Consider the following problem : a •rod of kngh L at re~t vibrates longitudinally.

One end of the rod is fixed, and the other one is free to move, as long as it docs nol hi1 a material ohstacle, which may constrain the displacement of this end either to be greater than or equal, or to be lesser than or equal to some giiven number.
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Inferior constraint u(L,t).,;;; k . Superior constraint•: u(L,t) ~ k • Figure 1.

Let x be the spatial coordinate along the rod, with the origin at the fixed end, let u ( ~, t) be the displacement at time t of the material point of spatial coordinate (at rest) x , and let f denote a density of exterior forces, depending on space and time.

We can model this situation as follows : assume that the material of the rod -is elastic, homog<.'neous, linear, and use the approximation of small displacements ; them, after scaling, so that chc velocity of waves in the rod will be one, the following equation is satisfied

( l. 1 ) a u = u -u = f in Q == ( 0 , L) x ( 0 , T) tt xx T
The boundary condition are determined as follows ti on at the fixed end, we have a Dirichlet condi-( 1. 2) U (0 It) = 0 j assume an inferior constraint, for instance, at the other end, then

( 1. 3) u(L,t) ~k 0 4
When the rod touches the obstacle, iLs reaction can be only upwards (sec fig. 1) , so that 0 u ( L • t ) ) 0 on r t I u ( L , t ) ~ k I ;

x 0 when the rod does not touch the obstacle, the end is free so that u { L , t) = 0 on I t / u ( L , t ) > k I .

x 0 These la1H two conditions, which will be entirely justified in the sequel, can be summarized as

( 1. 4)

( I. 5)
u (L,t) )-0;

x u (L,t) (u(L,t)

x k •-0 • 0 Conditions ( 1.
3) -( l. 5) are usually termed "unilateral conditions".

We are given initial conditions s

Observe that the model considered here docs no! include the possibility of a .loss of energy during the contact with the obstacle, as ( 1. 8) is a consequence of { 1. 1) -( 1. 7) .

We shall show in this paper that, firstly u , u and f can be taken in larger functional 0 )

spaces than the ones mentioned above, and secondly that the solution u of ( 1. 1) -( l. 7) is the solution of a variational inequality. Though an explicit solution of ( 1. I) -( 1. 7) can be wriuen (sett [ 5 l)

because of the simple geometry of the problem, the variational formula• tion enables us to replace if necessary the homogeneous rod by an inhomogeneous one, and to build in a very natural fashion numerical schemes, which eventually will be shown co converge, with " the help of very classical tools.

In section 2 of this paper, we given an equivalent variational formulation of ( 1. 1) -( 1. 7) , which uses several functional lemmas, and we prove the existence of a solution by Galerkin's method of approximation in finite dimensional space in the beginning of section 3 •

In the remaining pare of section 3 , we consider a family of finite element schemes in a variational formulation written as n.,.1

, v -u ) t a ( u , v -u ) ~ ( r , v -u ) , v v e V , h
where K 1s the convex of constraints form

V is the space of finire clements, and a 1s the bilinear h a ( u, v) ::= JL u v dx

x x 0
We show that under a suitable stability condition, the approximation defined by ( 1. 9) converges.

In section 4, we turn 10 explicit finite difference schemes, which can be written in variational form, and are analog~s 10 ( 1. 9) • with the main difference that the mass matrix is diagonal, so 1ha1 the numerical i~cmentation is exiremRly easy : these schemes are given by :

'k + l k 11~ -I 1lk 2 11~ k I.
2 'll . + -+ ' 1.J. 

+ At F. k 1 . n n n t\x 2 n -1 n I 0
The proof of convergence is fairly easy if the scheme is non aharactcristic ( ~t < ~x) ; i c is m•uch more technical in the characteristic case (At = th) ..

In seet'ion 5 , we report on numerical experiments. They can be summarized as follo.ws : if the initial data arc •smooth, the C'haracocristic and the nCM-charac'-Cristic explicit schemes give reasonably good results; the charactcrisc.i.c scheme is substantially better; this suggcststhat for non-homogeneous rods, the CFL number should be taken as large as possibtc. If the initial data arc piecewise affine, the characteristic scheme gives a good result, and the noncharac1cristic scheme, whiah should have a rcgularizin8 effect gives an absolutely terrible rC"Sult. This suggests that the computation of the phenomena with rough data, in a non-homogeneous mc.dium, will b1: difficult. Then, it is easy to check that u satisfies the following rclati.ons

( l 10} (1. 11) ( 1. 12) oU = µ ~ o ( µ is a measure) u(L,t) > k 0 supp ( µ ) c ! L I >< I t c [ o , T l I u ( L ,. t ) k I 0 ;(x,0) N ( x) ( 1. 13) = u I)
,.,

( x , 0) "' ( x)
( 1. 14)

u ::::: u , t I N ( 0 , t) "' (2L,t) ::: 0 (1. 15) u = u
These are exacdy the eq1.1ations of a vibrating string with a peg of hdgh t k at

() L
x = 2 in I 10 l where this problem, and more general ones were sudied. a rather awkward variational formulation was given. It is our hope that the one which is given here will prove more useful.

II -THE VARIATIONAL FORMULATION.

II . 1 -MOT AT IONS AND DE FIN1T10MS.

We shall need the following spaces and sets :

(2.1)• v :: I u E tt' ( 0 , L ) I u ( 0 ) ::: 0 I , with scalar product defined by

(2 . 2) ((u.v)) --/L 0 u' v' dx and norm 11 • I! • Let ( 3) 
H = L 2 (0,L) 2 .,
with scalar product ( , ) and norm I , and define a convex subset of V by (2 . 4) K=lueV/u(L)~k

I.

0

We define now spaces involving the time variable;

( 2 • s) :x. = I u E L 2 ( 0 ' T ., v )/ u E L 2 ( 0 I T • H ) I 2 t
with norm

(2 • 6) 2 2 
.L (II u < r> l l + l u < c> 

u C C ( [ 0 , T 1 ; V weak) .• For any t: in ( 0 , t ) 1 the injection V ~ H 1 -€: ( 0 , L ) is compact and H 1 -. 8 ( 0 • L) is
a space Qf CQntinuo.us functions on l 0 , L] • This proves our first claim.

To estimate the Holder norm of u , observe first that

I u(x ,t) -u(x', t)I ~ I I x' u Cr. d dy 1 < J 1 x' -x I 111 u 1l1 x ~ 1(
Let h < L/ 2 , and x E [ 0 , L/ 2 j ; we estimate the modulus of continuity in time by splitting u ( x , t ) -u ( x , t ) in three pieces : the two outer ones involve a difference between I 2 u (x , t.) and a spatial average and the middle one a difference between spatial averages at 1 at umes t and 1 2

On the other hand

f x+h I~ h x ( u ( x' 1 t ) -u ( x' , l )) dx"' ! ~ 2_ • 1 f 1 2 h x ~ 11 u Ill 00 Therefore x + n [ t 2 I t -c I 2 1 u ( X' , S ) d S dx' I t ! u < x , r ) -u ( x , t J I ~ 111 11 11 c 2 lh + I t -t I I Vii ) .. 2 I ~ 2 I lf we choose h -- { 2 1J 1 -c I 2 and I t -t 1 ~ ./Li2. , then I 2 I u < x • t ) -u < x , c ) I ~ 3 111 u 111 /1 t -t I I 2 "" 2 I
Parching chc relations obtained on scrips of height ( L/ 2) 2 and the relations obtained for L/ 2 < x < L , we obtain 

I u(x,c) -u(y,s)I ~ K \llulll /1 t -Ii I + I x -Y I 00 (2 -• 11}
= Q x Q T T c I x -r I + I t -s I >t (it,d f (y,s) ~ c Il l u Ill • • •
To prove the crace result we need we have two alternative solutions .: the first one is to play wich energy inequalities, and after a good deal of manipulations, obtain the required results. This procedure is rather awkward, and probably too particular. The second o~e, which we choose, consists in defining weak solutions of evolution equations in che setting of the theory of strongly concinuous semi•groups and cheir duals, and then proving a regularity resulc. This technique was chosen, because the. regularity result is, in itself, interesting.

L('t th<.•rdorc. We know that, for u in D (A) , there exists a unique function u in We know from [ 7 1

0 I 0 C ( [ O , T ] : X ) n C ( [ 0 , T ] ; D ( A ) ) such that ( 2 • 14 ) du ( t) + Au ( t) = 0 dt '*'ith initial condition ( 2 .
that. if S* ( t) is defined by We: (ldin<.• a notion of wc:.1k solution as follows ;

< S ( t) u , u* > = < u , S* ( t) u* > V u E X , lrf u* E X * ,
1 I Definition 1.2 -L~t u belong co L ((O, T); X) and f 10 I. (I 0, T 1 X). Then Ioc u is said to be a weak solution of ( 2 . 14) if

(:Z.17) = 1 T .P ( s) < I ( s) , •' > ds , \I .p f 'll ( ( 0 , T) ) , 'i •* E' D (A• ) 0
Then we have the following regularity result on weak solutions :

Proposition 1 • 3 -Let u be a weak solution of ( 2 • 14) according to definition l. 2 • Then, possibly after modifying u on a null subset of [ 0 , T ] , 0 u EC (lO,T]; X). 

0 c/J ( t) < v ( [ ) • u * > dt + c/J ( t) < v ( t) , A* u * > dt = +IT V-(t) < J' S ( t -s) f ( s) , A* u* > ds dt , 0 0
which proves by exchanging the order of integration in the last term that v is a weak solution.

Clearly, v befongs to C 0 ( [ 0 , T ] ; X) , and u -v is a weak solution of (2 • 14) , with zero riltlt hand side. Therefore, it is enough to rrove that weak solulicns of (2. 15) with zero right hand side are continuous from ( E , T ] to X , for all positive E: • Let A > w , and take in (2. 17), with the help of (2. 13),

v* E D (A) -2 u* = (A* + A ) v* •
Clearly, u* belongs to D ((A*)"') C D (A*) ,and we may check immediately that, for any u 10

x ( 2 • 18) (2. 19) -2 -2 < ii , A* (A* + ~.) v* >:; < A (A + ~..) ij , v* > .
Therefore, if we let ( 2 . 20)

z ( t) = (A + A f 1 u ( c)
z. is a weak solution of ( x belonging to :D ( [ 0 , L l ) be such that r/J = 1 on [ 0, L -E] "'

::: 0 on [ l -e/2 , L] 

"' u = u'/J . 'V [] u ~ f EL 2 (Q ) T ~ (0 , T) = u(L,t) = 0 x = H 1 ( 0 • L) x L 2 ( 0 ' L)
: -(u (0), cp(O)) t -f T 0 (u ,cp )dt t ! ~ 7 • 31 ) < u ' <P > ;::c 1 T u ( l ' () Ill ( L I t ) dt -j T ( ( u ' (j) ) ) dt . xx x 0 0
Still by a density argument, the above relations hold for any q> in '.:t€ 

( u -u ( 0 ) • v ( 0 ) -u ) ~IT u ( L ' t) ( v ( L ,l) -u ( L • t)) dt . I t 0 x 0
Choose first cp vanishing on x ::: L ; then we deduce from ( 2 . 32) rhat u ( 0) = u a.e. on ( 0 , L) ,

t I
and, in particular, the trace of u on

I t = 0 I is square integrable. Now ( 2 • 32) becomes t [ Tux (L,t)(v(L,t) -u(L,t))dt ~O ( 2 • 33) "ii v EK E such chac v -u E ~ • 2
According to Lemma ~ . 4 , u has a trace on I x = LI, which belongs to H 1 ((0, T)) where

,I(.)= l 1 for x ~ L -E 0 for x ~ L -2 € c/i E~l([O,L])
and

I k E H ( ( 0 , T ) ) , k ( x ) = 0 for x ~ E or x ;)!!. T -E , 20 
then v is a convenient test function in ( 2 . 33) , and a classical argument [START_REF] Lions | Quelques methodes de resolution de problemes aux limites nonlineaires[END_REF] shows that

u (L,t) ~O x. u(L,t) ~O a.c. on [ 0 , T ] VtE[O,T] u (L,t) (u(L,t) -k) == 0 a.e. on [ 0 , T ] x i.e. ( 1 • 3) -( 1 • 5) .
Let us now prove the converse : assume that u satisfies

( 1 • 1) -( 1 . 7) • As u belongs 2 to ' .X 1
and f to L ( Q -i> , u and u have a trace on I x = L ! so that the unilateral x

Proof .. We have the following energy identity, proved by a density argument :

( 2 • 36) 2 { u u ) = -2 f u in the sense of distriblltions. x ( t x 1e may integrate it on I x , x ] X [ t , t ] for 0 < x , x and 0 < t < t , chanks ro 0 l 0 1 0 ( ) I
(2.24) and (2.25),andweobtain / rl ( ( u :

+ u 2 1 ) ( x I , t) -( u: + u 2 t) ( X 0 , t) ] dt = 0 ( 2 . 35) [(2u u) (x,t) -(2u u) (x, t) -2 / 11 X t I X t 0 t f u dt ] dx 0 0 21
The right hand side or ( 2 . 35) is bounded independendy or x , x , t • r as long as 

0 I 0 l x , x ~ x •~ L ,
•~{ 0 2 ( u + x l I [ x it (x 1 ,r)dt-' 0 t 0 2 (u x 2 - t u ) ( x. t) dt + c x • t I u2) ( X , I) dt is bounded on [ 0' i ]
D V = 0 v ( x , t) = I v ( x ' t) = x I v(x,O) = v (x, T) = on ( x , L ) X ( O , T) I u ( x r) ! I tE[O,T} u ( x • t) x I u { x) 0 x E [ x ' L] I u(x,T) w = u -v is

I

On the other hand, it is immedia!e that

0 1 v E C ( [ x , L) H (0 , T + x -L)) I I 0 2 . v EC([x ,L] L(O,T+x -L)). x I I
Therefore, we obtain that, for all positive E ,

0 I u E C ( [ 0 , L ] ; H (0 , T -€ ) ) ( 2 . 36) l 0 2 u E C ( [ 0 , L ] ; L ( 0 , T -€ )) • • x E
We resume now the proof of the converse of the Theorem. For cp in l'. , we may apply identities 2 (2. 30) and (2. 31) which imply

-( u t ( 0 ) ' ~ ( 0 )) -I T ( u t ' ~ t ) d t -IT u x ( L . T) cp ( L . t) d t - 0 0 ( 2 . 37) + IT ( ( u , ~ ) ) d t = f ( f , ~ ) dx ,
• Q T Let q> belong to X such that q> ( x , t) = 0 for r ];. T -71 . Let us ex tend cp as follows :

2 q>(x,t) "'-<p(-x,t) for -a ~ x ~ 0 0 q> ( x , t) = qi ( 2 L -x , t) for L ~ x ~ 'L + a qi (x,t) = 0 0 for T ~ t ~ T + a 0
wher a is some small positive numbe1:. 'Let p be a smooth convolution kermel :

0 p(x,c) = p (x) p (t) I 2
with

supp p ::: [ -t , t } , SU pp p = [ -1 I 0 ] 1 2
We con'°h•e q:> with p ( x , t} = ll -2 p ( x a: -l , t Cl -I )

a q:> ( ~ , t ) = J <ll ( y • s ) p ( x -y , t -s ) dy d s a a
Then q> is well defined on Q a T for a~ a .. 0 Let x be defined by so that Then, we de fine

rfJ (x,t) t;• i(• We can see that q:> •'• a Y' e ~(x) = f~ x ( x) •-0 x (x) = 1 P (-S) ds I 2 for x ~ 0 for x ~ 1 .. -1 -1 ::: X ( E ( x -e))
x ( e (t -x + L -€ )) E belongs to ' .X , and ( 2 .• 37) holds . Therefor c:,

~ T c2 ( max p / 1 2 2 2 ~ 3 'I C (max p ) € .• I l Simi lary ai/J 2 x dx ~ f lcr (x,!) a OX € 2 ( x , t) \ dx dt ~ 0 < t <2E E < t -x + L <2€ " c2 L 2 (mu; p )2 E -2 I 2 ~ 2 C2 L2 ( i ~ max p ) • I 2
This proves that ( q> .c/J ) is bounded in L Let ( V ) be a seqirnce of finite dimensional subspaces of V , of finite di mens ion, h h such that

( 3 • 1) ---v v v h h == v .. Let J{
be the sequ~ce of closed convex subsets of V given by h 

( 3 . 2) K = K n v h h ..
(u - .se>lution which satisfies the energy relation We cannot use arbitrary test functions in K , and we will need an approximation.

h1 lim uh ( h) , v -u ( 0)) .::_ 0 , "fl v E K h h h h h J. 0 I Uhl I : : ; : I i\ ( 0 + 0) I ~ ( f , v h -uh ( t}) , V v h E Kh u (t)
Let v be an clement of K which is equal to u for t ~ T -e ; for T) ~ e/ 2 , define

J ( + )' ) u ( x , t) + 11 -I ( v -u ) ( x , t ) dx + t ( 3. 19) v7'cx,t) = + k ( n ) x !/r ( t ) if t ~ T -T\ u(x,t) ift~T-T)
where ..P is a non negative smooth function of t , equal to 1 on [ 0 , T -e] and to zero on [ Te/2, T], and k ( 1)) will be chosen later. . L ' and we will be sure that In particular, we have

I (Q h v T)) ( L , t) -v 71 ( L , t) I ~ C ( h) ess sup -1 v 71 ( t) II tE[O,T]
so that, thanks to (3. 13), (3. 20) and (3. 21), 

[u + Q (vT) -u)] (t)E K , "fl tE[O,T], h h h (3.

h h

We integrate the inequality on [ 0 ., T ] ; we may integrate by pares the first term, because .h • _. v -u 1s rn .-. , by constru ccion. We obtain :

2 T -( u ( 0 + 0) • Q ( v ( 0) -u ( 0))) -1 ( u ( t) • Q [ v ( t) -u ( t) ] ) dt h h h h h h h 0 {3 _. 23)
Fran (3 _, 1 ) and

(3 :. 6) , lim u ( 0 + O} = h h u -• t
We may easily pass to the limit in all the other terms, using the convergences in the strong copo• logy of V :

Q ( v ( t } -u ( t )) _______.. v

n ( r) -u ( t) ., 'V t h h h

We pass to the limit with respect to n in the expression we obtained, and we get ( 2 :. 28) .

We have an energy equality for u soluti m of ( 2 • 26 ) -( 2 :, 28) , by integrating Given V as in ( 3 :. 1 ) , we define as fully. discretized scheme

( U 2 2 +u) -2(u t x t x on [ 0 , •L ] X [ 0 , 't 1 u ) t = 2 fu x 1 L 2 2 [ u t( x,') + u x( x, -r ) ] dx = 0 2 2 [ u ( x ) + ( du / dx } ( x ) ) dx
k + 1 k k -1 u h -2 uh + uh <~~---~~~~~ flt 2 k + l ) + uh ( 3 • 25) v - ' k +l) ll h ~ 0 I
with initial conditions u h and u h such that 

(3 . 26) in V - um
k +l uh -u 6t k 2 h k k +I + (f h • u h k-1) . -u ~ h . (3 :. 29) R(u.v) 1 !I 112 I u -v I i > ~-4 u+v +a At We have the identity -1 I (A u.v) ~-(A (u+v),u+v)--(A (u-v),u-v) h 4 h 4 h and, thus, R(ulv) >_! l'A ( ) ) lu -V12 llKhll 6 / ) .... 4 l h u + v • u + v + 6t. { 1 - 4 l u -v 2 . ~ 4 (Ah ( u + v ) ., ( u + v)) + a I ~t I ,
x ~ a + b k k 2 "t At • t ""' 0
Then, we have the following estimate on x f 

(3.32) (a + b -k x 6t )! 1 -b .
-u uh h 1 ( .v:-'Uhl - At II k -1 M -1 + )2 k -1 k -I -u h k a ( u v h h k -u h k k +I v h -uh k t-I 6t ) ~ h .\! -1 (fk k k +I ) £\1 ~ ~ • vh -u . h h k = k -1 -v h ) t. t + 6t
We pass to the limit for At ~ 0 and h ~ 0 in this expression, to obtain ( 2 . 28) . To see that 'll converges strongly in X to u , it is enough to show that the total cner gy of 'll 

QT

The weak convergence of ' lJ to u has as a conseql!.encc that IV . 1 -NOTATIONS AHO DESCRIPTION OF THE FAMILY OF "SCHEMES.,

I
(A u,u) = h D - 1 j = 0 1 u((j + l)~x) -u(j~x) 1 2~x Ax n -l n - l lu l 2 =At l: 2u(j1.h) 2 + u(n~x) 2 + l: u (j6x) u(j + 1) Ax) I = 1 so that -2 2 (A u , u ) ~ 12 Ax
Let n be an integer, let h = Ax = L/ n be the space step, and Ac be the time J q,k_ df We 11enote by u the finite i ference scheme defined as follows :

I 2 1J~ + 1 I = 211~ -'Uk.-I + ~ 01~ 2'U~ + 'U~ ) + !it 2 F~ ( 4 . 1) J I 2 I + t Ax~ for 1 ~ j -* n -1 'Uk+ l = n max J I -1 J
where F~ is a suitable discretization of f . Whenever necessary 1lk = 0 We can give now an equivalent variacional form of ( 4 . l) .

k +I

EK = K v u n h h h k +I k k -1 uh -2 u + uh ( 4 • 5) h Uk+ I) sh ( v - . ~t 2 h ~ s ( f k + I k + 1 , v -u h ) V v E K h h . n + k a(uh,v
The equivalence of ( 4 . 1) and ( 4 . 5) can be readily checked, a~ follows ;

K = I u E v /'lJ ?-k I • h h n o If in ( 4 . 5) • vh = tJ~ +I + Ql .. then h k +I 2 k k-1 u - + u uh h k n I V , f ( x ~x j ~x ) • = I ! -k + J) uh ~ sh (~ ( fk + 1 ' CV ) + a(uh,qi) ?-s
,rp) ,VqiE\ such that qi 0, 

WC get 1Jk + 1 -2 'Uk + 1Jk ... n n n 'Uk -'U ( --------} ( v At2 11 n n -1 { V n -'ll k + l ) • v v ~ k n n o
and it is straight forward to check that this is precisely equivalent to the second part of ( 4 . 1)

To make things more precise, we: shall settle for the fol lowing approximations of the exterior forces, and of the initial data :

( 4 . 6) ( 4. 7) ( 4 . 8) 'U~ + At I Ax 11 0• 'A ) = U (JuX J 0 f (j + l: ) I\• 0 -i ) t\x u ( s) ds , if 1 ~ j ~ n -1 l ' U•l = '\Jo + / n6.x 2 ~t -- u (s) ds /'r,.x 1 n n ( n -} ) Ax 1 iA it ! . ( k + I } At
F~ ;;::!'r.tlih f(x,t)dxdt I (j-1)6.x k.1t V.'e shall consider in the remainder of this chapter that ~ = flt/ Ax is fixed in [ 0 , 1 ] , and we shall prove• the convergence of the scheme, first in the non-characteristic case f.. < I . 

IV . II -CON VE RCENC E IM THE NON CHARACTERISTIC CASE.

K +I k-1 uh -u ~ ( fk h + sh h ' 6t k ... 1
We esrimate a in terms of s on

V h h n -1 'U. -' l.J h a (u, u) = I ( I +I J )2 6x ~ 6x "' 0 n -1 2 01~ + 'll ~ ) n ~ }!; I • I J ~ 4 6x i = 0 so thar k -u h -----) ~ 6t l -u ) + h ) ~ I 0 u -uh h ) + /\1 ) 6t -1 l 'U~ 6x) 6x -2 I = 0 J (4 . 10 -11 a ( u , u) < 4 .6x \ ( u , u) , v u E V h . Therefore, u .a ( u , v ) + s h ( -v 40 u -v
At ) :::

1 1 =4a(u+v,u+v) 4 a (u -v, u -v) + ~h u -v At 1 u -v ? 4 a (u + v , u + v) + sh ( L\t u -v 2 t\ t ) (1 -. . , . . , ) ,.
and, in particular 

k = 2 > (1 -' A ) sh( u -v At At k +I k uh -u ______ h_ ) 2 At ' At. TI t\t ~ M ~ ( TI t\ t) + 1 • u -v ) At u -v At )
Then, we apply the discrete Gronwall Lemma stated as Lemma. 3 . 2 ; we take in ( 3 . 31)

l k +l k k+t k 4 a ( u h + uh• uh + uh) I 0 2 k + ! k u -u 2 h h + ( l -h ) s ( ------ h lH k +I k u -u h h . . -----) ~ At ( 4. 13) ~ (C + h u -uh k h• i -1 2 - L\t)(l-h) ( 1 -( l -\ ) 6 t )
, Then, with the help of ( 4 ~ 11) , and the fact that C is bounded independently of h , we obtain h

.(4~ 9) • • k We interpolate u by letting h (4. 14) u (x,t) h k ( k + 1 ) L\ I -l k + I t -k~ t = u (x) -------+ u (x} h l'.\t 6t
Then, -we have the following convergence result :

Theorem " :. 2 • The sequence u converses co the solution of ( uh -uh

• V n _ U I) - ~ -sh(~-- ~ M -1 k k-1 u -u h h s <-• •----•- h l\t k = 1 (4. 15) M - M -1 k k +I k -1 k v -u -v +u h h h h . --------~-•• )"-t Ar + :£ a ( u k , v k -u k + 1 ) At > I. s ( f , v k -u k + 1 ) 6 t k~lh h h h k=l h h h h •
Let "1 belong to V , and let "'h

Then, for any

. v v ln h h 5 h(vh,rph) -( \ ' "'h ) n = I l[I ( 1 -Ix -j6.x I + J Ax ) 1 n n I v. qs 2 ' • = 6x --i v. !} x I j 3 I I 1 1 1 --I. 6 (V. IP + V. '¥. ) ~x = J j + l J +I J ;: 1 n 1: v c....!. 1)1 1 111 1 \{I ::; -- -6 . 3 j 6 j -I j + l 1 J + v c2 '¥ 1 ljl 6" -- n 3 n 6 n -1 1 '{' --v ~x - Now, we can see <hat (4. 16) 1 s < v , qJ } -c v , qi > I ~ c < 1 v I 11 r/! II l:!. x + I v I I ifi 1 ~ ) • h h h h h h h h hoc
where C does not depend on h .• If we replace in ( 4 . 15) , all the terms involving \ by similar terms involviing the original scalar product in II , the error we commit is estimated by

1 0 uh -uh c . . /Ar: l I __ L\_t_ l II Q h C / 1 co > -u < o >) 11 + M -l + ~ ~t k k -1 u -u h h 6t 11 Qh (vT\ (kL\t} -U (kL\t) -VT\ ((k -1) ~t) + k .,;. l \l -l + u < k -1) ~ r) !I + ~ l:!.t I ~ I 11 Q h < v T\ < kl:!. t > -u <kl:!. c > ) 11 l , k = 1
which tends to zero as h tends to zero. We are therefore reduced to the proof of the finite element cas, and conclusion is dear. •

IV. 3 -CONVERGENCE IN THE CHARACTERISTIC CASE.

The characteristic case is technically more difficult, because the energy estimate involves only the characteristic derivatives, and the fact that we have two superposed grids, which are coupled only at the boundary K = L is important in the definition of a good interpolation. I 'U~

+ I. J +I J J = 0
&k is bounded independently of h and k . h

Proof -Relation ( 4 . 1) implies that

11~ ... l 1J~ 1Jk tJ~ -1 F~ tu 2 if 0 ~ j ~ n = + -2 J 1" I J I + 2 I+ l I t I 11 ~ + l ' U ~ 'U~ 'Uk -1 F~ !ix 2 = + if 1 •' j 4-n -1 I I+ I J -l I I Therefore, n -2 n -1 I I 11~ +I ll~ \ 2 I I 11~ , k-1 F~ i\x 2 12 - -• -I. + J t I = 0 (4.

18) and

n -1

I j ==-I I 1J~ t I J
The remaining terms are

I i 1 J 1" l I I = n -l 11~ 1 2 = J t-1 I I ... o -I 'Uk -1Ik -1 12 -I 1Jk I I n -1 _ 11 k -1 1 z _ I ' lJ k _ 'Uk -1 I 2 •
Observe first that 1Jk-l = 0 We must estimate I c -d I + I c -a I in terms of a , b , d , g . We have the two following 

I 'Uk _ •uk -1 1 2 • I 0 b 11 k +I = c 1Ik n n -1 ' c ~k 0 . = d .
identities 2 2 2 2 le-di +le-al -lb-di -lb-al =2(c-b)(c+b-d-a) 2 2 - 2 2 !c-dl +le-al -lb-g-dl -lb-g-al =2(c-b+g)(c+b-d-a-g ) Therefore, if a -b + d + g ~ k , c = a -b + d + g ,
+ F. Ax I + j .. 1 J + l i J n -2 + ~ j = 0 + max I I 'lJk -1 k 2 'Uk -1 _ 'llk 1 2 n • 'Un -11 + I n n + I 'Uk -i -'Uk + Fk Ax 2 1 2 I ~ n n n ~ &" ( 1 + ~) + 2 l j = 1 k -1 _ 1lk • Fk 6 x 2 1 2 + I 'lln n-1 n
This is a discrete GronwaH inequality which allows us to conclude:. • Ler us define now a good interpolation of 'U~ : . for this purpose, we define two sets of grid points I -k

I ( ih • kh )/ i G = h + k ts .even or = n I ( 4 -22) "'k I (jh , kh )/ j G = + k is old or = n I h and subspaces of V -k -k v = luEV/u is affine on [O,L]"-'Ghl h (4 .. 23) "'k luEV/u .-vb v =
is affine on [ 0, L ] \.'Gk } h Then we define two interpolations of 'llk ., each one corresponding to one subgrid

J -k -k k .
~Jk.

-k

u he vh u h ( Jt:.x) = V j e Gh • I (4. 24) "Ilk "'k u~ <;Ax) 'Uk.
. ak

U E V , = • v J e • h h I and u (x, t) uk ( x) (k + 1) t:. t -t uk ( x) t -kt:.t = + h h t:.t h At (4 .. 25)
u (x, t) u" (x) (k + 1) L\t -t .,,k ) t -kt:. t 

= I J J 1 • ( j' -j) Ax [ jt:.x , j' 6x ]
-k and j' 1n G such that j• > j is rhe closest neighbor 

'Uk n -t 'Uk I L'lx 4A 1 [O,.l\x] 1 l\x ( ( n -1) ~x , n Ax] ~ 2 [ ( 'U~ -•u~ _, )2 + 'll k -1
( .

I +i J t I J +I I l 'Uk -'lJkwl 1 2 k -1 ~2 + \ 'U n n n 1Jk :::: 1Jk -1.lk -• • 1 I 0 -1J~)2) J -'llk 12] n -t ( 4 • 28) l •OU I axh (•)
is bounded irrle pendently of h , and t in [ 0 , T ] Similary, if ( jh , kh) belongs to G with j not equal to 0 or n -I , we have the following ah ex;pression of (.L 29) uh on the square ( ( j + 1 ) h , { k + 2 ) h ) X ( kh , ( k + 1 ) h ) :

•::..-h

uu at < x , 1 > == 'Uk I ~ 2 2 Ax 11 ~ + 1 - 'll~ J +I J At x -j&x __ A_t_ 'U~+J -'U~tl J+.J J+I x -(j + l)&x + 2 Ax
l\t wi[h a similar expression 011 ( jh , ( j + 1) h) X ( kh 1 ( k + 1) h) .• In the end elements, ~u whenever they are needed , -takes a particular form, which is the following :

0t x \lk -\lie 1 0 ouh ~ (x,c)::o ot ll 2 ~x (4 .• 30) lJk +I _ 'Uk •t I 1• 0 l'lx 'duh h E G kh + 1 -"> ( x , t ) = d t x x -L\t ., h llk t I -'Uk (n 1 ) h E-Gk => ,,u n -2 n -1 - ( x • t) :::: + h ~)t /\c 'Uk .. , 'Uk +I 'llk k - -'ll n n -2 x -(n-2)6x n n -1
x -(n - . "" u --u .. u _.... u 1(1 L (O,T;V) weak * To complete the proof, we have to write down variational inequalities satisfied by ii and u ,.

"Vk ,.,,k li"'k h For z in V we call P the element of V which is equal to z at the modes of G • We h h h h claim that, for any V in I vk I the follo-wing relation holds :

h ( 4 • 33) a (v . . y)
To check this relation, we observe that if on the left hand side of ( 4 :. 33 ) is and In this case, the contribu"cion from rhe incerval with c:nd poincs ( jl ) h and ( j + I ) h 1s

+ 2 belong to G~ , the relevant term v. -v. Ax -i c -1 -•-
2 n-1 n -2 11 -2 ~ -l-) I• V n -1 ( . ••z ••-•I y n )) r V n y n l and ,..J #¥ tvk S ( v , P )') :::: Lix [ V Y h h 1 + 2 V Y + ~•. I• 1 V Y + V Y ) 3 .3 n -1 n -1 n n v + + n -.l 2 
::: t\x [V Therefore, s (~ • y) h and v y n -I •I• 2 .i\ x [ v I y n -2 v (Y .\ 2 y 2 + 2 + v n ~1 d y ) ~ v I y + v ) 2 + n ~1 2 + •••-ti +
given by V.

v.

11 .

-11 .

v.

v.

'II . -11.

1 J+l J-I J+I I l ,., 

)-1 J 1-1 .. I -< -•----) <--•--) ~ < -•• -••. --• -> C ----~ > J !\X 2 /\x l\x 2 l\x l\x V. -V. 2 /\x I • I l -I --• --. --•--
k fl qi •• Q h [ ( v -u ) ( k
+ ..!. h sh ( • Ph q> 2 !\/ ..,k "'k k k "'k l> ~ 0 ( .[7fi) .
-i a(uh,Ph qi ) } s (f h 'Ph h

We have used in this By discrete integration, and techniques giving an estimate analogue to ( 4 . 16) , we pass to the limit and obtain :

1 /T -(u ,v(O) -u) 2 1 0 0 c11 -u t I v l u ) dt + [ ((ii + ij ' v -" ) ) dt ~ IT (I ' v • " ) dt ' ()
which proves that, thanks to the definition (4. 35) of u, u is the solution of (2. 26)-

( 2. 28) . Working with the energy as in all previons proofs, one deduces in a straightforward way that the sequence (uh t uh)/ 2 converges to u , and indeed that uh and \J h converge to u in the strong topology of X • •

In the second set of Figures (Fig. 12 to l 9) ., with 51 discretization points and a subscharacteristic scheme with a CF'L number or 0 ~ 8 , the small hollow is not apparent, but the dispersive effect become large later.. To decrease the magniu1de of chose dispersive.' effects, the spacial seep is refined to 1/200, without changing the <.:P'L numhcr, and, as in the linc<lr <.•<1sc, the results arc substantially better; 
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 3 -INT RO DUCTI ON.

2 (<x> 1 2 +

 22 It has been shown in theorem 14 of[ 5 [ that, if u belongs to the Sobolev space II Vz (0, L) . with u ( 0) --0 , u ( L) ~ k , jf u belongs to ff i/z (0 , L) and f Q ) , then ( 1. 1) -{ 1. 7) possesses a unique solution u in the space T I u e L 00 ( 0 , T ; H 312 ( 0 • L)) / u E L"" ( 0 , T ; H 112 ( 0 , L)) I moreover th er energy of this solution is conserved : 'd tE[O,TJ.

2 +

 2 I u < x , t > I > dx = x du /I JL I d: < x > I z > dx -t 0 0 u ( x, s) f ( x , s) dx ds ,

  T ] ; D ( A)) w,hich satisfies ( 2 • 14) ls called a strong solution.

  th en S* ( t) is a strongly continuous semi-group 1 whose generator A* is given by D (A*) ~ I u* EX*/ u -<Au, u* > is continuous on D (A) in the norm topology of X I.

  and < u , A* u• > = < Au , u* > "I u E D (A) , 'V u* E 0 (A*)

u

  E C ( [ 0 , T ] ; H ( 0 , L -e ) ) and u E C ( [ 0 , T ] ; L ( 0 , L -( [ 0 , L ] ; H ( E , T -E ) ) and u E C ( [ 0 , L 1 ; L ( e , T -E ) )

2 Theorem 2 , 5 -~ 2 ( 2 loc 2 and 2 uT 2 ( 2 •

 225222222 checked immediately 1hat tr is skew-adjoint, and therefore, thanks to Stone's theorem, (j generates a group of isomenies S ( t) on X . If we let F -( ; ) then, 11 is a weak solution of d11 / ot + ti 'll = F , and, according to proposition ( 2 • 3) , and using the group property of S , ' U belongs to c 0 ( [ 0 , T] ; X), which proves ( 2 • 24) • To prove ( 2 . 2 5) , we take advantage of the symmetric form of the wave equation with respect to x and t in one spatial dimension, and we multiply u by . some x in 5) ( ( 0 , T)) suchthat x = 1 in [ E , T -El , and x = 0 in [ 0 , E / 2 ] U [ L -E/ L, L ] ; then, we argue exactly as above. • II. 3 -THE EQUIVALENCE BETWEEN THE ORIGINAL FORMULATION OF THE PROBLEM AHO THE YARIATIONNAL FORMULATION. This equivalence is summarized in the following statement ; Let f belong to L {Q ) , u to K and u to H • Let u belong ro ' .X ; /.T (I,•u)dt, 'V v e K such that there e11:i sts 11 > o such that v = u for t ~ T -n Proof • We check first that ( 2 • 26) -( 2 . 28) make sense :As u and v belong to ~ , they haves traces in L 0 , L) on I c = 0 J X ( 0 , L) , so 2 that (2. 26) and the first term of (2. 28) make sense. The remaining terms of inequality make sense quite immediately.Assume now that u and f satisfy the hypotheses of the Proposition and relations ( 2 . 26) and ( 2 • 28) • Then, if we pick any q> in fl ( Q ) , u + q> = v can be employed as a test T funaion in (2 . 28), so that (2. 29) u tt -u xx = f in the sense of distributions in QT From Lemma 1 • 4 , the trace of u on I t = 0 l exists and belongs to L the trace of u on Ix = LI exists and belongs to L ((0 1 T)}. Let and let x loc XE --I <p C :X / q> = 0 fa t ~ Tto avoid any trouble with the (possible) blow-up of and u in the corner ( L , 0) of Q • x t If <p belong to C 00 ( Q ~. n XE , the fd lowing identities hold by dens icy T-30} <u ,i:p> It ::

2 (

 2 loc and u has a trace on I x = L I which belongs co x L ( 0 , l)} . If we define v by • toe v=u+Y,k

x 2 ,

 2 conditions (1 • 3) -( 1 • 5) make sense ; similary, as u and u have a. trace on I t = 0 ! , x the initial conditions ( 1 • 6) and ( 1 . 7) make sense. Relations ( 2 . 26) and ( 2 . 27) are quite clear, and one has only to check ( 2 • 28) •. The difficulty comes from the fact that, a priori, t --u ( L , t) is only locally in L so that we shall have to prove that u ( L , . ) x x 2 is in L indeed. We have even a more precise statement : Lemmo 1 • 6 -Let u satisfy (1 . l) -(1 . 7) . Then, for all positive E , O,L]; L (O,T -E)).

[0

  (u 2 u ;z) (JC • t) dt is bounded on x ----+ + co,x ll l If we let v be rhe sol u ti oil of Then

2 w

 2 the solu ti on of ] . I 22 OW = f on (x ' L) x (0, T) I w (x ' t) ::: w (x , t) = 0 tc[O,T] > I x l w (x , 0) ::: w ( x , T) ::: 0 xe[x ,L] I and we may apply Proposition 2. 3 to get 0 l w E: C ( [ x , L ] H ( 0 , T)) I 0 EC ([x ,L] L (0,T)).

  We approximacc ( 1 . 1) -( 1 . 7) by the following prohlem :( 3 . 3) u e ,W'' TJ.; Vh), the set of measur~s on ( 0, T 1 with values in Vh (3. 5)( 3. 6) 

( 3 .

 3 10) Observe that the left hand side of ( 3 • 10) makes sense bf!cause u is of bOunded variation. h We call u an arbitrarily chosen solution of ( 3 . 3) -( 3 _ 7) which satisfies ( 3 , 10) • h Theorem 3. 1 -The sequence uh converges in the strong topology of X 2 to the uniq11e solution of ( 2 _ 26 ) -( 2 . 28) . Proof -From relation ( 3. 10) , a standard Gronwall inequality implies that {3.11) sup ess sup ( I uh ( t) I + II u h ( t) II ) < + ..., h [O,T]ThC'reforc, we may extract a subsequence, still denoted by uh such that weak*

' As u belongs to c 0 ' 2 c

 02 L , t ) -n u ( L ' s ) ds I ~ T) I u ( L , t ) -u ( L , s ) I ds ~ t t ~ C 11•111 2 ~-•1~ Vi ds = 0 Ill u Ill v'fl / 3 .

11 h

 11 t) ~ k + C II 11 Ill Vn. , for t -( T -, c) ::: u ( x , t) + k ( )') ) xi/I ( c) 29 and. v T\ ( t) still belongs to K . We know from ( 3 . 12) that u belongs to ' .X oc on the other hand, ll ( v 11u) ( t > \I ~ k ( n ) !fr ( t > L + 11 -~ Ill v -u Ill we denote by Qh the projection onto V h which is orthogonal with respect to the scalar product ( ( , ) ) of V , condition ( 3 . 1) implies Q ~I h in the strong operator topology, and thus, thanks to the Sobokv incction theorem, 11 Q z -z 11 ~ c ( h ) Il z

2 hX •and Il l u Ill 2 h 2 converges 2 n 2 ,

 22222 terms disappear thank~ to the Dirh:hJct condidon (1 .• I) oo the left and th<: 11 nilateral conditions ( 1 .• 3) -( 1 .• 5) on the right. An immediate comparison of ( 3 •. 10) and ( 3 ,• 23) shows that. with ( 3 .• 12) • As ~ is endow~d with a Hilberr structure, as u converges weakly to u m !o II\ u Ill , we conclude that u converges strongly to u in :' .t: and this ends the proof of theorem 3. l .. • Ill. 2 -COMVERGENCE OF FULLY DISCRETIZED F.INITE ELEMEN"TS SCHEMES.

  according to ( 3 • 27 ). If we perform a discrete in!egration on ( 3 .. 28) , wc obtain which we ~stimace by ( 3. 30) M ( 6 c) is defined by T/tir ~ M < 1 + (T/L\r) Now we have a Lemma on discrete Gronwall inequalities : Lemma 3 • 2 -Let x be a sequence of numbers which satisfies k ( 3 . 31)

h 2 h

 2 converges to the total energy of u . Relation ( 3 . 28) ( I ;"'Ju I 2 + I ~lu 1 2 ) dx dt ), , . . . ax dt n 4 " "

2 =

 2 12/ Ax , as the reverse inequaliry can be checked easily .. iV ~ EXPLICIT DIFFERENCE SGIEMES.

~

  g ( x ) = max ( I -I x I , 0 ) , k c.hcn uh belongs co V h , che space of piecewise affine function on incervals [ jh , ( j + I) h ] . 11 . f ( x -j 6 x oreover, or u an v 1n h ,

  equivalent to the first part of ( 4. 1). If V.

Proposition 4 . 2 are+ 4

 424 1 -Let ' 1' I be less than ( 4 . 9) k I : Then, we have the following estimate on uh k + 1 k uh -uh L --. . . . . , . . . . --) Sh ( f~ I _ _ '1_t ___ ) ' If We add these inequaliry for k = l IQ e I We have (

Proposition 4 • 2 -

 42 Let A = 1 , and define the energy at time k by ~

  to ( 4 . 1 ) , c = max (a -b + d + g , k )

2 I

 2 +le-al ~]b-g-dl + l b -g -a l . Assume now that a -b + d + g " k . Then c=k,c~b and a-b+d+g~c. so that c+b-d-a-g~O. Therefore, if c ~ bg (i.e. k~b-g), we have ( c -b + g) ( c + b -da -g) ~ 0 . l'f k ~ b -8 ' then, as b ). k • we have 8 ~ 0 ' so that c + b _a -d ~O and c ,b .. It follows dlat (c -b) (c + b -d -a) ~O. cd I + .1 ca I ~ max ( I bd I + I b -0 ! • I bg -d I + I b -8 -0 ! We deduce from ( 4 .• 18} -( 4 .. 21) that IJ,n + l

\ 2 -

 2 to j .• Thus ox contains terms of the form ) +2 J 2t:.x 1 and possibly (jAx , ( i + 2) Ax) terms of the r orm or 'Uk n From the inequali.ti es I 'tr~ J +

-

  

2 J.

 2 and the relevant term on the right hand side of ( 4 .. 33) 1sv. -v. equal to the previous expression. If I and ...., k + 1 belong to G , them h the relevant terms are the same on the left and the right • Letusnowcompwe sh (v ,y) in terms of s (v,P hy) ands (v,Ph y).,for v'V k in V h , y in V h • ; we let ,..., k sh < v • y l = :! ...., k EG h v ( j~x) y ( j~x) ~x ( j -j' )~k j' is thf.• largt:t dc:mem of G • which is s1rictly smc\lkr th•ln j • h 'N<: h<Wl.• thl.• following formula : ( 4. 34) ~ c I y l I! v II v---e;x "'k Let us prove chis formula when, for ins ta nee, 1 and n -1 belong to G • the other cases I h ' are of course analogous. If we let ;(jh) .. v. I y (jh) -: y • i

  v • " y ) -2 s h ( v • p h y ) 7-" t\x r 2 + y . .

~

  I Y I "Ax c v2 /'\x + v2 t\x + v2 ~x) i ~c II Y II I v I v'1\X "'Similary, let us estimate a (v. y) -" '

Fig. 42
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  I > dt P

	By comparison with ( 2 . 10)
				2
		is the topology of H	1	( Q ) , and T µ(.,t) = v
	(2 . 9) so that	
		makes sense		0
				0	•	112 (QT)
		and the injection from !' .{	O I/ 2 (Q ) • to C ' is continuous. •
		After an e\/entual modification of u E ~	on a null subsc! of Q
				""	1•
	and	t u The complemc4' of E in [ 0, T] .is null ; the~efore, for any t in l 0 , Tl , there exists a (2 . 10) 0 2
	(2 . 7) sequence t in. E such that t --t • . ' .' .( = I u E L"" ( 0 ., T ; V )/ u E-L'"' ( 0 ., T ; H ) I possibly after extracting a new subsequence, there n ~. n
		exists a v in V such that
				u (. , t ) ~ v w V weak .

~ ( with norm rn u ~I = ess SU p I II u ( t ) II + I u t ( t ) I / u t c [ 0 • T ] 00 Observe, thal the space ' .' .! is the space of functions of locally bounded energy ; it topology K = l u E X / u ( L ., t ) ~ k a. e. I 2 we have the identity K :::: I u e :( I u ( . , t) E K for almost every t I 2 II. 2 -FUNCTIONAL RESULTS.

We need now two functional results which allow one to see first rhat '.1 ts a space 00 of HDlder continuous functions and second1y that, if u belongs to ' .X and o u is square l integrable, then it is possible to take traces of u on I t = 0 I U I t :::: T I and similarly t u on l x == o I u I x = L I .. x Lemmo 11.1 • 1.,., [s included in the space of Holder continuous functions c oo T Proof -Let us pro\/e first that any function of X ts a.e. equal to a continuous function. E C ( I 0 ., T J ., L ( 0 , L ) ) . L('t E I t E [ 0 ., T] I 11 u ( •. , t ) II ~ Ill u IN

  • If we use relations

	2

E

(2. 30) and (2. 31) in (2. 28) with the cesrfunction v = u + q>, q> E ! , u + cpEK, we obtain.

2

( 2 • 32)

  thanks to ( 2 • 24} . If we integrate ( 2 . 35) wirh respect to x on

	o	1	I
	( O , x } , we obrain 1
	which proves that

  (Q ) I when E goes to zero, it mll'>t converge in the weak topology of to q> • On the odrr hand, q> r/t j <P 11 ( L , .• ) converges to the trace qi ( L , .• } thanks to the trace the ore ms in Sobolev spaces ; observe that we do not have trouble with the corner ( L, 0) because the kernel P is shifted towards the negative t , so that q> ( x , t) involves only points. a with c• ~ t ; we do not have any more troubles with the corner ( L , T) because CD .For the proof of uniqueness, the reader is referred to ( S] , where the uniqirness is a consequence of the formulation ~four problem as. a monotone problem on the boundary ..

	!I	1	( Q ) converges to q> I T tl e tl ILJ)((O,T)	in ILJx(O,T)
	Lz ( O, T) , and ( 2 .• 37) holds for qi ::::: q> .• As tl goes co zero , we may still pass to the
	limit because			Cl
			l q> ---cp in H (Q ) strmg
	.. 111 -THE EXISTENCE THEOREM ; CONVERGENCE OF FULL y orscRETIZED FINllE
			ELEMENTS METHODS.
				<X	t: x	2 (Q	T	) independently of €; the same kind of
	arguments shows that ( q> f ) is bounded in L 2 ct e: t	( Q ) independently of E ~ As 'fl iµ T a €
	converges [0 qi	a	T

in x; tl and the trace tl vanishes identically for t ~ T -1' + a. Then ( 2 A 37) holds for any qi In ' .X • If we choose v tn J( , then, ( 2 .• 37) holds 2 for qi = v -u , and the te rm i T u x ( L , t ) ( v ( L , t ) -u ( L , t )) d t ( 1 :. 3) -( 1 .. S} , and this concludes the proof of theorem 2 • .• • virtue of Jll. l .. THE EX,ISTENCE THEOREM APPROX.IMATION •BY F.IN.lTE D.l~EHSJONAL •sPACES.

  We shall say therefore that it is implicit in the constraint. an,l it is quite clear that( 3. 25) defines exactly one uk at each time step.

	Theorem 3 .• 2 • The scheme ( 3 :. 25) converges as h -	0 and 6.t ---0 under the
	stability condition				
	(3 :. 27)				t ~I ~ 2 [ (l -a}/ X J 2 h
	where a is an arbitrarily small posith•e number and
		')(;	h	;:::;	2 .1 l (A u , u )/ I u I l 2 h uCV'-.\O! sup ~•
	Proof -let us first prove rhe stability (3 . 2S) as	if we take v ==	k -1 u h	1n ( 3:. 25} , we can write
	(3 •' 28)				
						k+t) uh	, 'V v E Kh, 11	k+I	E Kb
	Relation ( 3 .• 2S) c.an be written equivalently, using notation (3 .• 9), as
	~t	2			k + A u + o~ h h	K n	( k i I ) ~ fk u h h

H .• I and f~ a suitable discretization in time of f h . 2 + Let us show that

  Let us i1ow compute the value of K for P I uniform fi.nite clements, corr~sponding h

	then	If we take P finite clements, and if u is affine on intervals [ j1\x , ( j + 1 ) Ax 1 , 1
	and				
	Jim n -t.-Ot.l	at1 I a'll 2 f ( llx h .' h + at -• Q ,.	) dx dt ?	I (I OU 12 I ~~ t 2 > + Dx	dx dt

QT T and this completes the proof of the theorem. • . "10 a step ~x : : -: : L/ n .

  For any v in K , such that v = u for large enough time, we define v l'\ as in ( 3 . 19) , and we let k If we su bstitude v by t/ h rn ( 4 • 5) , and perform a discrete integration, with an integration by parts on the first term we get

			I	0
		h			h
	and Proposition 4 ~. I , we deduce that we can extract a converging subsequence still denoted
	by u such that h			
	u	b	°"' __.. u in •L ( O , T ; H) weak*
	auh a,	~	QU at	oa IO L (O,T;V) weak"'
	u			

2 :. 26) -( 2 :. 2 8) in the h serons toplogy of :x: •• 2 Proof • The difference with the corresponding finite elements proof (theorem 3 • 2) is that we have a scalar product s • defined on V by ( 4 . 4) .• From the obvious ei.tima!e ~ u In co (Q ) .

h Clearly, u belongs to K .

  I• 2 ) h } J

	Substitute in ( 4 . 5) at rime k	k + l v by uh	,.,k le + Ph qi '	with the help of ( 4 • 34} , we obtain
	1 k 2 sh (	-k +I uh	2 .,..k uh + uh k ... ~t2	""'k rl) I Ph
	( 4 . 37)	,...k + l uh	k -2 ii + uh .... k-t	"""

k

  • su~cirurion the following facts

										54
	Simularly, substitute iu ( 4 . 5} <ll timl• k I	v by	II	k r 2 h	w<.' obtain
		1 sk < -2 h	... k ... .l uh	k .. I h 1 -2 ii l\l	+	,..k uh	..,k Pb	k qi )	I
	( 4 . 38)	•I	1 2	sh (	-k + 2 uh			N 2 uh k + l 2 ~l	k + ijh	"'k p h	k (Ji ) +
		( t a uh _ k t I		....,k p h q> } ~ 5 h ( f h k k+t	"'k k p q> ) -0 { Vl\X} . h
	We have a !>imu!ar formula, ccn1crcd ar k -I :
					"'k u h	-2li	k-1 h	,,,k-! I II h
							~t	2
	( 4. 39)				.,.k-1 2uh ---_k u -h 6c 2	_k-2 +uh
		k -I + a (uh				
	If we multiply ( 4 . 37) by 2 , anll add it lo ( 4 . 38) and ( 4 , 39) , we obtain eventually
					...,k+2 uh	,.,,k -2uh + uh ,..k-i
							tlt	2
	( 4. 40}				-kt 2 u h	( 2 !ix)	l
		"'k ., h + a	k +I uh (-	k uh + u k -1 ~ 2•..J h	Nk k p q> } ~
			Sh ( f~ +I	k + 2f h +	k +I fh

( ____ ... __ . ----. h "'k erk ) 0 ( ../6x> p -.

  I x -o,[START_REF] Lions | Quelques methodes de resolution de problemes aux limites nonlineaires[END_REF] I > and a 51 points discretization and a characceristic scheme gives a "beak" in the middle or the returning wave, which is too large to make the simulation acceptable ; a refinement in the time seep gives a beak which is much smaller but ~till present ; see .Figures 28 co 41 and in particular, for the "beak" • Fig.32to 40 :.

				sc•c•
	Fig. 20 to 27 .			
	lhe piecewise affine data arc	
	u	( )(:)	= -< r -5	+
	0			

1'he same initial data, and a subcharactcristic scheme, with a CF'L or 0.8 lead to the noticcahlc oscillations, where the ~cak was in the characteristic schemes, but the dispersive effect or this scheme improves the aspect of the solution with time ; S('('.

-1 2 -1 a ::: ( 1 -f.. ) Ch , b = ( 1 -f.. ) • and obtain

Jl n ) ~x +

V -NUMERICA,L EXPERIMENTS.

We have taken •L = 1 , a contact al x = 1 and initial data such chat the solution of the linear problem would be a wawe propagating to the righc. We have several cases, all in finite cliff erences, corresponding to a situation when the initial data is differentiable or not, or the scheme is characteristic or sub characteristic. lhe smooth initial data is defined hy

The discretized initial darn will be therefore

In che first sec of figures (Fig. 2 co 11 ) • we have iaken a characteris1ic scheme, and a space step of 1/50. The results look qui1e sacisfaccory, though a careful inspection of the returning wawe after reflexion on the side with a unilateral constraint reveals a small hollow which does not exist in the exact solution {see Fig. 3) •. This small hollow is due to the effeq of the unilateral constraint which implies a change of boundary condi• tion \\ith the change in the sense of variation of the wave.

le will he more apparent with the piecewise affine data (sec below}_.