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Abstract

In this paper, we propose a deep-network-based approach that lever-
ages a finite mixture of Weibull distributions to address a key challenge in
time-to-event modeling: it comes to a parametric estimation of survival
time distribution from censored data. The proposed model predicts the
parameters of the mixture of Weibull distributions with respect to input
variables. In addition, given that we set beforehand the upper bound of
the mixture size, the model finds the requisite number of Weibull dis-
tributions to combine in order to model the event time distribution as
accurately as possible. For this purpose, we introduce the Sparse Weibull
Mixture layer that selects indirectly, through its weights, the Weibull dis-
tributions composing the mixture, whose mixing parameters are signifi-
cant. To stimulate this selection, we apply a sparse regularization on this
layer by adding a penalty term to the loss function that takes into ac-
count both observed and censored observations. We validate our method
on both simulated and real datasets, showing that the proposed method-
ology yields a performance improvement over the state-of-the-art models
proposed in this work.

Keywords— Survival Analysis, Weibull Distribution, Deep Learning, Sparse
Regularization.

1 Introduction

The time-to-event analysis is one of the most widely used in the statistical
analysis field in many areas such as e-commerce, finance, marketing, telecom-
munication, health field (e.g. cardiovascular death, tumor recurrence), and
predictive maintenance (e.g., failure times of power grids, mechanical systems5

or electronic devices). This branch of statistics concerns the prediction of when
a future event will occur. In this paper, we consider the methodology for time-
to-event prediction. The time-to-event analysis as a field has primarily focused
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on interpretability, arguably, at the expense of predictive accuracy. This is
eventually the reason why standard machine-learning-based classifiers are com-10

monly used in real-world applications while it would be more useful to apply
survival methodology. Certainly, some classifiers may have the best scores in
terms of accuracy. However, these binary models can only provide predictions
for a predetermined point in time. One loses the interpretability and flexibility
which is guaranteed by the modeling of the event densities as a function of time.15

Moreover, in survival data, it is common that a part of a population in which
the event is not observed within the relevant time period, and could potentially
occur after this recorded time or removed from the study, producing so-called
censored data. In this case, the individuals of this sub-population provided us
with censored times rather than event times. While this type of data is not taken20

into consideration by standard classifiers, the time-to-event analysis bridges this
gap.

In our work, we propose an approach to time-to-event analysis: the event
times distribution is assumed to follow a finite mixture of Weibull distributions,
whose parameters depend on individual covariates. No particular assumptions25

about the nature of the relationship between the parameters and the features
are made. It is up to the model, that we propose and which we call DPWTE,
to estimate the optimal number of distributions it needs to combine for mod-
eling the event times distribution. The parameter that represents this number
is initialized to an upper bound before training the network. The novel ap-30

proach described in this paper guarantees thus certain freedom of modeling
with maximum precision. The main objective is therefore to estimate the opti-
mal number of Weibull distributions that compose the mixture as well as their
associated parameters. In short, DPWTE that stands for Deep Parsimonious
Weibull Time-to-Event is a network-based model (Deep) with a special sparse35

layer (Parsimonious) that selects the optimal combination of Weibull distri-
butions used for the time-to-event analysis. This paper makes the following
contributions:

• We assume that the event times are drawn from a random variable that
follows a finite mixture of Weibull distributions.40

• We introduce a neural network-based model that finds the optimal combi-
nation (a.k.a mixture) of Weibull distributions (by estimating their param-
eters and mixing coefficients) to model a given event times distribution.
This task is performed using a special layer called Sparse Mixture Weibull,
whose purpose is to select, among all the estimated distributions, those45

that will be used in the final mixture. This process is stimulated by ap-
plying a sparse regularization on the weights given to each distribution by
this layer. This means that we will add a penalty term in the loss function
for this purpose.

• We consider the censored observations in the conception of the model.50

The paper is organized as follows. Section 2 contains a summary of related work.
In Section 3, we review some basic concepts from survival analysis. The section
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4 is dedicated to a review of the mixture of Weibull distributions. In section
5 we describe the architecture of DeepWeiSurv that helps us to understand
how DPWTE works. In Section 6 we describe the architecture of our proposed55

method for modeling a survival time distribution and highlight the role of the
Sparse Weibull Mixture layer in this modeling. In Section 7, we conduct some
simulations intending to verify that the method we propose behaves as expected.
In Section 8 we evaluate our model on five real-world datasets and compare its
performances with those of certain existing models, we add another experiment60

to assess the sensitivity of DPWTE to the censoring threshold. We conclude in
Section 9.

2 Related Work

Kaplan-Meier estimator is considered as among the first estimators widely used
for time-to-event prediction, but it doesn’t incorporate individual covariates.65

In the time-to-event analysis that explores the relationship between features
and both event and censored times, existing methods assume a linear depen-
dence. The semi-parametric Cox Proportional Hazards [1] (CPH) model as-
sumes the effect of covariates is a fixed and multiplicative covariate-dependent
factor on the hazard rate (linear relationship) which may be too simplistic since,70

in the real-world data, the covariate effects are often non-monotonic. Thanks
to the ability of neural networks to learn nonlinear functions, many researchers
tried to model the relationship between the covariates and the time-to-event
data. An extension of CPH with neural networks was first proposed by Faraggi
and Simon[2] who replaced the linear risk of the Cox regression model, with75

one hidden layer multi-layer perceptron but without performance improvement.
Katzman et al.[3] revisited the Cox model in the framework of deep learning
(DeepSurv), which removes the proportionality constraint, and showed that it
outperforms CPH in terms of C-index [4]. Cox-Time[5] which is also a Cox ex-
tension, does not require this assumption and uses an alternative loss function80

scaling well non-linear cases to remedy this constraint. Most previous works
benchmark their methods against the random survival forests (RSF) [6]. RSF
computes a random forest using the log-rank test as the splitting criterion. It
computes the cumulative hazards of the leaf nodes and averages them over the
ensemble. Hence, RSF is a very flexible continuous-time method that is not85

constrained by the proportionality assumption. Other previous works are based
on Cox regression such as SurvivalNet[7], a network-based model using Bayesian
optimization of the hyperparameters and Zhu et al.[8, 9] who proposed a con-
volutional neural network that replaces multi-layer perceptron architecture of
DeepSurv and applied this methodology to pathological images. An alternative90

approach to time-to-event prediction is to discretize the duration and compute
the hazard or survival function on this predetermined time grid. Lee et al. [10]
proposed a method, called DeepHit, that estimates the probability distribution
with a neural net and combines the log-likelihood with a ranking loss. Fur-
thermore, the method has the added benefit of being applicable for competing95
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risks. Fotso [11] proposed N-MTLR that used a Multi-Task Regression (MTLR)
as the base with a neural network that calculates the survival probabilities on
the points of the time grid. Another interesting work proposed by Martinsson
[12] in which he presented WTTE-RNN, a model for sequential prediction of
time-to-event for censored data whose main role is to estimate the distribution100

of time to the next event as having a discrete or continuous Weibull distribution
with parameters being the output of a recurrent neural network.

Unlike these discrete-time models DPWTE and DeepWeiSurv [13] model a
time-to-event distribution and thus a continuous survival function that enables
to estimate of the survival probability at any survival time horizon.105

3 Survival Analysis

In this section, we are going to review some basic concepts in survival analysis.
The main goal is to model the event time distribution as a continuous function
of time. The survival function is the most common function that models this
distribution110

S(th) = P (T > th) = 1−
∫ th

0

f(u)du = 1− F (th) (1)

with f(t) and F (t) denoting the probability density function and the cumulative
distribution function of an event time T . There is an alternative characterization
of the event time distribution which is given by the hazard rate h(t) defined as
follows

h(t) =
f(t)

S(t)
= lim
dt→0

1

dt
P (t ≤ T < t+ dt|T ≥ t) (2)

The hazard rate is defined as the event rate at time t knowing the probability115

of survival at time t or beyond. In the real-world data, the true event times
are not provided for all individuals. That is, apart from the true event times
for some individuals (called non-censored data) the time recorded can be the
follow-up time which is not long enough for the event to happen, or the time
at which the individual left the study before its completion. In these last two120

cases, we then observe a right-censored time.
Let X = {(xi, ti, δi)|i ≤ n} be a set of observations with xi ∈ Rd, the ith

observation of the baseline data (covariates), ti ∈ R its observed time associated,
and δi indicates if the ith observation is censored (δi = 0) or not (δi = 1). The
likelihood for survival times is given by125

L =

n∏
i=1

f(ti|xi)
δiS(ti|xi)

δi−1 (3)

4 Mixture Weibull Distributions

In this work, we assume that the event time follows a finite mixture of two-
parameter Weibull distributions with respect to xi. In this case, we know the
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formulas of S and h which are functions of Weibull parameters. This means
that we just need to estimate the parameters of this finite mixture to model the130

event times distributions.

4.1 Particular Case: Single Weibull

Here is a particular case where the event time follows a single two-parameter
Weibull distribution W (β, η) with β and η are respectively the shape and the
scale parameters which are strictly positive (by definition). In this case, we can135

estimate these parameters by the maximization of the likelihood method:

argmax
β>0,η>0

{L(β, η)|(ti, δi)i} =

n∏
i=1

fW (β,η)(ti|xi)
δi .SW (β,η)(ti|xi)

1−δi (4)

Alternatively, we can solve this problem by maximizing the log-likelihood LL
(since the log function is monotonic):

argmax
β>0,η>0

{LL(β, η)|(ti, δi)i} =

n∑
i=1

δilog
[
fW (β,η)(ti|xi)

]
+(1−δi)log

[
SW (β,η)(ti|xi)

]
where:

Sβ,η(t) = exp[−(
t

η
)β ],

fβ,η(t) = (
β

η
)(
t

η
)β−1Sβ,η(t)

4.2 General Case: Mixture of Weibull Distributions

For now, we suppose that the event time T follows a finite mixture of two-
parameter Weibull distributions conditionally to the baseline data features. In
this context, it is easy to calculate S and h of this mixture at any time instant140

t. As this latter totally depends on the mixture parameters, we only need to
estimate each couple of parameters of Weibull distributions that compose this
mixture as well as its mixing parameters which is therefore the main objective.

Let T follows Wp =
∑p
k=1 αkW (βk, ηk) a mixture of p Weibull distributions

with its mixing coefficients α = (α1,...,αp) (
∑
k αk = 1, αk ≥ 0) with β =145

(β1, ..., βp) and η = (η1, ..., ηp) are respectively the vectors of shape and scale
parameters of Wp. We point out that, in statistics, the density of the mixture
is a combination of its distribution densities. In other words, we have:

fWp
=

p∑
k=1

αkfW (βk,ηk). (5)

By definition, the log-likelihood of Wp, considering the censored data, can
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be written as follows:150

LL(β, η, α|(ti, δi)i) =

LLδ=1︷ ︸︸ ︷
n∑
i=1

δilog
[ p∑
k=1

αkfW (βk,ηk)

(
ti|xi

)]
+

n∑
i=1

(1− δi)log
[ p∑
k=1

αk(1− FW (βk,ηk)(ti|xi))
]

︸ ︷︷ ︸
LLδ=0

(6)

Thus, we estimate Wp parameters (α, β, η) by solving the Maximum Likeli-
hood Estimation problem defined by the following equation:

(β̂, η̂, α̂) = argmax
β, η, α, β ≥ 1

LL
(
β, η, α|

(
ti, δi

)
i

)
(7)

As we notice in the equation 7, we set a constraint linked to the shape
parameter. In fact, by definition, β and η are strictly positive. However, to
assure the convexity of the LL, we need to consider that β is at least equal to155

1.
Let µi the mean lifetime of the ith individual. Given that the mean of a

mixture µ is a weighted combination of the means of the distributions that
compose this mixture (i.e., µ =

∑p
k=1 αkµk) and knowing the Weibull’s mean

expression, we have:160

µi =

p∑
k=1

αkηikΓ(1 +
1

βik
) (8)

where Γ is the gamma function, βik and ηik are the ith components of βk and ηk
respectively. µi can used as an estimate of the survival time of the individual i.

5 Neural Network for Time-to-Event modelling
with Mixture Weibull Distributions

As we said in the previous section, we consider the dependence ofWp parameters165

(Weibull parameters and the mixing coefficients) on the covariates of the baseline
data. We propose to use a neural network to model this relationship.

Before moving on to the novel approach proposed in this paper, we begin
by describing the parametric model of DeepWeiSurv [13] whose role is to model
the event times distribution by a finite mixture of Weibull distributions.170

5.1 Description of DeepWeiSurv

We name fp = {f1p , .., fnp } the set of functions that models the relationship
between the baseline data covariates (xi)i and the mixture parameters:

f ip : Rd → Rp×3
xi 7→ (αi, βi, ηi)
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Figure 1: The architecture of DeepWeiSurv

where αi = (αi1, ..α
i
p) are the mixing coefficients, βi = (βi1, .., β

i
p) and ηi =

(ηi1, .., η
i
p) the parameters of p Weibull distributions that compose the mixture

for the event of the ithindividual. To avoid being trapped by a notation problem,
let’s define α, β and η as follows:

β = (β1, .., βp) =


β1
1 β1

2 .. β1
p

β2
1 .. .. ..
.. .. .. ..
βn1 βn2 .. βnp

η = (η1, .., ηp) =


η11 η12 .. α1

p

η21 .. .. ..
.. .. .. ..
ηn1 ηn2 .. ηnp


and

α = (α1, .., αp) =


α1
1 α1

2 .. αnp
α2
1 .. .. ..
.. .. .. ..
αn1 αn2 .. αnp


If p = 1, we don’t need to estimate α since it is a vector of ones. The function
fp is represented by the network whose architecture is described in Figure 1
The role of this model is to learn the function fp and thus estimate the mixture
parameters (α, β, η). DeepWeiSurv is a multi-task network which consists of175

a common sub-network, a classification sub-network (denoted by clf ) and a
regression (denoted by reg). The shared sub-network takes as input the baseline
data X and calculate a latent representation of the data denoted by Z. If the
size of the mixture is greater than 1 (p > 1), then clf and reg sub-networks take
the latent representation Z as an input and learn the final outputs which are the180
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parameters β1, .., βp, η1, .., ηp and the mixing coefficients α1, .., αp. We use ELU
(by setting its constant to 1) as an activation function for both output layers of
the reg sub-network. The advantage of ELU over the ReLU function is that we
have enough gradient to learn the parameters thanks to its exponential form, it
becomes thus smooth slowly. However the co-domain of ELU is ]− 1,∞[. This185

is problematic since we have the constraints on the parameters β and η (β ≥ 1,
η > 0). To address this issue, the network will instead learn β + 2 ≥ 1 and
η+ 1 + ε > 0 where ε is a scalar strictly positive. We then apply the translation
in the opposite direction to recover the parameters β and η. The clf sub-
network, in turn, learn α ∈ Rn×p. To ensure both conditions

∑p
k=1 α

i
k = 1,∀i190

and αik ∈ [0, 1],∀(i, k), we use the softmax activation for clf ’s output layer.
Otherwise, i.e. p = 1, which represents the case of modelling by a single Weibull
distributions where we don’t need to learn α. Thus, we only need to train clf
as described above.

In practice, in order to train the network-based model, we need to set a loss195

function. For DeepWeiSurv, we used the negative log-likelihood of the mixture.
We will describe in detail the loss function used for DPWTE model in the next
section.

6 Deep Parsimonious Weibull Time-to-Event Model
(DPWTE): An extension of DeepWeiSurv200

We remind that the goal is to model a time-to-event distribution with a finite
mixture of Weibull distributions. The question that deserves to be asked is the
number of Weibull distributions composing the mixture that is needed to model
a given event time distribution. In other words, we need to know the estimated
value of the mixture size p for the most accurate modeling of a specific survival205

time distribution. This problem was not identified in DeepWeiSurv model since
p is fixed. For this model, we need to test different values of p to find the optimal
one in terms of the model’s performance. In this section, we will present and
describe DPWTE model which proposes a solution to this issue.

6.1 Global Description of DPWTE Model210

As discussed above, DeepWeiSurv fixes the value of p, the number of Weibull
distributions used for distribution modelling. Hence, we don’t know if this
value is the optimal one, and this is represents one of the limitations of this
model. DPWTE model addresses this issue, it has almost the same architecture
as DeepWeiSurv, but the only difference is that, in the clf sub-network, we215

interleave a new layer called Sparse Weibull Mixture layer between the softmax
layer and the output layer of clf as shown Figure 2 As for DeepWeiSurv, this
network learns the triplet (α, β, η) that maximizes the likelihood of the mixture
distribution. However, we will not necessarily use all the outputs to model the
distribution, the parameter selection will be determined by the Sparse Weibull220

Mixture layer.
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Figure 2: The architecture of DPWTE
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Figure 3: Schematic figure depicting the post-training steps of com-
posing the optimal mixture of Weibull distributions.

6.2 Sparse Weibull Mixture Layer

It should be recalled that we try to find the number of Weibull distributions with
which we compose the mixture to have the most accurate modeling of the event
times distribution. In other words, we need to estimate p, the size of the mixture,225

denoted by p̃ initially set to an upper bound. The latter is set, beforehand, at
a sufficiently large value. For this purpose, we introduced the Sparse Weibull
Mixture layer. This layer performs an element-wise multiplication of the softmax
layer in the clf sub-network. As we see in Figure 4, we have αk = ωk ∗qk, where
qks are the outputs of the softmax layer (in the case of DeepWeiSurv, p̃ = p230

and qk = αk, k = 1, .., p). ωk, through the importance of its value, can tell us if
W (βk, ηk) should be used in the mixture. In order to interpret the value of ωk
to know which Weibull distributions must be used for the modelling, we need
to satisfy the following conditions:

1. ωk ∈ [0, 1]235

2. αk ∈ [0, 1], k = 1, .., p
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Figure 4: Softmax and Sparse Weibull Mixture layers of clf

3.
∑p
k=1 αk = 1

The constraint on ωk (1) can’t be guaranteed even if we initialize them in that
way. The constraints (2,3) are established to guarantee that α is a probability
vector. As αk = ωk.qk and qk ∈ [0, 1], we have (1) =⇒ (2) and thus the latter
is automatically checked if (1) is checked. To ensure implicitly these constraints,
we apply the following transformations:

(T1) ωk ←
|ωk|∑
l

|ωl|
, k = 1, .., p (T2) αk ←

αk∑
k

αk
, k = 1, .., p

6.3 Post-Training Steps: Selection of Weibull Distribu-
tions to Combine for Time-to-Event Modelling

So far, we have not yet estimated the value of p̃. The learning phase is the240

same as for DeepWeiSurv (even if they don’t have the same loss function, we
will see this in detail in section 6.4). However, after the DPWTE’s network
is trained, we select the triplets (αk, βk, ηk) such as αk is greater or equal a
certain threshold denoted by αth that we fix beforehand. As we change the
distribution of α after this selection (before training: α = (α1, .., αp) and after245

training and selection process: α = (αk, αk ≥ αth) but we want to keep the
probability constraint, we thus need to apply the transformation (T2) to the
new α. Therefore if A = {(αk, βk, ηk)|αk ≥ αth} is the set of selected triplets
for modelling, then:

1. p̃ = Card(A)250

2. α = (αk, αk ≥ αth) −→
T2

α′

3. β = (βk, αk ≥ αth) −→
offset(+2)

β′

4. η = (ηk, αk ≥ αth) −→
offset(+1+ε)

η′

5. the event times distribution can be modeled by
∑

(αk,βk,ηk)∈A
α′kW (β′k, η

′
k)
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This post-processing is described by the figure 3.255

6.4 Loss Function

As discussed in previous sections, DPWTE is supposed to find the optimal com-
bination of Weibull distributions. For these reasons, we propose the following
loss function:

loss = −LL(β, η, α|(ti, δi)i) + λ||ω|| 1
2
, (9)

where λ is the regularization parameter and ||ω|| 1
2

=
∑p
k=1

√
|wk|. The first260

element of the loss is the negative log likelihood (see Equation 6) which is
used as a loss function for DeepWeiSurv. To stimulate the triplet selection
process discussed in the previous section, we apply a sparse regularization on
ω = (ωk)1≥k≥p by adding a penalty term (second operand) to the loss function,
hence the name of Sparse Weibull Mixture layer and the word ’Parsimonious’265

in the name of the model. The purpose behind the sparse regularization is to
encourage sparsity in the vector ω or at least some ωk to become almost nil,
and then apply the threshold αth.

Clearly, the L0 regularizer is ideal for this purpose in the sense of yielding
the most sparse weights. However, the L0 norm is non-differentiable, we cannot,270

therefore, incorporate it directly as a regularization term in the loss function.
C. Louizos et al. [14] proposed a solution through the inclusion of a collection
of non-negative stochastic gates, which collectively determine which weights
to set to zero but it is a complex optimization problem that is difficult to be
solved. The solutions of the L2 regularizer are smooth, but they do not possess275

the sparse property. While the L1 regularizer leads to a convex optimization
problem, but it does not yield a sufficiently sparse solution. X. ZongBen et
al. [15] proposed L 1

2
as the new regularizer which is more sparse than the L1

regularizer while it is still easier to be solved than the L0 regularizer. The
sparsity property of L 1

2
was demonstrated by Fan et al. [16]. In this paper, we280

opt for L 1
2
-regularization as we see in the loss function.

7 Experiments on Simulated Data

In this section, we conduct three experiments on synthetic datasets where the
main goal is to empirically investigate our proposed approach. These simulations
are by no means exhaustive but are intended to verify that the methodology285

behind behaves as expected. In the first experiment, we evaluate the ability
of DPWTE to learn the relationship between the mixture parameters and the
baseline data features. Three scenarios are simulated with different functions
of different levels of complexity as well as different mixture sizes. In the second
simulation, we perform a clustering based on the weighting coefficient to evalu-290

ate the ability of DPWTE in estimating the weighting coefficients α and the size
of the mixture needed to do so. We generate different shapes of datasets namely
noisy moons, noisy circles, and noisy blobs. In the third and last experiment,
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we evaluate the ability of the network in handling different levels of censoring
settings. We test three different shapes of mixture: uni-modal (i,e. with one295

peak), bi-modal, and tri-modal mixtures. We would point out that these exper-
iments were also run with different values of αth (10k, k = −2,−3,−4,−5) to
test different levels of tolerance and check whether the respective results are bet-
ter. However, the same patterns were found in these settings, we therefore only
keep the following value of the threshold αth = 0.1 in this paper. We would also300

highlight that p̃ should not always equal the number of Weibull distributions
with which we simulate survival times (see an example in Section 7.4).

7.1 Network Configuration

DPWTE consists of a shared sub-network which is a 4-dense-layer network
where the batch normalization is applied immediately following the first fully305

connected layer. These four hidden layers have 128, 64, 32, and 16 nodes respec-
tively. The regression sub-network has two dense layers with 16 and 8 nodes
respectively, whose the second one is batch normalized and two ELU output
layers, while the classifier sub-network is composed of 2-dense layers with 16
and 8 nodes respectively, a softmax layer followed by the Sparse Weibull Mix-310

ture layer whose weights are initially generated using the uniform distribution
of support [0,1]. The hidden layers are activated using ReLU function. The
network is trained via Adam optimizer with a learning rate of 10−4. We initial-
ize the mixture size with pmax = 10, set the regularization parameter λ = 10−4

and finally set the threshold αth = 0.1 for the post-training operations.315

7.2 Experiment I: Parameters-Features Relationship Mod-
elling

The purpose of this experiment is to investigate and evaluate DPWTE’s ability
to model the relationship between the baseline data features and the mixture
parameters. Let X be a vector, of size n = 5000, of one-dimensional samples320

drawn from the uniform distribution U[0,1] of support [0,1]. We consider three
scenarios where we seek to reproduce the relationship between the covariates X
and the mixture parameters with which we draw survival time samples, used
to train DPWTE. We assume for this experiment that all the samples are non-
censored. The scenarios considered here are defined as follows:325

• The survival times samples are drawn from a single Weibull distribution
where the parameters are defined as follows:

β = X2 + 2X + 2 η =
1

2
X2 + X +

1

2
.

• We generate survival times from a single Weibull distribution with param-
eters defined by the following functions:

β = 2 sin (2X + 1)sin (1 + eX) +
7

2
η = cos (1 + X) eX

2

+
1

2
.
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• We generate survival times from a 50-50 mixture of 2 Weibull distribution
whose parameters β1, η1, β2, η2 are defined by the following functions:

β1 = X + 2 η1 =
1

2
X2 + X +

1

2
.

β2 = X2 + 2X + 2 η2 =
1

2
(X + 1).

We compare the results of DPWTE and DeepWeiSurv. In the two first scenarios,
we use DeepWeiSurv with p = 1, while in the last, we use DeepWeiSurv with
p = 2. We set pmax = 10 for all scenarios. For each case study, we plot the
simulated parameters β, η against their respective estimates. In these defined
scenarios, we do not need to plot the estimated expectation since, using this330

data configuration, it has the same shape as the parameter η. The results of the
first scenarios are displayed in Figure 5 and those of Scenario 3 in Figure 6.

For the first scenario, we train DPWTE and obtain the mean of α̂ over the
5000 instances: (2.1e−5, 4.15e−7, 2.9e−4, 9.976e−1, 3.15e−8, 1.8e−3, 9.97e−
10, 4.8e − 7, 2.57e − 4, 3.107e − 10), where, by applying the threshold αth, the335

fourth distribution (average of α̂4 = 0.9976) is the only distribution selected
and thus we obtain p̃ = 1 which seems logical, since the survival times are
drawn from one Weibull distribution. The results of the estimate parameters
β̂ = β̂4, η̂ = η̂4 associated are plotted in Figure 5a and Figure 5c respectively,
and those of DeepWeiSurv associated are shown in Figure 5b and 5d. We can340

notice that DPWTE and DeepWeiSurv have practically the same performance.
In the second scenario, where the relationship between the Weibull parameters
and X are more complex than that in the first case study for no other reason
than that we have a composition and product of exponential and trigonomet-
ric functions, whereas in the first scenario, the relationship is polynomial of345

degree 2. The trained network outputs α whose mean is equal to (1.0333e−5,
7.7868e−7, 5.8331e−6, 1.5778e−4, 3.5203e−7, 9.9988e−1, 5.4700e−6, 7.9631e−7,
6.0515e−7, 2.6980e−5), therefore by applying the threshold αth, we obtain p̃ = 1
and the post-training steps only select the sixth distribution since α6 is the only
weighting coefficient above the threshold. The results of the estimate parame-350

ters β̂ = β̂6, η̂ = η̂6 associated are plotted in Figure 5e and 5g respectively, and
those of DeepWeiSurv associated are shown in Figure 5f and 5h. As we notice,
non-smooth parts of the curve aside, both models provide a good approxima-
tion of η (Figure 5g) as for DeepWeiSurv (Figure 5h), while for β, they had
more difficulty to model the function (Figure 5e and Figure 5f for DPWTE and355

DeepWeiSurv respectively).
For the last case study, we train DPWTE and obtain the estimation of the

weighting coefficients α̂ whose mean over the samples is (0.447, 0.46, 9.5e−4,
7.659e−4, 8e−4, 0.02, 5e−3, 0.065, 4.84e−4, 9.9e−8), which means that, after
applying the threshold αth = 0.1, the process selects the two first distributions360

to model the simulated mixture, which means that p̃ = 2. We notice that
the average of α̂1 and α̂2 are close to each other and this implies that after
normalizing, we obtain approximately a 50-50 mixture. Now let’s describe the
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(a) DPWTE: β in Scenario 1 (b) DeepWeiSurv: β in Scenario 1

(c) DPWTE: η in Scenario 1 (d) DeepWeiSurv: η in Scenario 1

(e) DPWTE: β in Scenario 2 (f) DeepWeiSurv: β in Scenario 2

(g) DPWTE: η in Scenario 2 (h) DeepWeiSurv: η in Scenario 2

Figure 5: Results of DPWTE and DeepWeiSurv in Scenarios 1 and
2.
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(a) DPWTE: β̂1 vs β1 (b) DeepWeiSurv: β̂1 vs β1

(c) DPWTE: η̂1 vs η1 (d) DeepWeiSurv: η̂1 vs η1

(e) DPWTE: β̂2 vs β2 (f) DeepWeiSurv: β̂2 vs β2

(g) DPWTE: η̂2 vs η2 (h) DeepWeiSurv: η̂2 vs η2

Figure 6: Results of DPWTE and DeepWeiSurv for Scenario 3.
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results of the mixture parameters selected shown in Figure 6. In this figure, we
notice that DeepWeiSurv provides estimate values that practically coincide with365

the real ones. The same goes for DPWTE which has the same performance as
DeepWeiSurv but the only difference is that the model started by modeling the
mixture with pmax=10 Weibull distributions and found out, after training, that
he only needs 2 Weibull distributions to do so which coincide with the exact size
of the simulated mixture. This means that DPWTE does not need to have prior370

knowledge about the size of the simulated mixture and this can be considered
as an advantage over DeepWeiSurv in a real-world setting.

7.3 Experiment II: Clustering

In this experiment, we want to evaluate the ability of DPWTE in estimating the
weighting coefficients used to generate the simulated survival times. For this375

purpose, we consider the problem of clustering in this experiment. The main
idea here is to generate m clusters C1, .., Cm not linearly separable. Each cluster
Ci is labeled by a Weibull distribution. In other words, the samples that belong
to a cluster Ci have their respective survival times that are drawn from the same
single Weibull distribution of parameters βi, ηi. We test three case studies:380

• We draw 10000 samples using the function make moon (Figure 7a) from
the scikit-learn package of Python, half of which forms the first cluster
C1 and the second half forms the second one C2. These clusters are in
a shape of a moon in the waxing crescent phase hence the name of the
function. We add a standard deviation of Gaussian noise to have thick385

clusters (std = 0.15). We draw for the samples of C1, time outputs from a
single Weibull distribution whose parameters are β1 = 6.5, η1 = 5, whereas
for the samples belonging to C2 have their survival times drawn from a
Weibull distribution of parameters β2 = 1.5, η2 = 0.5.

• We draw 10000 samples using the function make circles (Figure 8a) from390

scikit-learn package of Python, regularly distributed on two clusters C1, C2.
These clusters are two nested circles, i.e. a large circle containing a smaller
circle in 2d. We apply a standard deviation on 0.1 to generate noisy circles.
For each sample i of the small cluster C1, we draw ti the time output from
a Weibull distribution β3 = 3.5, η3 = 2.5 and for each sample j from the395

bigger cluster C2, we draw tj from W (β4 = 5, η4 = 7.5).

• We draw 15000 samples using the function make blobs (Figure 9a) from
scikit-learn package to generate three isotropic clusters with a Gaussian
noise (standard deviation of 0.8), fairly shared among the three clusters
Ci=1,2,3. C1 is characterized by W (β1, η1), C2 is characterized by W (β2, η2),400

while C3 is labeled by W (β3, η3).

In each scenario, the Weibull distributions with we which we label the clusters
are chosen in a such way that their respective densities are markedly separated
in time. As in the previous experiment, we assume that all samples are non-
censored. We recall that the objective of this experiment is to check if the model405
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(a) The drawn samples (b) The samples coloured w.r.t α̂i2

Figure 7: On the left, two noisy moons generated using the
make moon function from scikit-learn package. On the right, the
clustering reproduced by DPWTE using the values of the second
component of α̂(p̃ = 2).

can reproduce the clustering. We train DPWTE in each scenario, and obtain
the estimate α̂i = (α̂i1, .., α̂ip̃) for each sample i ∈ ∪

k∈[m]
Ck after applying the

threshold αth = 0.1 and α-normalization, where p̃ is the estimated size of the
mixture predicted and α̂ik = P(i ∈ Ck) is the probability that the sample i

belongs to the cluster Ck. Since
∑p̃
k=1 α̂ik = 1 as well as α̂ij and 1−

∑
k 6=j α̂ik410

are complementary, the latter thus provide the same information. We use the
colormap to represent the intensity of the variable to visualize (between 0 and
1).

7.3.1 Results and Discussion

In the two first scenarios, we obtain p̃ = 2, whereas, in the third scenario, we415

obtain p̃ = 3, which means that DPWTE estimate exactly the optimal mixture
size in these three cases. In Figure 7 and Figure 8 corresponding to Scenario
1 and 2 respectively, we visualize (α̂i2, i ∈ C1 ∪ C2). We notice, for the moon-
shaped clusters (7b), the big majority of samples from C1 and C2 have their value
of α̂i2 associated equal to 0 and 1 respectively. Only the samples that are in the420

edge of the cluster that faces towards the neighbor cluster have values between
0 and 1. Still, the border points in the edge of C1 are blue stained or colored in
sky blue, which means that α̂i2 converges to 0 (according to the colormap), and
those of C2 is rather between yellow and orange, i.e α̂i2 converges to 1. DPWTE
performs a good clustering by starting with pmax = 10 Weibull distributions and425

finding the optimal mixture of size p̃ = 2 as expected. For the nested-noisy-
circle clusters, the samples of the outer noisy circle making C2 have almost all
the value of α̂i2 equal to 0.95, except those in the surface to the smaller circle
whose α̂i2 values are between 0.85 and 0.95 which still a good result (far from
0.5), whereas for the inner circle forming the cluster C1, the samples belonging430

18



(a) The drawn samples. (b) The samples coloured w.r.t α̂i2

Figure 8: On the left, two nested noisy circles generated using the
make circle function from scikit-learn package. On the right, the
clustering reproduced by DPWTE using the values of the second
component of α̂ (p̃ = 2).

(a) The drawn samples. (b) The samples coloured w.r.t 1 - α̂i2.

(c) The samples coloured w.r.t 1 - α̂i1. (d) The samples coloured w.r.t 1 - α̂i3.

Figure 9: Three clusters generated using the make blobs function of
scikit-learn package as well as their reproduced clustering performed
by DPWTE (p̃ = 3).
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to the latter have their respective values of α̂i2 not far from zero (colored in a
blue sky) except for those that find themselves in the edge facing towards the
outer noisy circle which has greater values but still acceptable (between blue
sky and green, i.e. α̂i2 way below 0.5).

In the third scenario, we have two degrees of freedom since α̂i1+α̂i2+α̂i3 = 1.435

We thus visualize for each cluster Ck the value of 1 − αik (Figure 9c for C1,
Figure 9b for C2 and finally Figure 9d for C3). We can notice that the majority
of the samples belonging to the two last clusters are correctly labeled (colored
in purple) (1− α̂i2 = 0 and 1− α̂i3 = 0 respectively) except the border points on
the edge facing toward the two neighbors where the values are not zero but still440

not far from zero. Whereas the non-border samples of the first cluster are blue
coloured, which means that their respective values of 1 − α̂i1 are not exactly
zero ( 1− α̂i1 between 0.1 and 0.2) and the border points are blue sky coloured,
still their respective values far below 0.5 which are acceptable values because by
applying a threshold these samples are correctly labeled. We therefore conclude445

that DPWTE can have a good estimation of the weighting coefficients regardless
the distribution of the baseline data and can also provide an improvement when
compared to DeepWeiSurv (e.g. in the first scenario).

7.4 Experiment III: Censoring Threshold Sensitivity

The main objective in this experiment is to evaluate the performance of DPWTE450

with respect to the censoring rate, denoted by rc, present in the data, i.e. the
size of censored samples against the size of the data. We aim at each scenario
defined by a value of rc, reproduce the distribution simulated. Admittedly, the
difficulty of modelling the distribution increases with the censoring rate, but
also varies with the shape of the distribution. For this purpose, we run this455

experiment on three mixture distributions of different shapes:

• Uni-Modal Mixture: we draw m = 10000 time samples from a 50-30-
20 mixture of three Weibull distributions whose parameters are (β1 =
1.5, η1 = 0.5), (β2 = 2.5, η2 = 1.5) and (β3 = 3.5, η3 = 3) respectively
with a weighting of 0.5, 0.3 and 0.2 respectively:

W1
3 = 0.5W (β1, η1) + 0.3W (β2, η2) + 0.2W (β3, η3).

The composing Weibull distributions and their mixture are illustrated in
densities in Figure 10. For this mixture, we test the following values of
censoring rate rc: {0, 0.5, 0.7, 0.85, 0.95, 0.99}.

• Bi-Modal Mixture: we draw m = 10000 survival time samples from a 40-
20-40 mixture of three Weibull distributions of parameters (β1 = 1.5, η1 =
0.5), (β2 = 2.5, η2 = 1.5) and (β3 = 4.5, η3 = 3.5) respectively with a
weighting of 0.4, 0.2 and 0.4 respectively:

W2
3 = 0.4W (β1, η1) + 0.2W (β2, η2) + 0.4W (β3, η3).
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(a) Simulated Weibull distributions W1
3 (b) Predicted Weibull distributions

Figure 10: The density of composing Weibull distributions simulated
on the left, and those of predicted ones.

The composing Weibull distributions and their mixture are illustrated in460

densities in Figure 12a. For this mixture, we test the following scenarios
of the value of censoring rate rc: {0, 0.25, 0.45, 0.55, 0.65, 0.75, 0.85}.

• Tri-Modal Mixture: we draw m = 10000 samples from a 40-30-30 mixture
of three Weibull distributions of parameters (β1 = 1.5, η1 = 0.5), (β2 =
5.5, η2 = 1.5) and (β3 = 3.5, η3 = 3) respectively with a weighting of 0.4,
0.3 and 0.3 respectively:

W3
3 = 0.4W (β1, η1) + 0.3W (β2, η2) + 0.3W (β3, η3)

The composing Weibull distributions and their mixture are illustrated in
densities in Figure 13. For this mixture, we test the following scenarios of
the value of censoring rate rc: {0, 0.1, 0.2, 0.3, 0.45, 0.55, 0.65, 0.85}.465

7.4.1 Uni-Modal Mixture

At an initial stage, we train DPWTE on the samples without considering the
censoring rate, which means that we assume that all the time samples are non-
censored, and obtain the predicted values of the triplets of parameters denoted
by (α̂i, β̂i, η̂i)i=1,2,3. We plot, as shown in Figure 10b, the predicted Weibull470

densities as well as the mixture of them using the parameters (β̂i, η̂i)i=1,2,3

and the predicted weighting coefficients (α̂i)i=1,2,3. As we can notice in Figure
10b and Figure 11a, the three distributions are reproduced and the predicted
mixture coincides with the simulated one, which means that the mixture pa-
rameters and their weighting coefficients are correctly estimated by DPWTE.475

Now, let’s see when we switch a portion of rc of the data into a censored status.
This means that the samples are split into non-censored sub-population (of size
b(1− rc)×mc) and censored sub-population (of size brc ×mc + 1). Then for
each scenario defined by a value of the censoring rate, we train DPWTE on the
resulting data and compare the mixture distribution with the one predicted by480
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(a) rc = 0, p̃ = 3 (b) rc = 0.5, p̃ = 4

(c) rc = 0.7, p̃ = 3 (d) rc = 0.85, p̃ = 2

(e) rc = 0.95, p̃ = 2 (f) rc = 0.99, p̃ = 1

Figure 11: Results of the conducted experiment on the uni-modal
mixture repeated with different values of censoring rates rc: densities
of the simulated mixture vs. predicted mixture.
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the model, since the goal is to estimate the underlying distribution. We obtain
the results for all the values of rc tested in Figure 11. The purple curve corre-
sponds to the probability density function of the mixture simulated while the
brown curve is that of the predicted mixture. We recall that tc corresponds to
the censoring time, defined as the (1− rc)-th quantile of the vector of simulated485

times, above which a recorded time is considered as censored. This censoring
time rc is represented in the plots by a red vertical line.

The first thing to notice is that we do not have the same value of the estimate
p̃ from a scenario to another. This may be because sometimes, the network
apportions a Weibull distribution to more than one node or because another490

Weibull distribution resembles that of the mixture with a weak weighting co-
efficient but shortly above the threshold αth. We also suspect the decreasing
of p̃ (while the censoring rate increases) comes from the fact that the more we
increase the censoring rate the more the network ignores a part of a mixture
and thus model the mixture with less Weibull distributions than it should be.495

We will see this example more clearly in the next scenario (bi-modal mixture).
Another interesting thing that we can notice is that the precision of prediction
decreases as the censoring rate increases which is expected since the increase of
the censoring rate implies a loss of information about the overall distribution.
Still, the model learns the shape of the distribution regardless of the value of500

rc. As we noticed before, when rc = 0, the two curves match up perfectly. For
rc = 0.5 and rc = 0.7, the two densities almost coincide with each other. The
same goes for rc = 0.85 even the model does not have information about the tail
of the distribution, but it predicts earlier density mitigation. For the extremely
highly censoring setting namely the cases rc = 0.95 and rc = 0.99 (see Figure505

11e and Figure 11f), the peak is overestimated which implies an early density
attenuation. Still, the peak is well located even if it is not observed (the red
vertical line is placed before the peak in these two cases). We can conclude that
DPWTE can provide promising results in terms of handling the highly censoring
setting as shown in this experiment.510

7.4.2 Bi-Modal Mixture

We conduct a similar experiment on the bi-modal mixtureW2
3 described above,

but with different values of rc. We notice from Figure 12b that the simulated
and predicted densities coincide with each other when rc = 0. In this scenario,
the model combines the same number of Weibull distributions to model the515

simulated one (p̃ = 3). In the case where we have 25% of censored samples,
DPWTE estimates the density of the mixture using three Weibull distributions
(p̃ = 3) with a very slight degradation of the precision (the second peak is slightly
underestimated and slightly shifted on the left), however, it learns the underlying
shape of the distribution and the positions of the peaks. For rc = 0.45, the520

model predicted only the first peak which seems logical as the second peak
is way located after the censoring time tc. The model learned the first two
distributions (hence p̃ = 2) but completely ignored the second peak. The third
highest value of α before normalization was of the order of 0.06 (less than the
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(a) Densities of W2
3 . (b) rc = 0., p̃ = 3

(c) rc = 0.25, p̃ = 3 (d) rc = 0.45, p̃ = 2

(e) rc = 0.55, p̃ = 2 (f) rc = 0.65, p̃ = 2

(g) rc = 0.75, p̃ = 2 (h) rc = 0.85, p̃ = 1

Figure 12: Results of the conducted experiment on the bi-modal
mixture repeated with different values of censoring rates rc: densities
of the simulated mixture vs. predicted mixture.
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Figure 13: Densities of W3
3 and its composing distributions.

threshold 0.1), which corresponds to the third distribution that the model could525

not learn because of the high censoring. Still, the observed curve (before tc) is
perfectly estimated. The same goes for rc = 0.55 and rc = 0.65 where the
model used 2 distributions, but it further ignores the tail of the distribution as
the censoring time tc further backward. For the last two cases, the respective
predicted densities still ignoring the second peak while having earlier density530

mitigation. Compared to the uni-modal scenario, the degradation of the model
performance (in terms of handling highly censoring setting) occurs before in
this scenario. This is because, when the ratio of censored samples is important,
the bi-modal mixture is considered more complex to learn than the uni-modal
especially when the two peaks are largely separated in time.535

7.4.3 Tri-Modal Mixture

The same experimental protocol is executed on the tri-modal mixture W3
3 with

different values of rc. This means that the complexity of the problem grows
even further. The third peak here appears but with a sharpness less important
as seen in Figure 13. In the scenario where all the samples are non-censored, the540

model estimates with good precision the mixture with its three peaks correctly
located. For rc = 0.1, the model correctly predicted the peaks with their re-
spective magnitudes and positions in time. For rc = 0.2 and rc = 0.3, the third
peak starts to disappear, while the density values before this peak are perfectly
estimated (the purple and brown curves coincide from t=0 to t=2 which corre-545

sponds to the interval that contains the first two peaks). For the cases rc = 0.45
and rc = 0.55, even if the second peak is not observed (it is placed after the red
vertical line) the model predicts the latter with a very slight shift on the right
but a significant overestimation of the magnitude which speeds up the density
mitigation. For the last two cases, the precision of the density estimation con-550

tinues to decline after the first peak, but still perfectly estimating the part of
the curve corresponding to the observed times.
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(a) rc = 0, p̃ = 3 (b) rc = 0.1, p̃ = 3

(c) rc = 0.2, p̃ = 3 (d) rc = 0.3, p̃ = 3

(e) rc = 0.45, p̃ = 2 (f) rc = 0.55, p̃ = 2

(g) rc = 0.65, p̃ = 2 (h) rc = 0.85, p̃ = 2

Figure 14: Results of the conducted experiment on the tri-modal
mixture repeated with different values of censoring rates rc: densities
of the simulated mixture vs. predicted mixture.
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7.4.4 Summary Results

To sum up, these three datasets represent different levels of difficulties in terms
of modeling the mixture in a highly censoring setting. The difficulty of modeling555

in the presence of censored data depends on the number of peaks, their respective
positions in time, and also their respective magnitudes. For example, let’s take
an example of two bi-modal Weibull distributions whose peaks have respectively
the values (0.6,0.2) and (0.4,0.4). Since the magnitude of the second peak of
the second Weibull is greater than that of the first Weibull. The latter is more560

likely to be ignored than that of the second Weibull because for a given value
of rc, the tc associated is lower in the first case and thus the model further loses
information.

In general, we can say that DPWTE handles censoring samples at a varying
portion that depends on the shape of the distribution. For instance, in the uni-565

modal mixture, even with 99% of censoring, the model is considered to be well-
performing until rc = 0.85 but still learn the underlying shape of the distribution
as well as the position of the peak, while in the bi-modal the deterioration in
the quality of estimates starts earlier with notably rc = 0.45. Finally, for the
tri-modal mixture, the model has difficulties even earlier (it ignored the last570

peak from the case rc = 0.2 and overestimated the magnitude of the second
peak from the case rc = 0.45 until it ignored it in the case rc = 0.85), but in
most cases, the position of the second peak is well predicted even if it is not
observed.

8 Experiments on Real-World Datasets575

,In this section, we evaluate our proposed model on real data sets and compare
its predictive performance with the conventional benchmarks. We perform five
sets of experiments: Breast Cancer, Heart Disease SEER, METABRIC, SUP-
PORT, and FLCHAIN. Table 1 gives an overview of descriptive statistics of
these datasets. All the comparative models (including DPWTE) are tested in580

the same experimental protocol.

8.1 Description of the Real-World Datasets

The Surveillance, Epidemiology and End Results SEER1 [17] Program provides
cancer incidence data from population-based cancer registries covering approx-
imately 34.6 percent of the U.S. population. For our experiment, we focused585

on the patients recorded between 1998 and 2002 with Breast Cancer (BC) or
Heart Disease (HD) or who have survived to the end of this period. We kept
34 covariates including gender, race, tumor size, behavior code, Progesterone
Receptor (PR) Status, Estrogen Receptor Status, etc. We yielded from this
database two single-event datasets (BC and HD) keeping survivors in both of590

them.

1https://seer.cancer.gov
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FLCHAIN: Assay Of Serum Free Light Chain is a database used to study the
relationship between serum free light chain (FLC) and mortality. We used a
stratified random sample containing 50% of the subjects from this database.
We extracted 8 variables namely age, sex, kappa and lambda portion of serum-595

free light chain, FLC group, serum creatinine, and monoclonal gammopathy
indicator MGUS.
SUPPORT is a sample of patients from a Study to Understand Prognoses
Preferences Outcomes and Risks of Treatment. This dataset is very good for
learning how to fit highly nonlinear predictor effects. We studied 9105 patients600

(of which almost 32% are survivors) with their 36 non-correlated attributes in-
cluding age, sex, race, urine output creatinine, etc.
METABRIC: Molecular Taxonomy of Breast Cancer International Consor-
tium is a north American dataset for a project of breast tumors classification.
METABRIC contains gene expressions and clinical features including age, tu-605

mor size, PR Status, etc. In total, we have 1981 patients of which 888 died
before the end of this study.

8.2 Network Configuration

DPWTE has a common sub-network which is a 2 fully connected layers (the
batch normalization is applied before the second layer). The regression sub-610

network consists of 1 fully connected layer with batch normalization and two
ELU layers as output layers, while the classifier sub-network is composed of 2
fully connected layers and a softmax layer followed by a Mixed Weibull Sparse
layer. Hidden layers are activated by ReLU. The network is trained via SGD
optimizer and learning rate of 10−4.615

8.3 Predictive Performance Metric

As evaluation metric, we use concordance index C-index [4] which calculates,
among all the comparable pairs of observations (i, j) (δi = δj = 1), the number
of concordant ones:

C-index =

∑
i,j 1ti>tj .1t̂i>t̂j .δj∑

i,j 1ti>tj .δj
, (10)

C-index estimates the probability of the event {t̂i > t̂j |ti > tj} which compares620

the rankings of two independent and comparable pairs (non censored) of survival
times (ti, tj) and the times predicted (t̂i, t̂j).

8.4 Experimental Setting

For evaluation, we applied 5-fold cross validation. For each iteration, the pre-
dicted parameters (α, β, η) and p̃ are used to calculate the mean lifetime µ and625

then the score C-index on validation set. The values of the scores displayed in
Table 2 are the means of the scores calculated in each iteration. We set p = 10
and λ = 10−4.
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Table 1: Descriptive Statistics of Real-World Datasets

Datasets No. Uncensored No. censored No. Features Censoring Time Event Time
min max mean min max mean

SEER BC 9152(42.8%) 12221 (57.2%) 1 226 63.7
34 1 227 181.5

SEER HD 12014 (49.6%) 12221 (50.4%) 1 224 76.7
FLCHAIN 2169(27.6%) 5705(72.4%) 8 1 5215 4226.2 0 4998 2174.5
SUPPORT 5844(68.1%) 2735(31.9%) 36 344 2029 1060.2 3 1944 206.0

METABRIC 888 (44.8%) 1093 (55.2%) 21 1 308 116.0 1 299 77.8

8.5 Comparison Methods

For the five real-world datasets, which have a single event, the discriminative630

performance of DPWTE (p = 10) was compared with those of DeepWeiSurv
with its parameter p set to 2, CPH with a penalty term = 0.1, Weibull Acceler-
ated Failure Time model (Weibull AFT), Random Survival Forests (RSF [6])
with number of trees set to 100 and DeepSurv [3] with 2 layers of 32 nodes.

8.6 Results635

We compare the tested methods using C-index that evaluates their predictive
performances. Table 2 shows the concordance index averaged over the five cross-
validation folds. We notice that, for the METABRIC experiment, DPWTE’s
prognostic performance exceeds by far that of the remaining models other than
DeepWeiSurv (in the order of 0.16 ). For the SUPPORT dataset, DPWTE out-640

performs all the competing methods, other than DeepSurv and DeepWeiSurv,
with statistically significant improvement and no overlap between DPWTE’s
performance and theirs in terms of the confidence interval. Whereas for the
FLCHAIN dataset, DPWTE provides a slight improvement over all the com-
parison models other than DeepSurv, but still outperforms this latter on av-645

erage. This might be because the FLCHAIN experiment represents a highly
censoring setting (around 72% of censored observations) which is more chal-
lenging for the models. Regarding the SEER dataset, our model provides us a
positive score differential, which is statistically significant, against all the com-
peting models in the case of Breast Cancer. The same goes for the Heart Disease650

dataset excluding DeepWeiSurv which has a range of scores not significantly dif-
ferent from that of DPWTE. We can also remark that the standard deviation
of the C-index in the METABRIC experiment is relatively greater than those
of SEER, FLCHAIN, and SUPPORT datasets. We suspect that this comes
from the fact that the METABRIC dataset size is relatively small in compar-655

ison with the other datasets. Another thing we would point out is that in all
experiments other than the METABRIC case, DPWTE’s confidence interval
is narrower than those of the other methods other than DeepWeiSurv which
means that DPWTE produces a more stable estimation. Therefore, as can be
seen, our model consistently provides the best performance for the five datasets660

and shows a slight improvement over DeepWeiSurv. We suspect that the per-
formance improvement comes from its capacity to find the optimal number of
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Table 2: Comparison of C-index performance tested on Single Event Datasets
(mean and 95% confidence interval)

Models Datasets
SEER BC SEER HD FLCHAIN SUPPORT METABRIC

CPH 0.831 0.785 0.789 0.805 0.661
(0.824 - 0.839) (0.781 - 0.788) (0.783 - 0.794) (0.799 - 0.813) (0.635 - 0.687)

Weibull AFT 0.832 0.785 0.789 0.807 0.659
(0.825 - 0.839) (0.78 - 0.79) (0.784 - 0.795) (0.802 - 0.814) (0.634 - 0.684)

DeepSurv 0.841 0.786 0.79 0.826 0.662
(0.836 - 0.847) (0.784 - 0.787) (0.78 - 0.8) (0.811 - 0.831) (0.635 - 0.69)

RSF 0.838 0.755 0.75 0.783 0.667
(0.829 - 0.848) (0.744 - 0.765) (0.708 - 0.791) (0.78- 0.789) (0.636 - 0.699)

DeepWeiSurv 0.908 0.863 0.795 0.815 0.819
(0.906 - 0.909) (0.86 - 0.868) (0.79 - 0.797) (0.79 - 0.82) (0.812 - 0.837)

DPWTE 0.912 0.871 0.802 0.83 0.829
(0.911 - 0.914) (0.865 - 0.878) (0.797 - 0.82) (0.82 - 0.843) (0.808 - 0.849)

distributions needed to model the relationship between observations’ covariates
and the survival time distribution.

8.7 Censoring Threshold Sensitivity Experiment665

In the previous experiment, the models learned on the original version of the
considered benchmark datasets. This means that the censoring threshold is
fixed in each dataset. In this experiment, for a given dataset X , we train
the models with different censoring thresholds that are greater than the initial
one. In other words, let tc0 denotes the initial censoring threshold for a given670

dataset X , we choose k censoring thresholds {tci |tci > tc0 , i = 1, ..k} where for
each tci , the original is transformed to a new set Xci = {ti | δ(ti) = 1 if ti <
tci and 0 otherwise} with which the models are fitted. Then, for each censoring
threshold tci , we evaluate the associated models on all the Xci . The goal here is
to investigate the ability of the models to handle the highly censored settings.675

We conduct this experiment on FLCHAIN and METABRIC by testing the 4
best models that show a good performance in the previous experiment namely:
DeepSurv, DeepHit, DeepWeiSurv with p = 10, and finally DPWTE. We choose
METABRIC because of its size which is relatively small compared to the others
adn thus renders the task more challenging, while FLCHAIN is selected because680

DeepHit has shown the best performance for this dataset and thus represents a
fair choice.

8.7.1 Experimental Protocol

For each considered dataset in this experiment, the censoring thresholds are
expressed in quantiles qα of the event time variable and chosen in such a way that685

each threshold provides a significant portion of censoring compared to the one
that precedes it, or in other words, changes significantly the time distribution.
For METABRIC and FLCHAIN, we respectively choose the following censoring
threshold vectors: QMETABRIC = (q0.5, q0.45, q0.35, q0.25) and QFLCHAIN =

30



Table 3: Distribution of METABRIC observations (censored/non-censored) for
each censoring threshold in QMETABRIC .

tc No. censored No. non-censored Added portion
tMETABRIC 1093 888 -

q0.5 1285 696 17.6%
q0.45 1411 570 29%
q0.35 1559 422 42.6%
q0.25 1670 311 52.8%

Table 4: Distribution of FLCHAIN observations (censored/non-censored) for
each censoring threshold in QFLCHAIN .

tc No. censored No. non-censored Added portion
tFLCHAIN 5705 2169 -

q0.65 6237 1637 9.3%
q0.55 6534 1340 14.5%
q0.4 6820 1054 19.5%
q0.3 7086 788 24.2%

(a) METABRIC (b) FLCHAIN

Figure 15: Mean values of the estimate p̃ calculated over the 5-fold
cross validation for each censoring threshold tc in both METABRIC
(left) and FLCHAIN (right).
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(a) tc = q0.5 (b) tc = q0.45

(c) tc = q0.35 (d) tc = q0.25

Figure 16: Box plots of the concordance index scores calculated, for
each censoring threshold tc ∈ QMETABRIC over the five-fold cross
validation for METABRIC dataset.

(q0.65, q0.55, q0.4, q0.3). Table 3 and Table 4 give, for each censoring threshold,690

the associated distribution of censored/non-censored samples for METABRIC
and FLCHAIN datasets respectively. The ’Added portion’ column represents
the percentage (out of the initial distribution) of data whose status switch from
non-censored to censored.

For each scenario defined by a couple: censoring threshold tci and associated695

dataset Xci , we apply the five-fold cross-validation where, in each iteration, we
train the modelsM on the associated training folds (4/5 of the global size) of Xci
then evaluate these models on the associated validation fold of (Xck)ck∈QX by
calculating the concordance index Ctd. We obtain at the end of each scenario, a
vector of five scores (calculated over the 5 iterations) for each model evaluation700

and each validation fold.

8.7.2 Results and Discussion

To highlight the mean and the standard deviation of the scores obtained, we use
box plots. The results are shown in Figure 16 and Figure 17 for METABRIC
and FLCHAIN datasets respectively where each scenario as described above is705
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(a) tc = q0.65 (b) tc = q0.55

(c) tc = q0.4 (d) tc = q0.3

Figure 17: Box plots of the concordance index scores calculated,
for each censoring threshold tc ∈ QFLCHAIN over the five-fold cross
validation for FLCHAIN dataset.

represented by a sub-figure. We call the time horizon th, the censoring thresh-
old in the case of prediction. Firstly, it is considered overall, that the smaller
the censoring threshold, i.e. the tighter the observation period, the weaker is
the predictive performance of the models, which is (for the same reason as in
the simulated experiments) normal since the quantity of knowledge about the710

distribution increases with the size of observed (non-censored) samples. For the
METABRIC dataset, DPWTE outperforms in all scenarios whereas DeepSurv
has the worst performance which means that it has the most difficulty in han-
dling highly censored settings. As regards the two other models namely DeepHit
and DeepWeiSurv, they still have a good performance with a normal drop for715

small thresholds. Still, the models generally perform an acceptable confidence
interval. For FLCHAIN, DeepSurv gets closer to other models but still in the
last of the ranking in terms of predictive performance. DeepHit starts (in the
two first scenarios, i.e., for tc = q0.65, q0.55) by outperforming the rest of models
as in the previous experiments, but we notice that it has more difficulty than720

DPWTE and DeepWeiSurv for tc = q0.4, q0.3. Furthermore, DeepHit performs
standard deviations greater than those of DPWTE and DeepWeiSurv. We can

33



conclude that DPWTE and DeepWeiSurv are the best in handling highly cen-
sored settings with a slight improvement provided by DPWTE. We suspect that
their performance comes from the fact that the Weibull distribution best fits the725

respective underlying distributions of the benchmark datasets. Another thing
to notice, from Figure 15, is that the estimate p̃ globally decreases, regardless of
the survival time horizon th, while decreasing the censoring threshold (hence the
censoring rate is increasing). We suspect this comes from the fact that the more
we increase the censoring rate the more the network ignores a part of the un-730

derlying distribution and thus model the latter with an insufficient combination
of Weibull distributions (in terms of mixture size in this case).

9 Conclusion

In this paper, we proposed a novel approach for survival analysis. A network-
based model, assuming a Weibull mixture character of the survival time, was735

presented to address this problem. We could, by parametrizing the mixture
with neural networks, model rich relationships between the covariates and event
times. DPWTE leverages Weibull advantages, namely the fact that these dis-
tributions are known to be a good representation for survival time distribution
and it also allows us to consider any time horizon since we indirectly learn740

a continuous probability density function (through parameters learning) and
thanks to the Sparse Weibull Mixture layer tries to select the requisite number
of ”Weibulls” composing the mixture to model the time distribution. We verified
through simulations that DPWTE manages to model the relationship between
the features and the time distribution. Regarding the experiments on real-world745

datasets, DPWTE has outperformed the alternative approaches. Furthermore,
we assessed the censoring sensitivity of our model with both simulated-data
and real-data experiments, and these demonstrate its ability to generally han-
dle highly censored setting and consider any survival time horizon. Interesting
expansions include extending our methodology to models that handle compet-750

ing events, time-dependent covariates. In addition, it would be interesting to
explore other data types and sources that require some advanced network struc-
tures notably convolutions neural networks or generative adversarial models.
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