Except for noon7 and 8 where maple reported timings in [START_REF] Berthomieu | msolve: A Library for Solving Polynomial Systems[END_REF] 

Conclusion

We have now efficient probabilistic methods for rur computations over Q and an efficient way to check it on the initial polynomial system (except for dense systems of large degree), in other words an efficient Las Vegas rur algorithm for radical ideals. The question of an efficient deterministic algorithm is still open, it may be impossible. Some possible improvements are not implemented in Giac/Xcas

• a more efficient (deterministic?) algorithm to find a linear separating form.

• certifying with a recursive dense representation of the system for dense polynomial equations.

Proposition 1

 1 Let M (δ, d, N ) be the cost to multiply two univariate polynomials of degree δd with integer coefficients of size ≤ δN . Then M (δ, d, N ) ≤ Cδ 2 dN where logarithmic terms are inside C.

  . For examples, Katsura 9 computation takes 3.06s CPU time with 1 thread instead of 6.16s with 16 threads (real time 1.33s), Katsura 10 takes 20s with 1 thread instead of 33s with 16 threads (real time 7.4s) and Katsura 11 takes 170s with 1 thread instead of 245s with 16 threads (real time 46s). For cp466, msolve authors report a running time of 71472s, but a value of d of 4096 =728 that we obtain. Since our rur is certified, there is no bug in giac, we suspect some mismatch in the data gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_4_n_6_p_6.ms The current version of msolve does not support multiple CPUs, but it will most certainly do in the near future.

•

  The last 2 columns give the time required to isolate all real roots of the minimial polynomial of the separating linear form. The algorithm is a C++-transcription of Xcas user code sent by Alkis Akritas ([START_REF] Akritas | A comparative study of two real root isolation methods[END_REF]). It is a little bit parallelized, by running isolation of positive and negative real roots in separate threads. It is most of the time at least one order of magnitude faster than computing the polynomial, and is therefore not a priority for further optimizations.

		thrds	giac	giac	msolve	giac	cert	N d•						root	root
		t	real	cert	CPU	CPU	CPU	δ 2	RAM	N	δ	d	l	real	CPU
	Kat9*	16	1.33	0.14	8.41	6.16	0.55	5.2e6	67M	84	2	256	74	0.34	0.45
	Kat10*	16	7.4	0.53	43.7	32.7	2.2	30e6	225M	194	2	512	90	1.8	2.6
	Kat11*	16	46	2.66	424	245	12	0.15e9	781M	400	2	1024	107	19.6	31.3
	Kat12*	16	550	18.1	6262	4726	87.8	0.76e9	3.5G	862	2	2048	126	154	276
	Kat13*	16	7320	97	0.89e5	0.72e5	521	3.8e9	15.3G	1831	2	4096	146	1650	2900
	Kat14*	8	1.1e5	836	13e5	7e5	3565	19e9	48G	3980	2	8192	168	16e3	30e3
	Noon7	16	460	116	4040	4000	423	1.2e9	3.6G	1351	3	2173	64	24.2	43.1
	Noon8	8	1.4e5	2160	6e5	10e5	8440	14e9	33G	4060	3	6545	81	413	814
	Phuoc	16	363	5.3e5	4467	4255	26e5	6.1e12	37G	781	22	1102	32896	7.66	13
	Henr.6	16	6.08	10.5	138	54.3	35	0.15e9	492M	310	6	720	69	1.37	1.39
	Henr.7	16	7200	3720	1.18e5	0.87e5	0.12e5	24e9	33G	2611	7	5040	134	309	314
	Eco10	16	1.33	0.34	12.5	10.2	1.22	5.4e6	108M	57	3	256	64	0.057	0.07
	Eco11	16	7.7	1.1	90.3	70.5	4.8	28e6	287M	119	3	512	76	0.37	0.39
	Eco12	16	65	5.7	877	728	26.6	0.14e9	1.06G	247	3	1024	89	2.52	2.82
	Eco13	16	715	35	12137	9340	175	0.68e9	9.5G	509	3	2048	103	25	27.5
	Eco14	16	0.1e5	186	1.68e5	1.44e5	921	3.3e9	15.4G	1048	3	4096	118	112	123
	cp352	16	2.7	26	18.1	18.5	148	0.95e9	253M	338	4	288	866	0.21	0.26
	cp362	16	38	694	311	429	3710	21e9	1.5G	1077	4	720	2265	1.25	1.75
	cp366	16	107	66	255	302	380	2.1e9	1.3G	807	3	729	498	1.05	1.6
	cp372	16	1390	0.13e5	9640	0.15e5	0.69e5	350e9	9.3G	3143	4	1728	5187	52	91
	cp377	16	1125	3160	0.12e5	0.11e5	2030	38e9	6.6G	2892	3	2187	833	43	64
	cp382	8	0.32e5	2.1e5	2.7e5	2.1e5	12e5	4.8e12	51.3G	8497	4	4032	10720	992	1655
	cp443	16	4.3	1821	40.9	33	1925	8.5e9	115M	352	9	576	922	0.53	0.64
	cp453	16	2.4e3	3.3e5	0.21e5	0.27e5	13e5	4.7e12	41G	2843	9	3456	8381	178	200
	cp466	16	240	342	?	930	1974	8e9	2.6G	3147	3	728	496	5.11	7.01

  are better, the real multi-threaded timings of giac are currently the best available timings. Once msolve is multi-threaded, I expect that it should be a little bit faster than Giac for some examples.

	Example of Giac/Xcas code:
	threads:=16;
	// debug_infolevel:=1;
	rur_gbasis(1); // compute gbasis over Q (not the default)
	// rur_certify(0); // do not certify rur
	kat10:=[x1 + 2 * x2 + 2 * x3 + 2 * x4 + 2 * x5 + 2 * x6 + 2 * x7 + 2 * x8 + 2 * x9
	+ 2 * x10 -1, x1^2 + 2 * x2^2 + 2 * x3^2 + 2 * x4^2 + 2 * x5^2 + 2 * x6^2 +
	2 * x7^2 + 2 * x8^2 + 2 * x9^2 + 2 * x10^2 -x1, 2 * x1 * x2 + 2 * x2 * x3 +
	2 * x3 * x4 + 2 * x4 * x5 + 2 * x5 * x6 + 2 * x6 * x7 + 2 * x7 * x8 + 2 * x8 * x9 +
	2 * x9 * x10 -x2, x2^2 + 2 * x1 * x3 + 2 * x2 * x4 + 2 * x3 * x5 + 2 * x4 * x6 +
	2 * x5 * x7 + 2 * x6 * x8 + 2 * x7 * x9 + 2 * x8 * x10 -x3, 2 * x2 * x3 + 2 * x1 * x4 +
	2 * x2 * x5 + 2 * x3 * x6 + 2 * x4 * x7 + 2 * x5 * x8 + 2 * x6 * x9 + 2 * x7 * x10 -x4,
	x3^2 + 2 * x2 * x4 + 2 * x1 * x5 + 2 * x2 * x6 + 2 * x3 * x7 + 2 * x4 * x8 + 2 * x5 * x9 +
	2 * x6 * x10 -x5, 2 * x3 * x4 + 2 * x2 * x5 + 2 * x1 * x6 + 2 * x2 * x7 + 2 * x3 * x8 +
	2 * x4 * x9 + 2 * x5 * x10 -x6, x4^2 + 2 * x3 * x5 + 2 * x2 * x6 + 2 * x1 * x7 +
	2 * x2 * x8 + 2 * x3 * x9 + 2 * x4 * x10 -x7, 2 * x4 * x5 + 2 * x3 * x6 + 2 * x2 * x7 +
	2 * x1 * x8 + 2 * x2 * x9 + 2 * x3 * x10 -x8, x5^2 + 2 * x4 * x6 + 2 * x3 * x7 +
	2 * x2 * x8 + 2 * x1 * x9 + 2 * x2 * x10 -x9];
	vars:=[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10];
	time(H:=gbasis(kat10 ,vars,rur));
	write("Hkat10",H); // use archive instead of write for fast read
	// real root isolation
	time(R:=realroot(eval(H[2],1)));
	write("Rkat10",R);
	size(R);

which means that m ′ x i -Q i is in the ideal. Since m and m ′ are coprime and m is in the ideal, a polynomial P belongs to the ideal if and only if m ′ P is in the ideal.

In the benchmarks section below, the value of N should be multiplied by the bitsize of primes, i.e. 29

A more precise estimate is O(dN monomials total degree(monomial) 2 )

For a benchmark family, testing both methods for small benchmarks is a good hint on what should be done for large ones

• certifying and a better implementation for non radical ideals.