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Abstract
Automatic speech recognition is complementary to language
recognition. The language recognition systems exploit this
complementarity by using frame-level bottleneck features ex-
tracted from neural networks trained with a phone recognition
task. Recent methods apply frame-level bottleneck features ex-
tracted from an end-to-end sequence-to-sequence speech recog-
nition model. In this work, we study an integrated approach
of the training of the speech recognition feature extractor and
language recognition modules. We show that for both clas-
sical phone recognition and end-to-end sequence-to-sequence
features, sequential training of the two modules is not the opti-
mal strategy. The feature extractor can be improved by supervi-
sion with the language identification loss, either in a fine-tuning
step or in a multi-task training framework. Besides, we no-
tice that end-to-end sequence-to-sequence bottleneck features
are on par with classical phone recognition bottleneck features
without requiring a forced alignment of the signal with target
tokens. However, for sequence-to-sequence, the architecture of
the model seems to play an important role; the Conformer ar-
chitectures leads to much better results than the conventional
stacked DNNs approach; and can even be trained directly with
the LID module in an end-to-end approach.
Index Terms: language recognition, bottleneck features, end-
to-end speech recognition, multi-task training

1. Introduction
Language recognition is the task of determining the language
in a spoken speech utterance [1]. Systems that address this
task handle the speech utterances in several steps: they first ex-
tract features at the frame level, then they process and aggregate
these features at the utterance level, and finally, make a decision.

Standard frame-level features for language recognition are
spectral features: filterbanks [2], MFCC [3], SDC-MFCC [4]
and PLP features [5, 6]. These features can be refined by using
a neural network to select relevant information through an aux-
iliary task, for instance auto reconstruction [7], prosody infor-
mation prediction [8], phonotactic information encoding [9] or
speech attribute prediction [10]. The most successful approach
has been the use of a speech recognition task [11].

The complementarity of automatic speech recognition
(ASR) task to language identification (LID) task is most likely
due to the fact that they heavily depend on phonetic informa-
tion [12]. If both tasks use the same information, relevant fea-
tures could be more easily discovered with a speech recognition
loss which uses a sequence of labels, because providing just the
label of the language spoken in the utterance is too coarse for
supervision [13, 14].

The most commonly used application of this complemen-
tarity is frame-level bottleneck features [14, 15]. This kind of
bottleneck features are used in state-of-the-art language recog-
nition systems [11, 16]. An ASR system is trained and used
to perform forced alignment between speech utterances and

frame-level tokens: morphemes [17] or tied phone states [11,
18]. Then a deep neural network (multilayer perceptron [17] or
time delay neural network [18]) is trained to predict the token
for each frame (with some temporal context). Finally, frame-
level embeddings are extracted from a hidden layer of the net-
work. Those embeddings are called bottleneck features and
they are used for the LID task. When several neural networks
are trained ‘on cascade‘ to predict the phone labels, they have
been called stacked bottleneck features. Training of a language
recognition system that uses bottleneck features [11] requires
a two-step strategy. First, the bottleneck feature extractor is
trained with an ASR task. Then the language recognition sys-
tem is trained using those features.

However, this two-step training strategy is far from being
optimal. The work in [19] has empirically shown that the best
models in terms of phone state accuracy are not the most rele-
vant feature extractors for language recognition. It even appears
that the best ASR performance can be achieved with phone rep-
resentations independent of the language, which paves the way
to language adversarial ASR [20]. So far, no method has been
investigated to select the best compromise between LID and
ASR tasks during the training of a language recognition model.
Our work aims to study the optimal use of the ASR task to esti-
mate parameters of a language recognition model.

A straight-forward solution is to include both models into
an end-to-end (E2E) architecture. According to [13], E2E train-
ing with the language identification loss is not a successful ap-
proach. Also, fine-tuning the ASR encoder by backpropagating
the LID loss into the feature extractor does not improve the lan-
guage recognition performance [13]. They concluded that it is
the phonetic information that helps and not the deeper archi-
tecture. Another approach is multi-task training of the whole
model with both ASR and LID losses. It has been successfully
implemented for one [21, 22] and two [13] languages for the
ASR task, without proposing a principled method to chose the
respective weights of both tasks during training.

Recently, the paradigm of bottleneck features training for
language recognition has been evolving. The traditional train-
ing of bottleneck feature extractors relies on a frame-level
forced alignement between spectral features and phone la-
bels [11]. Consequently, the quality of the bottleneck features
depends on the performance of the speech recognition model,
which makes inclusion of new languages very expensive. Con-
versely, several end-to-end automatic speech recognition ar-
chitectures have been introduced recently [23, 24]. They can
be trained with a sequence-to-sequence loss, like connection-
ist temporal classification (CTC) loss [25] and used to extract
frame-level embeddings from a hidden layer of the network.
With this approach, state-of-the-art language recognition per-
formance has been achieved without defining a frame alignment
of phone labels, using only one language for the ASR task [7].
Moreover, for Chinese dialect recognition, the use of the phone
forced alignment performed by the acoustic model trained with
CTC loss does not improve language recognition performance



over the direct use of the sequence-to-sequence bottleneck fea-
tures [26]. Multi-task training of a joint ASR and LID model has
been successfuly performed for English and Hindi corpora [27].

Other approaches to joint ASR and LID training have been
proposed. The works in [27, 28] include language labels as ad-
ditional target tokens of the ASR model, allowing easy language
diarization. Also, [29] introduced a unified system where the
ASR model uses x-vectors produced by the LID module and
the LID model improves its prediction using ASR confidence
scores. In this paper, we do not compare to these systems, but
rather focus on the problem of optimally using the ASR task,
as an auxiliary task when training a model to yield frame-level
features for language recognition.

In this work, we compare different choices of architec-
tures and of training strategies for a language recognition sys-
tem constituted of a feature extractor and a language identi-
fication module. First, we show that end-to-end sequence-to-
sequence multilingual features trained with the CTC loss are on
par with state-of-the-art traditional multilingual bottleneck fea-
tures trained with phone state prediction [11]. Then, we show
that both traditional bottleneck features (phone prediction) and
sequence-to-sequence bottleneck features can be greatly im-
proved by using the language identification loss during training
of the feature extractor.

2. Joint speech and language recognition
system

The language recognition system discussed in this work is com-
posed of a frame-level feature extractor and an utterance-level
language predictor. We propose to consider it as a whole end-to-
end architecture. This point of view encompasses state-of-the-
art language recognition systems [16] and joint speech and lan-
guage recognition architectures like the phonetic temporal neu-
ral model of [13]. It allows exploring different system training
strategies combining language identification and speech recog-
nition objective.

2.1. Framework of the system

A language recognition system operates over a sequence X of
varying length T of frame-level features:

X = {x1, x2, . . . xT } (1)

The task consists in predicting a language recognition label
y among a fixed set Y . During training of the system, auxil-
iary speech recognition information can be provided as a target
sequence Z of words, phone states or characters, of length L:

Z = {z1, z2, . . . zL} (2)

A joint speech and language recognition architecture is de-
picted on Figure 1. It is composed of three modules:

• a frame-level feature extractor (FE) that takes as input
the sequence X and produces a sequence F of frame-
level embeddings of length N ≤ T :

F = {f1, f2, . . . fN} (3)

• an automatic speech recognition (ASR) decoder which
takes as input the sequence F and outputs a sequence of
speech recognition scores Ẑ

Ẑ = {ẑ1, ẑ2, . . . ẑL} (4)

Figure 1: Schematic diagram of the language recognition sys-
tem. The input frame-level features xt are processed by the fea-
ture extractor and the language identification module to pro-
duce language identification scores ŷ. The ASR decoder is used
for training with the auxiliary speech recognition task.

• a language identification (LID) module which takes as
input the sequence F and outputs a vector of language
identification scores ŷ

Parameters of the three modules can be trained with two
different loss functions:

• a language identification loss LLID(ŷ, y)
• an auxiliary automatic speech recognition loss
LASR(Ẑ, Z)

2.2. Training strategies

Once both the feature extractor and language identification
modules have been encompassed into the same model, several
training strategies become possible:

• E2E LID: the auxiliary speech recognition information
is discarded, and FE and LID are trained together to
minimize LLID

• 2-step training: first, FE and ASR are trained to mini-
mize the automatic speech recognition loss LASR, then
parameters of FE are freezed and parameters of LID
are trained to minimize the language identification loss
LLID

• 2-step then E2E LID: 2-step training is performed, then
FE and LID are fine-tuned with the language identifi-
cation loss

• multi-task training: all modules are trained together [27].
LID is trained to minimize LLID , and ASR to min-
imize LASR. FE is trained with a multi-task training
objective (with weight λ ∈ [0, 1]):

L = λLLID + (1− λ)LASR (5)

2.3. Relation with the classical bottleneck features

Within this framework, the classical bottleneck features ap-
proach for language recognition [11] corresponds to the 2-step
training method with the following choices:



• target speech recognition labels Z are phone state labels
and a label is provided for each input frame (i.e., L = T )

• the ASR loss LASR is a phone state classification loss for
each frame.

• the feature extractor applies identical processing with a
DNN for each input frame xt (generally with its context),
consequently there is an output frame-level embedding
for each input frame (i.e. N = T )

• the ASR decoder applies identical processing with a
DNN for each frame-level embedding fn

3. Experimental setup
In the following, we compare the different training strategies of
a language recognition system, with the same corpora and ar-
chitectures. We also compare classical bottleneck features [11]
with end-to-end sequence-to-sequence bottleneck features.

3.1. Model architectures

We use two architectures for the language identification mod-
ule:

• the vanilla TDNN architecture described in [16].
• a ResNet architecture with 1D-convolutional layers and a

statistical pooling layer identical to the one used in [16].
The model is composed of a serie of four blocks, con-
stituted of respectively 3, 4, 6, and 3 residual layers and
having a growing number of channels: 16, 32, 64, and
128.

For the feature extractor and ASR decoder, we investigate
two architectural choices. Both produce frame-level embed-
dings of dimension 80:

• stacked DNNs of the mutlilingual bottleneck feature ex-
tractor described in [11]. For the 2-step training strategy,
we use the pretrained models (BUT/Phonexia bottleneck
feature extractor) provided by the authors of [30], which
take as inputs mel-filterbank features.

• Conformer [23], a sequence-to-sequence speech recog-
nition model, with one decoder for each target language.
We use a model with 2 Conformer blocks with 4 self-
attention heads, 80 channels and a kernel of size 17.
The initial convolutional layer downsamples the input
sequence by a factor 4 (i.e. N = T

4
). We train this

model with mel-filterbank input features. We optimized
this architecture for feature extraction during the Orien-
tal Language Recognition challenge 2020 [31].

3.2. Loss functions

In all experiments, the language identification model is trained
with the traditional cross-entropy loss as LLID .

For LASR:

• the stacked DNNs of [11] have been trained with the
cross-entropy as a frame-level classification loss func-
tion. The target labels were 3096 phoneme states.

• the Conformer is trained with the CTC loss. The target
sequence Z is defined by a sentence piece model [32]
trained with 1000 tokens for each target language.

3.3. Corpora

The language recognition performance is evaluated on the cor-
pus NIST LRE 2007 [33]. We perform evaluation for a closed-
set identification task with the following 14 languages: Ara-

bic, Bengali, Chinese, English, Hindustani, Spanish, Farsi, Ger-
man, Japanese, Korean, Russian, Tamil, Thai, Vietnamese. As
a training set, we use a subset of the corpora NIST LRE 2003,
2005, 2007 train, 2009 (only recordings from telephone chan-
nels), Callfriend, and NIST SRE 2008. This training set is the
same as in [2, 7].

We use Babel speech corpus [34] for the ASR task. Two dif-
ferent sets of languages are used for experiments with the two
feature extractor architectures. The BUT/Phonexia pretrained
models [11] have been trained with the following 17 languages:
Cantonese, Assamese, Bengali, Pashto, Turkish, Tagalog, Viet-
namese, Haitian Creole, Lao, Tamil, Zulu, Kurmanji (Kurdish),
Tok Pisin, Cebuano, Kazakh, Telugu, Lithuanian. For our ex-
periments with the Conformer architecture we only use 14 of
these languages. We do not use Cantonese, Tagalog and Ce-
buano.

3.4. Training setup

Models are trained with the Adam optimizer [35], with an ini-
tial learning rate of 10−3, that is halved every time the valida-
tion loss does not improve for 3 epochs. Training is performed
for 20 epochs for each phase of training, except for training of
the ASR model in the 2-step strategy where we use 100 epochs.
Stochastic weight averaging [36] is used: the final model is the
average of the 20 models of each epoch. The only data aug-
mentation technique is specAugment [37]. Cepstral mean and
variance normalization [38] is applied to the input features.

Language recognition models are trained with balanced
minibatches of size 128. Chunks of three seconds are used. For
each experiment, at the end of training, two systems are fine-
tuned for longer durations with chunks respectively in ranges of
7-13s and 20-40s. These systems are used for evaluation on test
sets of respectively 10s and 30s. For each of the three systems
(initial 3s, 10s and 30s), calibration parameters are learned on a
held-out validation set extracted from the training set and with
the same distribution of durations.

4. Results and discussion
4.1. Performance

For each language recognition and feature extractor model com-
bination, we train a system with the three training strategies:
E2E LID, 2-step, and 2-step then E2E LID. Language recogni-
tion performance of each method is reported on Table 1 for the
three test duration conditions of the NIST LRE2007 corpus. As
a baseline system, we train two language recognition models
directly with mel-filterbank features, without feature extractor
module.

First, we observe that for all architectures, E2E LID training
gives acceptable results (contrary to what was observed in [13]).
The additional processing with the feature extractor helps to
improve over the baseline system trained with mel-filterbank
features. Then we see that 2-step training improves over E2E
performance for the traditional stacked DNNs but not for the
Conformer. It indicates that the sequence-to-sequence ASR ar-
chitecture is more appropriate for E2E LID training than the
stacked DNNs. For all models, 2-step then E2E LID improves
over 2-step training, and it always gives a better performance
than E2E LID training for segments of 3s.

The ResNet-1D architecture is consistently better than the
TDNN and our best-performing recipe (Resnet-1D with Con-
former feature extractor and 2-step then E2E LID strategy)
achieves state-of-the-art performance in terms of Cavg on the



Table 1: Language recognition performance on the three test sets of the corpus NIST LRE 2007, corresponding to different durations.
For two architectures of the language identificaton module and two architectures of the feature extractor, we explore three training
strategies presented in Subsection 2.2. Multi-task training is experimented for the best combination of architectures.

LID model feature extractor training strategy Test - 3s (%) Test - 10s (%) Test - 30s (%)
EER minDCF Cavg EER minDCF Cavg EER minDCF Cavg

TDNN

None 15.25 11.50 13.76 10.03 6.98 9.02 10.06 6.29 9.03

stacked DNNs
E2E LID: FE+LID 11.43 10.03 11.34 5.58 4.85 5.93 3.03 2.28 2.92

2-step: FE then LID 7.93 7.31 8.12 2.43 1.80 2.40 1.49 0.85 1.37
2-step then E2E LID 7.21 6.53 7.38 2.56 1.72 2.28 1.30 0.79 1.61

Conformer
E2E LID: FE+LID 7.30 6.05 7.21 2.73 2.28 3.17 1.53 0.80 1.27

2-step: FE then LID 8.01 6.81 8.42 3.08 1.84 2.53 0.91 0.38 0.77
2-step then E2E LID 6.00 5.48 5.91 2.38 1.63 2.28 0.98 0.52 1.05

ResNet-1D

None 13.37 11.58 13.67 7.34 4.79 6.82 7.99 4.49 5.27

stacked DNNs
E2E LID: FE+LID 11.92 10.49 11.55 3.73 3.11 3.69 2.13 0.90 1.79

2-step: FE then LID 7.47 6.32 7.21 1.69 1.17 1.69 0.88 0.35 0.62
2-step then E2E LID 6.24 5.56 6.25 1.97 1.51 2.16 1.44 0.59 1.55

Conformer

E2E LID: FE+LID 6.51 5.67 6.56 1.63 1.02 1.50 0.70 0.33 0.59
2-step: FE then LID 9.13 7.71 8.46 2.03 1.41 1.95 1.16 0.57 1.18
2-step then E2E LID 5.76 5.12 5.93 1.48 1.11 1.58 0.70 0.21 0.53
multi-task λ = 0.5 5.99 4.81 5.91 2.13 1.16 2.03 1.26 0.67 1.31

multi-task λ = 0→ 1 5.58 4.89 5.78 1.75 1.12 1.79 1.02 0.50 0.71

three test sets, as compared to the best published results, [7] for
3s and 10s segments and [2, 39] for 30s utterances.

4.2. Multi-task training

We evaluate the multi-task training strategy with the ResNet-1D
and Conformer architectures. Two systems are trained with dif-
ferent choices for the value of the weight λ of the language iden-
tification loss. Both systems are trained for 100 epochs (same
number of epochs as for training the feature extractor module in
the 2-step strategy). Results are reported in Table 1.

A first system is trained with a fixed value of λ = 0.5,
which corresponds to an equal weighting of the two loss func-
tions. It achieves similar performance as the 2-step then E2E
LID strategy for segments of 3 seconds. In addition, training
is performed in a unique step with the multi-task strategy, that
makes the training recipe simpler.

In the 2-step then E2E LID strategy, the feature extractor is
first trained with the ASR loss and then with the LID objective.
It is the most successful strategy. We imitate this approach with
a multi-task training strategy where the weight λ is linearly in-
creased from 0 to 1 during training (λ = 0 → 1, in Table 1).
This strategy gives the best performance for segments of 3 sec-
onds.

4.3. Discussion

Using a Conformer sequence-to-sequence feature extractor, we
have successfully trained ASR-based multilingual bottleneck
features without explicltly performing forced phone alignment.
A similar behavior was observed for a dialect recognition
task [26]. We compare these features with a very strong base-
line: classical multilingual bottleneck features [11].

An important part of the performance gain with bottleneck
features comes from the additional layers of the feature extrac-
tor module. E2E LID training of the whole model allows to ben-
efit from the feature extractor and it achieves very good perfor-
mance with the Conformer model. Pre-training of the encoder
with an ASR supervision (2-step training) allows to achieve a
good performance, but fine-tuning of the feature-extractor with
the language identification loss improves further. Multi-task

training of the feature extractor achieves similar results, with a
unique step of training. It means that supervision of the feature
extractor training with the language identification loss is neces-
sary to achieve the best language recognition performance.

5. Conclusion
We study the problem of optimally using an automatic speech
recognition task to design frame-level features for language
recognition. We trained end-to-end sequence-to-sequence mul-
tilingual bottleneck features on the Babel corpus and achieved
state-of-the-art language recognition performance on the NIST
LRE2007 corpus.

We observe that the use of an end-to-end sequence-to-
sequence speech recognition model trained with the CTC loss
achieves similar performance as classical bottleneck features
trained with a frame-level phone recognition task, while being
easier to train because it does not need a forced frame align-
ment of target labels. An important part of this gain comes from
the architecture of the feature extractor (Conformer instead of
stacked DNNs), that can also be successfully trained in an end-
to-end approach with the language identification module and
associated loss.

For both classical bottleneck features and end-to-end
sequence-to-sequence ones, a substantial improvement can be
obtained by fine-tuning the feature extractor with the language
identification loss. A similar performance can be achieved with
end-to-end training with a multi-task objective. In the future,
we plan to study further the optimal scheduling strategy for the
relative weights of the two loss functions in the multi-task ob-
jective.
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