Raphaël Duroselle

Md Sahidullah

Denis Jouvet

Irina Illina

Modeling and training strategies for language recognition systems

Keywords: language recognition, bottleneck features, endto-end speech recognition, multi-task training

Automatic speech recognition is complementary to language recognition. The language recognition systems exploit this complementarity by using frame-level bottleneck features extracted from neural networks trained with a phone recognition task. Recent methods apply frame-level bottleneck features extracted from an end-to-end sequence-to-sequence speech recognition model. In this work, we study an integrated approach of the training of the speech recognition feature extractor and language recognition modules. We show that for both classical phone recognition and end-to-end sequence-to-sequence features, sequential training of the two modules is not the optimal strategy. The feature extractor can be improved by supervision with the language identification loss, either in a fine-tuning step or in a multi-task training framework. Besides, we notice that end-to-end sequence-to-sequence bottleneck features are on par with classical phone recognition bottleneck features without requiring a forced alignment of the signal with target tokens. However, for sequence-to-sequence, the architecture of the model seems to play an important role; the Conformer architectures leads to much better results than the conventional stacked DNNs approach; and can even be trained directly with the LID module in an end-to-end approach.

Introduction

Language recognition is the task of determining the language in a spoken speech utterance [START_REF] Ambikairajah | Language identification: a tutorial[END_REF]. Systems that address this task handle the speech utterances in several steps: they first extract features at the frame level, then they process and aggregate these features at the utterance level, and finally, make a decision.

Standard frame-level features for language recognition are spectral features: filterbanks [START_REF] Cai | On-the-fly data loader and utterance-level aggregation for speaker and language recognition[END_REF], MFCC [START_REF] Martinez | Language recognition in ivectors space[END_REF], SDC-MFCC [START_REF] Torres-Carrasquillo | Approaches to language identification using Gaussian mixture models and shifted delta cepstral features[END_REF] and PLP features [START_REF] Gelly | Spoken language identification using LSTM-based angular proximity[END_REF][START_REF] Ben Zeghiba | Phonotactic language recognition using MLP features[END_REF]. These features can be refined by using a neural network to select relevant information through an auxiliary task, for instance auto reconstruction [START_REF] Ling | BERTPHONE: Phonetically-aware encoder representations for utterance-level speaker and language recognition[END_REF], prosody information prediction [START_REF] Pascual | Learning problem-agnostic speech representations from multiple self-supervised tasks[END_REF], phonotactic information encoding [START_REF] Romero | Exploring transformer-based language recognition using phonotactic information[END_REF] or speech attribute prediction [START_REF] Kukanov | Maximal figure-of-merit framework to detect multi-label phonetic features for spoken language recognition[END_REF]. The most successful approach has been the use of a speech recognition task [START_REF] Fér | Multilingually trained bottleneck features in spoken language recognition[END_REF].

The complementarity of automatic speech recognition (ASR) task to language identification (LID) task is most likely due to the fact that they heavily depend on phonetic information [START_REF] Li | Spoken language recognition: from fundamentals to practice[END_REF]. If both tasks use the same information, relevant features could be more easily discovered with a speech recognition loss which uses a sequence of labels, because providing just the label of the language spoken in the utterance is too coarse for supervision [START_REF] Tang | Phonetic temporal neural model for language identification[END_REF][START_REF] Jiang | Deep bottleneck features for spoken language identification[END_REF].

The most commonly used application of this complementarity is frame-level bottleneck features [START_REF] Jiang | Deep bottleneck features for spoken language identification[END_REF][START_REF] Mclaren | Exploring the role of phonetic bottleneck features for speaker and language recognition[END_REF]. This kind of bottleneck features are used in state-of-the-art language recognition systems [START_REF] Fér | Multilingually trained bottleneck features in spoken language recognition[END_REF][START_REF] Snyder | Spoken language recognition using x-vectors[END_REF]]. An ASR system is trained and used to perform forced alignment between speech utterances and frame-level tokens: morphemes [START_REF] Ma | Language identification with deep bottleneck features[END_REF] or tied phone states [START_REF] Fér | Multilingually trained bottleneck features in spoken language recognition[END_REF][START_REF] Peng | Adversarial multi-task deep features and unsupervised back-end adaptation for language recognition[END_REF]. Then a deep neural network (multilayer perceptron [START_REF] Ma | Language identification with deep bottleneck features[END_REF] or time delay neural network [START_REF] Peng | Adversarial multi-task deep features and unsupervised back-end adaptation for language recognition[END_REF]) is trained to predict the token for each frame (with some temporal context). Finally, framelevel embeddings are extracted from a hidden layer of the network. Those embeddings are called bottleneck features and they are used for the LID task. When several neural networks are trained 'on cascade' to predict the phone labels, they have been called stacked bottleneck features. Training of a language recognition system that uses bottleneck features [START_REF] Fér | Multilingually trained bottleneck features in spoken language recognition[END_REF] requires a two-step strategy. First, the bottleneck feature extractor is trained with an ASR task. Then the language recognition system is trained using those features.

However, this two-step training strategy is far from being optimal. The work in [START_REF] Lozano-Diez | An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition[END_REF] has empirically shown that the best models in terms of phone state accuracy are not the most relevant feature extractors for language recognition. It even appears that the best ASR performance can be achieved with phone representations independent of the language, which paves the way to language adversarial ASR [START_REF] Adams | Massively multilingual adversarial speech recognition[END_REF]. So far, no method has been investigated to select the best compromise between LID and ASR tasks during the training of a language recognition model. Our work aims to study the optimal use of the ASR task to estimate parameters of a language recognition model.

A straight-forward solution is to include both models into an end-to-end (E2E) architecture. According to [START_REF] Tang | Phonetic temporal neural model for language identification[END_REF], E2E training with the language identification loss is not a successful approach. Also, fine-tuning the ASR encoder by backpropagating the LID loss into the feature extractor does not improve the language recognition performance [START_REF] Tang | Phonetic temporal neural model for language identification[END_REF]. They concluded that it is the phonetic information that helps and not the deeper architecture. Another approach is multi-task training of the whole model with both ASR and LID losses. It has been successfully implemented for one [START_REF] Zhao | Phone-aware multi-task learning and length expanding for shortduration language recognition[END_REF][START_REF] Li | Deep joint learning for language recognition[END_REF] and two [START_REF] Tang | Phonetic temporal neural model for language identification[END_REF] languages for the ASR task, without proposing a principled method to chose the respective weights of both tasks during training.

Recently, the paradigm of bottleneck features training for language recognition has been evolving. The traditional training of bottleneck feature extractors relies on a frame-level forced alignement between spectral features and phone labels [START_REF] Fér | Multilingually trained bottleneck features in spoken language recognition[END_REF]. Consequently, the quality of the bottleneck features depends on the performance of the speech recognition model, which makes inclusion of new languages very expensive. Conversely, several end-to-end automatic speech recognition architectures have been introduced recently [START_REF] Gulati | Conformer: Convolution-augmented transformer for speech recognition[END_REF][START_REF] Amodei | Deep speech 2: End-to-end speech recognition in English and Mandarin[END_REF]. They can be trained with a sequence-to-sequence loss, like connectionist temporal classification (CTC) loss [START_REF] Graves | Towards end-to-end speech recognition with recurrent neural networks[END_REF] and used to extract frame-level embeddings from a hidden layer of the network. With this approach, state-of-the-art language recognition performance has been achieved without defining a frame alignment of phone labels, using only one language for the ASR task [START_REF] Ling | BERTPHONE: Phonetically-aware encoder representations for utterance-level speaker and language recognition[END_REF]. Moreover, for Chinese dialect recognition, the use of the phone forced alignment performed by the acoustic model trained with CTC loss does not improve language recognition performance over the direct use of the sequence-to-sequence bottleneck features [START_REF] Ren | Two-stage training for chinese dialect recognition[END_REF]. Multi-task training of a joint ASR and LID model has been successfuly performed for English and Hindi corpora [START_REF] Punjabi | Joint ASR and language identification using RNN-T: An efficient approach to dynamic language switching[END_REF].

Other approaches to joint ASR and LID training have been proposed. The works in [START_REF] Punjabi | Joint ASR and language identification using RNN-T: An efficient approach to dynamic language switching[END_REF][START_REF] Watanabe | Language independent end-to-end architecture for joint language identification and speech recognition[END_REF] include language labels as additional target tokens of the ASR model, allowing easy language diarization. Also, [START_REF] Liu | A unified system for multilingual speech recognition and language identification[END_REF] introduced a unified system where the ASR model uses x-vectors produced by the LID module and the LID model improves its prediction using ASR confidence scores. In this paper, we do not compare to these systems, but rather focus on the problem of optimally using the ASR task, as an auxiliary task when training a model to yield frame-level features for language recognition.

In this work, we compare different choices of architectures and of training strategies for a language recognition system constituted of a feature extractor and a language identification module. First, we show that end-to-end sequence-tosequence multilingual features trained with the CTC loss are on par with state-of-the-art traditional multilingual bottleneck features trained with phone state prediction [START_REF] Fér | Multilingually trained bottleneck features in spoken language recognition[END_REF]. Then, we show that both traditional bottleneck features (phone prediction) and sequence-to-sequence bottleneck features can be greatly improved by using the language identification loss during training of the feature extractor.

Joint speech and language recognition system

The language recognition system discussed in this work is composed of a frame-level feature extractor and an utterance-level language predictor. We propose to consider it as a whole end-toend architecture. This point of view encompasses state-of-theart language recognition systems [START_REF] Snyder | Spoken language recognition using x-vectors[END_REF] and joint speech and language recognition architectures like the phonetic temporal neural model of [START_REF] Tang | Phonetic temporal neural model for language identification[END_REF]. It allows exploring different system training strategies combining language identification and speech recognition objective.

Framework of the system

A language recognition system operates over a sequence X of varying length T of frame-level features:

X = {x1, x2, . . . xT } (1)
The task consists in predicting a language recognition label y among a fixed set Y. During training of the system, auxiliary speech recognition information can be provided as a target sequence Z of words, phone states or characters, of length L:

Z = {z1, z2, . . . zL} (2)
A joint speech and language recognition architecture is depicted on Figure 1. It is composed of three modules:

• a frame-level feature extractor (F E) that takes as input the sequence X and produces a sequence F of framelevel embeddings of length N ≤ T :

F = {f1, f2, . . . fN } (3)
• an automatic speech recognition (ASR) decoder which takes as input the sequence F and outputs a sequence of speech recognition scores Ẑ Ẑ = {ẑ1, ẑ2, . . . ẑL} (4)

Figure 1: Schematic diagram of the language recognition system. The input frame-level features xt are processed by the feature extractor and the language identification module to produce language identification scores ŷ. The ASR decoder is used for training with the auxiliary speech recognition task.

• a language identification (LID) module which takes as input the sequence F and outputs a vector of language identification scores ŷ

Parameters of the three modules can be trained with two different loss functions:

• a language identification loss LLID(ŷ, y) • an auxiliary automatic speech recognition loss LASR(Ẑ, Z)

Training strategies

Once both the feature extractor and language identification modules have been encompassed into the same model, several training strategies become possible:

• E2E LID: the auxiliary speech recognition information is discarded, and F E and LID are trained together to minimize LLID • 2-step training: first, F E and ASR are trained to minimize the automatic speech recognition loss LASR, then parameters of F E are freezed and parameters of LID are trained to minimize the language identification loss LLID • 2-step then E2E LID: 2-step training is performed, then F E and LID are fine-tuned with the language identification loss • multi-task training: all modules are trained together [START_REF] Punjabi | Joint ASR and language identification using RNN-T: An efficient approach to dynamic language switching[END_REF].

LID is trained to minimize LLID, and ASR to minimize LASR. F E is trained with a multi-task training objective (with weight λ ∈ [0, 1]):

L = λLLID + (1 -λ)LASR (5)

Relation with the classical bottleneck features

Within this framework, the classical bottleneck features approach for language recognition [START_REF] Fér | Multilingually trained bottleneck features in spoken language recognition[END_REF] corresponds to the 2-step training method with the following choices:

• target speech recognition labels Z are phone state labels and a label is provided for each input frame (i.e., L = T)

• the ASR loss LASR is a phone state classification loss for each frame.

• the feature extractor applies identical processing with a DNN for each input frame xt (generally with its context), consequently there is an output frame-level embedding for each input frame (i.e. N = T)

• the ASR decoder applies identical processing with a DNN for each frame-level embedding fn

Experimental setup

In the following, we compare the different training strategies of a language recognition system, with the same corpora and architectures. We also compare classical bottleneck features [START_REF] Fér | Multilingually trained bottleneck features in spoken language recognition[END_REF] with end-to-end sequence-to-sequence bottleneck features.

Model architectures

We use two architectures for the language identification module:

• the vanilla TDNN architecture described in [START_REF] Snyder | Spoken language recognition using x-vectors[END_REF].

• a ResNet architecture with 1D-convolutional layers and a statistical pooling layer identical to the one used in [START_REF] Snyder | Spoken language recognition using x-vectors[END_REF].

The model is composed of a serie of four blocks, constituted of respectively 3, 4, 6, and 3 residual layers and having a growing number of channels: 16, 32, 64, and 128. For the feature extractor and ASR decoder, we investigate two architectural choices. Both produce frame-level embeddings of dimension 80:

• stacked DNNs of the mutlilingual bottleneck feature extractor described in [START_REF] Fér | Multilingually trained bottleneck features in spoken language recognition[END_REF]. For the 2-step training strategy, we use the pretrained models (BUT/Phonexia bottleneck feature extractor) provided by the authors of [START_REF] Silnova | BUT/Phonexia Bottleneck Feature Extractor[END_REF], which take as inputs mel-filterbank features. • Conformer [START_REF] Gulati | Conformer: Convolution-augmented transformer for speech recognition[END_REF], a sequence-to-sequence speech recognition model, with one decoder for each target language. We use a model with 2 Conformer blocks with 4 selfattention heads, 80 channels and a kernel of size 17.

The initial convolutional layer downsamples the input sequence by a factor 4 (i.e. N = T 4). We train this model with mel-filterbank input features. We optimized this architecture for feature extraction during the Oriental Language Recognition challenge 2020 [START_REF] Duroselle | Language recognition on unknown conditions: the LORIA-Inria-MULTISPEECH system for AP20-OLR Challenge[END_REF].

Loss functions

In all experiments, the language identification model is trained with the traditional cross-entropy loss as LLID.

For LASR:

• the stacked DNNs of [START_REF] Fér | Multilingually trained bottleneck features in spoken language recognition[END_REF] have been trained with the cross-entropy as a frame-level classification loss function. The target labels were 3096 phoneme states.

• the Conformer is trained with the CTC loss. The target sequence Z is defined by a sentence piece model [START_REF] Kudo | Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing[END_REF] trained with 1000 tokens for each target language.

Corpora

The language recognition performance is evaluated on the corpus NIST LRE 2007 [START_REF]The 2007 NIST language recognition evaluation plan[END_REF]. We perform evaluation for a closedset identification task with the following 14 languages: Ara-bic, Bengali, Chinese, English, Hindustani, Spanish, Farsi, German, Japanese, Korean, Russian, Tamil, Thai, Vietnamese. As a training set, we use a subset of the corpora NIST LRE 2003, 2005[START_REF]The 2007 NIST language recognition evaluation plan[END_REF]train, 2009 (only recordings from telephone channels), Callfriend, and NIST SRE 2008. This training set is the same as in [START_REF] Cai | On-the-fly data loader and utterance-level aggregation for speaker and language recognition[END_REF][START_REF] Ling | BERTPHONE: Phonetically-aware encoder representations for utterance-level speaker and language recognition[END_REF]. We use Babel speech corpus [START_REF]Babel project[END_REF] for the ASR task. Two different sets of languages are used for experiments with the two feature extractor architectures. The BUT/Phonexia pretrained models [START_REF] Fér | Multilingually trained bottleneck features in spoken language recognition[END_REF] have been trained with the following 17 languages: Cantonese, Assamese, Bengali, Pashto, Turkish, Tagalog, Vietnamese, Haitian Creole, Lao, Tamil, Zulu, Kurmanji (Kurdish), Tok Pisin, Cebuano, Kazakh, Telugu, Lithuanian. For our experiments with the Conformer architecture we only use 14 of these languages. We do not use Cantonese, Tagalog and Cebuano.

Training setup

Models are trained with the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF], with an initial learning rate of 10 -3 , that is halved every time the validation loss does not improve for 3 epochs. Training is performed for 20 epochs for each phase of training, except for training of the ASR model in the 2-step strategy where we use 100 epochs. Stochastic weight averaging [START_REF] Izmailov | Averaging weights leads to wider optima and better generalization[END_REF] is used: the final model is the average of the 20 models of each epoch. The only data augmentation technique is specAugment [START_REF] Park | Specaugment: A simple data augmentation method for automatic speech recognition[END_REF]. Cepstral mean and variance normalization [START_REF] Molau | Feature space normalization in adverse acoustic conditions[END_REF] is applied to the input features.

Language recognition models are trained with balanced minibatches of size 128. Chunks of three seconds are used. For each experiment, at the end of training, two systems are finetuned for longer durations with chunks respectively in ranges of 7-13s and 20-40s. These systems are used for evaluation on test sets of respectively 10s and 30s. For each of the three systems (initial 3s, 10s and 30s), calibration parameters are learned on a held-out validation set extracted from the training set and with the same distribution of durations.

Results and discussion

Performance

For each language recognition and feature extractor model combination, we train a system with the three training strategies: E2E LID, 2-step, and 2-step then E2E LID. Language recognition performance of each method is reported on Table 1 for the three test duration conditions of the NIST LRE2007 corpus. As a baseline system, we train two language recognition models directly with mel-filterbank features, without feature extractor module.

First, we observe that for all architectures, E2E LID training gives acceptable results (contrary to what was observed in [START_REF] Tang | Phonetic temporal neural model for language identification[END_REF]). The additional processing with the feature extractor helps to improve over the baseline system trained with mel-filterbank features. Then we see that 2-step training improves over E2E performance for the traditional stacked DNNs but not for the Conformer. It indicates that the sequence-to-sequence ASR architecture is more appropriate for E2E LID training than the stacked DNNs. For all models, 2-step then E2E LID improves over 2-step training, and it always gives a better performance than E2E LID training for segments of 3s.

The ResNet-1D architecture is consistently better than the TDNN and our best-performing recipe (Resnet-1D with Conformer feature extractor and 2-step then E2E LID strategy) achieves state-of-the-art performance in terms of Cavg on the

Multi-task training

We evaluate the multi-task training strategy with the ResNet-1D and Conformer architectures. Two systems are trained with different choices for the value of the weight λ of the language identification loss. Both systems are trained for 100 epochs (same number of epochs as for training the feature extractor module in the 2-step strategy). Results are reported in Table 1.

A first system is trained with a fixed value of λ = 0.5, which corresponds to an equal weighting of the two loss functions. It achieves similar performance as the 2-step then E2E LID strategy for segments of 3 seconds. In addition, training is performed in a unique step with the multi-task strategy, that makes the training recipe simpler.

In the 2-step then E2E LID strategy, the feature extractor is first trained with the ASR loss and then with the LID objective. It is the most successful strategy. We imitate this approach with a multi-task training strategy where the weight λ is linearly increased from 0 to 1 during training (λ = 0 → 1, in Table 1). This strategy gives the best performance for segments of 3 seconds.

Discussion

Using a Conformer sequence-to-sequence feature extractor, we have successfully trained ASR-based multilingual bottleneck features without explicltly performing forced phone alignment. A similar behavior was observed for a dialect recognition task [START_REF] Ren | Two-stage training for chinese dialect recognition[END_REF]. We compare these features with a very strong baseline: classical multilingual bottleneck features [START_REF] Fér | Multilingually trained bottleneck features in spoken language recognition[END_REF].

An important part of the performance gain with bottleneck features comes from the additional layers of the feature extractor module. E2E LID training of the whole model allows to benefit from the feature extractor and it achieves very good performance with the Conformer model. Pre-training of the encoder with an ASR supervision (2-step training) allows to achieve a good performance, but fine-tuning of the feature-extractor with the language identification loss improves further. Multi-task training of the feature extractor achieves similar results, with a unique step of training. It means that supervision of the feature extractor training with the language identification loss is necessary to achieve the best language recognition performance.

Conclusion

We study the problem of optimally using an automatic speech recognition task to design frame-level features for language recognition. We trained end-to-end sequence-to-sequence multilingual bottleneck features on the Babel corpus and achieved state-of-the-art language recognition performance on the NIST LRE2007 corpus.

We observe that the use of an end-to-end sequence-tosequence speech recognition model trained with the CTC loss achieves similar performance as classical bottleneck features trained with a frame-level phone recognition task, while being easier to train because it does not need a forced frame alignment of target labels. An important part of this gain comes from the architecture of the feature extractor (Conformer instead of stacked DNNs), that can also be successfully trained in an endto-end approach with the language identification module and associated loss.

For both classical bottleneck features and end-to-end sequence-to-sequence ones, a substantial improvement can be obtained by fine-tuning the feature extractor with the language identification loss. A similar performance can be achieved with end-to-end training with a multi-task objective. In the future, we plan to study further the optimal scheduling strategy for the relative weights of the two loss functions in the multi-task objective.

Table 1 :

 1 Language recognition performance on the three test sets of the corpus NIST LRE 2007, corresponding to different durations. For two architectures of the language identificaton module and two architectures of the feature extractor, we explore three training strategies presented in Subsection 2.2. Multi-task training is experimented for the best combination of architectures.

	LID model feature extractor	training strategy	Test -3s (%) EER minDCF Cavg EER minDCF Cavg EER minDCF Cavg Test -10s (%) Test -30s (%)
	None		15.25 11.50 13.76 10.03	6.98	9.02 10.06	6.29	9.03
		E2E LID: FE+LID 11.43 10.03 11.34 5.58	4.85	5.93 3.03	2.28	2.92
	stacked DNNs	2-step: FE then LID	7.93	7.31	8.12 2.43	1.80	2.40 1.49	0.85	1.37
	TDNN	2-step then E2E LID 7.21 6.53 7.38 2.56	1.72 2.28 1.30 0.79	1.61
		E2E LID: FE+LID	7.30	6.05	7.21 2.73	2.28	3.17 1.53	0.80	1.27
	Conformer	2-step: FE then LID	8.01	6.81	8.42 3.08	1.84	2.53 0.91 0.38 0.77
		2-step then E2E LID 6.00 5.48 5.91 2.38 1.63 2.28 0.98	0.52	1.05
	None		13.37 11.58 13.67 7.34	4.79	6.82 7.99	4.49	5.27
		E2E LID: FE+LID 11.92 10.49 11.55 3.73	3.11	3.69 2.13	0.90	1.79
	stacked DNNs	2-step: FE then LID	7.47	6.32	7.21 1.69 1.17 1.69 0.88 0.35 0.62
		2-step then E2E LID 6.24 5.56 6.25 1.97	1.51	2.16 1.44	0.59	1.55
	ResNet-1D	E2E LID: FE+LID	6.51	5.67	6.56 1.63	1.02 1.50 0.70	0.33	0.59
		2-step: FE then LID	9.13	7.71	8.46 2.03	1.41	1.95 1.16	0.57	1.18
	Conformer	2-step then E2E LID 5.76 5.12 5.93 1.48	1.11	1.58 0.70 0.21 0.53
		multi-task λ = 0.5	5.99	4.81	5.91 2.13	1.16	2.03 1.26	0.67	1.31
		multi-task λ = 0 → 1 5.58	4.89	5.78 1.75	1.12	1.79 1.02	0.50	0.71
	three test sets, as compared to the best published results, [7] for						
	3s and 10s segments and [2, 39] for 30s utterances.							

Acknowledgements

Experiments presented in this paper were carried out using the Grid5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr). This work has been partly funded by the French Direction Générale de l'Armement.