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We prove a sucient condition for the non-existence of a nontrivial Cantor equicontinuous factor in dynamical systems. We study the Coven cellular automaton of three neighbours to show that it does not have a nontrivial Cantor equicontinuous factor. Through this study, we show that the blocking words in this cellular automaton are all of the same form.

Introduction

Cellular automata (CA) are particular (topological) dynamical systems (DS) [START_REF] Hedlund | Endomorphisms and automorphisms of the shift dynamical system[END_REF], their (topological) weak mixing is equivalent to their transitivity [START_REF] Moothathu | Homogeneity of surjective cellular automata[END_REF]. Every DS admits a maximal equicontinuous factor [START_REF] Ellis | Homomorphisms of transformation groups[END_REF] and every equicontinuous factor (EF) of a weakly mixing DS is trivial [START_REF] Vries | Topological dynamical systems[END_REF]. Although the study of EF is classic, the main focus is on minimal DS for which their weak mixing is equivalent to the triviality of their EF [START_REF] Auslander | Minimal ow and their extensions[END_REF]. A natural question is whether there are DS that are neither minimal nor weakly mixing, but do not have a nontrivial EF. If we consider that a nilpotent DS is trivial, a CA that has a nite generic limit set does not have a non-nilpotent factor, even if it is almost equicontinuous [START_REF] Djenaoui | Quelques propriétés topologiques et ergodiques des automates cellulaires[END_REF], [START_REF] Djenaoui | The generic limit set of cellular automata[END_REF]. The following question therefore concerns surjective DS. Since they have full generic limit set, this theory is useless for this case. In this paper, we are interested in the Coven CA of three neighbours which is a particular case of the Coven CA that was introduced in [START_REF] Coven | Periods of some nonlinear shift registers[END_REF]. This CA is chain transitive, but do not have the shadowing property [START_REF] Blanchard | Dynamical behaviour of Coven's aperiodic cellular automata[END_REF], while any Cantor equicontinuous DS has the shadowing property [START_REF] Rka | Topological and symbolic dynamics[END_REF]. We establish a condition for a DS to admit no nontrivial Cantor EF and we prove that this CA satises this condition.

2 Preliminaries Dynamical systems. A (topological) dynamical system (DS) is a pair (X, F), where X is a compact metric space and F : X → X is a continuous map. If X is the Cantor space, (X, F) is called a Cantor system. A morphism Φ : (X, F) → (Y, G) between two DS is a continuous map Φ : X → Y satisfying Φ • F = G • Φ. If Φ is surjective, we say that Φ is a factor map and (Y, G) is a factor of (X, F). If Z ⊆ X is a closed invariant subset, then (Z, F) is a subsystem of (X, F). We say that some subset U ⊆ X is strongly F-invariant if F -1 (U ) = U . For ε > 0, a point x ∈ X is ε-stable if there exists δ > 0 such that ∀y ∈ B δ (x), ∀t ∈ N, d(F t (x), F t (y)) < ε.

The set E F ⊆ X of equicontinuous points for F is the set of points that are ε-stable for every ε > 0. If E F is comeager, then we say that F is almost equicontinuous (a subset is comeager if it includes a countable intersection of dense open sets). If E F = X, then we say that F is equicontinuous. A DS (X, F) is weakly mixing, if for any nonempty open sets

U, V, U , V ⊆ X, ∃t ∈ N, F t (U ) ∩ U = ∅ and F t (V ) ∩ V = ∅. The limit set of U ⊆ X is the set Ω F (U ) = T ∈N t≥T F t (U ). The asymptotic set of U ⊆ X is ω F (U ) = x∈U Ω F ({x}).
Symbolic dynamics. Let A be a nite set called the alphabet. A word is any nite sequence of elements of A. Denote A * = n∈N A n the set of all nite words u = u 0,n-1 ; |u| = n is the length of u. We say that v is a subword of u and write v u, if there are k, l < |u| with k ≤ l such that v = u k,l = u k u k+1 . . . u l-1 . A Z is the space of congurations, equipped with the metric: d(x, y) := 2 -n , where n = min

{ i ∈ N| x i = y i or x -i = y -i } . A Z is a Cantor space. The cylinder of u ∈ A * in position i is [u] i = x ∈ A Z x i,i+|u| = u . Cylinders are clopen (closed and open). The shift is the DS σ over A Z dened by σ(x) i = x i+1 for i ∈ Z and x ∈ A Z . A subshift is any subsystem of the full shift A Z . Let Σ be a subshift. Then L(Σ) = { u ∈ A * | ∃x ∈ Σ, u x} is the language of Σ.
Trace. [START_REF] Guillon | Automates cellulaires : dynamiques, simulations, traces[END_REF] If P is a partition of some space X and x ∈ X a point, then we denote P(x) ∈ P the unique subset such that x ∈ P(x). The trace of some Cantor system (X, F) with respect to some clopen partition P is

T P F : X → P N x → (P(F j (x))) j∈N .
It is a factor map of the system (X, F) into the trace subshift (τ P F = T P F (X), σ). Every factor subshift of a Cantor system is a factor of some of its trace subshifts. A Cantor system is essentially the inverse limit of its sequence of (wider and wider) trace subshifts. Theorem 1. [9] A Cantor system is equicontinuous i all of its trace subshifts are nite. Cellular automata. F : A Z → A Z is a cellular automaton (CA) if there exist integers r -≤ r + and a local rule f : A r + -r -+1 → A such that for any x ∈ A Z and any i ∈ Z, F (x) i = f (x i+r -,i+r + ). F : A Z → A Z is a CA if and only if it is continuous and commutes with the shift. Thus, a CA is a DS over A Z . Let s > 0. A word u ∈ A + with |u| ≥ s is s-blocking for (A Z , F ), if there exists an oset p ∈ [0, |u| -s] such that ∀x, y ∈ [u] 0 , ∀t ≥ 0, F t (x) p,p+s = F t (y) p,p+s .

A criterion for absence of Cantor equicontinuous factors

The following result shows the relation between Cantor equicontinuous factors and nite factors. Proposition 1. A DS F admits a nontrivial Cantor equicontinuous factor if and only if F admits a nontrivial nite factor. The latter has nontrivial period if the former was not the identity.

Note that a nontrivial nite factor may correspond to the identity over a nontrivial (that is, not a singleton) space.

Proof.

• Let G be a nontrivial Cantor equicontinuous factor of F. Then, all trace subshifts of G are nite by Theorem 1 and G admits a nontrivial trace subshift (if every traces were trivial, then this means that the system itself was trivial) that is a nite factor of G (see the denition of trace), therefore of F.

• Conversely, every nite space is a subspace of the Cantor space A Z , so F admits a nontrivial Cantor factor. Moreover, every nite system is equicontinuous.

The following result gives a sucient condition for the non-existence of nite factors. Proposition 2. Let F be a surjective DS. If there exists a weakly mixing subsystem that intersects every nonempty strongly F-invariant clopen set, then F admits no nontrivial Cantor equicontinuous factor.

The word "Cantor" is necessary in this statement: think about a rotation of a disk: it is equicontinuous, the only nonempty clopen set is the whole disk (by connectedness), and it contains a weakly mixing subsystem: the (invariant) center.

Proof of Proposition 2. Let F |W be a weakly mixing subsystem. Suppose that F |W intersects every nonempty strongly F-invariant clopen set. If Φ is a factor map from F onto a nite system G, then G |Φ(W ) is an equicontinuous factor of F |W , so it is a singleton.

Φ -1 ( n∈Z G n Φ(W ) C
) is a strongly F-invariant clopen set (since Φ has nite image, all preimage sets are clopen). By denition, it does not intersect W . So by hypothesis, this clopen set is empty. This means that every orbit of G gets into Φ(W ). Since F is surjective, then so is G, so that G is actually the identity over a singleton. By Proposition 1, every equicontinuous Cantor factor is trivial. [START_REF] Vries | Topological dynamical systems[END_REF] Case of the Coven CA of three neighbours

Let 2 = {0, 1}. The Coven CA of three neighbours is F : 2 Z → 2 Z dened by f : 2 3 → 2 such that f (x i,i+2 ) = x i + x i+1 (x i+2 + 1) mod 2 = x i + 1 mod 2 if x i+1,i+2 = 10 x i otherwise .
It is surjective and almost equicontinuous (see [START_REF] Blanchard | Dynamical behaviour of Coven's aperiodic cellular automata[END_REF] and [START_REF] Rka | Topological and symbolic dynamics[END_REF]). It is not hard to show that

({ ∞ 1 ∞ }, F
) is a (trivial) weakly mixing subsystem. We will prove that ({ ∞ 1 ∞ }, F ) intersects every invariant clopen set and we will need the following remark and denition.

Remark 1. Let

Σ k = x ∈ 2 Z ∀i ∈ 2Z + k, x i = 1 . ∀x ∈ 2 Z , x / ∈ Σ 0 ∪ Σ 1 ⇐⇒ ∃k ∈ N, 01 2k 0 x. Proof. x / ∈ Σ 0 ∪ Σ 1 ⇐⇒ x / ∈ x ∈ 2 Z ∀i ∈ 2Z, x i = 1 and x / ∈ x ∈ 2 Z ∀i ∈ 2Z + 1, x i = 1 ⇐⇒ ∃i ∈ 2Z, x i = 0 and ∃i ∈ 2Z + 1, x i = 0 ⇐⇒ ∃k ∈ N, 01 2k 0 x.
Denition 1. Let w be a word. We dene the following two generalized cylinders by

[(21) n ] i = {x ∈ 2 Z /x i,i+2n = w ∈ L(Σ 0 ) such that w ends in 1 and |w| = 2n}. [(12) n ] i = {x ∈ 2 Z /x i,i+2n = w ∈ L(Σ 0
) such that w begins with 1 and |w| = 2n}.

Minimal blocking words of the Coven CA of three neighbours

We will use the following lemma to show Proposition 3 and Lemma 2.

Lemma 1. Let n, k ≥ 1 and a, b ∈ 2. Then,

1. F k ([a1 2k-1 b]) ⊆ [1] if a = b [0] if a = b
. Hence,

F k ([1 4k ]) ⊆ [1 2k ] F k ([01 4k ]) ⊆ [01 2k ] . 2. F 2 n-1 ([(21) 2 n ]) ⊆ [(21) 2 n-1 ] and F 2 n-1 ([(12) 2 n ]) ⊆ [(12) 2 n-1 ]. 3. F 2 n-1 ([a1(21) 2 n-1 -1 b]) ⊆ [1] if a = b [0] if a = b and F 2 n-1 ([(12) 2 n-1 1]) ⊆ [1]. Proof. 1. When k = 1: F ([a1b]) ⊆ [1] if a = b [0] if a = b . Assume that, for some k ≥ 1, F k ([a1 2k-1 b]) ⊆ [1] if a = b [0] if a = b . We show that F k+1 ([a1 2k+1 b]) ⊆ [1] if a = b [0] if a = b . By Induction hypothesis, F k ([a1 2k+1 b]) ⊆ [a1b]
(we apply the hypothesis in position -1, 0 and 1). Hence,

F k+1 ([a1 2k+1 b]) ⊆ F ([a1b]) ⊆ [1] if a = b [0] if a = b . 2. • When n = 1 : F ([2121]) ⊆ [21]. Assume that F 2 n-1 ([(21) 2 n ]) ⊆ [(21) 2 n-1 ] for some n ≥ 1. We show that F 2 n ([(21) 2 n+1 ]) ⊆ [(21) 2 n ]. By Induction hypothesis, F 2 n-1 ([(12) 2 n+1 ]) ⊆ [(21) 2 n-1 (21) 2 n-1 (21) 2 n-1 ]. Hence, F 2 n ([(21) 2 n+1 ]) ⊆ F 2 n-1 ([(21) 2 n-1 (21) 2 n-1 (21) 2 n-1 ]) ⊆ [(21) 2 n ]. • When n = 1 : F ([1212]) ⊆ [12]. Assume that F 2 n-1 ([(12) 2 n ]) ⊆ [(12) 2 n-1 ] for some n ≥ 1. We show that F 2 n ([(12) 2 n+1 ]) ⊆ [(12) 2 n ]. By Induction hypothesis, F 2 n-1 ([(12) 2 n+1 ]) ⊆ [(12) 2 n-1 (12) 2 n-1 (12) 2 n-1 ]. Hence, F 2 n ([(12) 2 n+1 ]) ⊆ F 2 n-1 ([(12) 2 n-1 (12) 2 n-1 (12) 2 n-1 ]) ⊆ [(12) 2 n ].
3.

• a1(21) 2 n-1 -1 b is of the form (21) 2 n-1 b such that the rst 2, on the left, is a.

When n = 1 : F ([a1b]) ⊆ [1] if a = b [0] if a = b . Assume that F 2 n-1 ([(21) 2 n-1 b]) ⊆ [1] if a = b [0] if a = b for some n ≥ 1.
We show that

F 2 n ([(21) 2 n b]) ⊆ [1] if a = b [0] if a = b
. By Induction hypothesis and by Point 2,

F 2 n-1 ([a1(21) 2 n-1 -1 a1(21) 2 n-1 -1 b]) ⊆ [11(21) 2 n-1 -1 1] if a = b [11(21) 2 n-1 -1 0] if a = b . Hence, F 2 n ([a1(21) 2 n-1 -1 a1(21) 2 n-1 -1 b]) ⊆ F 2 n-1 ([11(21) 2 n-1 -1 1]) ⊆ [1] if a = b F 2 n-1 ([11(21) 2 n-1 -1 0]) ⊆ [0] if a = b . • When n = 1 : F ([121]) ⊆ [1]. Assume that F 2 n-1 ([(12) 2 n-1 1]) ⊆ [1] for some n ≥ 1. We show that F 2 n ([(12) 2 n 1]) ⊆ [1]
. By Induction hypothesis and Point 2,

F 2 n-1 ([(12) 2 n 1]) ⊆ [(12) 2 n-1 1]. Hence, F 2 n ([(12) 2 n 1]) ⊆ F 2 n-1 ([(12) 2 n-1 1]) ⊆ [1].
Figure 1: Two superimposed diagrams whose two initial congurations share the blocking word 01 14 0 and the left part. 0s are represented by white squares and 1s are represented by dark red squares when the two diagrams agree; gray squares and light red squares correspond to where they do not. Time evolves upwards.

In the following proposition, we show that the minimal blocking words are all of the same form (a minimal blocking word means that any strict subword is not blocking). Proposition 3. Let k ∈ N. Then, 1. 01 2k 0 is a 1-blocking word with oset 0. Moreover, ∀t ∈ N,

F t ([01 2k 0]) ⊆ [0].
2. ∀t ∈ N, ∃k ≥ 0, F t ([01 2k 0]) ⊆ [01 2k 0] (see Figure 1).

3. The minimal blocking words, with oset 0, are all of the form 01 2k 0.

Proof of Proposition 3. 1. By Point 1 of Lemma 1, F k ([01 2k 0]) ⊆ [00]. Moreover, 00 is a 1-blocking word with oset 0 and ∀t ≥ k, F t ([01 2k 0]) ⊆ [0] (see [START_REF] Rka | Topological and symbolic dynamics[END_REF]). Hence, 01 2k 0 is 1-blocking word with oset 0 and ∀t ∈ N,

F t ([01 2k 0]) ⊆ [0]. 2. Assume that ∃k ≥ 0, t ∈ N, ∀k ≥ 0, F t ([01 2k 0]) ⊆ [01 2k -1 0]. By Point 1 of Lemma 1, F t+k ([01 2k 0]) ⊆ F k ([01 2k -1 0]) ⊆ [1]. But ∀t ∈ N, F t ([01 2k 0]) ⊆ [0], by Point 1. Then ∀k ≥ 0, t ∈ N, ∃k ≥ 0, F t ([01 2k 0]) ⊆ [01 2k 0].
3. By Point 1, 01 2k 0 is a 1-blocking word with oset 0 and by Remark 1, w ∈ L(Σ 0 ) if and only if ∀k ≥ 0, 01 2k 0 w. Moreover, if we take |w| = 2 n -1 such that w ends in 1 so that

awb ∈ L(Σ 0 ), a, b ∈ 2, then F 2 n-1 ([awb]) ⊆ [1] if a = b [0] if a = b
, by Point 3 of Lemma 1. In other words, the dynamics to the right and to the left of w are not independant. Hence, w cannot have a blocking word. Then, the minimal blocking words are all of the form 01 2k 0.

According to Remark 1 and Proposition 3, every point without blocking word is in Σ 0 ∪ Σ 1 , and, every point of Σ 0 ∪ Σ 1 is without blocking word.

4.2

Cantor equicontinuous factor of the Coven CA of three neighbours Lemma 2. Let n ≥ 1 and k ≥ 0. Then, 1. Let w ∈ 1(21) 2 n-1 -1 and w w such that w ends in 1 and k + |w| = 2 n -1. Then,

• F 2 n-1 ([w01 2 n -1 ]) ⊆ [w]. • F 2 n-1 ([w01 k w01 k ]) ⊆ [1 2 n ]. Hence, F 2 n-1 ([w01 k w01 2 n -1 ]) ⊆ [1 2 n w]. • F 2 n-1 ([1 2 n w0]) ⊆ [w0]. 2. F 2 n-1 ([a1 2 n -1 01 2 n -1 b]) ⊆ [1 2 n 0] if a = 0, b = 1 [01 2 n ] if a = 1, b = 0 . Hence, F 2 n-1 ([1 2 n -1 01 2 n ]) ⊆ [1 2 n -1 0]. 3. F 2 n-1 ([1 2 n 01 2k 0]) ⊆ [01 2 n -1 0] and F 2 n-1 ([(21) 2 n-1 01 2k 0]) ⊆ [(21) 2 n-1 0] (see Figure 3). Proof. 1. w w ∈ 1(21) 2 n-1 -1 , w ends in 1 and k + |w| = 2 n -1. By Point 3 of Lemma 1,
• Since if we take any w w01 2 n -1 of size 2 n -1, the letter that is just to the left of w is a letter of w and the letter that is to the right of w is 1,

F 2 n-1 ([w01 2 n -1 ]) ⊆ [w].
• Since if we take any w w01 k w01 k of size 2 n -1, the letter that is just to the left of w is the same as the letter that is just to the right of w ,

F 2 n-1 ([w01 k w01 k ]) ⊆ [1 2 n ].
• Since if we take any w 1 2 n w0 of size 2 n -1, the letter that is just to the left of w is 1 and the letter that is just to the right of w is a letter of w0,

F 2 n-1 ([1 2 n w0]) ⊆ [w0].
2. By Point 1, where w = 1 2 n -1 and Point 1 of Lemma 1, where k = 2 n-1 .

3.

• When n = 1:

F ([1101 2k 0]) ⊆ [010]. Assume that F 2 n-1 ([1 2 n 01 2k 0]) ⊆ [01 2 n -1 0] for some n ≥ 1. We show that F 2 n ([1 2 n+1 01 2k 0]) ⊆ [01 2 n+1 -1 0]. By Point 1 of Lemma1,
where k = 2 n-1 , Induction hypothesis and Point 2 of Proposition 3, there exists 

k ≥ 0 such that F 2 n-1 ([1 2 n+1 01 2k 0]) ⊆ [1 2 n 01 2 n -1 01 2k 0]. By Point 2 and Induction hypothesis, F 2 n ([1 2 n+1 01 2k 0]) ⊆ F 2 n-1 ([1 2 n 01 2 n -1 01 2k 0]) ⊆ [01 2 n+1 -1 0]. • When n = 1: F ([2101 2k 0]) ⊆ [210]. Assume that F 2 n-1 ([(21) 2 n-1 01 2k 0]) ⊆ [(21)
2 n 01 2k 0])) ⊆ F 2 n-1 ([(21) 2 n 01 2k 0]) ⊆ [(21) 2 n 0].
We will show that every invariant clopen set intersects

Σ 0 ∪ Σ 1 contains ∞ 1 ∞ . Lemma 3. Let U be a strongly invariant clopen set. If U intersects Σ 0 ∪Σ 1 , then it contains ∞ 1 ∞ . Proof. Let j ∈ Z. If U contains a cylinder [u 0 ] j such that u 0 ∈ L(Σ 0 ) and u 0 contains a single zero. Then u 0 is of the form 1 k 1 01 k 2 , where k 1 , k 2 ≥ 0. Let n > 1 and x ∈ [u 0 ] j ⊆ U such that x = 1 ∞ 1 2 n 1 k 0 1 k 1 01 k 2 1 k 3 01 2 n 1 2 n 1 ∞ , where 1 k 0 1 k 1 = 2 n and 1 k 2 1 k 3 = 2 n -1. Then, F 2 n-1 (x) = F 2 n-1 (1 ∞ 1 2 n A 1 2 n B 0 C 1 2 n -1 0 D 1 2 n E 1 2 n F 1 ∞ ) = 1 ∞ 1 2 n A 01 2 n B 1 2 n -1 0 C 1 2 n D 1 ∞ .
• A and B give A , and, E and Then,

F 2 n-1 (x) = 1 ∞ 01 2 n+1 -1 01 ∞ . When n → ∞, F 2 n-1 (x) → ∞ 1 ∞
. So, we can nd a conguration in [u 0 ] j whose orbit has a subsequence which converges to the conguration ∞ 1 ∞ . Since U is a strongly F -invariant clopen set, and,

[u 0 ] j ⊆ U , ω([u 0 ] j ) ⊆ U , hence U contains ∞ 1 ∞ . Induction hypothesis : Assume that for some N ≥ 1, if U contains a cylinder [u 1 ] j such that u 1 ∈ L(Σ 0 ) and contains at most N zeros, then U contains ∞ 1 ∞ . We show that, if U contains a cylinder [u] j such that u ∈ L(Σ 0 ) and contains N + 1 zeros, then U contains ∞ 1 ∞ . If U contains a cylinder [u] j such that u ∈ L(Σ 0 ) and contains N + 1 zeros. Then u is of the form v01 k 1 , where k 1 ≥ 0 and v contains N zeros. Let n > 1 and x ∈ [u] j such that x = 1 ∞ 1 2 n 1 2 n 1 k 0 v01 k 1 1 k 2 01 2 n 1 2 n 1 ∞ , where 1 k 0 v = 2 n -1 and 1 k 1 1 k 2 = 2 n -1. Then, F 2 n-1 (x) = F 2 n-1 (1 ∞ 1 2 n A 1 2 n B 1 2 n -1-|v| v C 0 D 1 2 n -1 E 0 F 1 2 n G 1 2 n H 1 ∞ ) = 1 ∞ 1 2 n A 1 2 n -1-|v| v0 B 1 2 n -1-|v| v C 1 2 n 0 D 1 2 n E 1 ∞ .
• A and B give A , and, G and H give E , by Point 1 of Lemma 1, where k = 2 n-1 .

• Since (B, C, and D) is of the form 1 2 n w0 such that w = 1 2 n -1-|v| v ∈ 1(21) 2 n-1 -1 and v ends in 1, B, C, and D give B that is of the form w0, and, since (C, D, and E) is of the form w01 2 n -1 such that w = 1 2 n -1-|v| v ∈ 1(21) 2 n-1 -1 and v ends in 1, C, D, and E give C that is of the form w, by Point 1 of Lemma 2.

• D, E, F , and G give D , by Point 2 of Lemma 2.

Then,

F 2 n-1 (x) = 1 ∞ 1 2 n -1-|v| v01 2 n -1-|v| v1 2 n 01 ∞ . When n → ∞, F 2 n-1 (x) → 1 ∞ v1 ∞ .
So, we can nd a conguration in [u] j whose orbit has a subsequence which converges to a conguration in Σ 0 ∪ Σ 1 and contains N zeros, because v contains N zeros. Since U is a strongly F -invariant clopen set and

[u] j ⊆ U , ω([u] j ) ⊆ U , hence U contains a cylinder [u 1 ] j such that u 1 ∈ L(Σ 0 )
and contains at most N zeros. By Induction hypothesis, U contains ∞ 1 ∞ .

The following lemma shows that the asymptotic set of every cylinder containing a single blocking word intersects Σ 0 ∪ Σ 1 . Lemma 4. Let j ∈ Z and [u] j be a cylinder such that u contains a single minimal 1-blocking word. Then ω([u] j ) intersects Σ 0 ∪ Σ 1 .

Proof. Since u contains a single minimal 1-blocking word, there exists v ∈ 01(21) k 1 01 2k 1 01(21) k 1 0,

where k 1 , k 1 , k 1 ≥ 0 (which also contains a single minimal 1-blocking word), say

[v] m ⊆ [u] j , m ∈ Z. Let n > 1 such that |v| < 2 n . Let x ∈ [v] m such that x ∈ 1 ∞ 1 k 01(21) k 1 01 2k 1 01(21) k 1 01 k 1 2k 1 01(21) k 1 01 ∞ ,
where the length of words in 1 k 01(21) k 1 is 2 n and in • Since (E, F , G, and H) is of the form w01 k w01 2 n -1 such that w ∈ 1 2k 1 01(21) k 1 and

1 k 1 2k 1 01(21) k 1 is 2 n -1. Then, F 2 n-1 (x) ∈ F 2 n-1 (1 ∞ 1 2 n A 1 2 n B 1 k 01(21) k 1 C 0 D 1 2k 1 0 E 1(21) k 1 01 k F 1 2k 1 01(21) k 1 G 01 2 n -1 H 1 2 n +1 I 1 ∞ ). Hence, F 2 n-1 (x) ∈ 1 ∞ 1 2 n A (21) 2 n-1 B (21) 2 n-1 0 C 1 2 n 1 2k 1 01(21) k 1 D 0 1 2 n E 1 ∞ . • A
1 k w ∈ 1(21) 2 n-1 -1 , E, F , G and H give D , by Point 1 of Lemma 2.
Then,

F 2 n-1 (x) ∈ 1 ∞ (21) 2 n 01 2 n 1 2k 1 01(21) k 1 01 ∞ . Hence, F 2 n-1 (x) contains a single minimal 1- blocking word 01 2 n 1 2k 1 0. When n → ∞, F 2 n-1 (x) ∈ (21) ∞ 01 ∞ . So, we can nd a conguration in [v]
m whose orbit has a subsequence which converges to a conguration without minimal 1blocking word. Hence, ω(

[v] m ) intersects Σ 0 ∪ Σ 1 . Since [v] m ⊆ [u] j , ω([u] j ) ∩ (Σ 0 ∪ Σ 1 ) = ∅.
The following proposition shows that ∞ 1 ∞ is contained in every invariant clopen set.

Proposition 4. Let U be a strongly F -invariant clopen set. Then, U contains ∞ 1 ∞ . Proof. Let j, m ∈ Z. If U contains a cylinder [u 0 ] j such that u 0 contains a single minimal

1-blocking word, ω([u 0 ] j ) intersects Σ 0 ∪ Σ 1 , by Lemma 4. Since U is a strongly F -invariant clopen set and [u 0 ] j ⊆ U , ω([u 0 ] j ) ⊆ U . Hence, U intersects Σ 0 ∪ Σ 1 .
Induction hypothesis: Assume that for some N ≥ 1, if U contains a cylinder [u 1 ] j such that u 1 contains N minimal 1-blocking words, then U ∩ (Σ 0 ∪ Σ 1 ) = ∅. We show that, if U contains a cylinder [u] j such that u contains N + 1 minimal 1-blocking words, then U ∩ (Σ 0 ∪ Σ 1 ) = ∅. Since u contains N + 1 minimal 1-blocking words, there exists

v = 0v 1 0v 2 0 . . . 0v N 0v N +1 0 such that [v] m ⊆ [u] j , v 1 ∈ 1(21) k 1 01 2k 1 , v N +1 ∈ 1 2k N +1 01(21) k N +1 , v i = 1 2k i or v i ∈ 1(21) k i 01 2k i and v N ∈        1 2k N or 1 2k N 01(21) k N or 1(21) k N 01 2k N or 1(21) k N 01 2k N 01(21) k N , where k i , k i , k i ≥ 0, i = 2, N -1. Let n ≥ 1 such that |v| ≤ 2 n . Let x ∈ [v] m such that x ∈ 1 ∞ 1 k 01(21) k 1 01 2k 1 0v 2 0 . . . 0v N 01 2k N +1 01(21) k N +1 01 k 1 2k N +1 01(21) k N +1 01 2 n -1 1 ∞ ,
where the length of words in • Let i = 1, N -1. By Point 3 of Lemma 2, We have 1 2k i 0v i+1 0 = 1 2k i 01 2k i+1 0 or 1 2k i 0v i+1 0 ∈ 1 2k i 01(21) k i+1 01 2k i+1 0. Since 1 2k i and the length of word in 1 2k i 01(21) k i+1 are < 2 n , F • Since (G, H, I, and J) is of the form w01 k w01 2 n -1 such that k + |w| = 2 n -1 and

1 k 01(21) k 1 is 2 n and in 1 k 1 2k N +1 01(21) k N +1 is 2 n -1. Then, F 2 n-1 (1 ∞ 1 2 n A 1 2 n B 1 k 01(21) k 1 C 0 D 1 2k 1 0 E v 2 0 . . . 0v N 0 F 1 2k N +1 0 G 1(21) k N +1 01 k H v N +1 I 01 2 n -1 J 1 2 n +1 K 1 ∞ ). Hence, F 2 n-1 (x) ∈ 1 ∞ 1 2 n A (21) 2 n-1 B ( 
1 k w = 1 k v N +1 ∈ 1(21) 2 n-1 -1
, G, H, I, and J give E , by Point 1 of Lemma 2.

Then, F 2 n-1 (x) ∈ 1 ∞ (21) 2 n 0v 1 0 . . . 0v N 01 2 n v N +1 01 ∞ , where v N +1 ∈ 1 2k N +1 01(21) k N +1 and v i ∈ (21) α i such that α i ≥ 1 and i = 1, N . Hence, F 2 n-1 (x) contains N + 1 minimal 1-blocking words. When n → ∞, F 2 n-1 (x) ∈ (21) ∞ 0v 1 0 . . . 0v N 01 ∞ . So, the orbit of x has a subsequence which converges to a conguration with N minimal 1-blocking words. In other words, ω(x) contains a conguration with N minimal 1-blocking words. Since, U is a strongly F -invariant clopen set and x ∈ [v] m ⊆ [u] j ⊆ U , ω(x) ⊆ U . Hence, U contains a cylinder [u 1 ] j such that u 1 contains at most N minimal 1-blocking words. By Induction hypothesis, U ∩ (Σ 0 ∪ Σ 1 ) = ∅. In particular, U contains ∞ 1 ∞ , by Lemma 3.

Thus, the Coven CA of three neighbours has no nontrivial Cantor equicontinuous factor, by Proposition 2.

Figure 2 :

 2 Figure 2: F 2 n-1 ([w01 10 w01 2 n -1 ]) ⊆ [1 2 n w] for n = 5 and w = 101010101010101010101, 0s are represented by white squares and 1s are represented by black squares.

Figure 3 :

 3 Figure 3:F 2 n-1 ([01 2 n -1 01 10 0]) ⊆ [1 2 n 0] for n = 6, they are two superimposed diagrams whose two initial congurations share the blocking word 01 10 0 and the left part.We will use the following lemma to show Lemma 3, Lemma 4, and Proposition 4.

F

  give D , by Point 1 of Lemma 1, where k = 2 n-1 . • B, C and D give B , and, D and E give C , by Point 2 of Lemma 2.

  and B give A , and, H and I give E , by Point 1 of Lemma 1, where k = 2 n-1 . • 1 2 n and 1 k 01(21) k 1 are of the form (21) 2 n-1 , B and C give B , by Point 2 of Lemma 1. • Since 1 k 01(21) k 1 is of the form (21) 2 n-1 , C, D, and E give C , by Point 3 of Lemma 2.

D 1 2 n v N +1 E 01 2 n F 1 ∞•

 1n1 21) 2 n-1 0 C (21) α 1 0 . . . 0(21) α N 0 , where α i ≥ 1, i = 1, N and v N +1 ∈ 1 2k N +1 01(21) k N +1 .• A and B give A , and, J and K give F , by Point 1 of Lemma 1, where k = 2 n-1 . • 1 2 n and 1 k 01(21) k 1 are of the form (21) 2 n-1 , B and C give B , by Point 2 of Lemma 1. Since 1 k 01(21) k 1 ⊆ (21) 2 n-1 , C, D, and E give C , by Point 3 of Lemma 2.

  2 n-1 ([1 2k i 0v i+1 0]) ⊆ [(21) α i 0]. Since 1 2k N and the length of word in 1 2k N 01(21) k N are < 2 n , F 2 n-1 ([1 2k N 0v N +1 0]) ⊆ [(21) α N 0], with α i = k i or k i + 1 + k i+1 and α N = k N or k N + 1 + k N .Hence, E, F , and G give D .