
HAL Id: hal-03264216
https://hal.science/hal-03264216v1

Preprint submitted on 18 Jun 2021 (v1), last revised 31 Aug 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A probabilistic parallel modular algorithm for rational
univariate representation

Bernard Parisse

To cite this version:
Bernard Parisse. A probabilistic parallel modular algorithm for rational univariate representation.
2021. �hal-03264216v1�

https://hal.science/hal-03264216v1
https://hal.archives-ouvertes.fr


A probabilistic parallel modular algorithm for

rational univariate representation.

Bernard Parisse

Institut Fourier

UMR 5582 du CNRS

Université de Grenoble Alpes

June 2021

Abstract

This article does not introduce new mathematical ideas, it is more a state of the

art June 2021 picture about solving polynomial systems efficiently by reconstruct-

ing a rational univariate representation with a very high probability of correctness

using Groebner revlex computation, Berlekamp-Massey algorithm and Hankel lin-

ear system solving modulo several primes in parallel.

This algorithm is implemented in Giac/Xcas since version 1.7.0-13, it has (June

2021) leading performances on multiple CPU, at least for an open-source software.

1 Introduction

Polynomial system solving can be performed by doing several eliminations. If the vari-

ables are x1, .., xn, after eliminating x1, ..., xn−1, one has to solve one (large degree)

univariate polynomial, and then one finds other unknowns by back substitution and uni-

variate polynomial solving. Unfortunately this method, named regular chains, requires

building tower of algebraic extensions over Q, which is computation intensive.

It is more efficient to build one algebraic extension of Q (or more if the system fac-

tors) such that all components of the solutions of the system will live in this extension.

This can be performed by computing a Gröbner basis of I , the ideal spanned by the

multivariate polynomials of the system. Then, if the ideal is 0 dimensional, select one

variable (say xn), find the minimal polynomial of this variable. If this polynomial m
has the right degree (the dimension of the polynomials modulo the ideal as a vector

space) and is square free, for all other variables, find Pi such that xi −Pi(xn) is inside

the ideal. Then the system solutions are P1(xn), P2(xn), ..., xn for all roots xn of m.

Rouillier ([8]) found that it is more efficient to computeQi such that xi−Qi(xn)/m
′(xn)

is inside the ideal, and this is called rational univariate representation.

If for all unknowns, the minimal polynomial degree is too small, a linear separating

form (linear combination of the xi), must be found such that the minimal polynomial

is of degree the dimension of the vector space of the polynomials modulo the ideal. If

1

https://www-fourier.univ-grenoble-alpes.fr/~parisse/giac.html


the ideal is not radical (i.e. if there is a polynomial P that does not belongs to I but

P k ∈ I for some k > 0), the method must be adapted.

Modular algorithms are well known techniques in CAS to make efficient computa-

tions, they are also good candidates for parallelization. In our context, algorithms were

presented early, like in [6] (A Modular Method to Compute the Rational Univariate

Representation of Zero-dimensional Ideals). For more recent results, see [2].

We will review some of these algorithms as well as some algorithms of Faugère

and Mou ([4]) for rur computation in Z/pZ in Section 2. Section 3 will give more

informations on the implementation inside Giac/Xcas and gives some benchmarks.

2 Algorithms for RUR computations

2.1 Gröbner basis over Z/pZ (degree rev. lex. ordering)

For a basis computation without additional hypothesis, it seems that F4 ([5]) is a very

good choice. Since the same basis is computed several times for different primes, we

can store some informations during the first run, like s-pairs reducing to 0, in order to

speed up computation for the next primes, this is described in more details in [7] (A

probabilistic and deterministic modular algorithm for computing Groebner basis over

Q).

2.2 From Gröbner basis to RUR over Z/pZ

If the ideal I spanned by the polynomials of the system is 0-dimensional, the polyno-

mials modulo I belong to V , a vector space of finite dimension d. We can compute a

basis of V by collecting all the monomials smaller than the leading ones in G.

The reduction of 1, xn, .., x
d
n

with respect to the Gröbner basis is not free, there is a

minimal polynomialm of degree at most d such that m(xn) = 0 (mod I). Computing

m is a linear algebra kernel computation (for a matrix with columns the components of

the reduction mod I of xi
n

). This is an O(d3) computation with a naive Gauss pivoting

method. Fortunately, it can be computed faster, by observing that if

∑

i

mix
i

n
= 0 (mod I)

then it’s still true after multiplication by a power of xn, and therefore the scalar product

of a fixed vector and the reduced vector is 0, then the mi coefficients can be found by

mean of the Berlekam-Massey algorithm, using the half-gcd fast version in O(d log(d))
operations (see e.g. [9], Yap), once the scalar products are computed.

There is still a naive O(d3) part in this algorithm, computing the xk
n (mod I). This

is done by computing the matrix of the multiplication by xn (mod I) in the basis of

V , by reducing all monomials of this basis multiplied by xn. In many situations, the

multiplication by xn will give a monomial of the basis of V , and the corresponding

column of M is trivial (one 1 and all other coefficients 0). Or the multiplication by

xn will return the leading monomial of one element of G and the reduction is trivial

(take the opposite of all remaining monomials of this element of G). The remaining

2

https://www-polsys.lip6.fr/~jcf/Papers/master2.pdf
https://arxiv.org/abs/1309.4044
http://web�ducation.com/wp-content/uploads/2018/11/Fundamental-Problems-in-Algorithmic-Algebra.pdf


products by xn must be reduced mod G, this can be done simultaneously for all these

products like in the F4 algorithm. The multiplication of a vector by M is still O(d2),
but it becomes faster if the matrix has many trivial columns, and it’s a simple operation

that can benefit from the CPU instruction set.

In a generic situation, the minimal polynomial of xn is of maximal degree d the

dimension of V the vector space of polynomials modulo I and every element of V (i.e.

any polynomial modulo the ideal I) can be expressed as a polynomial in xn, of degree

< d. Finding the polynomial corresponding to x1, .., xn−1 will give the solution to the

initial system. It can be seen as a linear system of matrix with columns the powers 0 to

d − 1 of xn reduced modulo I and with second member xi modulo I . Which means

solving n − 1 systems with the same d × d matrix, where n << d, at a O(d3) cost

(naive algorithm). Fortunately, this can be improved, by observing that if xi = Pi(xn)
(mod I) then xk

nxi = xk
nPi(xn) (mod I), then one can do the scalar product of this

equation with any fixed vector, and get a linear equation in the coefficients of Pi that

we are computing. Doing that for k = 0, ..., d − 1 will bring a linear system with

a structured matrix. This matrix is named a Hankel matrix, it’s coefficients are al-

ready computed: it’s the coefficients of the Berlekamp-Massey algorithm that returned

the minimal polynomial of xn. Hankel matrices can be inverted using an extended

GCD and a Bezoutian matrix, cf. for example wikipedia and the cost for computing

a Bezoutian matrix is O(d2), cf. e.g. [3] (Fast computation of the Bezout and Dixon

resultant matrices)

2.3 Non generic situations

If the minimal polynomial of xn is not of maximal degree, one can try the other mono-

mials x1 to xn−1 and if it does not work, a random linear combination of x1, ..., xn,

this is called a separating linear form.

If the minimal polynomial is of maximal degree d but is not squarefree, then the

ideal I is not radical, in that case one can add the squarefree part of the minimal poly-

nomial to the generators of the ideal and compute a new Gröbner basis, until the ideal

is radical. Cf. Faugère and Mou ([4]) for alternative methods.

2.4 Rational reconstruction

It is of course possible to compute a Gröbner basis over Q and run the same kind of

computations, but field operations in Q are not performed in O(1) time, that’s why a

multi-modular algorithm is most of the time more efficient.

The first step is to cancel denominators so that the coefficients belong to Z. A prime

p is said to be a good reduction prime if the steps of the computation over Z/pZ are the

reduction modulo p of the steps over Q. This is true if the leading monomials of the

s-pairs do not cancel mod p, if the basis of the vector space of the polynomials modulo

the ideal remains the same, if the degree of the minimal polynomial of the separating

linear form remains d. Therefore before trying to reconstruct a rur in Q from several

primes, we must check the consistency of these primes. Two primes are compatible if

the leading monomials of the Gröbner basis have the same power exponents. If one

3

https://en.wikipedia.org/wiki/Hankel_matrix
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.3710&rep=rep1&type=pdf
https://hal.inria.fr/hal-00807540


prime has a gbasis with less elements, or a basis of V with less elements, it must be

discarded.

Reconstruction is done coefficient by coefficient using Farey algorithm. If the re-

constructed rur modulo the next prime p matches the computation over Z/PZ (where

P is the product of the previous primes), then the probability of a bad rur reconstruction

is very low and can be as low as desired by checking with a few other primes rur com-

putations. Certifying a rur is however very costly, because we must either reduce the

rur elements modulo the Q-gbasis (which must be certified as well) or check that the

solutions verify the initial system, and that’s a very large computation with univariate

fractions with rational coefficients.

My estimate for the probability to have a bad prime for a today-large computation

is less than 1e-4 (with about 1e4 leading coefficients for a prime of size about 5e8

in Giac), hence if a few thousands primes are required to stabilize the computation over

Q, the probability to meet one bad prime would be less than 0.1.

3 Giac/Xcas implementation and benchmarks

3.1 Implementation

• Step 1: compute the gbasis for revlex order modulo a prime p . Giac imple-

mentation details of the gbasis algorithm with learning are described in [7]. If p
is not the first prime, compare if the current prime is compatible with previous

one (leading monomials of the gbasis must be the same), if not discard it (or all

previous primes).

• Step 2 (for the first prime): find the dimension and a basis of V made of mono-

mials. We collect the leading monomials of the gbasis. For every variable xi we

search a leading monomial xdi

i
that is a power of this variable. This will bound

any monomial exponent in V by (d1, ..., dn). The dimension d of V is smaller

than D the product of di. For any integer 0 ≤ i < D, write i in multi-basis

d1, ..., dn

i = (..(i1d2 + i2)d3 + ...+ in−1)dn + in, 0 ≤ ik < dk

and check if xi1
1
...xin

n is greater than a leading monomial of the gbasis, if not add

it to the basis.

• Step 3: compute the matrix of multiplication by xn in our basis of V . If xn times

the monomial is itself a monomial in V , we do not store a column with one 1

and d− 1 zeros, instead we store the pairs of indices of the monomials, this is a

mixed storage (dense part/sparse part).

• Step 4: compute the coefficients of the Hankel matrix (the dense multiplication

part can take advantage of the AVX2 instruction set if available). For the dense

part of the multiplication, we avoid divisions (except the final one) by computing

representants 0 ≤ r < p2, after an addition of a multiplication of coefficients in

[0, p) we substract −p2 and add p2 if the result is negative without testing (for a

4



63 bits signed integer i this is done by i += (i>>63) & p2). In Giac, we

do that for 4 additions at a time (using representants in [0, 4p2) where p < 229).

• Step 5: find m the minimal polynomial of xn by the halfgcd Berlekamp-Massey

algorithm. If it is not of maximal degree d, replace xn by another variable

x1, .., xn−1 and go to step 3. If none of the variables fill the degree condition, try

with a random integer linear combination of xi. The separating linear form will

be recorded for further primes.

• Step 6: if the minimal polynomial m is not squarefree, add the square free part

m/gcd(m,m’) to the gbasis, and go to step 1.

• Step 7: find the polynomials Pi such that xi − Pi(xn) = 0 (mod I) by solving

Hankel systems (using fast inversion of the Hankel matrix with bezoutians).

• Step 8: compute Qi = Pim
′ (mod m)

• Step 9: (if not at the first prime) Check if the Farey rational reconstruction for

previous primes matches this prime for Qi (mod p) (check for a few monomi-

als before doing a complete reconstruction check). If so, return the Farey recon-

struction. Otherwise, apply the Chinese Remainder Theorem for Qi (mod p)
and previous primes and go to step 1 for a next prime.

Steps 1 to 8 can be parallelized. Trying to parallelize step 9 does not speed up the

computation because it requires a lot of memory allocations, and this seems to always

be thread-mutually exclusive.

3.2 Benchmarks

• Giac/Xcas 1.7.0-13 timings are for a rur computation with AVX2 enabled, on

an Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz. The computation were run

with 16 threads in parallel, with a few exceptions with 8 threads in order to spare

memory.

• msolve timings are for fglm computation with AVX2 enabled, on an Intel (R)

Xeon (R) CPU E7-4820v4 @ 2.00GHz, as reported by the msolve authors, they

should be multipled by about 0.77 to account for the different frequencies. On

the other hand, CPU time for multi-threaded implementations are always greater

than for one-threaded implementations, especially for relatively small computa-

tions or for computations requiring much memory for each prime. For examples,

Katsura 9 computation takes 4.2s CPU time with 1 thread instead of 8.4s with

16 threads (real time 1.36s), Katsura 10 takes 35s with 1 thread instead of 55s

with 16 threads (real time 7.9s) and Katsura 11 takes 359s with 1 thread instead

of 496s with 16 threads (real time 61s)

• The current version of msolve does not support multiple CPUs, but it will cer-

tainly do in the near future.

5



• In order to compile Giac/Xcas with AVX2 support with gcc, install VCL vector-

class by Agner Fog and run

export CXXFLAGS=’-O2 -g -mfma -mavx2 -fabi-version=0’

before running ./configure in the Giac/Xcas source root directory.

• The Giac/Xcas script files for these benchmarks are available here

• The last 2 columns give the time required to isolate all real roots of the minimial

polynomial of the separating linear form. The algorithm is a C++-transcription

of Xcas user code sent by Alkis Akritas ([1]). It is a little bit parallelized, by

running isolation of positive and negative real roots in separate threads. It is

most of the time one at least one order of magnitude faster than computing the

polynomial, and is therefore not a priority for further optimizations.

threads real msolve CPU RAM realroot real CPU

Kat9 16 1.36 4.89 8.41 67M 0.5 0.5

Kat10 16 7.9 43.7 55 181M 1.7 2.6

Kat11 16 61 424 496 573M 19.6 31.3

Kat12 16 734 6262 7922 2.4G 154 276

Kat13 16 11.2e3 89e3 136e3 9G 1640 2870

Kat14 8 0.21e6 1.3e6 1.49e6 21.5G 16e3 29.7e3

Noon7 16 452 4040 4000 1.4G 24.2 43.1

Noon8 8 0.155e6 0.599e6 1.1e6 13G 413 814

Phuoc 16 236 4467 4026 1.9G 7.66 13

Henrion6 16 6.08 138 52.6 147M 1.37 1.39

Henrion7 16 7.2e3 118e3 87.8e3 3.7G 309 314

Eco10 16 1.33 12.5 9.21 106M 0.057 0.07

Eco11 16 7.6 90.3 70.2 280M 0.37 0.39

Eco12 16 64 877 724 1.06G 2.52 2.82

Eco13 16 712 12137 9370 4G 25 27.5

Eco14 16 11.3e3 168e3 154e3 15G 112 123

cp352 16 3.6 18.1 23 81M 0.21 0.26

cp362 16 49 390 429 270 1.25 1.75

cp372 16 1.39e3 9.64e3 15e3 1.4G 52 91

cp382 8 32.5e3 270e3 213e3 4.9G 992 1655

cp443 16 6 40.9 45 115M 0.47 0.6

cp453 16 3.5e3 21.5e3 47e3 2.7G 178 200

cp366 16 36 255 290 232M 1.33 2.14

cp377 16 1.77e3 12.4e3 22e3 1.7G 45 68

This leads to the following observations :

• One bad prime (over 1352) was observed for noon7, p = 534856027, and 5 bad

primes (over 4060) for noon8.

• Some examples above do not require as many primes as msolve. Probably be-

cause the rur stabilizes earlier than fglm.

6

http://www-fourier.univ-grenoble-alpes.fr/~parisse/giac_compile.html
https://github.com/vectorclass
https://www-fourier.univ-grenoble-alpes.fr/~parisse/giac/rur_example.tgz


• Except for noon7 and 8 where maple reported timings in [2] are better, the real

multi-threaded timings of giac are currently the best timings. Once msolve is

multi-threaded, I expect that it should be a little bit faster than Giac for most

examples.

Example of Giac/Xcas code:

threads:=16;

//debug_infolevel:=1;

kat10:=[x1 + 2*x2 + 2*x3 + 2*x4 + 2*x5 + 2*x6 + 2*x7 + 2*x8 + 2*x9

+ 2*x10 - 1, x1^2 + 2*x2^2 + 2*x3^2 + 2*x4^2 + 2*x5^2 + 2*x6^2 +

2*x7^2 + 2*x8^2 + 2*x9^2 + 2*x10^2 - x1, 2*x1*x2 + 2*x2*x3 +

2*x3*x4 + 2*x4*x5 + 2*x5*x6 + 2*x6*x7 + 2*x7*x8 + 2*x8*x9 +

2*x9*x10 - x2, x2^2 + 2*x1*x3 + 2*x2*x4 + 2*x3*x5 + 2*x4*x6 +

2*x5*x7 + 2*x6*x8 + 2*x7*x9 + 2*x8*x10 - x3, 2*x2*x3 + 2*x1*x4 +

2*x2*x5 + 2*x3*x6 + 2*x4*x7 + 2*x5*x8 + 2*x6*x9 + 2*x7*x10 - x4,

x3^2 + 2*x2*x4 + 2*x1*x5 + 2*x2*x6 + 2*x3*x7 + 2*x4*x8 + 2*x5*x9 +

2*x6*x10 - x5, 2*x3*x4 + 2*x2*x5 + 2*x1*x6 + 2*x2*x7 + 2*x3*x8 +

2*x4*x9 + 2*x5*x10 - x6, x4^2 + 2*x3*x5 + 2*x2*x6 + 2*x1*x7 +

2*x2*x8 + 2*x3*x9 + 2*x4*x10 - x7, 2*x4*x5 + 2*x3*x6 + 2*x2*x7 +

2*x1*x8 + 2*x2*x9 + 2*x3*x10 - x8, x5^2 + 2*x4*x6 + 2*x3*x7 +

2*x2*x8 + 2*x1*x9 + 2*x2*x10 - x9];

vars:=[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10];

proba_epsilon:=1e-7;

time(H:=gbasis(kat10 ,vars,rur));

write("Hkat10",H); // use archive instead of write for fast read

// check, this is very slow

debug_infolevel:=0;

l:=subst(kat10,vars,H[4..size(H)-1]/H[3]):;

map(l,x->rem(numer(x),H[2],H[1]));

// real root isolation

time(R:=realroot(eval(H[2],1)));

write("Rkat10",R);

size(R);

4 Conclusion

We have now efficient probabilistic algorithms for rur computations over Q. The prob-

ability to return a wrong solution is very low and may be as low as desired. Moreover, it

is always possible to make a numerical check with high precision on the initial polyno-

mial system. But certifying as fast as computing is still open and is maybe impossible.

References

[1] A. G. Akritas and A. W. Strzebonski. A comparative study of two real root isolation

methods. Nonlinear Analysis: Modelling and Control, 10(4):297–304, 2005.

7



[2] J. Berthomieu, C. Eder, and M. S. E. Din. msolve: A library for solving polynomial

systems. arXiv preprint arXiv:2104.03572, 2021.

[3] E.-W. Chionh, M. Zhang, and R. N. Goldman. Fast computation of the bezout and

dixon resultant matrices. Journal of Symbolic Computation, 33(1):13–29, 2002.

[4] J.-C. Faugère and C. Mou. Sparse fglm algorithms. Journal of Symbolic Compu-

tation, 80:538–569, 2017.

[5] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Jour-

nal of Pure and Applied Algebra, 139(1–3):61–88, June 1999.

[6] M. Noro and K. Yokoyama. A modular method to compute the rational univariate

representation of zero-dimensional ideals. Journal of Symbolic Computation, 28(1-

2):243–263, 1999.

[7] B. Parisse. A probabilistic and deterministic modular algorithm for computing

groebner basis over Q. arXiv preprint arXiv:1309.4044, 2013.

[8] F. Rouillier. Solving zero-dimensional systems through the rational univariate rep-

resentation. Applicable Algebra in Engineering, Communication and Computing,

9(5):433–461, 1999.

[9] C.-K. Yap et al. Fundamental problems of algorithmic algebra, volume 49. Oxford

University Press Oxford, 2000.

8


	Introduction
	Algorithms for RUR computations
	Gröbner basis over Z/pZ (degree rev. lex. ordering)
	From Gröbner basis to RUR over Z/pZ
	Non generic situations
	Rational reconstruction

	Giac/Xcas implementation and benchmarks
	Implementation
	Benchmarks

	Conclusion

