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Abstract—There has been an increasing interest in spiking
neural networks in recent years. SNNs are seen as hypothetical
solutions for the bottlenecks of ANNs in pattern recognition,
such as energy efficiency [1]. But current methods such as
ANN-to-SNN conversion and back-propagation do not take full
advantage of these networks, and unsupervised methods have
not yet reached a success comparable to advanced artificial
neural networks. It is important to study the behavior of SNNs
trained with unsupervised learning methods such as spike-
timing dependent plasticity (STDP) on video classification tasks,
including mechanisms to model motion information using spikes,
as this information is critical for video understanding. This paper
presents multiple methods of transposing temporal information
into a static format, and then transforming the visual information
into spikes using latency coding. These methods are paired with
two types of temporal fusion known as early and late fusion,
and are used to help the spiking neural network in capturing the
spatio-temporal features from videos. In this paper, we rely on the
network architecture of a convolutional spiking neural network
trained with STDP, and we test the performance of this network
when challenged with action recognition tasks. Understanding
how a spiking neural network responds to different methods
of movement extraction and representation can help reduce the
performance gap between SNNs and ANNs. In this paper we
show the effect of the similarity in the shape and speed of certain
actions on action recognition with spiking neural networks, we
also highlight the effectiveness of some methods compared to
others.

Index Terms—spiking neural networks, STDP, pre-processing,
action recognition, temporal fusion, optical flow, SVM, sequence
preparation, spatio-temporal features.

I. INTRODUCTION

Spiking neural networks are biologically-inspired third gen-
eration neural networks modelled after the human brain [2]. In
these networks the communication between neurons is done by
broadcasting spike trains. Some of their advantages over ANNs
are biological plausibility, fast information processing when
implemented on dedicated hardware, and energy efficiency [2],
[3], [4], not to mention that spiking events are sparse in time,
which means that these spikes can potentially hold a large
amount of information [2]. Despite all of these advantages,
and the many theories in which SNNs are capable of avoiding
certain bottlenecks of ANNs, current methods such as spatio-
temporal back-propagation [5] and ANN-to-SNN conversion
[6] do not completely overcome the bottlenecks of ANNs nor

certain SNN related limits, such as frequency loss [7]. On
the other hand, models trained with spike-timing dependent
plasticity (STDP) allow local computations, thus enabling the
implementation of these networks on larger ranges of devices,
but these models still do not compete with the results achieved
by ANNs [8]. Human action recognition is a standard com-
puter vision problem, that can be addressed with many neural
network models. Because of its wide range of applications, it
is valuable to challenge a spiking neural network with video
analysis tasks, in order to inspect the ability of SNNs in
processing visual information. But spiking models are still
far behind traditional models. Therefore, in order for SNNs
to stand out, there is a need for unsupervised methodologies
that can make them effectively learn spatio-temporal features,
because unsupervised learning has the ability to develop new
biologically plausible self-learning methods without needing
excessive amounts of labeled data.

In this work, we aim to learn spatio-temporal features in
an unsupervised manner with STDP, by pairing different pre-
processing methods with two temporal fusion methods, thus,
generating static representations that encode local movement.
After that, we evaluate the performance achieved by these
representations on a convolutional SNN. Experiments are per-
formed on the KTH and Weizmann datasets, which are natural
datasets similar to real live applications in computer vision;
although ideal recognition rates have already been achieved
on these datasets using traditional computer vision approaches,
their simplicity makes them good basic benchmarks to study
the performance of new models like SNNs trained with STDP
when challenged with spatio-temporal information. Thus, at-
tempting unsupervised feature learning using STDP on these
datasets is a first step towards bridging the performance gap
between SNNs and other deep learning solutions.

II. RELATED WORK

Common spiking neural network learning methods. The
most common spiking neural network models featured in
the literature are based on ANN-to-SNN transformation,
and supervised learning techniques, such as adapting back-
propagation on SNNs [9], [10], which target high recognition
rates, setting aside many of the advantages of SNNs, such



as energy efficiency during training on dedicated hardware.
Some of these models are described in this section. An ANN-
to-SNN transformation is applied in [11] where a regular
ANN is trained for a given sequence of input frames, and
streaming rollouts are used to compute the activations of
all ANN units over time. They applied back-propagation-
through-time in order to train their network, and then they
transformed their ANN into an SNN. However, in their work
they do not address the ANN bottlenecks SNNs were made
to avoid, because they use a regular ANN to conduct the
training. A supervised approach is also suggested in [5], where
the authors use a supervised spatio-temporal back-propagation
(STBP) algorithm for training SNNs. They solved the ”non-
differentiable” problem caused by the nature of spikes by using
surrogate gradients as approximate derivatives for spike activ-
ity. But, in their approach, each convolutional neuron receives
pre-prepared convoluted results as input, thus using heavy
and costly pre-processing instead of training the convolutional
kernels from scratch with spike information. SPAN [12] is a
spiking neural network used to classify spatio-temporal data by
transforming spike trains during the learning phase into analog
signals. In [12], the authors are able to successfully teach their
system to recognise certain simple patterns of numbers that
they created. But they did not conduct any experiments on a
reference video dataset. Therefore, there is no evidence that
their model would be realistically applicable on more complex
datasets. Another SNN learning method is the BCM (Bienen-
stock, Cooper, and Munro) learning rule. In [13], the authors
proposed a BCM-based spiking neural network model that
classifies human action recognition videos. Another learning
rule is STDP, which is a biologically plausible unsupervised
learning rule [14]. In [15], the authors use STDP learning on a
deep SNN. They use temporal coding, and train their network
on natural images for the sake of object recognition. In [16]
the authors use reward-modulated Spike-Timing-Dependent-
Plasticity (R-STDP) and reinforcement learning to train their
network to perform action classification. In [17], the authors
use a supervised reward-modulated Spike-Timing-Dependent-
Plasticity (R-STDP) learning rule to train two SNN-based
sub-controllers on obstacle avoidance tasks. In this work
we explore another way of training the network to perform
action classification. We use the biological STDP learning
rule [18] in an unsupervised manner to train our convolutional
spiking neural network to learn spatio-temporal features. This
unsupervised learning gives the advantage of not needing a
large amount of labeled data.
Spatio-temporal information learning. In this section, we
review traditional models, such as ConvNets, that can learn
spatio-temporal information from videos. In [19], the authors
evaluate multiple approaches of extending CNNs into video
classification. Then they highlight an architecture that sepa-
rates the spatial information of the input into a low-resolution
and a high-resolution context stream. After that, they describe
multiple fusion methods to fuse the information across the
temporal domain. In [20], a two-stream model is introduced.
In this model, two deep convolutional networks are used to

separate the spatial and temporal recognition streams. The
spatial stream relies on still frames and is responsible for the
information regarding appearance, while the temporal stream
relies on multi-frame dense optical flow and is responsible
for the movement information found in the motion between
frames. These two streams are combined by a type of feature
fusion which is late fusion [21]. This fusion forms the com-
plementary information needed to achieve action recognition
in videos. A more complex approach is explained in [22],
where a spatio-temporal pyramid architecture is introduced.
In this paper, the authors used an architecture similar to the
two-stream method in [20] in the first stage. The spatial stream
is represented by still RGB frames that contain the appearance
information, while optical flow is used to capture the motion
between frames, in the temporal stream. Then these channels
are fused together in the first step, as in two-stream methods,
but a multi-level fusion pyramid of spatio-temporal features is
added when the same streams are fused again in step two with
the result of their previous fusion. Although not implemented
in the context of SNNs, these models are interesting because
they show the importance of both the spatial as well as the
temporal information in action recognition. They also highlight
the importance of feature fusion in creating a complete data
representation. Temporal fusion is introduced in [21] where the
authors create a Dual Temporal Scale Convolutional Neural
Network (DTSCNN) architecture to recognize spontaneous
micro-expression.

In brief, there is a need for understanding different methods
that represent the spatio-temporal information found in videos,
and their implementation with SNNs. This work can serve
as a first step towards creating models that can learn spatio-
temporal features and conduct their training locally, in a
processing-cost friendly manner that can be used in real-
world applications. This energy efficiency can be achieved
with STDP learning. This paper contributes to the study of
bringing closer the nature of the spatio-temporal information
and the nature of STDP trained spiking neural network, in
order to insure better performance.

III. NETWORK ARCHITECTURE

The general architecture. In this paper we use a state-of-
the-art convolutional SNN model from [18] which consists
of feed-forward layers that contain IF neurons [23], and
trained using the biological STDP learning rule [24]. An on-
center/off-center filter is used to pre-process the data before
latency coding is applied to transform this data into spikes.
The threshold adaptation method described in [18] is used
in order to maintain a state of homeostasis. The SNN we
chose uses only one (convolution/pooling) stage for simplicity,
as shown in (Fig. 1). This is because training multi-layer
SNNs with STDP is still an open problem [3]. The objective
of this paper is to focus on how spatio-temporal data can
be pre-processed in order to feed a convolutional SNN with
temporal information aggregated from a video sequence. We
also explore early and late fusion techniques [21] in order to
evaluate the benefits of such techniques in encoding spatio-



Fig. 1. Network topology (figure from [18]).

temporal information. The output of this network is a dense
array that represents the processed sample, flattened as a linear
array and introduced into a support vector machine (SVM)
that is used to make the action classification. An SVM is used
to classify the samples because we focus on the unsupervised
learning of features. Any other supervised method can be used
to do the classification, but we chose to use an SVM for its
simplicity and its effectiveness.
Feature fusion. Temporal fusion is one way of aggregating the
temporal information in a sequence of frames. In deep neural
networks, there are multiple types of fusion [21], but in this
paper, only early and late fusions are studied and implemented.
They are a good fit to our study because we are using a
single layer SNN model, which makes implementing other
fusion methods that require multiple layers inapplicable, such
as slow fusion [21]. Early and late fusion techniques operate
differently and are implemented separately in this work. Early
fusion is implemented by taking multiple samples and fusing
them together row by row, into one big frame, as shown
in the following equation: Iokj = Ifij with k = i ∗ n + f ,
f ∈ [0, n − 1], i ∈ [0, h − 1], j ∈ [0, w − 1], where If is the
input frame of index f, and Io is the output frame. On the other
hand, late fusion is implemented by taking multiple flattened
samples at the output of the network and concatenating them
together. The main difference between early and late fusion
is the stage at which the fusion takes place. In early fusion,
shown in (Fig. 2), the sample frames are fused together before
training the convolutional kernels. On the other hand, in late
fusion, see (Fig. 3), the features that result from the processing
of the video frames are fused together in the last stage. In the
late fusion method implemented in this work, the samples are
flattened and then joined together using a sequential queue.

Fig. 2. Early fusion, multiple input frames are fused together.

The process. The general sequence preparation (SP) is a pre-
processing procedure (see Fig. 4) that consists in applying
background subtraction to every two consecutive frames, be-
cause it reduces the noise that can results from optical flow

Fig. 3. Late fusion: the features obtained at the end of the last pooling layer
are fused together before entering the SVM.

computation. After that, frames that do not contain significant
motion are dropped. This is done by averaging the values of
pixels and checking if this average is greater than a threshold
estimated by trial and error, where each method has its own
threshold. Two frames are also dropped between every two
frames that are selected to be used in the sequence; this speeds
up the action and helps recording it in a relatively smaller
number of frames. Then, a pre-processing method based on
Farneback’s dense optical flow [25] is applied. Early fusion
can be applied directly after implementing the optical flow
representation, unless late fusion is going to be applied at
the end of the process. Then, on-center/off-center filtering is
applied and the data is introduced into the convolutional SNN.

Fig. 4. The general pre-processing procedure.

IV. SPACE-TIME INFORMATION PROCESSING

In this section, we present different pre-processing methods
for action recognition video datasets, and evaluate their suit-
ability to spatio-temporal feature learning with STDP-based
SNNs. We rely on deriving different data representations from
sequences of static frames. We base our pre-processing on
Farneback’s dense optical flow because it is a reference method
in motion representation. We define five representations that
exploit various aspects of the optical flow: the horizontal and
vertical displacement (DXDY), the Orientation and Amplitude
(OA), the Composite Channel information (CC), the Edges
Grid (EG) and the Motion Grid (MG). The initial processes
described in Section III-C are used for all the pre-processing
methods except the EG and MG methods.



Fig. 5. A Walking action. (A) The original frame. (B) The DXDY repre-
sentation (in RGB, G: Dx, B: Dy). (C) The OA representation(in HSV, H:
orientation, V:amplitude). (D) The CC representation (in RGB, R: the moving
part of the original grey-scale image G: Dx, B: Dy).

The DXDY representation. DXDY is made up of 2 channels,
a horizontal displacement Dx in channel C1 and a vertical
displacement Dy in channel C2. A sample produced by using
this method is shown in (Fig. 5(B)).
The OA representation. OA separates optical flow vectors
into orientation and magnitude values. The orientation data is
periodic, therefore, it is difficult to apply latency coding to it.
Thus, the information is displayed in the HSV color space,
which is then converted into RGB color space (see Fig. 5(C)).
The CC representation. CC is created by combining the
channels of the DXDY representation with the gray scale
appearance information of the moving subject. A sample that
results from this method contains three channels (see Fig.
5(D)). The first channel C1 represents the horizontal dis-
placement Dx, the second channel C2 represents the vertical
displacement Dy , and the third channel C3 represents the
original gray scale information of only the moving parts of the
subject. The gray scale illumination of each pixel corresponds
to the mean value of the channels in the original image,
and pixels with significant motion are detected as follows:
|Dx|+

∣∣Dy

∣∣ > θ, we use θ = 30 in the experiments.
The EG representation. EG is based on extracting the
edges of motion from optical flow frames using the Canny
edge detection approach [26]. In spirit, the EG representation
resembles motion boundary descriptors [27], except that we
group these edges of motion into a grid as shown in Fig. 6(A).
Each sample is constructed using 36 optical flow frames, and
sample frame overlapping is used to increase the number of
samples. Many different grid sizes were tested but 36 proved
to be the most suitable value. This creates an early fusion of
36 frames, and therefore, the feature fusion methods in Section
III-B are not applied with this method.
The MG representation. MG groups the movement informa-
tion into a composite grid that is made up of 4 × 12 optical
flow frames. Each frame is divided into 4 channels that are
placed in separate frames one after the other as shown in
(Fig. 6(B)). These channels are: the horizontal displacement to
the left |−Dx|, the horizontal displacement to the right +Dx,
the vertical displacement in the upwards direction

∣∣−Dy

∣∣, and
the vertical displacement in the downwards direction +Dy ,
resulting in 16 × 12 channels per grid. This creates an early
fusion of 48 frames, therefore, the feature fusion methods in
Section III-B are also not applied with this method.

Fig. 6. A Walking action. (A) EG representation. (B) MG representation.

V. EVALUATION

Data Sets. The KTH dataset [28] contains 600 videos of 25
subjects, performing 6 actions in 4 scenarios. The subjects 11,
12, 13, 14, 15, 16, 17 and 18 are used for training, while
02, 03, 05, 06, 07, 08, 09, 10 and 22 are used for testing,
as indicated in the KTH protocol. The Weizmann dataset [29]
contains 90 videos of 9 subjects performing 10 actions. The
experiments on this dataset are done using the leave-one-
out strategy. Each sample from both datasets has 10 frames
prepared as described in Section III-C. This applies for all
representations, except the MG and EG representations which
need 48 and 36 frames per sample respectively.
Meta-parameters of the Model. The meta-parameters used
in this work are presented in Table I. A difference-of-Gaussian
(DoG) filter is used to simulate on-center/off-center cells. This
filter creates a motion boundary effect [27] that increases
the classification rates. Experiments with and without this
filter were conducted, and experiments without this filter gave
inferior results. Different numbers and sizes of filters were
tested, but we only reported the most suitable values: 128
convolutional kernels of size 5 x 5, with a padding of 2 and
a stride of 1. The convolutional SNN tested in this work is
simulated using the falez-csnn-simulator [18].

Learning
α = 0.95, nepoch = 100

STDP
Wmin = 0.0, Wmax = 1.0, ηw(0) = 0.1,
β = 1.0, τSTDP = 0.1, w(0) ∼ U(0, 1)

Neural Coding
texposition = 1.0

Threshold Adaptation
texpected = 0.95, ηθ(0) = 1.0, thmin = 1.0,

υθ(0) ∼ G(5, 1), υinh = 1.0
Difference-of-Gaussian

DoGcenter = 1.0, DoGsurround = 4.0, DoGsize = 7.0

TABLE I
THE META-PARAMETER VALUES USED IN THE EXPIREMENTS. SEE [18]

FOR NOTATIONS.

Baseline. We cannot compare our evaluation with the state-
of-the-arts because, to the best of our knowledge, none of the
previous work in the literature use STDP with unsupervised
learning for video classification as mentioned in Section II.
Table II displays the classification rates obtained by training
the convolutional SNN using raw video frames. Each sequence
fused using early and late fusion is made up of 10 frames. The
sequence preparation (SP) process mentioned in section (III-C)
is applied. This table serves as a baseline in order to compare
the effectiveness of the pre-processing techniques.

https://www.csc.kth.se/cvap/actions/
http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
https://gitlab.univ-lille.fr/bioinsp/falez-csnn-simulator/tree/07fd14324afc42d7b3b24a3472271e1c6a90255a


Dataset KTH Weizmann KTH + SP Weizmann + SP
No Fusion 19.54 18.88 34.84 24.49

Early Fusion 24.50 22.11 30.52 20.73
Late Fusion 26.38 21.03 35.26 23.58

TABLE II
CLASSIFICATION RATE IN % USING EARLY, LATE, AND NO FUSION WITH

THE KTH AND WEIZMANN DATASETS AS RAW FRAMES, WITH AND
WITHOUT SEQUENCE PREPARATION (SP).

Sequence preparation yields higher classification rates. This
is because background subtraction removes some unnecessary
spatial information, such as clothing and surrounding objects
(see Fig. 4). Without sequence preparation, temporal fusion
increases the classification rate with respect to no fusion. This
is due to the SNN depending on the temporal information to
classify the action. But early fusion decreases the classification
rate after sequence preparation. This is because the SNN is
no longer confused by the extra spatial information, and only
considers the form of the action. Another reason is that fusion
decreases the number of training samples by 10, since every
10 frames are processed as one sample.
Evaluation of the Five Representations. Preparing pre-
processed samples from the action recognition videos using
the DXDY, OA, CC and MG representations, yields the results
displayed in Table III.

Dataset KTH Weizmann
Fusion Method Early Late Early Late

DXDY 26.85 28.70 12.86 11.11
Orientation and Amplitude 41.05 45.83 50.42 44.44

Composite Channels 45.78 54.21 36.75 30.68
Edges Grid 63.01 - 43.83 -

Motion Grid 77.69 - 28.86 -

TABLE III
CLASSIFICATION RATE IN % USING EARLY FUSION AND LATE FUSION

WITH THE KTH AND WEIZMANN DATASETS AS PRE-PROCESSED FRAMES.

DXDY depends only on the displacement information. The
datasets contain some actions that are similar in form, and
others that are similar in their amount of displacement. Thus,
DXDY is not efficient enough to discriminate actions. The OA
representation gives a slightly higher classification rate. With
this method, the SNN is able to learn that the features of the
first set of three actions Boxing, Clapping, and Waving are
different from the other set of three actions Jogging, Walking,
and Running (see Fig. 7), but actions that are relatively similar
in form are not well discriminated. The biggest confusion was
recorded between the Jogging and Running actions, which are
similar. The same applies to the Weizmann dataset, where
the actions Bend and Jack are well differentiated, while
there is confusion between similar actions such as Walk and
Run. The CC representation aims to add spatial information
to the movement information, and shows a slightly better
performance than the OA method in the case of KTH dataset.

The MG outperforms all the other pre-processing methods
when implemented with the KTH dataset (see Table III).
This is because it densely represents the temporal movement

Fig. 7. Confusion Matrix of the (A) KTH dataset and (B) Weizmann dataset
pre-processed with the OA method and introduced into the SNN.

information. On the other hand, the performance of this
method on the Weizmann dataset is poor, which is due to
the lack of training samples. The Weizmann dataset videos
are scarcer and have shorter durations than the KTH ones,
and each MG sample requires 48 frames, thus not enough
training samples can be generated from the Weizmann dataset
using this method. To highlight this, we increased the number
of training samples with the MG representation from 110
to 220 by horizontally flipping the videos. Then we added
Gaussian noise to the set of frames, thus doubling the number
of samples again, to 440 training samples. The classification
rate increased to 45%. We also experimented with decreasing
numbers of samples on the KTH dataset, and the accuracy
decreased accordingly. Finally, the EG representation gives
an inferior classification rate to the MG representation when
using the KTH dataset. On the other hand, using the Weizmann
dataset with the EG representation gives a higher classification
rate than the MG representation. This is because fusing 36
frames per sample along with sample overlapping generates
more samples than fusing 48 frames per sample: here again,
the number of training samples in critical in reaching good
performances. It is important to note that we also tested
the MG method applied on the KTH dataset with a regular
CNN. This test gave a classification rate of (77%), which
is similar to that obtained with our SNN. Although the MG
does not give results that are state-of-the-art in comparison to
the classification rates obtained by other methods in testing
human action recognition datasets with ANNs, it does show
potential in understanding how SNNs may handle spatio-
temporal information.

VI. DISCUSSION

Using multiple pre-processing techniques in addition to
early and late fusion methods helps in understanding how
SNNs can achieve human action recognition. The velocity
distribution of the moving components in the videos and the
shapes of these components are two very important aspects
in action classification. When using a pre-processing method
that clearly highlights these two aspects, the spiking neural
network was able to reach higher classification rates. The
MG grid is able to represent at least one complete cycle
of the action being performed with the KTH dataset, thus
forming a more complete data representation. Spiking neural
networks are still not able to achieve the recognition rates that



regular convolutional neural networks can achieve with action
classification tasks, and therefore more research needs to be
conducted in this field. As a result it may be a good idea
to implement the two-stream method [20] which is similar in
spirit to the CC representation, except that in this method,
spatial information has an entire dedicate stream, while in
the CC method, the spatial information is processed by the
same neurons. Another idea would be to implement the same
experiments with a multi-layer spiking neural network, which
is a very challenging task [3].

VII. CONCLUSION

This study was carried out in order to give an assessment of
the effect of different data representations on spatio-temporal
feature learning. The result of testing these representations
on an SNNs trained with STDP yields several conclusions.
The first conclusion is that the spatial information improves
the classification rate with respect to using the displacement
information alone. The second conclusion is that the best
action classification rate is recorded when there is at least a
full cycle of motion, like in the case of the MG representation
with KTH dataset videos. The same MG representation gave
inferior results using the Weizmann dataset, because the videos
are not long enough to fill this grid with multiple cycles of
motion (some videos contain only one action, others contain
two, etc.), or to create enough samples. Testing the MG rep-
resentation with regular 2D CNNs gives a similar recognition
rate, which proves that a suitable pre-processing method can
help bridge the gap between SNNs and CNNs. The MG
shows an improvement compared to the other methods of pre-
processing, and serves as a good starting point in improving
human action recognition with SNNs.
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