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Abstract

This paper is about solving polynomial systems. It first recalls how to do that efficiently with a very high prob-

ability of correctness by reconstructing a rational univariate representation (rur) using Groebner revlex computation,

Berlekamp-Massey algorithm and Hankel linear system solving modulo several primes in parallel. Then it introduces

a new method (theorem 2) for rur certification that is effective for most polynomial systems.

These algorithms are implemented in Giac/Xcas ([10]) since version 1.7.0-13 or 1.7.0-17 for certification, it has

(July 2021) leading performances on multiple CPU, at least for an open-source software.

1 Introduction

Polynomial system solving can be performed by doing several eliminations. If the variables are x1, .., xn, after elimi-

nating x1, ..., xn−1, one has to solve one (large degree) univariate polynomial, and then one finds other unknowns by

back substitution, gcd computations and univariate polynomial solving. Unfortunately this method (a regular chain

type method), requires building tower of algebraic extensions over Q, which is computation intensive.

It is more efficient to build one algebraic extension of Q (or more if the system factors) such that all components

of the solutions of the system will live in this extension. This can be performed by computing a Gröbner basis of I , the

ideal spanned by the multivariate polynomials of the system. Then, if the ideal is 0 dimensional, select one variable

(say xn), find the minimal polynomial of this variable. If this polynomial m has the right degree (the dimension of the

polynomials modulo the ideal as a vector space) and is square free, for all other variables, find Pi such that xi−Pi(xn)
is inside the ideal. Then the system solutions are P1(xn), P2(xn), ..., xn for all roots xn of m.

Rouillier ([11]) found that it is more efficient to compute Qi such that xi − Qi(xn)/m
′(xn) is inside the ideal1,

and this is called rational univariate representation.

If for all unknowns, the minimal polynomial degree is too small, a linear separating form (linear combination of the

xi), must be found such that the minimal polynomial is of degree the dimension of the vector space of the polynomials

modulo the ideal. If the ideal is not radical (i.e. if there is a polynomial P that does not belongs to I but P k ∈ I for

some k > 0), the method must be adapted.

1which means that m′xi − Qi is in the ideal. Since m and m′ are coprime and m is in the ideal, a polynomial P belongs to the ideal if and

only if m′P is in the ideal.

1

https://www-fourier.univ-grenoble-alpes.fr/~parisse/giac.html


Modular algorithms are well known techniques in CAS to make efficient computations, they are also good candi-

dates for parallelization. In our context, algorithms were presented early, like in [8] (A Modular Method to Compute

the Rational Univariate Representation of Zero-dimensional Ideals). For more recent results, see [3].

We will review some of these algorithms as well as some algorithms of Faugère and Mou ([6]) for rur computation

in Z/pZ in Section 2 (to be more precise, we will compute the rur for the radical ideal spanned by the polynomials of

the system). In subsection 2.5 we will precise how we can certify a rur. Section 3 will give more informations on the

implementation inside Giac/Xcas and gives some benchmarks.

2 Algorithms for RUR computations

2.1 Gröbner basis over Z/pZ (degree rev. lex. ordering)

For a basis computation without additional hypothesis, it seems that F4 ([7]) is a very good algorithm choice. Since

the same basis is computed several times for different primes, we can store some informations during the first run, like

s-pairs reducing to 0, in order to speed up computation for the next primes, this is described in more details in [9] (A

probabilistic and deterministic modular algorithm for computing Groebner basis over Q).

2.2 From Gröbner basis to RUR over Z/pZ

If the ideal I spanned by the polynomials of the system is 0-dimensional, the polynomials modulo I belong to V , a

vector space of finite dimension d. We can compute a basis of V by collecting all the monomials smaller than the

leading ones in G.

The reduction of 1, xn, .., x
d
n with respect to the Gröbner basis is not free, there is a minimal polynomial m of

degree at most d such that m(xn) = 0 (mod I). Computing m is a linear algebra kernel computation (for a matrix

with columns the components of the reduction mod I of xi
n). This is an O(d3) computation with a naive Gauss

pivoting method. Fortunately, it can be computed faster, by observing that if

∑

i

mix
i
n = 0 (mod I)

then it’s still true after multiplication by a power of xn, and therefore the scalar product of a fixed vector and the

reduced vector is 0, then the mi coefficients can be found by mean of the Berlekam-Massey algorithm, using the

half-gcd fast version in O(d log(d)) operations (see e.g. [12], Yap), once the scalar products are computed.

There is still a naive O(d3) part in this algorithm, computing the xk
n (mod I). This is done by computing the

matrix of the multiplication by xn (mod I) in the basis of V , by reducing all monomials of this basis multiplied by

xn. In many situations, the multiplication by xn will give a monomial of the basis of V , and the corresponding column

of M is trivial (one 1 and all other coefficients 0). Or the multiplication by xn will return the leading monomial of

one element of G and the reduction is trivial (take the opposite of all remaining monomials of this element of G). The

remaining products by xn must be reduced mod G, this can be done simultaneously for all these products like in the

F4 algorithm. The multiplication of a vector by M is still O(d2), but it becomes faster if the matrix has many trivial

columns, and it’s a simple operation that can benefit from the CPU instruction set.

In a generic situation, the minimal polynomial of xn is of maximal degree d the dimension of V the vector space

of polynomials modulo I and every element of V (i.e. any polynomial modulo the ideal I) can be expressed as a

polynomial in xn, of degree < d. Finding the polynomial corresponding to x1, .., xn−1 will give the solution to the

initial system. It can be seen as a linear system of matrix with columns the powers 0 to d − 1 of xn reduced modulo

I and with second member xi modulo I . Which means solving n − 1 systems with the same d × d matrix, where
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n << d, at a O(d3) cost (naive algorithm). Fortunately, this can be improved, by observing that if xi = Pi(xn)
(mod I) then xk

nxi = xk
nPi(xn) (mod I), then one can do the scalar product of this equation with any fixed vector,

and get a linear equation in the coefficients of Pi that we are computing. Doing that for k = 0, ..., d − 1 will bring a

linear system with a structured matrix. This matrix is named a Hankel matrix, it’s coefficients are already computed:

it’s the coefficients of the Berlekamp-Massey algorithm that returned the minimal polynomial of xn. Hankel matrices

can be inverted using an extended GCD and a Bezoutian matrix, cf. for example wikipedia and the cost for computing

a Bezoutian matrix is O(d2), cf. e.g. [5] (Fast computation of the Bezout and Dixon resultant matrices)

2.3 Non generic situations

If the minimal polynomial of xn is not of maximal degree, one can try the other monomials x1 to xn−1 and if it does

not work, a random linear combination of x1, ..., xn, this is called a separating linear form. Finding a linear separating

form may be hard, see. for example [4] for bivariate systems.

If the minimal polynomial is of maximal degree d but is not squarefree, then the ideal I is not radical, in that case

one can add the squarefree part of the minimal polynomial to the generators of the ideal and compute a new Gröbner

basis, until the ideal is radical (it is not mandatory to reconstruct a radical rur, but it is convenient for a software

like Giac/Xcas where we are interested in system solutions and not multiplicities). Cf. Faugère and Mou ([6]) for

alternative methods.

2.4 Rational reconstruction

It is of course possible to compute a Gröbner basis over Q and run the same kind of computations, but field operations

in Q are not performed in O(1) time, that’s why a multi-modular algorithm is most of the time more efficient.

The first step is to cancel denominators so that the coefficients belong to Z. A prime p is said to be a good reduction

prime if the steps of the computation over Z/pZ are the reduction modulo p of the steps over Q. This is true if the

leading monomials of the s-pairs do not cancel mod p, if the basis of the vector space of the polynomials modulo the

ideal remains the same, if the degree of the minimal polynomial of the separating linear form remains d. Therefore

before trying to reconstruct a rur in Q from several primes, we must check the consistency of these primes. Two

primes are compatible if the leading monomials of the Gröbner basis have the same power exponents. If one prime

has a gbasis with less elements, or a basis of V with less elements, it must be discarded.

My estimate for the probability to have a bad prime for a today-large computation is less than 1e-4 (with about

1e4 leading coefficients for a prime of size about 5e8 in Giac), hence if a few thousands primes are required to

stabilize the computation over Q, the probability to meet one bad prime would be less than 0.1.

Reconstruction is done coefficient by coefficient using Farey algorithm. If the reconstructed rur modulo the next

prime p matches the computation over Z/PZ (where P is the product of the previous primes), then the probability of a

bad rur reconstruction is very low and can be as low as desired by checking with a few other primes rur computations.

Certifying a rur is somewhat costly, because we must either reduce the rur elements modulo the Q-gbasis (which must

be certified as well) or check that the solutions verify the initial system. We will show in the next section that the

second method can be done efficiently by reformulating a large computation with univariate fractions with rational

coefficients as a large computation with integer coefficients.

2.5 Certifying a rur

In this section, we explain how we can certify that our rur gives all the solutions of the original system if the ideal is

radical.
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The idea is very simple: just replace in the original system all variables by their rur fraction representation

Qi(xn)/m
′(xn) and check if we get 0. Then we are sure that all roots we will compute with the rur are solutions

of the system. In the other direction, we must check that we do not miss solutions. If the ideal is radical, this is a

consequence of theorem 7.1 of Arnold [2] that states that in order to check the reconstruction of a gbasis by a modular

algorithm, we must check that the reconstruction is a Groebner basis (i.e. check that all s-polynomials of a pair reduces

to 0) and that the initial generators belong to the ideal spanned by the reconstruction (that’s precisely what we do in

the substitution check).

Here we just have to translate rur properties into Groebner basis properties. We add a variable t that is the common

separating linear form common to all primes used for reconstruction and add t minus the linear form to the ideal

generators (generically t = xn and we add t − xn to the initial polynomial system). Then the set S of (Pi)1≤i≤n :=
xi − rem(Qi(t)(m

′(t)[m])−1,m) and m(t) is a Groebner basis with respect to lexicographic ordering x1, .., xn, t
modulo each prime used for reconstruction, and it is also a Groebner basis over Q, indeed if we compute the s-

polynomial of two elements of S, we get if m is not in the pair :

xjPi − xiPj = xj(xi −Qi(t)(m
′(t)[m])−1[m])− xi((xj −Qj(t)(m

′(t)[m])−1[m])

= xiQj(t)(m
′(t)[m])−1[m]− xjQi(t)(m

′(t)[m])−1[m]

→ 0

or if m(t) is one of the two polynomials, then

tdPi − xim = (td −m)xi − tdQi(t)(m
′(t)[m])−1[m])

→ (td −m)(Qi(t)(m
′(t)[m])−1[m])− tdQi(t)(m

′(t)[m])−1[m]

→ 0

In order to avoid rational computations, we write Qi as a quotient Q̃i/qi where Q̃i ∈ Z[X ] and qi ∈ Z and

m′ = D̃/d̃. The size of the coefficients is proportionnal to N the number of primes that were necessary to reconstruct

the rur over Q. The degree is ≤ d.

Let Pj ∈ Z[x1, ..., xn] be a polynomial equation in the system, of total degree δ. We can perform all computations

in Z[X ] by multiplying the equation by m′δ.

Indeed, replacing values in a monomial ck
∏

l x
αl

l will lead to computing

ck(D̃/d̃)δ−
∑

αl

∏

l

(Q̃l/ql)
αl =

ckD̃
δ−

∑
αl

∏
l Q̃

αl

l

d̃δ−
∑

αl

∏
l q

αl

l

We will have less than δ products of a polynomial of degree less than δd with a polynomial of degree less than d and

coefficients size are bounded by δN , this is O(δ3dN) (up to logarithmic terms) using FFT.

With a divide and conquer product algorithm, the cost becomes O(δ2dN). Indeed if T (δ) is a bound for this cost,

for δ even

T (δ) ≤ 2T (
δ

2
) +M(

δ

2
, d,N)

where M(δ, d,N) is the cost to multiply to univariate polynomials of degree δd with integer coefficients of size ≤ δN .

Proposition 1 Let M(δ, d,N) be the cost to multiply two univariate polynomials of degree δd with integer coefficients

of size ≤ δN . Then M(δ, d,N) ≤ Cδ2dN where logarithmic terms are inside C.
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Proof : if the coefficients are smaller than B then the product coefficients are smaller than B̃ = δdB2. The product

degree is ≤ 2δd. Then we make O(log(B̃)) FFT product of degree ≤ 2δd modulo small primes and recover the

integer polynomial product by chinese remaindering.

If N ≥ d2, we can choose l and the smallest possible r such that

2δd ≥ 2l > δd, 2r2
l

> B̃

and make a unique FFT product of the polynomials modulo n = 2r2
l

+ 1 (so that reduction modulo n is easy), using

2r as a 2l+1 root of unity. The ring operations are done in O(log(n)) = O(log(B̃) = 2dN) operations and there are

up to logarithmic terms O(2l+1) operations.

Hence for δ a power of 2 :

T (δ) ≤ 2T (
δ

2
) + Cdδ2N

≤ 4T (
δ

4
) + Cd

δ2

2
N + Cdδ2N

≤ ...

≤ CdNδ2(1 +
1

2
+

1

4
+ ...)

Then we add monomials by applying :

A

a
+

B

b
=

A b
g
+B a

g

g a
g
b
g

, g = gcdZ(a, b)

For the cost analysis, observe that if q is the lcm of the denominators of the Qj polymomials, then a and b are divisors

of (qd̃)δ , we could therefore replace monomial additions above by monomial additions over Z[X ]. The coefficients of

A and B would be multiplied by at most (qd̃)δ, this adds δN to a size already O(δN), and the size remains an O(δN).
Hence a monomial addition cost is in O(δNδd).

The total cost of computing Pj is therefore an O(δ2dNl(Pj)) where l(Pj) is the number of monomials of Pj

(assumed to be represented as a sparse distributed polynomial), δ the total degree of Pj , d the dimension of the vector

space V (the polynomials modulo the ideal), N the number of primes3.

The memory required is proportionnal to O(δ2dN). If δ is large, the bottleneck for checking will be memory

instead of time, since it will become (much) more than the memory required to store the rur in O((n + 2)dN) where

n is the number of variables, especially if this step is parallelized : care must be taken to bound the number of parallel

threads running simultaneously (δ2 · #threads should be of the same size order than n). Another option (not tested)

would be to adopt a dense recursive representation for the polynomials of the system if it is dense.

And at the end we compute the euclidean division with the primitive part of the minimal polynomial m. Since

it is highly probable that the remainder of the division is 0, the quotient should belong to Z[X ], therefore we can

reconstruct the quotient in Z[X ] by a multi-modular algorithm (with fast modular univariate division algorithms for

each prime) and we do the final check by a product. Therefore if the certification does not fail, this division has the

same cost as multiplying two polynomials of degree δd and d and coefficient sizes δN and N , again an O(δ2dN) up

to logarithmic terms and the check can be performed efficiently. We get :

2In the benchmarks section below, the value of N should be multiplied by the bitsize of primes, i.e. 29
3A more precise estimate is O(dN

∑
monomials total degree(monomial)2)
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Theorem 2 The time cost of a successfull check by substitution that the rur (rational univariate representation) is a

solution of a polynomial system may be bounded by O(δ2dNl) up to logarithmic terms, where δ is the total degree of

the polynomial system, d is the dimension of V (the vector space of polynomials modulo the ideal I spanned by the

polynomials of the system), N the number of (fixed bit size) primes required for modular reconstruction of the rur, and

l the number of monomials in the polynomial system. The memory cost may be bounded by O(δ2dN).
If the substitution check is successfull for all the polynomials of the system and if the ideal is radical, then the rur

is certified (if the ideal is not radical, solutions are certified, but it is not proved that additional solutions do not exist).

If the ideal is not radical, the probability to miss solutions is extremly small, because it would imply that

• either all primes used for reconstruction are bad primes and have at least one common leading coefficient(s) of

the s-polynomials used to compute the gbasis is 0 modulo these primes.

• or if m is the minimal polynomial of the separating linear form and P = m/gcdQ(m,m′) it’s square-free part,

then resultant(P, P ′) is 0 modulo all these primes.

For example in the benchmarks section below, phuoc is the only example that is not radical. Reconstruction requires

781 primes larger than 5e8, the probability to miss solutions is smaller than 1e-6700.

3 Giac/Xcas implementation and benchmarks

3.1 Implementation

• Step 1: compute the gbasis for revlex order modulo a prime p . Giac implementation details of the gbasis

algorithm with learning are described in [9]. If p is not the first prime, compare if the current prime is compatible

with previous one (leading monomials of the gbasis must be the same), if not discard it (or all previous primes).

Following a suggestion of F. Rouillier, step 1 can be replaced by a modular reduction of the gbasis over Q

if it has been already computed. If reconstructing the gbasis over Q requires less primes than reconstructing

the rur, this speeds up a little bit the computation (up to a factor 2 on Katsura examples below) but it requires

more memory. However the rur reconstruction requires often much less primes than the gbasis reconstruction

(it probably means that representing variables as fractions instead of polynomials is really effective in terms of

coefficient sizes, in other words that the rur is really efficient) and doing that would require much more time.

Giac/Xcas has a fine-tuning command rur_gbasis(n) for that purpose, if n==0, no reconstruction of the

gbasis (default), if n==1, reconstruction of the gbasis but leave as soon as the rur is reconstructed, and if n>1,

reconstruction happens only if the number of monomials of the gbasis is less than n.

• Step 2 (for the first prime): find the dimension and a basis of V made of monomials. We collect the leading

monomials of the gbasis. For every variable xi we search a leading monomial xdi

i that is a power of this

variable. This will bound any monomial exponent in V by (d1, ..., dn). The dimension d of V is smaller than D
the product of di. For any integer 0 ≤ i < D, write i in multi-basis d1, ..., dn

i = (..(i1d2 + i2)d3 + ...+ in−1)dn + in, 0 ≤ ik < dk

and check if xi1
1
...xin

n is greater than a leading monomial of the gbasis, if not add it to the basis.

• Step 3: compute the matrix of multiplication by xn in our basis of V . If xn times the monomial is itself a

monomial in V , we do not store a column with one 1 and d − 1 zeros, instead we store the pairs of indices of

the monomials, this is a mixed storage (dense part/sparse part).
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• Step 4: compute the coefficients of the Hankel matrix (the dense multiplication part can take advantage of the

AVX2 instruction set if available). For the dense part of the multiplication, we avoid divisions (except the final

one) by computing representants 0 ≤ r < p2, after an addition of a multiplication of coefficients in [0, p) we

substract −p2 and add p2 if the result is negative without testing (for a 63 bits signed integer i this is done by

i += (i>>63) & p2). In Giac, we do that for 4 additions at a time (using representants in [0, 4p2) where

p < 229).

• Step 5: find m the minimal polynomial of xn by the halfgcd Berlekamp-Massey algorithm. If it is not of

maximal degree d, replace xn by another variable x1, .., xn−1 and go to step 3. If none of the variables fill

the degree condition, try with a random integer linear combination of xi. The separating linear form will be

recorded for further primes.

• Step 6: if the minimal polynomial m is not squarefree, add the square free part m/gcd(m,m’) to the gbasis,

and go to step 1.

• Step 7: find the polynomials Pi such that xi − Pi(xn) = 0 (mod I) by solving Hankel systems (using fast

inversion of the Hankel matrix with bezoutians).

• Step 8: compute Qi = Pim
′ (mod m)

• Step 9: (if not at the first prime) Check if the Farey rational reconstruction for previous primes matches this

prime for Qi (mod p) (check for a few monomials before doing a complete reconstruction check). If so, return

the Farey reconstruction. Otherwise, apply the Chinese Remainder Theorem for Qi (mod p) and previous

primes and go to step 1 for a next prime.

• Certification. The default is to certify all equations. Running rur_certify(0)will not run any certification,

rur_certify(1)will run all certifications while rur_certify(n) will certify only equations of total

degree δ < n (for n > 1). For example running rur_certify(19) for the phuoc example below will only

certify one of the 22 equations of the system (requires about one day of CPU) since the total degrees are 22 (1

occurence), 20 (1 occurence), 19 (19 occurences) and 18 (1 occurence, with 1330 monomials).

Steps 1 to 8 can be parallelized. Trying to parallelize step 9 does not speed up the computation because it requires

a lot of memory allocations, and this seems to always be thread-mutually exclusive.

Certification can be parallelized but is limited to 6 threads by default to spare memory. The maximal number of

threads t for this step is configurable by running the command rur_certify(-t).

3.2 Benchmarks

• Giac/Xcas 1.7.0-17 timings are for a rur computation with AVX2 enabled, on an Intel(R) Xeon(R) CPU E5-2640

v3 @ 2.60GHz. The computation were run with 16 threads in parallel, with a few exceptions with 8 threads in

order to spare memory. Certification is run with 6 threads in order to spare memory.

• In order to compile Giac/Xcas with AVX2 support with gcc, install VCL vectorclass by Agner Fog and run

export CXXFLAGS=’-O2 -g -mfma -mavx2 -fabi-version=0’

before running ./configure in the Giac/Xcas source root directory.

• The Giac/Xcas script files for these benchmarks are available here

• The threads column is the number of threads for this computation.
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• The next two columsn are real time for the computation without certification and for certification. For * ex-

amples, gbasis reconstruction was enabled4 with the gbasis_rur(1) command, for other examples, it was

not.

• msolve timings are for fglm computation (not certified) with AVX2 enabled, on an Intel (R) Xeon (R) CPU E7-

4820v4 @ 2.00GHz, as reported by the msolve authors, they should be multipled by about 0.77 to account for

the different frequencies. On the other hand, CPU time for multi-threaded implementations are always greater

than for one-threaded implementations, especially for relatively small computations or for computations requir-

ing much memory for each prime. For examples, Katsura 9 computation takes 3.06s CPU time with 1 thread

instead of 6.16s with 16 threads (real time 1.33s), Katsura 10 takes 20s with 1 thread instead of 33s with 16

threads (real time 7.4s) and Katsura 11 takes 170s with 1 thread instead of 245s with 16 threads (real time 46s).

For cp466, msolve authors report a running time of 71472s, but a value of d of 4096 6=728 that we obtain. Since

our rur is certified, there is no bug in giac, we suspect some mismatch in the data

gitlab.lip6.fr/eder/msolve-examples/-/raw/master/zero-dimensional/cp_d_4_n_6_p_6.ms

The current version of msolve does not support multiple CPUs, but it will most certainly do in the near future.

• The next 2 columns are CPU timings without certification and for certification.

• the next column Nd
∑

δ2 is the sum for all monomials of the total degree squared, we will see that it gives a

relatively good guess of the certification execution time.

• The RAM column is with certification (max certification threads 6).

• The N column is the number of primes (these primes have a bitsize of 30), δ is the total degree of the initial

system, d the dimension of the polynomials modulo the ideal, l the number of monomials of the system.

• The last 2 columns give the time required to isolate all real roots of the minimial polynomial of the separating

linear form. The algorithm is a C++-transcription of Xcas user code sent by Alkis Akritas ([1]). It is a little bit

parallelized, by running isolation of positive and negative real roots in separate threads. It is most of the time

at least one order of magnitude faster than computing the polynomial, and is therefore not a priority for further

optimizations.

4For a benchmark family, testing both methods for small benchmarks is a good hint on what should be done for large ones
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thrds giac giac msolve giac cert Nd· root root

t real cert CPU CPU CPU
∑

δ2 RAM N δ d l real CPU

Kat9* 16 1.33 0.14 8.41 6.16 0.55 5.2e6 67M 84 2 256 74 0.34 0.45

Kat10* 16 7.4 0.53 43.7 32.7 2.2 30e6 225M 194 2 512 90 1.8 2.6

Kat11* 16 46 2.66 424 245 12 0.15e9 781M 400 2 1024 107 19.6 31.3

Kat12* 16 550 18.1 6262 4726 87.8 0.76e9 3.5G 862 2 2048 126 154 276

Kat13* 16 7320 97 0.89e5 0.72e5 521 3.8e9 15.3G 1831 2 4096 146 1650 2900

Kat14* 8 1.1e5 836 13e5 7e5 3565 19e9 48G 3980 2 8192 168 16e3 30e3

Noon7 16 460 116 4040 4000 423 1.2e9 3.6G 1351 3 2173 64 24.2 43.1

Noon8 8 1.4e5 2160 6e5 10e5 8440 14e9 33G 4060 3 6545 81 413 814

Phuoc 16 363 5.3e5 4467 4255 26e5 6.1e12 37G 781 22 1102 32896 7.66 13

Henr.6 16 6.08 10.5 138 54.3 35 0.15e9 492M 310 6 720 69 1.37 1.39

Henr.7 16 7200 3720 1.18e5 0.87e5 0.12e5 24e9 33G 2611 7 5040 134 309 314

Eco10 16 1.33 0.34 12.5 10.2 1.22 5.4e6 108M 57 3 256 64 0.057 0.07

Eco11 16 7.7 1.1 90.3 70.5 4.8 28e6 287M 119 3 512 76 0.37 0.39

Eco12 16 65 5.7 877 728 26.6 0.14e9 1.06G 247 3 1024 89 2.52 2.82

Eco13 16 715 35 12137 9340 175 0.68e9 9.5G 509 3 2048 103 25 27.5

Eco14 16 0.1e5 186 1.68e5 1.44e5 921 3.3e9 15.4G 1048 3 4096 118 112 123

cp352 16 2.7 26 18.1 18.5 148 0.95e9 253M 338 4 288 866 0.21 0.26

cp362 16 38 694 311 429 3710 21e9 1.5G 1077 4 720 2265 1.25 1.75

cp366 16 107 66 255 302 380 2.1e9 1.3G 807 3 729 498 1.05 1.6

cp372 16 1390 0.13e5 9640 0.15e5 0.69e5 350e9 9.3G 3143 4 1728 5187 52 91

cp377 16 1125 3160 0.12e5 0.11e5 2030 38e9 6.6G 2892 3 2187 833 43 64

cp382 8 0.32e5 2.1e5 2.7e5 2.1e5 12e5 4.8e12 51.3G 8497 4 4032 10720 992 1655

cp443 16 4.3 1821 40.9 33 1925 8.5e9 115M 352 9 576 922 0.53 0.64

cp453 16 2.4e3 3.3e5 0.21e5 0.27e5 13e5 4.7e12 41G 2843 9 3456 8381 178 200

cp466 16 240 342 ? 930 1974 8e9 2.6G 3147 3 728 496 5.11 7.01

Timings are given is seconds (sometimes rounded) with a relative precision of a few percents (execution time depends

on server load and RAM available). Large computation times are reported with a 1e5 exponent, this corresponds to a

little more than 1 day (since one day=86400 seconds, i.e. 0.864e5).

This leads to the following observations :

• If we plot the points (x =logarithm of Nd
∑

δ2, y =logarithm of the certification execution time), we get

x 

 y

0 5 10 15

0

1

2

3

4

5

6

The points are well grouped around the linear regression line (of equation y = 1.06 · x − 7.26 with an R2 =
0.984). Therefore the value Nd

∑
δ2 (known after the probabilistic reconstruction of the rur is done) gives a
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good guess of the order size of the time that will effectively be required for certification.

• One bad prime (over 1352) was observed for noon7, p = 534856027, and 5 bad primes (over 4060) for noon8.

• Some examples above do not require as many primes as reported by msolve authors. I’m confident there is no

bug inside Giac results since they are certified.

• Except for noon7 and 8 where maple reported timings in [3] are better, the real multi-threaded timings of giac

are currently the best available timings. Once msolve is multi-threaded, I expect that it should be a little bit

faster than Giac for some examples.

Example of Giac/Xcas code:

threads:=16;

// debug_infolevel:=1;

rur_gbasis(1); // compute gbasis over Q (not the default)

// rur_certify(0); // do not certify rur

kat10:=[x1 + 2*x2 + 2*x3 + 2*x4 + 2*x5 + 2*x6 + 2*x7 + 2*x8 + 2*x9

+ 2*x10 - 1, x1^2 + 2*x2^2 + 2*x3^2 + 2*x4^2 + 2*x5^2 + 2*x6^2 +

2*x7^2 + 2*x8^2 + 2*x9^2 + 2*x10^2 - x1, 2*x1*x2 + 2*x2*x3 +

2*x3*x4 + 2*x4*x5 + 2*x5*x6 + 2*x6*x7 + 2*x7*x8 + 2*x8*x9 +

2*x9*x10 - x2, x2^2 + 2*x1*x3 + 2*x2*x4 + 2*x3*x5 + 2*x4*x6 +

2*x5*x7 + 2*x6*x8 + 2*x7*x9 + 2*x8*x10 - x3, 2*x2*x3 + 2*x1*x4 +

2*x2*x5 + 2*x3*x6 + 2*x4*x7 + 2*x5*x8 + 2*x6*x9 + 2*x7*x10 - x4,

x3^2 + 2*x2*x4 + 2*x1*x5 + 2*x2*x6 + 2*x3*x7 + 2*x4*x8 + 2*x5*x9 +

2*x6*x10 - x5, 2*x3*x4 + 2*x2*x5 + 2*x1*x6 + 2*x2*x7 + 2*x3*x8 +

2*x4*x9 + 2*x5*x10 - x6, x4^2 + 2*x3*x5 + 2*x2*x6 + 2*x1*x7 +

2*x2*x8 + 2*x3*x9 + 2*x4*x10 - x7, 2*x4*x5 + 2*x3*x6 + 2*x2*x7 +

2*x1*x8 + 2*x2*x9 + 2*x3*x10 - x8, x5^2 + 2*x4*x6 + 2*x3*x7 +

2*x2*x8 + 2*x1*x9 + 2*x2*x10 - x9];

vars:=[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10];

time(H:=gbasis(kat10 ,vars,rur));

write("Hkat10",H); // use archive instead of write for fast read

// real root isolation

time(R:=realroot(eval(H[2],1)));

write("Rkat10",R);

size(R);

4 Conclusion

We have now efficient probabilistic methods for rur computations over Q and an efficient way to check it on the initial

polynomial system (except for dense systems of large degree), in other words an efficient Las Vegas rur algorithm for

radical ideals. The question of an efficient deterministic algorithm is still open, it may be impossible.

Some possible improvements are not implemented in Giac/Xcas

• a more efficient (deterministic?) algorithm to find a linear separating form.

• certifying with a recursive dense representation of the system for dense polynomial equations.
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• certifying and a better implementation for non radical ideals.
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