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Abstract

Version 1 of this preprint did not introduce new mathematical ideas, it was more a state of the art June 2021

picture about solving polynomial systems efficiently by reconstructing a rational univariate representation (rur)

with a very high probability of correctness using Groebner revlex computation, Berlekamp-Massey algorithm

and Hankel linear system solving modulo several primes in parallel. Version 2 introduces an algorithm for rur

certification that is effective for most systems (the cost of this algorithm being bounded in theorem 2), something

new as far as I know.

These algorithms are implemented in Giac/Xcas ([10]) since version 1.7.0-13 or 1.7.0-17 for certification, it

has (July 2021) leading performances on multiple CPU, at least for an open-source software.

1 Introduction

Polynomial system solving can be performed by doing several eliminations. If the variables are x1, .., xn, after

eliminating x1, ..., xn−1, one has to solve one (large degree) univariate polynomial, and then one finds other

unknowns by back substitution and univariate polynomial solving. Unfortunately this method, named regular

chains, requires building tower of algebraic extensions over Q, which is computation intensive.

It is more efficient to build one algebraic extension of Q (or more if the system factors) such that all components

of the solutions of the system will live in this extension. This can be performed by computing a Gröbner basis

of I , the ideal spanned by the multivariate polynomials of the system. Then, if the ideal is 0 dimensional, select

one variable (say xn), find the minimal polynomial of this variable. If this polynomial m has the right degree (the

dimension of the polynomials modulo the ideal as a vector space) and is square free, for all other variables, find Pi

such that xi − Pi(xn) is inside the ideal. Then the system solutions are P1(xn), P2(xn), ..., xn for all roots xn of

m.

Rouillier ([11]) found that it is more efficient to compute Qi such that xi−Qi(xn)/m
′(xn) is inside the ideal1,

and this is called rational univariate representation.

If for all unknowns, the minimal polynomial degree is too small, a linear separating form (linear combination

of the xi), must be found such that the minimal polynomial is of degree the dimension of the vector space of the

1which means that m′xi − Qi is in the ideal. Since m and m′ are coprime and m is in the ideal, a polynomial P belongs to the ideal if

and only if m′P is in the ideal.
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polynomials modulo the ideal. If the ideal is not radical (i.e. if there is a polynomial P that does not belongs to I
but P k ∈ I for some k > 0), the method must be adapted.

Modular algorithms are well known techniques in CAS to make efficient computations, they are also good

candidates for parallelization. In our context, algorithms were presented early, like in [8] (A Modular Method to

Compute the Rational Univariate Representation of Zero-dimensional Ideals). For more recent results, see [3].

We will review some of these algorithms as well as some algorithms of Faugère and Mou ([6]) for rur com-

putation in Z/pZ in Section 2 (to be more precise, we will compute the rur for the radical ideal spanned by the

polynomials of the system). In subsection 2.5 we will precise how we can certify a rur. Section 3 will give more

informations on the implementation inside Giac/Xcas and gives some benchmarks.

2 Algorithms for RUR computations

2.1 Gröbner basis over Z/pZ (degree rev. lex. ordering)

For a basis computation without additional hypothesis, it seems that F4 ([7]) is a very good choice. Since the

same basis is computed several times for different primes, we can store some informations during the first run, like

s-pairs reducing to 0, in order to speed up computation for the next primes, this is described in more details in [9]

(A probabilistic and deterministic modular algorithm for computing Groebner basis over Q).

2.2 From Gröbner basis to RUR over Z/pZ

If the ideal I spanned by the polynomials of the system is 0-dimensional, the polynomials modulo I belong to V ,

a vector space of finite dimension d. We can compute a basis of V by collecting all the monomials smaller than

the leading ones in G.

The reduction of 1, xn, .., x
d
n with respect to the Gröbner basis is not free, there is a minimal polynomial m

of degree at most d such that m(xn) = 0 (mod I). Computing m is a linear algebra kernel computation (for a

matrix with columns the components of the reduction mod I of xi
n). This is an O(d3) computation with a naive

Gauss pivoting method. Fortunately, it can be computed faster, by observing that if

∑

i

mix
i
n = 0 (mod I)

then it’s still true after multiplication by a power of xn, and therefore the scalar product of a fixed vector and the

reduced vector is 0, then the mi coefficients can be found by mean of the Berlekam-Massey algorithm, using the

half-gcd fast version in O(d log(d)) operations (see e.g. [12], Yap), once the scalar products are computed.

There is still a naive O(d3) part in this algorithm, computing the xk
n (mod I). This is done by computing the

matrix of the multiplication by xn (mod I) in the basis of V , by reducing all monomials of this basis multiplied

by xn. In many situations, the multiplication by xn will give a monomial of the basis of V , and the corresponding

column of M is trivial (one 1 and all other coefficients 0). Or the multiplication by xn will return the leading

monomial of one element of G and the reduction is trivial (take the opposite of all remaining monomials of this

element of G). The remaining products by xn must be reduced mod G, this can be done simultaneously for all

these products like in the F4 algorithm. The multiplication of a vector by M is still O(d2), but it becomes faster if

the matrix has many trivial columns, and it’s a simple operation that can benefit from the CPU instruction set.

In a generic situation, the minimal polynomial of xn is of maximal degree d the dimension of V the vector space

of polynomials modulo I and every element of V (i.e. any polynomial modulo the ideal I) can be expressed as a

polynomial in xn, of degree < d. Finding the polynomial corresponding to x1, .., xn−1 will give the solution to the
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initial system. It can be seen as a linear system of matrix with columns the powers 0 to d−1 of xn reduced modulo

I and with second member xi modulo I . Which means solving n− 1 systems with the same d× d matrix, where

n << d, at a O(d3) cost (naive algorithm). Fortunately, this can be improved, by observing that if xi = Pi(xn)
(mod I) then xk

nxi = xk
nPi(xn) (mod I), then one can do the scalar product of this equation with any fixed

vector, and get a linear equation in the coefficients of Pi that we are computing. Doing that for k = 0, ..., d − 1
will bring a linear system with a structured matrix. This matrix is named a Hankel matrix, it’s coefficients are

already computed: it’s the coefficients of the Berlekamp-Massey algorithm that returned the minimal polynomial

of xn. Hankel matrices can be inverted using an extended GCD and a Bezoutian matrix, cf. for example wikipedia

and the cost for computing a Bezoutian matrix is O(d2), cf. e.g. [5] (Fast computation of the Bezout and Dixon

resultant matrices)

2.3 Non generic situations

If the minimal polynomial of xn is not of maximal degree, one can try the other monomials x1 to xn−1 and if it

does not work, a random linear combination of x1, ..., xn, this is called a separating linear form. Finding a linear

separating form may be hard, see. for example [4] for bivariate systems.

If the minimal polynomial is of maximal degree d but is not squarefree, then the ideal I is not radical, in that

case one can add the squarefree part of the minimal polynomial to the generators of the ideal and compute a new

Gröbner basis, until the ideal is radical (it is not mandatory to reconstruct a radical rur, but it is convenient for a

software like Giac/Xcas where we are interested in system solutions and not multiplicities). Cf. Faugère and Mou

([6]) for alternative methods.

2.4 Rational reconstruction

It is of course possible to compute a Gröbner basis over Q and run the same kind of computations, but field

operations in Q are not performed in O(1) time, that’s why a multi-modular algorithm is most of the time more

efficient.

The first step is to cancel denominators so that the coefficients belong to Z. A prime p is said to be a good

reduction prime if the steps of the computation over Z/pZ are the reduction modulo p of the steps over Q. This is

true if the leading monomials of the s-pairs do not cancel mod p, if the basis of the vector space of the polynomials

modulo the ideal remains the same, if the degree of the minimal polynomial of the separating linear form remains

d. Therefore before trying to reconstruct a rur in Q from several primes, we must check the consistency of these

primes. Two primes are compatible if the leading monomials of the Gröbner basis have the same power exponents.

If one prime has a gbasis with less elements, or a basis of V with less elements, it must be discarded.

My estimate for the probability to have a bad prime for a today-large computation is less than 1e-4 (with about

1e4 leading coefficients for a prime of size about 5e8 in Giac), hence if a few thousands primes are required to

stabilize the computation over Q, the probability to meet one bad prime would be less than 0.1.

Reconstruction is done coefficient by coefficient using Farey algorithm. If the reconstructed rur modulo the

next prime p matches the computation over Z/PZ (where P is the product of the previous primes), then the

probability of a bad rur reconstruction is very low and can be as low as desired by checking with a few other

primes rur computations. Certifying a rur is somewhat costly, because we must either reduce the rur elements

modulo the Q-gbasis (which must be certified as well) or check that the solutions verify the initial system. We will

show in the next section that the second method can be done efficiently by reformulating a large computation with

univariate fractions with rational coefficients as a large computation with integer coefficients.
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2.5 Certifying a rur

In this section, we explain how we can certify that our rur gives all the solutions of the original system if the ideal

is radical.

The idea is very simple: just replace in the original system all variables by their rur fraction representation

Qi(xn)/m
′(xn) and check if we get 0. Then we are sure that all roots we will compute with the rur are solutions

of the system. In the other direction, we must check that we do not miss solutions. If the ideal is radical, this is

a consequence of theorem 7.1 of Arnold [2] that states that in order to check the reconstruction of a gbasis by a

modular algorithm, we must check that the reconstruction is a Groebner basis (i.e. check that all s-polynomials of

a pair reduces to 0) and that the initial generators belong to the ideal spanned by the reconstruction (that’s precisely

what we do in the substitution check).

Here we just have to translate rur properties into Groebner basis properties. We add a variable t that is the

common separating linear form common to all primes used for reconstruction and add t minus the linear form to

the ideal generators (generically t = xn and we add t − xn to the initial polynomial system). Then the set S
of (Pi)1≤i≤n := xi − rem(Qi(t)(m

′(t)[m])−1,m) and m(t) is a Groebner basis with respect to lexicographic

ordering x1, .., xn, t modulo each prime used for reconstruction, and it is also a Groebner basis over Q, indeed if

we compute the s-polynomial of two elements of S, we get if m is not in the pair :

xjPi − xiPj = xj(xi −Qi(t)(m
′(t)[m])−1[m])− xi((xj −Qj(t)(m

′(t)[m])−1[m])

= xiQj(t)(m
′(t)[m])−1[m]− xjQi(t)(m

′(t)[m])−1[m]

→ 0

or if m(t) is one of the two polynomials, then

tdPi − xim = (td −m)xi − tdQi(t)(m
′(t)[m])−1[m])

→ (td −m)(Qi(t)(m
′(t)[m])−1[m])− tdQi(t)(m

′(t)[m])−1[m]

→ 0

In order to avoid rational computations, we write Qi as a quotient Q̃i/qi where Q̃i ∈ Z[X ] and qi ∈ Z

and m′ = D̃/d̃. The size of the coefficients is proportionnal to N the number of primes that were necessary to

reconstruct the rur over Q. The degree is ≤ d.

Let Pj ∈ Z[x1, ..., xn] be a polynomial equation in the system, of total degree δ. We can perform all computa-

tions in Z[X ] by multiplying the equation by m′δ.

Indeed, replacing values in a monomial ck
∏

l x
αl

l will lead to computing

ck(D̃/d̃)δ−
∑

αl

∏

l

(Q̃l/ql)
αl =

ckD̃
δ−

∑
αl

∏
l Q̃

αl

l

d̃δ−
∑

αl

∏
l q

αl

l

We will have less than δ products of a polynomial of degree less than δd with a polynomial of degree less than d
and coefficients size are bounded by δN , this is O(δ3dN) (up to logarithmic terms) using FFT.

With a divide and conquer product algorithm, the cost becomes O(δ2dN). Indeed if T (δ) is a bound for this

cost, for δ even

T (δ) ≤ 2T (
δ

2
) +M(

δ

2
, d,N)

where M(δ, d,N) is the cost to multiply to univariate polynomials of degree δd with integer coefficients of size

≤ δN .
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Proposition 1 Let M(δ, d,N) be the cost to multiply two univariate polynomials of degree δd with integer coeffi-

cients of size ≤ δN . Then M(δ, d,N) ≤ Cδ2dN where logarithmic terms are inside C.

Proof : if the coefficients are smaller than B then the product coefficients are smaller than B̃ = δdB2. The product

degree is ≤ 2δd. Then we make O(log(B̃)) FFT product of degree ≤ 2δd modulo small primes and recover the

integer polynomial product by chinese remaindering.

If N ≥ d2, we can choose l and the smallest possible r such that

2δd ≥ 2l > δd, 2r2
l

> B̃

and make a unique FFT product of the polynomials modulo n = 2r2
l

+ 1 (so that reduction modulo n is easy),

using 2r as a 2l+1 root of unity. The ring operations are done in O(log(n)) = O(log(B̃) = 2dN) operations and

there are up to logarithmic terms O(2l+1) operations.

Hence for δ a power of 2 :

T (δ) ≤ 2T (
δ

2
) + Cdδ2N

≤ 4T (
δ

4
) + Cd

δ2

2
N + Cdδ2N

≤ ...

≤ CdNδ2(1 +
1

2
+

1

4
+ ...)

Then we add monomials by applying :

A

a
+

B

b
=

A b
g
+B a

g

g a
g
b
g

, g = gcd
Z
(a, b)

For the cost analysis, observe that if q is the lcm of the denominators of the Qj polymomials, then a and b are

divisors of (qd̃)δ , we could therefore replace monomial additions above by monomial additions over Z[X ]. The

coefficients of A and B would be multiplied by at most (qd̃)δ , this adds δN to a size already O(δN), and the size

remains an O(δN). Hence a monomial addition cost is in O(δNδd).
The total cost of computing Pj is therefore an O(δ2dNl(Pj)) where l(Pj) is the number of monomials of Pj

(assumed to be represented as a sparse distributed polynomial), δ the total degree of Pj , d the dimension of the

vector space V (the polynomials modulo the ideal), N the number of primes.

The memory required is proportionnal to O(δ2dN). If δ is large, the bottleneck for checking may be memory

more than time, since it might be (much) more than the memory required to store the rur in O((n+ 2)dN) where

n is the number of variables, especially if this step is parallelized : care must be taken to bound the number of

parallel threads running simultaneously (δ2#threads should be of the same size order than n). Another option (not

tested) would be to adopt a dense recursive representation for the polynomials of the system.

And at the end we compute the euclidean division with the primitive part of the minimal polynomial m. Since

it is highly probable that the remainder of the division is 0, the quotient should belong to Z[X ], therefore we can

reconstruct the quotient in Z[X ] by a multi-modular algorithm (with fast modular univariate division algorithms

for each prime) and we do the final check by a product. Therefore If the certification does not fail, this division

has the same cost as multiplying two polynomials of degree δd and d and coefficient sizes δN and N , again an

O(δ2dN) up to logarithmic terms and the check can be performed efficiently. We get :

2In the benchmarks section below, the value of N should be multiplied by the bitsize of primes, i.e. 29
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Theorem 2 The time cost of a successfull check by substitution that the rur (rational univariate representation)

is a solution of a polynomial may be bounded by O(δ2dNl) up to logarithmic terms, where δ is the total degree

of the polynomial, d is the dimension of V (the vector space of polynomials modulo the ideal I spanned by the

polynomials of the system), N the number of primes required for modular reconstruction of the rur, and l the

number of monomials in the polynomial system. The memory cost may be bounded by O(δ2dN).
If the substitution check is successfull for all the polynomials of the system and if the ideal is radical, then the

rur is correct.

If the ideal is not radical, the probability to miss solutions is extremly small, because it would imply that all primes

used for reconstruction are bad primes and have at least one common leading coefficient(s) of the gbasis that is 0

modulo these primes. For example in the benchmarks, phuoc is not radical, reconstruction requires 780 primes

larger than 5e8, the probability to miss solutions is smaller than 0.64e-6785.

3 Giac/Xcas implementation and benchmarks

3.1 Implementation

• Step 1: compute the gbasis for revlex order modulo a prime p . Giac implementation details of the gbasis

algorithm with learning are described in [9]. If p is not the first prime, compare if the current prime is

compatible with previous one (leading monomials of the gbasis must be the same), if not discard it (or all

previous primes).

Following a suggestion of F. Rouillier, step 1 can be replaced by a modular reduction of the gbasis over Q

if it has been already computed. If reconstructing the gbasis over Q requires less primes than reconstructing

the rur, this speeds up a little bit the computation (up to a factor 2 on Katsura examples below) but it requires

more memory. However the rur reconstruction requires often much less primes than the gbasis reconstruction

(it probably means that representing variables as fractions instead of polynomials is really effective in terms

of coefficient sizes, in other words that the rur is really efficient) and doing that would require much more

time.

Giac/Xcas has a fine-tuning command rur_gbasis(n) for that purpose, if n==0, no reconstruction of

the gbasis (default), if n==1, reconstruction of the gbasis but leave as soon as the rur is reconstructed, and

if n>1, reconstruction happens only if the number of monomials of the gbasis is less than n.

• Step 2 (for the first prime): find the dimension and a basis of V made of monomials. We collect the leading

monomials of the gbasis. For every variable xi we search a leading monomial xdi

i that is a power of this

variable. This will bound any monomial exponent in V by (d1, ..., dn). The dimension d of V is smaller

than D the product of di. For any integer 0 ≤ i < D, write i in multi-basis d1, ..., dn

i = (..(i1d2 + i2)d3 + ...+ in−1)dn + in, 0 ≤ ik < dk

and check if xi1
1 ...xin

n is greater than a leading monomial of the gbasis, if not add it to the basis.

• Step 3: compute the matrix of multiplication by xn in our basis of V . If xn times the monomial is itself a

monomial in V , we do not store a column with one 1 and d − 1 zeros, instead we store the pairs of indices

of the monomials, this is a mixed storage (dense part/sparse part).

• Step 4: compute the coefficients of the Hankel matrix (the dense multiplication part can take advantage of

the AVX2 instruction set if available). For the dense part of the multiplication, we avoid divisions (except
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the final one) by computing representants 0 ≤ r < p2, after an addition of a multiplication of coefficients in

[0, p) we substract −p2 and add p2 if the result is negative without testing (for a 63 bits signed integer i this

is done by i += (i>>63) & p2). In Giac, we do that for 4 additions at a time (using representants in

[0, 4p2) where p < 229).

• Step 5: find m the minimal polynomial of xn by the halfgcd Berlekamp-Massey algorithm. If it is not of

maximal degree d, replace xn by another variable x1, .., xn−1 and go to step 3. If none of the variables fill

the degree condition, try with a random integer linear combination of xi. The separating linear form will be

recorded for further primes.

• Step 6: if the minimal polynomialm is not squarefree, add the square free part m/gcd(m,m’) to the gbasis,

and go to step 1.

• Step 7: find the polynomials Pi such that xi − Pi(xn) = 0 (mod I) by solving Hankel systems (using fast

inversion of the Hankel matrix with bezoutians).

• Step 8: compute Qi = Pim
′ (mod m)

• Step 9: (if not at the first prime) Check if the Farey rational reconstruction for previous primes matches

this prime for Qi (mod p) (check for a few monomials before doing a complete reconstruction check). If

so, return the Farey reconstruction. Otherwise, apply the Chinese Remainder Theorem for Qi (mod p) and

previous primes and go to step 1 for a next prime.

• Certification. The default is to certify all equations. Running rur_certify(0)will not run any certifi-

cation, rur_certify(1)will run all certifications while rur_certify(n) will certify only equations

of total degree δ < n (for n > 1). For example running rur_certify(19) for the phuoc example

below will only certify one of the 22 equations of the system (requires about one day of CPU) since the

total degrees are 22 (1 occurence), 20 (1 occurence), 19 (19 occurences) and 18 (1 occurence, with 1330

monomials).

Steps 1 to 8 can be parallelized. Trying to parallelize step 9 does not speed up the computation because it

requires a lot of memory allocations, and this seems to always be thread-mutually exclusive.

3.2 Benchmarks

• Giac/Xcas 1.7.0-17 timings are for a rur computation with AVX2 enabled, on an Intel(R) Xeon(R) CPU

E5-2640 v3 @ 2.60GHz. The computation were run with 16 threads in parallel, with a few exceptions with

8 threads in order to spare memory. Certification is run with 6 threads in order to spare memory.

• The current version of msolve does not support multiple CPUs, but it will certainly do in the near future.

• In order to compile Giac/Xcas with AVX2 support with gcc, install VCL vectorclass by Agner Fog and run

export CXXFLAGS=’-O2 -g -mfma -mavx2 -fabi-version=0’

before running ./configure in the Giac/Xcas source root directory.

• The Giac/Xcas script files for these benchmarks are available here

• The threads column is the number of threads for this computation.
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• The next two columsn are real time for the computation without certification and for certification. For *

examples, gbasis reconstruction was enabled3 with the gbasis_rur(1) command, for other examples, it

was not. For Phuoc, certification was only done for one equation (total degree 18, 1330 monomials). Time

for all 22 checks (total degree up to 22, 32896 monomials) is estimated to be about 24 days CPU or 5 days

real time with 6 certification threads.

Very long certifications check were also estimated for cp382 and cp453.

• msolve timings are for fglm computation (not certified) with AVX2 enabled, on an Intel (R) Xeon (R) CPU

E7-4820v4 @ 2.00GHz, as reported by the msolve authors, they should be multipled by about 0.77 to ac-

count for the different frequencies. On the other hand, CPU time for multi-threaded implementations are

always greater than for one-threaded implementations, especially for relatively small computations or for

computations requiring much memory for each prime. For examples, Katsura 9 computation takes 3.06s

CPU time with 1 thread instead of 6.16s with 16 threads (real time 1.33s), Katsura 10 takes 20s with 1

thread instead of 33s with 16 threads (real time 7.4s) and Katsura 11 takes 170s with 1 thread instead of 245s

with 16 threads (real time 46s)

For cp466, msolve authors report a running time of 71472s, but a value of d of 4096 6=728 that we obtain.

Since our rur is certified, there is no bug in giac, we suspect some mismatch in the data

gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_4_n_6_p_6.ms

• The next 2 columns are CPU timings without certification and for certification.

• The RAM column is with certification (max certification threads 6).

• The N column is the number of primes (these primes have a bitsize of 30), δ is the total degree of the initial

system, d the dimension of the polynomials modulo the ideal, l the number of monomials of the system.

• The last 2 columns give the time required to isolate all real roots of the minimial polynomial of the separating

linear form. The algorithm is a C++-transcription of Xcas user code sent by Alkis Akritas ([1]). It is a little

bit parallelized, by running isolation of positive and negative real roots in separate threads. It is most of the

time one at least one order of magnitude faster than computing the polynomial, and is therefore not a priority

for further optimizations.

3For a benchmark family, testing both methods for small benchmarks is a good hint on what should be done for large ones
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threads giac msolve giac root root

t real cert CPU CPU cert RAM N δ d l real CPU

Kat9* 16 1.33 0.14 8.41 6.16 0.55 67M 84 2 256 74 0.34 0.45

Kat10* 16 7.4 0.53 43.7 32.7 2.2 225M 194 2 512 90 1.8 2.6

Kat11* 16 46 2.66 424 245 12 781M 400 2 1024 107 19.6 31.3

Kat12* 16 550 18.1 6262 4726 87.8 3.5G 862 2 2048 126 154 276

Kat13* 16 7320 97 89e3 72e3 521 15.3G 1831 2 4096 146 1650 2900

Kat14* 8 0.11e6 836 1.3e6 0.7e6 3565 48G 3980 2 8192 168 16e3 29.7e3

Noon7 16 460 116 4040 4000 423 3.6G 1351 3 2173 64 24.2 43.1

Noon8 8 143e3 2160 599e3 1e6 8440 33G 4060 3 6545 81 413 814

Phuoc 16 363 ?5_d 4467 4255 ?24_d 3G 780 22 1102 32896 7.66 13

Henrion6 16 6.08 10.5 138 54.3 35 492M 310 6 720 69 1.37 1.39

Henrion7 16 7.2e3 3720 118e3 87e3 12e3 33G 2611 7 5040 134 309 314

Eco10 16 1.33 0.34 12.5 10.2 1.22 108M 57 3 256 64 0.057 0.07

Eco11 16 7.7 1.1 90.3 70.5 4.8 287M 119 3 512 76 0.37 0.39

Eco12 16 65 5.7 877 728 26.6 1.06G 247 3 1024 89 2.52 2.82

Eco13 16 715 35 12137 9340 175 9.5G 509 3 2048 103 25 27.5

Eco14 16 10.5e3 186 168e3 144e3 921 15.4G 1048 3 4096 118 112 123

cp352 16 2.7 26 18.1 18.5 148 253M 338 4 288 866 0.21 0.26

cp362 16 38 694 311 429 3710 1.5G 1077 4 720 2265 1.25 1.75

cp366 16 107 66 255 302 380 1.3G 807 3 729 498 1.05 1.6

cp372 16 1.39e3 13e3 9.64e3 15e3 69e3 9.3G 3143 4 1728 5187 52 91

cp377 16 1125 3160 12412 11e3 2030 6.6G 2892 3 2187 833 43 64

cp382 8 32e3 ?10_d 270e3 210e3 ?50_d 40G 8497 4 4032 10720 992 1655

cp443 16 4.3 1821 40.9 33 1925 115M 352 9 576 922 0.53 0.64

cp453 16 2.4e3 ?2_d 21.5e3 27e3 ?11_d 38G 2843 4 3456 8381 178 200

cp466 16 240 342 ? 930 1974 2.6G 3147 3 728 496 5.11 7.01

This leads to the following observations :

• One bad prime (over 1352) was observed for noon7, p = 534856027, and 5 bad primes (over 4060) for

noon8.

• Some examples above do not require as many primes as reported by msolve authors. I’m confident there is

no bug inside Giac results since they are certified.

• Except for noon7 and 8 where maple reported timings in [3] are better, the real multi-threaded timings of

giac are currently the best available timings. Once msolve is multi-threaded, I expect that it should be a little

bit faster than Giac for some examples.

• Experimental observation of a degree 18 monomial computation time in certifying phuoc rur is well corre-

lated with an O(δ2) cost.

δ δ2 observerd

4 16 2

5 25 3.1

9 81 14

18 324 66

Example of Giac/Xcas code:

threads:=16;
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// debug_infolevel:=1;

rur_gbasis(1); // compute gbasis over Q (not the default)

// rur_certify(0); // do not certify rur

kat10:=[x1 + 2*x2 + 2*x3 + 2*x4 + 2*x5 + 2*x6 + 2*x7 + 2*x8 + 2*x9

+ 2*x10 - 1, x1^2 + 2*x2^2 + 2*x3^2 + 2*x4^2 + 2*x5^2 + 2*x6^2 +

2*x7^2 + 2*x8^2 + 2*x9^2 + 2*x10^2 - x1, 2*x1*x2 + 2*x2*x3 +

2*x3*x4 + 2*x4*x5 + 2*x5*x6 + 2*x6*x7 + 2*x7*x8 + 2*x8*x9 +

2*x9*x10 - x2, x2^2 + 2*x1*x3 + 2*x2*x4 + 2*x3*x5 + 2*x4*x6 +

2*x5*x7 + 2*x6*x8 + 2*x7*x9 + 2*x8*x10 - x3, 2*x2*x3 + 2*x1*x4 +

2*x2*x5 + 2*x3*x6 + 2*x4*x7 + 2*x5*x8 + 2*x6*x9 + 2*x7*x10 - x4,

x3^2 + 2*x2*x4 + 2*x1*x5 + 2*x2*x6 + 2*x3*x7 + 2*x4*x8 + 2*x5*x9 +

2*x6*x10 - x5, 2*x3*x4 + 2*x2*x5 + 2*x1*x6 + 2*x2*x7 + 2*x3*x8 +

2*x4*x9 + 2*x5*x10 - x6, x4^2 + 2*x3*x5 + 2*x2*x6 + 2*x1*x7 +

2*x2*x8 + 2*x3*x9 + 2*x4*x10 - x7, 2*x4*x5 + 2*x3*x6 + 2*x2*x7 +

2*x1*x8 + 2*x2*x9 + 2*x3*x10 - x8, x5^2 + 2*x4*x6 + 2*x3*x7 +

2*x2*x8 + 2*x1*x9 + 2*x2*x10 - x9];

vars:=[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10];

time(H:=gbasis(kat10 ,vars,rur));

write("Hkat10",H); // use archive instead of write for fast read

// real root isolation

time(R:=realroot(eval(H[2],1)));

write("Rkat10",R);

size(R);

4 Conclusion

We have now efficient probabilistic methods for rur computations over Q and an efficient way to check it on the

initial polynomial system (except for dense systems of large degree), in other words an efficient Las Vegas rur

algorithm for radical ideals. The question of an efficient deterministic algorithm is still open, it may be impossible.

Some possible improvements are still not implemented in Giac/Xcas

• a more efficient (deterministic?) algorithm to find a linear separating form.

• certifying with a recursive dense representation of the system for dense polynomial equations.

• certifying and a better implementation for non radical ideals.

References

[1] A. G. Akritas and A. W. Strzebonski. A comparative study of two real root isolation methods. Nonlinear

Analysis: Modelling and Control, 10(4):297–304, 2005.

[2] E. A. Arnold. Modular algorithms for computing Gröbner bases . Journal of Symbolic Computation,

35(4):403 – 419, 2003.

10



[3] J. Berthomieu, C. Eder, and M. Safey El Din. msolve: A Library for Solving Polynomial Systems. In

2021 International Symposium on Symbolic and Algebraic Computation, 46th International Symposium on

Symbolic and Algebraic Computation, Saint Petersburg, Russia, July 2021.

[4] Y. Bouzidi, S. Lazard, G. Moroz, M. Pouget, F. Rouillier, and M. Sagraloff. Solving bivariate systems using

rational univariate representations. Journal of Complexity, 37:34–75, 2016.

[5] E.-W. Chionh, M. Zhang, and R. N. Goldman. Fast computation of the bezout and dixon resultant matrices.

Journal of Symbolic Computation, 33(1):13–29, 2002.

[6] J.-C. Faugère and C. Mou. Sparse fglm algorithms. Journal of Symbolic Computation, 80:538–569, 2017.

[7] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied

Algebra, 139(1–3):61–88, June 1999.

[8] M. Noro and K. Yokoyama. A modular method to compute the rational univariate representation of zero-

dimensional ideals. Journal of Symbolic Computation, 28(1-2):243–263, 1999.

[9] B. Parisse. A probabilistic and deterministic modular algorithm for computing groebner basis over Q. arXiv

preprint arXiv:1309.4044, 2013.

[10] B. Parisse and R. De Graeve. Giac/Xcas computer algebra system, version 1.7.0-17.

https://www-fourier.univ-grenoble-alpes.fr/˜parisse/giac.html, 2021.

[11] F. Rouillier. Solving zero-dimensional systems through the rational univariate representation. Applicable

Algebra in Engineering, Communication and Computing, 9(5):433–461, 1999.

[12] C.-K. Yap et al. Fundamental problems of algorithmic algebra, volume 49. Oxford University Press Oxford,

2000.

11


	Introduction
	Algorithms for RUR computations
	Gröbner basis over Z/pZ (degree rev. lex. ordering)
	From Gröbner basis to RUR over Z/pZ
	Non generic situations
	Rational reconstruction
	Certifying a rur

	Giac/Xcas implementation and benchmarks
	Implementation
	Benchmarks

	Conclusion

