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CHAPTER 9

Reinforcement learning for PHY layer communications

Philippe Mary
Visa Koivunen

Christophe Moy

9.1 Introduction

Wireless communication systems have to be designed in order to cope with time-frequency-space varying
channel conditions and variety of interference sources. In cellular wireless systems for instance, channel is
estimated regularly by mobile terminals and base stations (BS) using dedicated pilot signals. This allows
for adapting the transmitters and receivers to the current channel conditions and interference scenario.
Powerful adaptive signal processing algorithms have been developed in the past decades in order to cope
with the dynamic nature of the wireless channel, e.g. the least mean square and recursive least square
algorithms for channel equalization or estimation, the Kalman filtering in multiple-input multiple-output
channel matrix and frequency offset tracking. These techniques rely on very well established mathematical
models of physical phenomena that allow to derive the optimal processing for a given criterion, e.g. mean
square error and assumed noise and interference distribution models.

Any mathematical model trades-off between its complexity and its tractability. A very complete,
and hence complex, model may be useless if any insight on the state of the system cannot be drawn
easily. For instance, the wireless propagation channel is absolutely deterministic and the signal received
at any point of the space at any time can be precisely predicted by the Maxwell equations. However,
this would require a prohibitive amount of computation and memory storage for a receiver to calculate
at any point the value of the electric and magnetic fields using detailed and explicit knowledge of the
physical characteristics of scatterers in the propagation environment, e.g. the dielectric and permittivity
constants of the walls and other obstacles. It is much more efficient to design receivers that perform well
in environments that have been stochastically characterized instead of using explicit deterministic model
of each particular propagation environment.

Modern and emerging wireless systems are characterized by massive amounts of connected mobile de-
vices, BS, sensors and actuators. Modeling such large scale wireless systems has become a formidable task
because of, for example, very small cell sizes, channel aware link adaptation and waveform deployment,
diversity techniques and optimization of the use of different degrees of freedom in tranceivers. Conse-
quently, it may not be feasible to build explicit and detailed mathematical models of wireless systems
and their operational environments. In fact, there is a serious modeling deficit that calls for creating
awareness of the operational wireless environment through sensing and learning.

Machine learning (ML) refers to a large class of algorithms that aim at giving to a machine the ca-
pability to acquire knowledge or behavior. If the machine is a wireless system, which is man-made, then
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the goal of ML in that case is to let the system choose its signal processing techniques and protocols to
perform communication without being programmed a priori. The learning can be supervised, requiring
labeled data, unsupervised or based on reinforcement learning requiring trial-and-error approach. Super-
vised learning refers to methods that learn from a training set for which the desired output is provided
by an external supervisor, i.e. with labeled data, and then perform a task on data that are not present
in the training set. Unsupervised learning refers to methods that attempt to find hidden structures or
patterns in a large data set. Reinforcement learning (RL), is a class of machine learning technique that
aims at maximizing a cumulative reward signal over a finite or infinite time horizon for the selected ac-
tions. RL refers to the interaction through trials and errors between an agent, the entity that learns, and
its operational environment, and will be the focus of this Chapter. This technique is particularly useful
when the agent wants to acquire a knowledge on the characteristics of its environment while making min-
imal assumptions on it. In this Chapter, we will focus on RL for physical layer (PHY) communications.
The rewards in learning are then typically associated with high data rate or high signal-to-interference
and noise ratio (SINR). Even if ML in general and RL in particular are what we may call data driven
approaches, mathematical and physics-based modeling should not be completely abandoned. Indeed,
wireless systems are man-made with plenty of structures that can be exploited to make the learning
faster, transparent, and explainable.

Three main reasons for RL be applied to a wireless communication problem are: i) the mathematical
modelling of the environment is far too complex to be implemented in an agent, or such a mathematical
model does not exist, ii) the signalling for acquiring the useful data needed to properly run the system
is too complex and iii) the desired outcome or goal of the learning can be described as a scalar reward.
For instance, the massive machine type communication or small-cell deployment where detailed network
planning is not feasible are interesting scenarios where RL would be attractive technology. Moreover,
machine type communications typically involve some cheap battery operated devices where complex base
band processing is not possible which is in line with condition i). Moreover, excessive signalling is excluded
because of the huge number of devices to be connected, condition ii). Hence, transmission strategies, e.g.
channel, transmit power, beam patterns, can be learned from scratch or at least with very few a priori
information in order to maximize the number of received packets, condition iii).

Adaptability is the key benefit of RL techniques, as well as classical adaptive signal processing tech-
niques such as the least mean square filter. However, unlike adaptive filtering, RL does not rely on well
established mathematical models of the physical phenomena that occur during a wireless transmission
or very few (cf. Section 9.2). RL techniques select suitable actions based on the feedback received from
the surrounding environment in order to maximize a reward function over time. An important example
of RL applied to physical layer communication is the flexible and opportunistic use of the underutilized
frequency bands.

RL techniques involve a set of possible actions, a set of states and a reward signal. These notions will
be rigorously defined in the next section. Some examples of typical actions are transmit on a given band
or not, or select among the pre-designed beamformers or pre-coders. The states of the environment the
agent observes are, for instance, whether the selected band is idle or not, or feedback from the receiver
that the observed SINR value is below a threshold on certain channels or the transmission has been
successful (+1) or not (0 or -1), respectively.

In the particular example of the opportunistic spectrum access, the cardinality of action and state
sets is small. Hence the learning or convergence phase is faster than in a scenario where the action space
would be much larger. If we imagine a smart radio device that is able to do link adaptation by choosing
the modulation technique, transmit power and to select a channel to transmit its signal, the search space
would become much larger. Hence, the convergence towards the optimal result that maximizes a given
reward function, would take much longer time and may become complex for RL approaches. However,
recent advances in Deep RL methods have alleviated this problem. An example on this scenario, i.e. link
adaptation, will be given in this chapter. Another practical example considered later in this chapter is
smart radio access network with the goal to optimize the energy consumption of a cluster of BSs. This
is a demanding problem with a high dimensional state space which makes finding the optimal solution
using classical optimization technique difficult. RL may help to find a good solution without completely
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avoiding the problem complexity, though.
Deep learning (DL) strategies involve multiple layers of artificial neural networks (ANN) that are able

to extract hidden structures of labeled (supervised learning) or unlabeled data (unsupervised learning)
[1]. These techniques prove to be very efficient in many applications such as image classification, speech
recognition and synthesis, and all applications involving a large amount of data to be proceed. Recently,
researchers in wireless communications have shown interest for using ML and DL in wireless networks
design (see [2, 3] and references therein for a complete state of the art on that topic), mainly for networking
issues, but more recently also for PHY layer, such as user-channel matching or performance optimization
in large scale randomly deployed networks. This is particularly useful when a complete mathematical
model of the behavior of a network is intractable due for example to the large dimensionality of the state
or action spaces. RL and DL can be combined into deep reinforcement learning (DRL) approach when
the number of observable states or possible actions are too large for conventional RL. This technique
relies on the reinforcement learning principle, i.e. an agent interacting with its environment, but the
action to be taken is obtained through a non-linear processing involving neural networks (NN) [4].

In this chapter, we will give comprehensive examples of applying RL in optimizing the physical layer
of wireless communications by defining different class of problems and the possible solutions to handle
them. In Section 9.2, we present all the basic theory needed to address a RL problem, i.e. Markov decision
process (MDP), Partially observable Markov decision process (POMDP), but also two very important and
widely used algorithms for RL, i.e. the Q-learning and SARSA algorithms. We also introduce the deep
reinforcement learning (DRL) paradigm and the section ends with an introduction to the multi-armed
bandits (MAB) framework. Section 9.3 focuses on some toy examples to illustrate how the basic concepts
of RL are employed in communication systems. We present applications extracted from literature with
simplified system models using similar notation as in Section 9.2 of this Chapter. In Section 9.3, we also
focus on modeling RL problems, i.e. how action and state spaces and rewards are chosen. The Chapter is
concluded in Section 9.4 with a prospective thought on RL trends and it ends with a review of a broader
state of the art in Section 9.5.

Notations: The table at beginning of the Chapter summarizes the notation used in the following. We
review the main ones here. Random variables, and stochastic processes when depending on time, are
denoted in capital font, e.g. X(t), while their realizations in normal font, i.e. x(t). Random vectors
are denoted in capital bold font, e.g. X(t), and their realizations in small bold font, i.e. x(t). The
conditional probability distribution of a random variable X at time t+ 1 given another random variable
Y at t, is denoted as PX(t+1)|Y (t)(x | y) and when no ambiguity is possible on the underlying distribution
function, simply by p(x | y), being understood that the first and the second arguments in p (· | ·) rely to
the values of the random variables at time t+ 1 and t respectively, except otherwise mentioned. Vectors
and matrices are denoted with bold font. Moreover, 1 {a} is the indicator function, which is equal to 1 if
a is true and 0 otherwise. D (P ||Q) is the Kullback-Leibler divergence between the distributions P and
Q and is defined as

D (P ||Q) =

∫
I

log
dP

dQ
dP

4
= EP

[
log

dP

dQ

]
,

where dP/dQ is called the Radon-Nikodym derivative and is defined if P � Q, i.e. the measure P is
absolutely continuous w.r.t. the measure Q. This means that for all x ∈ I, if Q(x) = 0 then P (x) = 0.
This definition holds if the probability measures are continuous but also if they are discrete. In the former
case, the Radon-Nikodym derivative is simply the ratio between the density probability functions and in
the latter case, it is the ratio of the probability mass functions that can be denoted as p and q.
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9.2 Reinforcement Learning: background

9.2.1 Overview

RL may be considered as a sequential decision making process. Unlike supervised learning it does not
need annotation or labeling of input-output pairs. The decision-maker in RL is called an agent. An agent
has to sequentially make decisions that affect future decisions. The agent interacts with its environment
by taking different actions. There are a number of different alternative actions the agent has to choose
from. Selecting the best action requires considering not only immediate but also long-term effects of
its actions. After taking an action, the agent observes the environment state and receives a reward.
Given the new state of the environment, the agent takes the next action. A trajectory or history of
subsequent states, actions and rewards is created over time. The reward quantifies the quality of the
action and consequently captures what is important for the learning system. The objective of the learning
is typically to maximize the sum of future rewards but also some other objective that is a function of
the rewards may be employed. The learning takes place by trial and error so that the rewards reinforce
decisions that move the objective towards its optimum. As a consequence the system learns to make good
decisions and can independently improve its performance by probing different actions for different states.
Hence, consequences to future actions are learned. Commonly the immediate rewards are emphasized
and the future rewards are discounted over time. Sometimes actions with small immediate reward can
lead to a higher payoff in a long term. One would like to choose the action that trades off between the
immediate rewards and the future payoffs the best possible way.

RL are typically modeled using an MDP framework. The MDP provides a formal model to design and
analyze RL problems as well as a rigorous way to design algorithms that can perform optimal decision
making in sequential scenarios. If one models the problem as an MDP, then there exists a number of
algorithms that will be able to automatically solve the decision problem. However, real practical problems
cannot be strictly modeled with an MDP in general, but this framework can be a good approximation of
the physical phenomena that occur in the problem such that this model may perform well in practice.

9.2.2 Markov Decision Process

An MDP model is comprised of four components: a set of states, a set of actions, the transitions, i.e. how
actions change the state and the immediate reward signal due to the actions. We consider a sequence of
discrete time steps t = {0, 1, 2, ...} and we briefly describe each component. The state describes the set
of all possible values of dynamic information relevant to the decision process. In a broad sense, one could
think that a state describes the way the world currently exists and how an action may change the state of
the world. Obviously we are considering only an abstract and narrow view of the world that is relevant
to the learning task at hand and our operational environment. The state at time instance t is represented
by a random variable S(t) ∈ S where S is the state space, i.e. the set of all possible values of dynamic
information relevant to the learning process. In the context of physical layer of wireless communications,
the state could describe, for example, the occupancy of the radio spectrum, or the battery charging level
of the user equipment.

The environment in which the agent acts is modeled as a Markov chain. A Markov chain is a stochastic
model for describing the sequential state transitions in memoryless systems. A memoryless transition
means that

PS(t+1)|S(t) (s′ | s) = PS(t+1)|S(t) (s′ | s) , (9.1)

with

PS(t+1)|S(t) (s′ | s) 4= P [S(t+ 1) = s′ | S(t) = s] , (9.2)

if S is a discrete set. Moreover S(t) = [S(0), · · · , S(t)] and s = [s(0), · · · , s(t)], S(t) is the state at time
instance t and PS(t+1)|S(t) is the conditional distribution of S(t + 1) given S(t). In other words, the
probability of the state transition to state S(t + 1) is only dependent on the current state S(t). Hence,
there is no need to remember the history of the past states to determine the current state transition
probability.
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9.2. REINFORCEMENT LEARNING: BACKGROUND

The actions are the set of possible alternatives we can take. The problem is to know which of these
actions to choose in a particular state of the environment. The possible actions the agent can choose at
state S(t) is represented with the random variable A(t) ∈ A where A is the action space. The possible
actions may depend on the current state. Typical actions in a wireless communication context can be
giving access to the channel, sensing the channel, selecting a beam pattern or adjusting the power, for
instance.

The action the agent takes activates a state transition of the Markov chain. The state transition
function specifies in a probabilistic sense the next state of the environment as a function of its current
state and the action the agent selected. It defines how the available actions may change the state. Since
an action could have different effects, depending upon the state, we need to specify the action’s effect for
each state in the MDP. The state transition probabilities depend on the action such as

PS(t+1)|S(t),A(t)(s
′ | s, a)

4
= p(s′ | s, a). (9.3)

If we want to make the decision making process automatic and run it in a computer, then we must be
able to quantify the value associated to the actions taken. The value is a scalar and called a reward. The
reward from action A(t) is represented by a random variable R(t) ∈ R, where R is the set of rewards,
and it specifies the immediate value for performing each action in each state.

The reward provides the means for comparing different actions and choosing the right one for achieving
the objective of the learning process. The reward distribution depends on which action was selected and
on the state transition. The conditional probability distribution defining the dynamics of an MDP process
is

PR(t+1)S(t+1)|S(t)A(t) (r, s′ | s, a)
4
= p(r, s′ | s, a). (9.4)

An MDP can last for a finite or infinite number of time steps, distinguishing between finite and infinite
horizon models and methods. The interconnection between the different elements of an MDP can be
illustrated with the well-known diagram of Fig. 9.1.

Environment

Agent

Action
A(t)

State
S(t)

S(t+ 1)

Reward

R(t+ 1)

Figure 9.1: Reinforcement learning principle in MDP

A reward function R() gives a payoff R(t + 1) for choosing action A(t) in state S(t) resulting in
new state S(t + 1). After selecting an action the agent obtains the reward and the next state, but
no information on which action would have been the best choice towards its objective in a long term.
Hence, the agent will perform active probing and obtain experience about the possible system states,
available actions, transitions and rewards to learn how to act optimally. A very widely used objective is
to maximize the expected sum of discounted rewards over an infinite horizon [5, 6]:

Jπ = Eπ

[ ∞∑
t=0

γtR(t+ 1)

]
, (9.5)
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where γ < 1 is the discount factor emphasizing more immediate rewards and the expectation is taken
over the distribution of the rewards, following a certain policy π whose the meaning will be detailed
hereafter. Discounting is the most analytically tractable and hence the most commonly used approach.
Other objective functions may be employed including expected reward over a finite time horizon and
regret, which measures the expected loss in the learning compared to an optimal policy.

The solution to an MDP is called a policy and it simply specifies the best sequence of actions to take
during the learning process. Policy maps states to actions, i.e. π : S → A and can be deterministic, i.e.
a single or a set of deterministic actions is performed when the agent encounters the state S(t), or it can
be stochastic and is defined as the conditional probability measure of A(t) given S(t) i.e. PA(t)|S(t) (a | s),
often simply denoted as π(a | s)1. It is basically a sequence of the decision rules to be used at each
decision time instance. For the infinite-horizon discounted model, there exists an optimal deterministic
stationary policy. The finite-horizon model is appropriate when the system has a hard deadline or the
agent’s lifespan is known.

An optimal policy would need to consider all the future actions. Such policies are called non-myopic
policies. In comparison, a policy where the agent maximizes the immediate reward is called a myopic
policy. Typically, the myopic policies are suboptimal for γ > 0. The goal is to derive a policy which gives
the best actions to take for each state, for the considered horizon.

Value functions

In order to be able to derive the optimal policy that maximizes the function J in (9.5), one needs to
evaluate the value of the states under a certain policy π, i.e. a function vπ : S → R. This is defined as
the expectation, over the policy π, of the discounted reward obtained when starting from the state s ∈ S,
that is to say [5]

vπ(s) = Eπ

[ ∞∑
t=0

γtR(t+ 1) | S(0) = s

]
,∀s ∈ S. (9.6)

Since the state value function depends on the state s taken for the computation, this quantity may be
averaged over the states in order to obtained the average reward in (9.5). The state value function
represents the average of the discounted reward that would be obtained starting from an initial state s
and following the policy π.

Similarly, one can defined the action-state function, qπ : S × A → R, by averaging the discounted
reward when starting at t = 0 from state s ∈ S and taken the action a ∈ A, and then following the policy
π thereafter. We hence have now an expectation conditioned on the state and the action, that is [5, 6]

qπ(s, a) = Eπ

[ ∞∑
t=0

γtR(t+ 1) | S(0) = s,A(0) = a

]
,∀(s, a) ∈ S ×A. (9.7)

Bellman equations

A remarkable property of the state value function in (9.6) is that it follows a recursive relation that is
widely known as the Bellman equation [7] of the state value function. For all s ∈ S, one can prove [5]:

vπ(s) =
∑
a∈A

π(a | s)
∑

(s′,r)∈S×R

p(s′, r | s, a) [r + γvπ(s′)] . (9.8)

The expression in (9.8) is known as the Bellman’s equation for the state value function and has to
be seen as the expectation of the random variable R(t + 1) + γvπ(S(t + 1)) over the joint distribution
PA(t)|S(t)PS(t+1)R(t+1)|S(t)A(t). The Bellman’s equation links the state value function at the current state
with the next state value function averaged over all possible states and rewards knowing the current state
and the policy π. The value of a state S(t) is the expected instantaneous reward added to the expected

1Note in that case, both a and s refers to the value of the action and the state respectively at time t, because action is
immediately chosen while observing a given state and not delayed to the next time slot.
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9.2. REINFORCEMENT LEARNING: BACKGROUND

discounted value of the next states, when the policy π is followed. The proof of this relation relies on
separating (9.6) in two terms, i.e. t = 0 and t > 0, and using essentially the Markovian property and the
Bayes’ rule in the second term to make appear vπ(s′).

The optimal state value and action-state value functions are obtained by maximizing vπ(s) and qπ(s, a)
over the policies, that is [6]

v∗(s) = sup
π∈Φ

vπ(s), (9.9)

and

q∗(s, a) = sup
π∈Φ

qπ(s, a), (9.10)

where Φ is the set of all stationary policies, i.e. policies that do not evolve with time2. Moreover, (9.9)
can be written w.r.t. (9.10) as v∗(s) = supa∈A q∗(s, a). The optimal state value function also obeys to
the Bellman recursion and one can show that [5, 6]

v∗(s) = sup
a∈A

 ∑
(r,s′)∈S×R

p(r, s′ | s, a) [r + γv∗(s
′)]

 ∀s ∈ S. (9.11)

This last equation means that the expected return from a given state s and following the optimal policy
π∗ is equal to the expected return following the best action from that state. Moreover, substituting
v∗(s

′) in (9.11) with the supremum over the actions of q∗(s
′, a), we obtain the iterative property on the

action-state value function:

q∗(s, a) =
∑

(s′,r)∈S×R

p(s′, r | s, a)

[
r + γ sup

a′∈A
q∗(s

′, a′)

]
. (9.12)

Expressions in (9.11) and (9.12) are the Bellman optimality equations for v∗ and q∗ respectively.
The policy should mostly select the actions that maximize q∗(s, ·). A policy that chooses only actions

that maximize a given action-state function q(s, ·) for all s is called greedy w.r.t. q. A greedy policy
is a decision procedure based on the immediate reward without considering the long term payoff. In
general, only considering local or immediate reward may prevent from finding the highest payoff on the
long term. However, since v∗ or q∗ already contain the reward consequences of all possible states, then
a greedy policy w.r.t. q∗ is hence optimal on the long run [6]. Hence, if one is able to compute q∗, the
optimal policy follows.

Policy evaluation

RL algorithms aim at finding the best sequences of actions in order to get close to (9.11). As we will
see later with the Q-learning, the idea is to keep an estimate of the optimal state or action state value
functions at each time step and find a way to make them converge to the optimal value functions. The
expressions in (9.11) and (9.12) are fixed point equations and can be solved using dynamic programming.
Given a policy π, the policy evaluation algorithm computes firstly finds the value function for immediate
rewards and then extends the time horizon one by one. Basically one just adds the immediate reward of
each of the available actions to the value function computed in previous step. This way one builds the
value function in each iteration based on the previous one. Let consider a deterministic policy a = π(s).
A sequence of value functions can be obtained for all states s such as

vt+1(s) = r(s, a)︸ ︷︷ ︸
immediate average reward

+γ
∑
s′∈S

p(s′ | s, a)vt(s
′),︸ ︷︷ ︸

value function of previous steps

(9.13)

2Either a fixed over time deterministic policy or a stationary stochastic policy, in the strict sense, i.e. the conditional
law of A(t) given S(t) does not depend on t.
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where the immediate average reward, r(s, a), is the expectation over the distribution of the rewards
knowing the action π(s) taken in the state s at time t, i.e. r(s, a) = EPR|SA [R(t+ 1) | S(t) = s,A(t) = a].
This iterative equation can be computed for each action taken in each state. This equation converges
because the linear operator linking the value function of state S(t) to the value functions of states S(t+1)
is a maximum norm contraction [6].

Similarly, the action-state value iteration algorithm aims at iteratively solving the following equation
for a deterministic policy

qt+1(s, a) = r(s, a)︸ ︷︷ ︸
immediate average reward

+γ
∑
s′∈S

p(s′ | s, a)qt(s
′, a).︸ ︷︷ ︸

action-state value function of previous steps

(9.14)

The problem of this procedure is that the agent needs to know the complete dynamic of the MDP, i.e.
p(r, s′ | s, a), that is rarely the case in practice. Fortunately, there are algorithms like Q-learning that
converge to the optimal policy without knowing the dynamic of the physical process.

Policy improvement

The iterative procedures described above allow us to evaluate the performance of a policy. Indeed, by
choosing a given policy π0 one can compute (9.13) or (9.14) until convergence, e.g. |vt+1(s)− vt(s)| ≤ ε,
where ε is an arbitrary small number. When the procedure has converged, the state value obtained, i.e.
vπ0

(s) is the state value function achieved by following the policy π0 for state s. Hence, one has the
evaluation of the performance of the policy π0. But we still do not know if it is the best policy, i.e.
leading to the maximal value of the state function v∗(s).

In order to progress to the optimal policy, one needs a policy improvement step. The idea is to create
a new policy π′ that differs from π by a different action taken when being in state s, e.g. π′(s) 6= π(s). If
we are able to choose an action when being in state s such that qπ(s, π′(s)) ≥ vπ(s), then vπ′(s) ≥ vπ(s),
∀s ∈ S [5]. Basically, it means that by taking an action a′ such that a′ 6= π(s) and following the policy
π hereafter such that qπ(s, a′) ≥ vπ(s), the policy π′ should not be worse than π on the performance of
the learning task. Let πt denote the policy obtained at iteration t. Once (9.14) has converged under πt,
we create πt+1 by choosing the greedy policy w.r.t. qπt which is obtained by choosing the action that
maximizes the right-hand side of (9.14) for all states s, and we repeat the process until having no policy
improvements.

Combination of policy evaluation and improvement

In practice, the two procedures introduced above, i.e. the policy evaluation and improvement, can be
combined in a one algorithm called: value iteration. This algorithm consists in taking the action that
maximizes the (action-)state value function at each time step, i.e. taking the supremum over A of the
right hand side of (9.13) for the state value function and replacing qt(s

′, a) by supa′∈A qt(s
′, a′) in (9.14)

for the action-state value function. The new equations obtained also converge to v∗ and q∗ thanks to the
fixed-point theorem and the property of the Bellman equation. It means that a greedy policy w.r.t. vt
(qt) allows to converge to the optimum (action-)state value.

9.2.3 Partially observable Markov decision process

Complete observability is required for MDP based learning. When the states of the underlying Markovian
process are not directly observable, the situation is referred as a POMDP. This model adds sensor
measurements that contain information about the state of the MDP model as well as observation function
describing the conditional observation probabilities. Instead of observing the current state of the process
directly, we may just have access to a noisy version or estimate of the state. Typically, we use physical
sensors to acquire a set of noisy observations containing relevant information about the state. The
principle of reinforcement learning under POMDP is illustrated on Fig. 9.2. For example, in physical
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9.2. REINFORCEMENT LEARNING: BACKGROUND

layer wireless communication we need to estimate key system parameters such as the channel impulse or
frequency response, channel matrix and its covariance, SINR, perform time and frequency synchronization
as well as design transmit or receive beamformers, precoders or decoders from data acquired by the
receivers. The received signals contain unobservable random noise and harmful interferences. Moreover,
in order to adapt our transmitters and optimize the resources usage, we may need to use feedback
from receivers or exploit channel reciprocity that are both subject to error. Most of the parameters
characterizing the state of a wireless system at the physical layer are defined in a continuous space.
Hence, the conventional MDP model is not necessarily applicable. The errors caused by noisy sensors
are unobservable and random and need to be described using probability distributions. Consequently,
the states are also described in terms of probability distributions.

Environment

Agent

SensorAction
A(t)

State
S(t)

S(t+ 1)

Reward

R(t+ 1)

Observ. O(t)

Figure 9.2: Reinforcement learning principle in POMDP. Contrarily to MDP in Fig. 9.1 the state of the
environment is observed through a sensor that gives a partial state of the environment. For instance, the
sensor may be the receiver in PHY layer communication and actions would be adapting the operational
parameters of the transmitter/receiver pair.

In MDP-based learning our goal is to find a mapping from states to actions. In case of POMDPs,
we are looking for a mapping from probability distributions associated with the states to actions. The
probability distribution over all possible model states is called belief state in POMDP jargon and the
entire probability space (i.e. the set of all possible probability distributions) is called the belief space.
The observations acquired by physical sensors contain unobservable and random noise. Hence, we need to
specify a probabilistic observation model called observation function in POMDP jargon. This observation
model simply tells us the probability of each observation for each state in the model. It is formally
given as a conditional probability of an observation given a state-action couple. As a result, we will
have uncertainty about the state due to incomplete or uncertain information. That means we have a
set of states, but we can never be certain in which state we are. The uncertainties are handled by
associating a probability distribution over the set of possible states. The distribution is defined by the
set of observations, observation probabilities, and the underlying MDP. The POMPD model considers
beliefs of the states instead of the actual states in MDP. The belief is a measure in interval [0, 1] that
describes the probability of being in a specific state. The agent interacts with the environment and
receives observations, and then updates its belief state by updating the probability distribution of the
current state. In practice, the agent updates its belief state by using a state estimator based on the last
action, current acquired observation and the previous belief state. By solving a POMDP problem we find
a policy that tells which action is optimal for each belief state.

A POMDP is a tuple < S,A,R,Ω, O >. The environment is represented by a set of states S =
{s1, s2, ..., sN} with |S| = N , a set of possible actions denoted by A = {a1, a2, ..., aK} with |A| = K.
The transition from state s to new state s′ given the action a is governed by a probabilistic transition
function as in (9.3) that is the conditional distribution PS(t+1)|S(t),A(t). As an immediate result, the
agent receives a reward R(t + 1) that depends on the state s the agent was in and the action a it took.
These components of the POMDP-tuple are as in a conventional MDP. Since state s′ is not directly

9
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observable, it can be estimated by using observations that contain information about the state. A finite
set of observations emitted by the state is denoted by z ∈ Ω with |Ω| = M . An observation function
defines a probability distribution for each action A(t) and the resulting state S(t + 1). The observation
Z(t + 1) is then a random variable and the probability distribution of the observations conditioned on

the new state S(t+ 1) and action A(t) is PZ(t+1)|S(t+1),A(t)(z | s′, a)
4
= O(z, s′, a).

In a POMDP, the following cycle of events takes place. An environment is in state S and the
agent computed the belief state B. The agent takes an action A using the policy π(· | B) and the
environment transitions to a new state S′ according to the state transition distribution. The new state
is not directly observable, but the environment emits an observation Z according to the conditional
distribution O(z, s′, a). Then the agent receives a reward R for action taken from belief state B. Finally,
the agent updates the belief state and runs the cycle again. As a result, a trajectory or history of
subsequent belief states, actions, observation and rewards is created over time. The goal of an agent is
to learn a policy π that finds actions that maximize the policy’s value. There are many ways to measure
the quality. The most common choice is the discounted sum of rewards as in the case of MDP.

The belief state is a sufficient statistic that contains all the relevant information about the past
observations and enjoys the Markov property. The next belief state depends only on the current belief
state and the current action and observation. Hence, there is no need to remember the whole history
of actions and observations. Updating the distribution requires using the transition and observation

probabilities and a formula stemming from the Bayes rule. Let us denote PB(s)
4
= PB [S = s] the

distribution of the belief state, which is the probability that the environment is in state s under the
distribution of the belief. The belief state update that can be considered as a state estimation step in
POMDP framework is given by

PB(s′) =
O(z, s′, a)

p(z|b, a)

∑
s∈S

p(s′ | s, a)PB(s). (9.15)

The denominator is a normalizing constant that makes the sum on s′ equal to one, i.e. p(z|b, a) =∑
s′∈S O(z, s′, a)

∑
s∈S p(s

′|s, a)PB(s). The distributions are updated simply by applying the Bayes’
Rule and using the model parameters. Similarly to MDP, the agent wishes to choose its actions such
that it learns an optimal policy π∗(b).

The main practical difficulty in POMDP models is finding a solution that is a policy that chooses
optimal action for each belief state. One may use value iteration or policy iteration approaches as in the
case of MDP. Now the state space is just defined in terms of probability distributions. Algorithms used
for solving POMDP typically stem from dynamic programming. It can be solved using value iteration,
policy iteration or a variety of other techniques developed for solving MDP. Optimal value function v∗ is
then the value function associated with an optimal policy π∗. The early approach for solving POMDPs
was using belief-MDP formulation. The value iteration follows the Bellman’s equation already introduced
for MDP, i.e.

v0(b) = 0. (9.16)

vt+1(b) = sup
a∈A

[r(b, a) + γ
∑
z∈Ω

p(z | b, a)vt(b
′)], (9.17)

where r(b, a) =
∑
s∈S PB(s)r(s, a) is the average reward for action a in the belief state b and where

r(s, a) is the expected reward obtained in state s and taking action a that has been defined in (9.13) and
(9.14). Moreover, p(z | b, a) has been defined previously and denotes the conditional distribution of the
observation z at time t + 1, given the belief state b and taking action a at t. A value function may be
modeled with a structure that can be exploited in making the problem solving easier or even feasible.
For example a piecewise linear and convex approximation may be used in finite horizon scenarios. Value
iteration provides an exact way of determining the value function for POMDP. Hence, the optimal action
can be found from the value function for a belief state. Unfortunately, the complexity of solving POMDP
problem via value iteration is exponential in the number of observations and actions. Moreover, the
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dimensionality of the belief space grows proportionally to the number of states. The dimensionality of
belief space can be reduced using a parametric model such as a Gaussian mixture model. Also point-based
value iteration has been proposed for solving POMDP. In such methods, a small set of reachable belief
points are selected and the Bellman updates are done at these points while storing values and gradients.
Heuristic methods employing search trees have been developed, too. The methods build an AND/OR
tree of reachable belief states from the current belief and perform a search over the tree using well-known
methods such as branch-and-bound.

Value iteration is used very commonly since the classical policy iteration algorithm for POMDP
proposed in [8] has a high complexity and is thus less popular. There are, however, algorithms of lower
complexity. One can also use the policy iteration methods as it has been described in Section 9.2.2 for
solving POMDP problems.

9.2.4 Q-learning and SARSA algorithm

Q-learning and the current State, current Action, next Reward, next State and next Action (SARSA)
algorithms are iterative procedures to learn the optimal policy that maximize the expected reward from
any starting state, and without the knowledge of the MPD dynamics. Both algorithms exhibit some
similarities but differ in some key points that we detail hereafter. Q-learning and SARSA are called
tabulated algorithms, i.e. they are based on the construction of a look-up table, a.k.a Q-table, that
allows the algorithm to trace and update the expected action-value function for all action-state pairs
(s, a) ∈ S × A. Once the Q-table has been built, the optimal policy is to choose the action with the
highest score. The basic idea of both algorithms is to build a new estimate from an old estimate, which
is updated by an incremental difference between a target and the old estimate. This can be formalized
as follows:

qt (S(t), A(t))︸ ︷︷ ︸
new estimate

← qt (S(t), A(t))︸ ︷︷ ︸
old estimate

+αt

Tt+1︸︷︷︸
target

− qt (S(t), A(t))︸ ︷︷ ︸
old estimate

 , (9.18)

where αt is the learning rate at time t which is a scalar between 0 and 1. The learning rate tells us how
much we want to explore something new and how much we want to exploit the current choice. Indeed, in
each of the reinforcement learning algorithms, exploitation and exploration have to be balanced in order
to trade-off between the desire for the agent to increase its immediate reward, i.e. exploiting actions that
gave good results so far, and the need to explore new combinations to discover strategies that may lead to
larger rewards in the future, this is the exploration. At the beginning of the procedure, one may expect
to spend more time to explore while the Q-table fills up then the agent exploits more than it explores in
order to increase its reward. The learning rate should satisfy the following conditions

∑∞
t=0 αt =∞ and∑∞

t=0 α
2
t < ∞, e.g. αt = 1/(t + 1). Finally, note that α can also be taken as a constant less than one,

and hence not satisfying the conditions above. However in practice, learning tasks occur over a finite
time horizon hence the conditions are satisfied.

Q-learning. Q-learning has first been introduced by Watkins in 1989 [9]. In this algorithm, the target
is equal to

Tt+1 = R(t+ 1) + γ max
a′∈A

qt (S(t+ 1), a′) , (9.19)

which is nothing but the algorithmic form of the Bellman equation in (9.12). When the algorithm has
converged, Tt+1 should be equal to qt(S(t), A(t)), nullifying the difference term in (9.18). Let us more
closely examine how the Q-learning algorithm works.

The Q-table is a table with the states along the rows and columns representing the different actions
we can take. At time step t = 0, the Q-table is initialized to 0, i.e. q0(s(0), a(0)) = 0, ∀(s, a) ∈ S × A.
A starting state is chosen randomly with a certain probability, i.e. P [S(0) = s]. At the beginning, the
agent does not know the reward that each action will provide, hence it chooses one action randomly.
This action leads to a new state s′ and a reward r in a stochastic manner according to p(r, s′ | s, a) if
the problem is stochastic or according to deterministic rules otherwise. The immediate reward the agent
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receives by taking the action a(t) at time t is the variable R(t + 1) in (9.19). Then the algorithm looks
at the line represented by the state S(t+ 1) = s′ in the Q-table and chooses the value that is maximum
in the line, i.e. this corresponds to the term maxa′∈A qt(S(t+ 1), a′) in (9.19); among all possible actions
from the next state we end up at t + 1, i.e. S(t + 1), one chooses the one that leads to the maximum
expected return. The difference in (9.18) acts as a gradient that allows to reinforce some actions in a
given state or on the contrary, to dissuade the agent to take some other actions being in a given state. By
choosing the learning rate, αt = 1/(t+1) for instance, the agent will pay less and less attention over time
to future expected returns in the update of the current estimation of the Q-table. If α = 0, the agent
does not learn anymore while α = 1 means that the agent keeps an active learning behavior. Moreover,
γ in (9.18) is reminded to be the discounting factor and it defines how much the agent cares about future
rewards, i.e. the ones that will be obtained starting from S(t + 1), compared to the immediate reward,
i.e. R(t+ 1).

Q-learning is an algorithm that explores and exploits at the same time. But which policy should be
followed when updating the Q-table, i.e. how are the actions chosen at each time step? Actually, and this
is the strength of Q-learning, it does not (so much) matter for the algorithm convergence. The ε−greedy
policy is, however, a widely used technique. It consists in randomly choosing an action with probability ε
and the action that maximizes the current action-state value at time t with probability 1− ε. Of course,
ε can be kept constant or may vary during the learning in order to explore more at the beginning, i.e.
ε ≈ 1, and exploit more after a while, i.e. ε � 1. However, it has been shown that Q-learning makes
the Q-table converge to q∗, and hence to the optimal policy, as soon as every action-state pair has been
visited an infinite number of times, irrespective to the policy followed during the training [10, 11]. This
property makes Q-learning an off-policy procedure.

In some practical problems, MDP may present some terminal states, i.e. absorbing states, and the
learning is done over several episodes. Once the agent reaches the terminal state the episode ends and
the algorithm restarts at a random state and keep going to estimate the Q-table.

SARSA algorithm. SARSA is an algorithm that has been proposed in [12] and differs from Q-learning
simply by the target definition in (9.18). In SARSA, we use

Tt+1 = R(t+ 1) + γqt (S(t+ 1), A(t+ 1)) . (9.20)

The difference with the Q-learning approach is that the next action A(t+ 1) to be taken when the agent
observes the next state S(t + 1) starting from the state S(t) and having taken the action A(t), is no
longer the one that maximizes the next expected return from the next state S(t+1). The action A(t+1)
has to be taken according to a policy, this is why SARSA is called an on-policy method. The policy the
agent follows when being in state S(t), hence the choice of the action at time t, i.e. A(t), is the behavior
policy while the choice of the action to be taken when being in state S(t+ 1), i.e. A(t+ 1), characterizes
the target policy. In Q-learning, the target policy was greedy w.r.t. qt, i.e. the action that maximizes
the next expected action-state value is chosen. In SARSA on the other hand, the agent updates the Q-
table from the quintuple (S(t), A(t), R(t+ 1), S(t+ 1), A(t+ 1)) where both behavior and target policies
are ε−greedy, i.e. the next action to be taken while observing state S(t + 1) is chosen randomly with
the probability ε and the action maximizing qt(S(t + 1), a′) is taken with probability 1 − ε. Under the
assumption that the actions taken under the target policy are, at least occasionally, also taken under the
behavior policy, SARSA converges to the optimal policy, i.e. the greedy policy w.r.t. q∗.

9.2.5 Deep RL

The previous Q-learning or SARSA approaches are suitable when the dimensions of the state and action
spaces of the problem are small or moderate. In that case, a look-up table can be used to update the
Q values. However, when the number of states or possible actions becomes large, the complexity and
the storage needs of Q-learning become prohibitive. Instead of using a table for updating the action-
state value function, one may search for approximating the action-state values with a suitable function
qθ : S×A → R with the vector parameter θ. The simplest approximation function is the linear one. This
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consists of finding a suitable mapping, ψ : S ×A → Rd, used to represent the features of the action-state
couple, where d is the dimension of this feature representation [6]. The entries of the vector ψ(s, a) are the
basis functions and they span the space in which the Q function is approached. The linear approximation
of the action-value function is hence qθ(s, a) = θTψ(s, a) and will be used to approximate the optimal
action-state value.

If an oracle would give us the action-state function under the policy π, one could compute an error
function between a target and a prediction as follows:

L(θ) = Eπ
[(
qπ(S,A)− θTψ(S,A)

)2
]
, (9.21)

where the expectation is taken over the joint distribution of the state, reward and action. The weights θ
can be updated using the gradient of the loss function such as

θt+1 = θt + αtEπ
[(
qπ(S,A)− θTψ(S,A)

)
ψ(S,A)

]
. (9.22)

However, the agent never knows in general the true value of the objective, i.e. the true action-state value
function under the policy π. It can only estimate this value. For the Q-learning algorithm, qπ(S,A) in
(9.22) is substituted by expression in (9.19), where the estimation of the action-state function is replaced
by its linear approximation such that

θt+1 = θt + αt

(
R(t+ 1) + γ max

a′∈A
θTψ(S(t+ 1), a′)− θTψ(S,A)

)
ψ(S,A). (9.23)

However, the features extraction phase, i.e. constructing the function ψ, can be very complex if the
problem dimension is very large [6].

One may observe that when passing from (9.22) to (9.23), we did not limit ourselves to substitute
qπ(S,A) by R(t + 1) + γmaxa′∈A θ

Tψ(S(t + 1), a′) but the expectation operator also vanished. There
are only random samples from a given database (a batch) to compute the sequence {θ}t. The latter is
a random sequence and hence we are not sure that this will decrease the value of the loss at each step.
However, one can show that this will decrease the loss in average. This is the principle of the stochastic
gradient descent [13].

Deep Q-learning. The approximation function can be non-linear, but has to be differentiable w.r.t.
the parameters of the approximation function. The principle of the deep Q-learning is simple and consists
of designing a neural network that outputs all the action-state values for all possible actions in a given
state s, qθ(s, ·), ∀s ∈ S. In other words, if the state space is of dimension n, i.e. each state is represented
by a vector of n components, and if there are m possible actions for each state, the neural network is
a mapping from Rn to Rm. The idea to use a deep neural network to approximate the Q-function in a
reinforcement learning setting has been first introduced by Mnih et al. in [14], where authors proposed
to use a deep convolution neural network to learn to play Atari games.

We will not discuss here in details the different neural networks and deep learning in general and
the interested reader may refer to some reference books dealing with neural networks and the basics of
deep learning, such as the book of Courville, Goodfellow and Bengio [1]. An ANN is made of (artificial)
neurons that are linked through several layers. There exists several kind of neural networks, such as
the feedforward neural network (FNN), the recurrent neural network, convolutional neural network as
mentioned above and many others (cf. for instance [3] for a classification of ANN). In the following, we
will just refer to FNN. The main ingredients of an FNN in our case are an input layer that accepts the
states of the decision process, or more specifically, a representation of the states, an output layer that
returns the estimated action-state values for all actions for a given state at the input and several hidden
layers between both as illustrated on Fig. 9.3 where two hidden layers has been considered. The input
layer is made of n0 neurons, and takes the samples s0 ∈ Rn as an entry. The layer ` = 1, · · · , L has
n` neurons. The L + 1 layer is the output layer, and has nL+1 neurons. It outputs the approximation
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Input layer

s1

s2

s3

Layer 1 Layer 2 Output layer

qΘ (s0, a1)

qΘ (s0, a2)

Figure 9.3: Feedforward neural network

of the Q-function, for the entry s0, i.e. qΘ(s0, ai) of each action ai, i = 1, · · · , nL+1. Θ represents the
parameters of the neural network that will be explained hereafter.

For all ` = 1, · · · , L+ 1, the vector output at the layer `, s` ∈ Rn` , is

s` = f` (θ`s`−1 + b`) (9.24)

where θ` ∈ Rn`−1×n` is the matrix of weights between the neurons of layer `− 1 and the layer `, i.e. θ`i,j
is the weight between the i−th neuron of layer ` − 1 and the j−th neuron of layer `, s`−1 is the signal
output of the layer ` − 1. Moreover, f` is the activation function at the layer ` whose objective is to
perform a non-linear operation on the linear combination of the signal output of the previous layer. The
function applies at each neuron of layer `, i.e. the function applies to each entry of the vector in the
argument of f` in (9.24). The activation function aims at enabling the signal output. It exists several
kind of activation functions, e.g. sigmoidal, hyperbolic tangent, ReLU (Rectified Linear Unit) and ELU
(exponential linear unit), the reader may refer to [2] for a more detailed description. Finally, b` is the
bias term of the neurons of the layer ` that can change the threshold of the input signal value at which
the neurons enable the output signal. The parameters of the FNN is made of the succession of matrix
weights and bias terms between each layers and is denoted: Θ = {θ`, b`}L`=1.

In order to make a neural network learn, a loss function should be defined between a target, i.e. a
desired output, and the actual output obtained at iteration t. It can be defined as in (9.21) by using the
target in Q-learning, i.e. (9.19):

Lt(Θt) = ES,A,R,S′
[(
R(t+ 1) + γmax

a′
qΘ−t

(S(t+ 1), a′)− qΘt
(S(t), A(t))

)2
]
, (9.25)

where Θt is the set of parameters at iteration t and Θ−t is the network parameters used to compute the
target at iteration t. Deriving the loss function w.r.t. the network parameters we obtained a generalized
stochastic gradient descent for non linear Q-function approximation as

Θt+1 = Θt + αt

(
R(t+ 1) + γ max

a′∈A
qΘ−t

(S(t+ 1), a′)− qΘt(S(t), A(t))

)
×

∇Θt
qΘt

(S(t), A(t)), (9.26)

which decreases the expected loss under certain conditions. The gradient in (9.26) should be understood
as the gradient w.r.t. the weights keeping the bias constant and also the gradient w.r.t. the bias keeping
the weights constant.

However, this method may diverge if naively implemented. Indeed, if the samples (s, a, r, s′) are
obtained by sampling the Markov chain at each successive transition, the data given to the neural network
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will be correlated and non i.i.d and will be not ideal for training the neural network. A solution is to
store the experience tuples (s(t), a(t), r(t+ 1), s(t+ 1)) into a memory pooled over many episodes (an
episode ends when a terminal state is reached) and to uniformly choose at each time instant a tuple from
the memory in order to update (9.26). This is what is called experience replay and it breaks correlation
among the samples [14]. Moreover, if the target network Θ−, used to retrieve the Q-values, is updated
after each iteration with the new network computed at time t, then the policy may oscillate and data
values may switch from an extreme to another and the parameters could diverge. The idea is to freeze
the target network Θ− during a certain number of time steps T and to update the target network with
Θ in (9.26) after T steps. This allows for reducing the oscillations or the risk of divergence.

There is another unwanted effect of the Q-learning that is the overestimation of the action-state values.
This bias leads the algorithm to perform poorly in some stochastic environments and comes from the
fact that the max operator is used to estimate the maximum expected value. Indeed, the max operator
in (9.19) aims at estimating the value in (9.7) for the next state S(t+ 1) which is an expectation. This
method, often called the single estimator, has a positive bias that can be shown to follow from Jensen’s
inequality. Van Hasselt proposed in [15] to use a double estimator technique to unbiase the estimation
of the maximum expected value that occurs in the Bellman’s equation of the action-state value function.
The idea is to create two sets of unbiased estimators w.r.t. the expectation, i.e. qA and qB , that will
be applied on two sets of samples, i.e. A and B, such that the estimators are unbiased w.r.t. the
mean on these samples. A and B contain the samples associated to the random variables qA(S(t), ·) and
qB(S(t), ·) respectively. The maximum expected value of the first estimator, i.e. qA is estimated with the
max operator on the set of the experiences A, i.e. maxa q

A(s′, a) = qA(s′, a∗) as in the regular Q-learning
algorithm. Then, we use the action a∗ on the estimator of the Q-function on the set B, as an estimation
of the maximum expected value of maxa E

[
qA(S′, a)

]
. A similar update is performed with b∗ on qB and

using qA. The iterative system of equations in the double Q-learning are such as [15, Algorithm 1]

qAt (S(t), A(t)) ← qAt (S(t), A(t)) + αt
[
R(t+ 1) + γqBt (S(t+ 1), a∗)− qAt (S(t), A(t))

]
,

qBt (S(t), A(t)) ← qBt (S(t), A(t)) + αt
[
R(t+ 1) + γqAt (S(t+ 1), b∗)− qBt (S(t), A(t))

]
.

The principle of the double Q-learning can be applied to any approximation techniques of the action-state
function, and in particular when a deep neural network is employed [16].

9.2.6 Multi-armed bandits

Fundamentals

A multi-armed bandit (MAB) model holds its name from a slot machine with several levers3, that the
player/user activates in the hope to hit the prize. Each machine has a certain probability to deliver
the money to the player. The goal of the agent, to keep the terminology used in the RL framework, is
to play the machine that gives the maximum expected gain in the long run. Mathematically, a MAB
model is a collection of K random variables Ri, i = 1, · · · ,K, where i denotes the ”arm” of the bandit,
each distributed as PRi , unknown to the agent. The player sequentially chooses an arm, i.e. the action
of the agent {A(t)}t≥0 and collects rewards over time {R(t+ 1)}t≥0. When the agent pulls arm a as
its action at time t, i.e. A(t) = a, it gets a reward randomly drawn from the distribution PRa , i.e.
R(t) ∼ PRa . The goal of the agent is to maximize the expected rewards obtained up the time horizon T ,

i.e. EPR
[∑T

t=1R(t)
]
. By denoting µi the expectation of arm i, i.e. µi = E [Ri], the agent should play

as much as possible the arm with the maximum mean reward, µ∗ = arg maxi µi, and less as possible the
suboptimal arms. However, the arm with the maximum mean reward is of course unknown to the agent,
in general, and the agent has to make decisions, defining its policy, based only on the past observations.
To do so, the agent has to explore sufficiently in order to accumulate information on the rewards given by
the arms, and also has to exploit the best arms, i.e. those that have given the highest cumulated rewards

3Or equivalently several one-armed gambling machines
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so far. This is the famous exploration-exploitation tradeoff we already mentioned above that each RL
algorithm has to deal with.

One could consider the MAB as a special case of MDP described in Subsection 9.2.2 where only a
single state is considered. The conditional probability distribution defining the dynamic of this particular
MDP in (9.4) reduces to

PR(t+1),S(t+1)|S(t),A(t)(r, s
′ | s, a) = PR(t)|A(t)(r | a)

4
= PRa . (9.27)

In the definition above, the state transition vanishes because there is only one state in the MDP and the
reward is immediately obtained after pulling the lever a.

There are two schools of thought in MAB, or two approaches: the Bayesian, proposed by Thompson
[17], and the frequentist approach e.g. [18, 19]. When the distribution of arms depends on a parameter θ,

the MAB framework is said to be parametric, i.e. the distribution of the MAB is PRθ =
(
PRθ1 , · · · , PRθK

)
and θ = (θ1, · · · , θK) is the vector parameter of the MAB. In the Bayesian setting, θ is a random
variable drawn from a prior distribution Pθ. In i.i.d. scenario, e.g. the rewards are drawn from a
Bernouilli distribution4, and conditionally to θa, Ra(t) ∼ PRa with mean µa and the elements of the
series {Ra(t)}t,a are independent. In the frequentist approach, Ra(t) has the same properties as in the
Bayesian setting, but where θ is no longer random. Instead it is an unknown deterministic parameter. We
will not discuss the difference between Bayesian and frequentist approaches further and the interested
reader may consult the excellent treatise in [20] for more details about the both approaches. In the
following, we will focus on the frequentist approach for which the notion of regret is defined [21].

Regret. The regret under the time horizon T can be understood rather intuitively: this is the dif-
ference between the average expected reward one would obtain if one always plays the optimal arm
and the average expected reward obtained following a policy π, which is the sequential series of actions
A(0), A(1), · · ·A(T − 1), different from the optimal one. By denoting the index of the optimal arm as

o = arg maxi µi and its expected reward µ∗ = maxi µi
4
= E [Ro(t)], the regret may be written as

Dµ(T ) = Tµ∗ − EPR

[
T∑
t=1

R(t)

]
. (9.28)

Note that the regret depends on the parameter µ = (µ1, · · · , µK). The regret can also be seen in a
different, but totally equivalent, way. Let us consider several experiments of duration T , each arm i =
1, · · · ,K will be played Ni(T ), which is a random variable for all i, with the expected value E [Ni(T )]. For
instance let us assume that K = 3 and T = 9. During the first experiment, arm 1 has been played 4 times,
arm 2 has been played 3 times and arm 3, 2 times5. Assuming a stationary setting, i.e. the distribution
of the regret does not vary in time, the regret in (9.28) becomes Tµ∗ − 4E [R1] − 3E [R2] − 2E [R3] or
Tµ∗ − 4µ1 − 3µ2 − 2µ3. The second experiment gives (5, 2, 2) for arms 1, 2 and 3 respectively and so
on. If n experiments are run, the empirical average of the regret over the experiments, Dµ(T ), in our
example gives

Dµ(T ) = Tµ∗ −
(
N1(T )µ1 +N2(T )µ2 +N3(T )µ3

)
, (9.29)

where Ni(T ) = 1
n

∑n
j=1Ni(j;T ) is the empirical average of the number of times arm i has been pulled at

time T . When n→∞, Ni(T )→ E [Ni(T )], and hence the regret in (9.28) can be expressed as a function
of the average number of times each arm has been played:

Dµ(T ) =

K∑
i=1

(µ∗ − µi)E [Ni(T )] , (9.30)

4We will see later the Markovian setting
5The sequence of the arm selection depends on the policy the agent follows.
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where the expectation depends on µ. From (9.30), it seems clear that a policy should play as much as
possible the best arm, and as less as possible the suboptimal ones. Lai and Robbins have shown, [19, Th.
2], that any policy cannot have a better regret than a logarithmic one asymptotically, i.e. when T →∞.
It is equivalent to say that the average number of plays of suboptimal arms is logarithmically bounded
when T →∞, i.e. for all i such as µi < µ∗ and if µ ∈ [0, 1]

K
we have

lim inf
T→∞

E [Ni(T )]

log T
≥ 1

D (PRi ||PRo)
(9.31)

where D (PRi ||PRo) is the Kullback-Leibler divergence between the reward distributions of arm i and
the optimal arm respectively. This result gives the bound of fundamental performance of any sequential
policy in MAB settings, but it does not give any insight on how to explicitly design a policy that achieves
this bound. Several algorithms have been proposed that are known to be order optimal, i.e. whose the
regret behaves logarithmically with time. We will not detail all of them in this chapter but we will focus
on a particular class that is applicable to physical layer communications: the upper confidence bound
(UCB) algorithm.

Upper confidence bound algorithm. The UCB algorithms are based on the computation of an
index for each arm and selecting the arm with the highest index. The index is composed of two terms.

The first is an estimate of the average reward of arm i at time t, i.e. µ̂i(t) = 1
Ni(t)

∑Ni(t)
n=1 Ri(n), and the

second term is a measure of the uncertainty of this estimation. The UCB algorithm consists of choosing
the maximum of this uncertainty to compute the index. Auer et al. proposed several algorithms in [21]
for bounded expected rewards in [0, 1]. The most famous algorithm is UCB1 that allows one to choose
arm a(t+ 1) at the next time such that

a(t+ 1) = arg max
i

[
µ̂i(t) +

√
2 log t

Ni(t)

]
, (9.32)

where the second term in the square root can be obtained using Chernoff-Hoeffding inequality, which
represents the upper bound of the confidence interval in the estimation of µ̂i. The more arm i is played,
i.e. as Ni(t) increases, the smaller the confidence interval, which means the index value relies on the
average value of the cumulated reward obtained so far. When arm i is played less the second term is
larger, which encourages the agent to play another arm. The second term allows for exploration while
the first term encourages the exploitation of the arm that has given the largest rewards so far. Moreover,
thanks to the log term that is unbounded with time, all arms will be played asymptotically. Note that
other UCB algorithms can perform very well in practice such as the Kullback-Leibler UCB (KL-UCB)
for which a non-asymptotic regret bound can be proved [22]. Other algorithms have been proposed in
order to deal with non-stationary environments in which the parameters of the distribution may change
with time [23].

9.2.7 Markovian MAB

Historically, the first bandits studied were binary, i.e. the rewards are drawn from a Bernouilli distribu-
tion. Actually the result of Lai and Robbins in [19] is quite general and holds for µ ∈ [0, 1]

K
for any

distribution of the arms PRi . However, the independence of the rewards is an important assumption that
does not necessarily hold in many practical problems.

In particular, the case of Markovian rewards is of practical interest in wireless communication. Each
arm in Markovian MAB is characterized by a non-periodic Markov chain with finite state space Si.
For all arm i, the agent receives a positive reward Ri(s) that depends on the state observed for arm
i. The change from a state to another follows a Markovian process, under the conditional probability

PSi(t+1)|Si(t)(s
′
i | si)

4
= p(s′i | si). The stationary distribution of the Markov chain of arm i is denoted as
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P i =
{
PSi(s)

4
= pi(s), Si ∈ Si

}
. Each arm i has an expected reward that is

µi =
∑
s∈Si

ri(s)pi(s)
4
= EPSi [Ri] (9.33)

The goal of the agent is still to find a policy π, i.e. the sequential observation of arms, that minimizes
the regret over the time, which is defined in (9.28) or (9.30). When the agent observes an arm i at t,
it samples a Markovian process which evolves with time. A particular attention has to be paid on the
status of Markov chains that are not observed that leads to the distinction between the rested and restless
cases.

Rested MAB. A Markovian MAB is qualified as rested, when only the Markov chain of the arm that
is played evolves, the others remaining frozen. This assumption is strong since the Markov chains of
the arms that are not observed do not evolve with time and it does not matter how much time elapsed
between two consecutive visits to a given arm. The authors in [24] were the first to be interested in the
fundamental performance in terms of regret of Markovian MAB with multiple plays6 and they proposed
a policy that is asymptotically efficient, i.e. that achieves the regret lower bound asymptotically. The
authors in [25] showed that a slightly modified UCB1 achieves a logarithmic regret uniformly over time
in this setting.

Restless MAB. A Markovian MAB is considered as restless, if the Markov chains of all arms evolve
with time, irrespective of which arm is played. This assumption implies radical changes in the regret
analysis because the state we will observe when pulling an arm i at t + 1 directly depends on the time
elapsed since the last visit to this arm. This is because the reward distribution we get by playing an arm
depends on the time elapsed between two consecutive plays of this arm and since arms are not played
continuously, the sample path experienced by the agent does not correspond to a sample path followed
when observing a discrete time homogeneous Markov chain. The solution came from [26] where the
authors proposed a regenerative cycle algorithm to deal with the discontinuous observation of evolving
Markov chains. In practice, the agent still keeps going to apply the UCB1 algorithm, introduced earlier,
but computes the index only on the samples the agent has collected when observing a given arm i.
This structure requires one to observe an arm during a certain amount of time before computing the
UCB1 index. The interested reader may refer to [26] for further details and [25] for the extension to
multiple plays. This setting is particularly interesting because it finds a natural application in wireless
communications with the opportunistic spectrum access scenario when the state of the bands the user has
to access evolves independently of the action the user takes. For example, the band may be sporadically
occupied by another system or the propagation condition may evolve with time.

Contextual MAB

Contextual MAB generalizes the classical concept introduced above towards more general reinforcement
learning. Conventional MAB does not take advantage of any knowledge about the environment. The
basic idea of contextual MAB is to condition the decision making on the state of the environment.
This allows for making the decisions based both on the particular scenario we are in and the previous
observations we have acquired. A contextual MAB algorithm observes a context in the form of useful
side information, followed by a decision by choosing one action from the set of alternative ones. It then
observes an outcome of that decision which defines the obtained reward. In order to benefit from the
context information, there needs to exist dependency between the expected reward of an action and its
context. The goal of learning is to maximize a cumulative reward function over the time span of interest.
The side information in physical layer communications may be a feature vector containing for example
location and device information, experienced interference, received signal strength fingerprint, channel
state information (CSI) of a particular user, or potential priority information. Such side information

6When the player may pull more than one arm or if multiple players are considered (without collisions).
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would allow for selection of a base station, service set or antennas such that higher rewards are achieved.
Extensions of well-known UCB algorithms have been developed for contextual MAB problems. Since
the context plays an important role in the dynamic of contextual MAB, it may be crucial to detect the
change of a context in order to adapt the policy to this change. Methods based on statistical multiple
change-point detection and sequential multiple hypothesis testing may be used for that purpose [27, 28].

Adversarial MAB

Adversarial bandit problems are defined using sequential game formulation. The adversarial model means
that the decisions may lead to the worst possible payoff instead of optimistic view of always making choices
that lead to optimal payoff. The problems are modeled assuming deterministic and uninformed adversary
and that the payoffs or costs for all arms and all time steps of playing the arms are chosen in advance.
The adversary is often assumed to be uninformed so that it makes its choices independent of the previous
outcomes of the strategy. At each iteration, a MAB agent chooses an arm it plays while an adversary
chooses the payoff structure for each arm. In other words, the reward of each arm is no longer chosen
to be stochastic but they are deterministically assigned to an unknown sequence, r(1), r(2), · · · where

r(t) = (r1(t), · · · , rK(t))
T

and ri(t) ∈ R ⊂ R is the reward of the i−th arm at time t. By denoting
the policy π that maps a time slot to an arm index to play at the next time slot7, π(1), π(2), · · · is the
sequence of plays of the agent. Considering a time-horizon h, the goal of the agent is to minimize the
regret

Dh = max
j∈{1,··· ,K}

h∑
t=1

rj(t)− Eπ

[
h∑
t=1

Rπ(t)(t)

]
, (9.34)

where the adversary chooses r1(1), r2(1)..., rk(t) and the player strategy chooses actions π(t). Since the
policy is commonly assumed to be random, the regret is also random (so the notation Rπ(t)(t)), and the
expectation is taken over the distribution of the policy. Adversarial bandits is an important generalization
of the bandit problem since no assumptions on the underlying distributions are made, hence the name
adversarial. The player has access to the trace of rewards for the actions that the algorithm chose in
previous rounds, but does not know the rewards of actions that were not selected. Widely used methods
such as UCB are not suitable for this problem formulation. The exponential-weight algorithm called
Exp3 for exploration and exploitation is widely used for solving Adversarial bandits problems [29, 30].

7Actually the policy is a mapping from the set of indices and rewards obtained so far to the next index, i.e. π :
({1, · · · ,K} ×R)t−1 → {1, · · · ,K}
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9.3 RL at PHY layer

In this section, the concepts of Q-learning, deep-learning and MAB are illustrated through some examples
deriving from communication problems addressed in literature. The first example in Section 9.3.1 deals
with power management under queuing delay constraint in a point-to-point wireless fading communication
channel and derives from [31, 32]. This problem has been widely studied in literature under various
formalization including with MDP (cf. the discussion in Section 9.5) and a rather simple toy example
can be extracted from it. In Section 9.3.2, we present two examples to illustrate the reinforcement learning
in large dimension, i.e. optimal caching in a single cell network in Section 9.3.2 and the extension of
the single user power-delay management problem dealt with in Section 9.3.1 to the multi-user case with
large state and action spaces in Section 9.3.2. Finally Section 9.3.3 illustrates the use of MAB with the
opportunistic spectrum access (OSA) problem and green networking issue in Sections 9.3.3 and 9.3.3,
respectively. This section ends with experimental results and proof-of-concept to validate the MAB
principle applied to the OSA issue. These examples do not aim at providing the full solution of the
problem raised, which can be found in the related literature, but rather a simple problem statement with
explicit action and state spaces and the reward function that can be chosen to solve the problem with a
reinforcement learning strategy.

9.3.1 Example with Q-learning

Let us consider a point to point communication system over a block fading channel, i.e. the channel gain
is assumed to be constant on a slot of duration ∆t and changes from one slot to another according to the
distribution PH(t+1)|H(t)(h

′ | h) with H ∈ H where H is assumed to be a finite countable set. At each
time slot, the transmitter can send a packet or remain silent and it can also choose its transmit power as
well as its modulation and coding scheme, e.g. a 16-QAM with a convolutional code of rate 1/2. At each
time slot, a certain number of bits is generated by the application layer and stored in a buffer waiting for
their transmission. The transmitter aims at sending the highest number of bits as possible with minimal
power consumption while limiting the waiting time in the buffer.

At each time slot t, N(t) new bits are generated and stored in the buffer before being transmit-
ted. {N(t)}t∈N are i.i.d. random variables with the distribution PN (n). The buffer state B(t) ∈ B =
{0, 1, · · · , Bmax} represents the number of bits stored in the queue at time t and Bmax is the maxi-
mal buffer size. At each time slot, transmitter chooses β(t) ∈ {1, · · · , B(t)} bits8 to be transmitted
and encodes them into a codeword of length nc channel uses, assumed to be fixed. The rough spectral
efficiency of the transmission is hence ρ(t) = β(t)/nc. Moreover, transmitter chooses its power level
Ptx(t) ∈ {0, p1, · · · , pmax} and hence the total power consumed at t is

Ptot(t) = pon + α−1Ptx(t), (9.35)

where pon is the static power consumed by the electronic circuits and α ∈ ]0, 1] the efficiency of the power
amplifier. One can define the state space of the power consumption as P =

{
pon, · · · , pon + α−1pmax

}
.

The codeword error probability, a.k.a. pairwise error probability, ε is defined as

ε = P [m̂(t) 6= m(t)] , (9.36)

where m(t) and m̂(t) are the message sent and estimated at the receiver at time t, respectively. This
probability has a complex expression in general (not always available in closed-form) that depends on the

channel and modulation coding scheme, the transmit power and the channel gain, i.e. ε
4
= f(β, nc, ptx, h).

Bounds and approximations in finite block length exist, i.e. when nc is finite, but remain complex to
evaluate [33, 34].

The buffer state evolution, i.e. the number of bits stored in the queue, can be described by a Markov
chain with the dynamics

B(t+ 1) = [B(t)− β(t) · 1 {m̂(t) = m(t)}]+ +N(t). (9.37)

8Only a maximum of B(t) bits can be encoded and sent at time t.

20



9.3. RL AT PHY LAYER

This equation states that the number of bits in the buffer in the next time slot, B(t+1), is the number of
bits that is stored at the current time slot, B(t), plus the new bits arriving in the buffer, N(t), minus the
number of bits that has been sent through the channel if the transmission is successful, i.e. the indicator
function is equal to 1 if so and 0 otherwise. Otherwise the packet remains in the queue and another
attempt will occur in the next time slot.

State space. The state space can be defined as the space containing the channel state, the buffer state
and the power consumption state, i.e. S = H× B × P.

Action space. At each time slot, transmitter chooses a power, including the choice not to transmit, i.e.
Ptx(t) = 0, and a number of bits β(t) that is mapped into a codeword9 with a fixed block length nc but with
a variable rate ρ(t) = β(t)/nc. The action space is then described asA = {0, p1, · · · , pmax}×{1, · · · , B(t)}.

Reward / cost functions. In this type of problem, one may be interested to transmit bits with
the minimal power while limiting the awaiting time in the buffer. In that case, the global reward can
be expressed w.r.t. two cost functions, i.e. the power and the waiting time cost functions [32, 31],
c : A×S → R+ and w : A×S → R+

10. The power consumption depends on the transmit power at time
t that depends on the target error rate ε, the channel state h and the code rate ρ, i.e. β since nc is fixed.
The power cost can be defined as

c :

{
A× S −→ R+

(a, s) 7−→ ptot(ε, h, β)
. (9.38)

The buffer waiting time cost is defined as

w :

{
A× S −→ R+

(a, s) 7−→ η1 {b(t+ 1) > Bmax}+ (b(t)− β(t)1 {m̂(t) = m(t)}) , (9.39)

The first term represents the cost to be in overflow with η a constant, for the sake of simplicity. It means
that the cost to pay when the buffer is in overflow is independent of the amount of the overflow11. The
second term is the holding cost, i.e. the cost for keeping b − β bits in the buffer if the transmission is
successful.

Policy. The transmission scheduling policy consists in mapping the system state to an action at each
time slot t, i.e. according to the buffer state, the channel state observed at the receiver12 and the target
error rate desired, the policy tells us how many information bits stored in the queue we should encode
at the next transmission slot and at which power.

Hence a desirable policy should solve an optimization problem. From the cost functions defined

previously, the expected discounted power and waiting time costs, given an initial state s0
4
= S(0), are

defined as:

Cπ(s0) = Eπ

[ ∞∑
t=0

γtc (A(t), S(t)) | S(0) = s0

]
. (9.40)

and

Wπ(s0) = Eπ

[ ∞∑
t=0

γtw (A(t), S(t)) | S(0) = s0

]
. (9.41)

9This transformation is the usual way to consider the encoding phase in information theory. In practice, a transmitter
selects a channel coding rate and the resulting bit-train is grouped into symbols in a chosen constellation.

10Beside the action space, the waiting time cost only depends on the buffer state B and hence w is incentive to the other
states in S.

11One can make this cost dependent on the amount of overflow, see [32].
12The channel state information is assumed to be fed back to the transmitter.
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The expectation is taken over the distribution of the policy and the dynamic of the underlying MDP. The
problem of finding the minimal power consumption while limiting the waiting time cost can be formally
described as [32, 31]13

min
π∈Φ

Cπ(s0) s.t. Wπ(s0) ≤ δ ∀s0 ∈ S. (9.42)

The problem relies to a constrained optimisation problem with unknown dynamics. One can combine the
power and waiting time cost functions c and w in (9.38) and (9.39), respectively, in a dual Lagrangian
expression such that `(a, s;λ) = c(a, s) + λw(a, s), λ ∈ R+ as proposed in [32, 31]. One can hence write
an expected discounted Lagrangian cost on the same model than in (9.40), for instance, but substituting
c by `.

One can apply the Q-learning algorithm detailed in Section 9.2.4 by replacing the reward R in (9.19)
by the average discounted Lagrangian cost to obtain the optimal policy that minimizes the average power
consumed under a buffer delay constraint.

Remark 1. The naive implementation of the Q-learning algorithm may be inefficient in terms of the
algorithm’s convergence time as reported in [32]. Indeed, Q-learning does not assume any knowledge about
the dynamic of the underlying MDP. Hence, the exploration part, which is fundamental in Q-learning,
slows down the convergence time due to the large number of combination of states and actions. However,
in wireless communication some dynamics may not be completely unknown. The authors in [32] proposed
to use the concept of the post-decision states, presented in wireless communication literature in [36]. The
concept consists of reducing the amount of state to explore to take good decisions on the long run by
basing the actions to take on states that would be observed considering only the known dynamics.

9.3.2 Example with Deep-RL

When the state and action spaces become large, the tabulated methods for SARSA or Q-learning are no
longer practical. In that case, methods relying on the approximation of the Q function are meaningful
like the linear approximation and those based on deep neural networks.

Cache enabled communications

Mobile Internet allows anyone to access heterogeneous data in mobility. However, all the contents are
not requested the same by the users, i.e. the data do not have the same popularity and some videos,
for instance, may be more requested than other files by a user. In order to reduce the data traffic on
the backhaul link, and hence the network operating costs, the most requested files can be kept into the
storage unit of the base station; this is what is called caching. Hence, the most ”popular” files are stored
at the base station and can be delivered quickly to the user when requested and hence reducing the cost
to download the file from a distant server.

The problem of learning the optimal caching strategy for satisfying users demand or data offloading
in various environments has been addressed in lot of works, e.g. [4, Table V]. In this section, we will
focus on a simple example to illustrate how the caching problem may be addressed with deep Q-learning.
The example is an adaptation of [37] where this problem is studied in a more complex setting. We briefly
summarize how to properly choose the action and state spaces and rewards in order to find the optimal
caching strategy.

Let us consider a network with a single cell serving many users. Each user may ask for a file f in the
set F = {1, · · · , F} and we assume that only M � F files can be stored at the base station. The files
are requested randomly according to a certain distribution characterizing their popularity at time t. The
popularity of the files is modeled as a random vector P(t) = [P1(t), · · · ,PF (t)]

T
where the distribution

of each popularity can be modeled with Zipf’s law14. This law gives the average number of occurrences
of each file and can be estimated online

13Note that one could have searched for minimizing the waiting time cost under a total power budget as studied in [35],
that leads to equivalent strategy.

14Zipf’s law has been first used to characterize the frequency of occurrence of a word according to its rank.
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The goal of the network is to decide the files to cache and those to remove from the cache storing unit
at each time slot. Because of the large number of possible requested files the number of possible choices
is huge, i.e. 2M with M � 1. Classical tabulated Q-learning approach, like the example presented in
Section 9.3.1, is not suitable.

Action space. Let A be the set of caching action vectors, that contains the binary action vector A(t)

at time t such that A =
{
A | A ∈ {0, 1}F ,AT1 = M

}
. Af (t) ∈ {0, 1}, f ∈ {1, · · · , F} is a random

variable that is equal to 1 if the file f is cached in the BS and 0 otherwise at time t.

State space. The state space is made of the popularity profile and the caching action vector, the latter
being also an indicator of the cache status at time t. The popularity profile vector P is assumed to evolve
according to a Markov chain with |P| states taken in the set P =

{
P1, · · · ,P|P|}. The state space is

hence S = P ×A.

Reward/cost function. Similar to the previous example, the reward takes the form of a cost function
as

c :

{
A× S −→ R+

(a,p) 7−→ λ1a(t)T (1− a(t− 1)) + λ2 (1− a(t))
T
p(t)

. (9.43)

The cost function is made of two parts: i) a term related to the cost of not having a file cached in the
previous time slot, i.e. term 1 − a(t − 1), which needs to be cached in the current time slot and ii) an
immediate cost for non caching the file with high popularity profile at time t. The constants λ1 and λ2

allow to balance the importance of these two costs.

Policy. The goal of the reinforcement learning is to learn the optimal policy π∗ : S → A that minimizes
the long term weighted average cost function

π∗ = arg min
π∈Φ

Eπ

[ ∞∑
t=0

γtc ((A(t),P (t))) | S(0) = s(0)

]
, (9.44)

where the expectation is carried out through the distribution of the policy (if stochastic policy is used)
and the distribution of the random variables A(t) and P (t). Given a state s(t) at time t, the policy looks
for the set of files to be stored at time t+ 1, i.e. a(t+ 1) according to the popularity profile observed so
far.

By denoting the state transition probabilities as PS(t)|S(t−1),A(t−1)
4
= p(s′ | s,a), the Q-function can

be obtained using the Bellman’s equation as

qπ(s,a) = c(s,a) + γ
∑
s′∈S

p (s′ | s,a) qπ(s′,a) (9.45)

where c(s,a) = EπPS′|SA
[c (A(t),P (t))]. Finding the optimal policy in (9.44) that is the solution of

(9.45), which is obtained after policy evaluation and improvement steps, requires one to know the dy-
namics of the underlying Markov chain. The authors in [37] proposed a Q-learning algorithm with linear
function approximation as introduced in Section 9.2.5 in order to cope with the high dimensionality of
the problem, i.e. q (s,a) ≈ ψ(s)

T
(1− a) where ψ(s) is a state dependent feature vector that can be

expressed as θp+ θRa in which θp represents the average cost of non caching files when the popularity is
in state p, and θR is the average cache refreshing cost per file. By adapting the recursion in (9.23) to the
problem above, i.e. the reward is replaced by the cost function in (9.43), the maximization is replaced by
a minimization operation. One can show that this technique is able to converge to the optimal caching
strategy for large number of files and popularity profiles.
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Multi-user scheduling and power allocation

Let us extend the problem presented in Section 9.3.1 by adding multiple users in the system. An orthog-
onal frequency division multiple access downlink network, with a single cell and K users is considered.
The whole time-frequency resource is divided in Nrb resource blocks (RBs) and one RB is made of Ns
subcarriers. The base station handles K queues, one for each user, and has to serve the users by allocating
the suitable transmission powers and the number of RBs in order to transmit the maximum number of
bits with the minimal total power consumption and under buffer waiting time constraints.

The channel gain is considered to be constant on one RB, i.e. over Ns subcarriers and during ∆TRB,
and varies from one RB to another according to the distribution

PH(t+1)|H(t)(h
′ | h) =

K∏
k=1

Nrb∏
r=1

PHkr(t+1)|Hkr(t)(h
′
kr | hkr)

with Hkr(t) ∈ H the random variable representing the channel gain of user k ∈ K = {1, · · · ,K} on RB
number r ∈ NRB = {1, · · · , NRB} at time t. This relation means that the channel gains are independent
from one RB to another in frequency and from a user to another. Similarly than in Section 9.3.1, the
application layer of each user generates Nk(t) bits/packets at time slot t according to the distribution
PN (n). The generated bits are stored in a buffer for each user characterized by its size Bk(t) ∈ Bk,
where Bk is defined similarly than in Section 9.3.1 for all users k ∈ K. We assume that only a packet
of L information bits can be sent per user and per time slot. BS can choose the modulation and coding
scheme (MCS) for each user, mcsk ∈ MC = {mcs1, · · · ,mcsC}, i.e. a couple (χk, ρk) where χk and ρk
are the modulation order in a QAM constellation and the rate of channel encoder for user k, respectively.
The MCSs are ordered from the lowest to the highest spectral efficiency. A set of MCS used for the LTE
system can be found in [38, Table I].

The power and RBs allocation can be done at once by the BS by choosing the transmission power
vector to allocate to user k over all the RBs at time t, P k(t), in the power state space P such that

P =
{
P | P ∈ {0, p1, · · · , pmax}NRB , 1

NRB
P T1NRB

≤ ptot

}
, where ptot is the maximum average power

budget that can be allocated to a user over all the subcarriers. The power of user k on RB r at time t,
i.e. pkr(t), is null if the RB is not used by the user. In papers where this kind of problem is handled with
classical convex optimization tools, RB allocation is dealt with an auxiliary variable that is equal to one
when user k uses RB r and 0 otherwise [39, 38].

The error probability of user k is defined as in (9.36), i.e. εk
4
= P [ω̂k(t) 6= ωk(t)], where ωk(t) is the

message sent by user k at time t. It depends on the chosen MCS, the transmission power and the channel
state experienced over each RB allocated to the user k. The queue dynamic of user k is then

Bk(t+ 1) = [Bk(t)− L · 1 {ω̂k(t)} = ωk(t)]
+

+Nk(t). (9.46)

State space. The state space is made of the buffer state of each user, the channel gain state of each
user on each RB allocated to it and the power consumed by each user, i.e. S = HKNRB × BK × PK .

Action space. BS chooses the power and the MCS couple mcsk = (χk, ρk) to allocate to all users. The
action space is hence A = PK ×MCK .

Reward/cost functions. The objective of the network operator may be to minimize the power con-
sumed to serve all the K users in the cell while guaranteeing a limited buffer waiting time. We assume
that the power consumption is only made of the transmit power, i.e. static power consumption is ne-
glected. The power consumed by user k depends on the target error rate required, the observed channel
state and the used MCS. The total power consumption of the cell can be written as

c :

{
A× S −→ R+

(a, s) 7−→
∑K
k=1 pk(εk,hk,mcsk)T1NRB

. (9.47)
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The buffer waiting time cost is defined similarly than in (9.39), hence the total cost of the waiting time
over the cell is

w :

{
A× S −→ R+

(a, s) 7−→
∑K
k=1 η1 {bk(t+ 1) > Bmax}+ (bk(t)− L1 {ω̂k(t) = ωk(t)}) , (9.48)

The average Lagrangian discounted cost, which is identified to our Q-function, can be obtained similarly
than in Section 9.3.1.

qπ (s0,a0;λ) = Eπ

[ ∞∑
t=0

γt` (A(t),S(t);λ) | S(0) = s0,A(t) = a0

]
, (9.49)

where s0,a0 are the initial state and action vectors and ` (a, s;λ) is defined similarly than in Section
9.3.1 but with the functions in (9.47) and (9.48) and λ is the Lagrange multiplier.

Policy. The problem is to find the policy π∗ that minimizes (9.49) for all (s0,a0) for a given λ. This
optimization problem deals with a huge number of variables and the classical tabulated Q-learning requires
to much time to converge and too much capacity storage. In this situation, DRL can be a suitable solution
to approach the function in (9.49) by implementing, for instance, an FNN as illustrated in Fig. 9.3. For
a given set of parameters of the deep network at time t, i.e. Θt, the loss function is defined as in (9.25)
where R(t) = ` (A(t),S(t);λ) and the optimal Q-function is approached at time t by qΘt

(S(t),A(t);λ).
The optimal set of weights of the neural network can be updated using (9.26) with proper variables.

9.3.3 Examples with MAB

Multi-channel access problem

Let us consider a set of K independent channels, i.e. K = {1, · · · ,K} that can be used opportunistically
by U users, with K ≥ U to communicate with a BS. The channels may be also used by other users that
belong to a primary network. The users can sense one or more channels to estimate if they are used
or not. To perform this task, the users can rely on multiple signal processing techniques ranging from
the simple energy detector to sophisticated signal classifiers [40]. If the channel is detected to be free,
the user transmits in that band, otherwise the transmitter remains silent. The action space is hence
A = {transmit, silent}. When the channel is free however, it may be rated with a low or a high quality
depending on the level of the received SINR for instance or the actual data rate a user experienced on
it. The state space may be limited to S = {busy, free} but the quality of the band can be included in
the reward function as it has been proposed in [41, 23]. In the case where a single user is considered i.e.
U = 1:

Rk(t) = (1− Sk(t))f(Sk(t)), (9.50)

where Sk(t) ∈ {0, 1} is the state of band k at time t where 1 means that the band is detected as occupied
and 0 that is free. Moreover, f(Sk(t)) is the observed data rate on band k when it is in the state Sk(t),
and it can be considered that f(Sk(t)) ∈ [0, 1] ,∀Sk(t)15.

The goal for an agent is to select the band k that maximizes the data rate on the long run. If the
expected rewards of each band were known, the optimal strategy would be to sense and to transmit (when
possible) always on the band presenting the maximal expected reward. In the absence of this knowledge,
the agent has to learn what are the best bands and concentrate on them. An index-based policy can be
proposed to solve this problem, like UCB algorithm which is order-optimal as explained in Section 9.2.6.
For instance, in [23], authors proposed to compute the index Ik(t) for each band k and choose the one
with the highest value at the next round. The index is computed as

Ik(t) = rk(t) + g

(
t

nk(t)

)
, (9.51)

15By convention, f(1) = 0. Moreover, the experienced data rate can be normalized w.r.t. the channel capacity achievable
in that channel.
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where nk(t) is the number of times band k has been sensed up to time t, rk(t) = 1
nk(t)

∑nk(t)
t′=1 rk (pk(t′))

where pk(t′) is a sensing time instant corresponding to the t′-th visit of the band k. Finally, g is a concave
function with g(1) = 0, e.g. g(x) =

√
log(x). One may notice that this function is different from the

classical bias of UCB introduces in Section 9.2.6, which is in the form
√

log(t)
nk(t) . The authors proved that

the proposed index policy has an aggressive exploration characteristic compared to the UCB where the
bias increases slowly. An aggressive exploration statistic means that the optimal data rate will be reached
faster than in a non aggressive exploration characteristic (classical UCB) but it will also be lower than
classic UCB.

According to the statistical model of the rewards, the problem described may fall into the classes of
rested MAB or restless MAB. If the rewards, i.e. the experienced data rate of the users, are i.i.d. on each
band, the problem is a rested-MAB. If however, the state Sk(t) is described by a 2-state Markov chain,
i.e. Gilbert-Elliot model, so the data rate, and hence the problem can be classified as a restless MAB. In
[23] authors showed that the policy is order-optimal for i.i.d. and Markovian rewards as well.

In the previous example, the reward signal was a function of the state of the channel sensed and
the data rate experienced in this channel by the user. In some applications, one may be interested in
acquiring knowledge both on the channel availability and on channel quality. The channel quality has
to be taken in a broad sense. It may be the noise level, including the average power density of the
interference, the average data rate experienced in this band, etc. The dynamic spectrum access with
different channel quality can be represented as in Fig. 9.4. In this example, the state space is extended
to S = {busy, low quality,high quality}. The action space is still the same, i.e. A = {transmit, silent},
but the transmission now occurs on a state, i.e. channel is free, that can be explicitly rated with a high
or low quality. On may solve this problem by considering a full RL approach, using value function as
described in Section 9.2. However, a simple index-based policy can perform very well in this context.
Authors in [42] proposed that each user u ∈ {1, · · · , U} can compute the following index for each band
and choose the maximum one as the next band to sense

Iuk (t) =
1

nuk(t)

nuk (t)∑
t′=1

suk(puk(t′))− quk (t) +

√
α log(t)

nuk(t)
(9.52)

where the first term is the empirical average of the reward obtained by user u when sensing band k, i.e.
0 if the channel is occupied and 1 if the channel is free. The second term is a function of the empirical
average of the quality of band k for user u and is expressed as

quk (t) =
βmu

k(t) log(t)

nuk(t)
, (9.53)

where mu
k(t) = gu∗ (t) − gu,k1 (t) and gu,k1 (t) denotes the empirical average of the quality of band k, when

available, sensed by user u at time t and is expressed as

gu,k1 (t) =
1

nuk(t)

nuk (t)∑
t′=1

ru,k1 (puk(t′)), (9.54)

where ru,k1 (pku(t′)) is the reward obtained by user u rating the quality of band k, between 0 and 1, at

time puk(t′). Finally, gu∗ (t) = maxk∈K g
u,k
1 (t). The last term in (9.52) is the classical exploration term of

UCB algorithm where the parameter α forces the exploration of other bands to find channels that are
the most often available.

The parameter β in (9.53) gives weight to the channel quality. At each of iteration, the agent computes
the empirical mean, up to the current time instant, on the quality observed if the band is free. In the
same time, the best channel among those already tried is updated and the score is computed by weighting
the difference between the estimated best channel and the current channel. If α and β increase, the agent
explores more than it exploits. When α and β decrease, the empirical mean of the states dominates the
index calculation and the exploitation of the best band computed in the previous iteration is favored.

26



9.3. RL AT PHY LAYER

Time instants

Channel 1 free busy busy busy free busy free busy busy

Channel 2 busy free free busy free free busy busy busy

Channel K free busy free busy free free free free busy

free low quality free high quality

Figure 9.4: Dynamic spectrum access with different channel qualities

Due to the restless nature of the problem, the index computation cannot be done when one just starts
observing a Markov chain after being selected. Indeed, arms evolve independently irrespective of which
band is selected or not (i.e. restless MAB) and the distribution of rewards that user u gets from a band k
is a function of the time elapsed since the last time user u sensed this band. The sequence of observations
of a band that is not continuously sensed does not correspond to a Markov chain. To overcome this
issue, when user u observes a given band, algorithm waits for encountering a predefined state, named
regenerative state e.g. ξk, [26]. Once ξk is encountered, rewards are started to be recorded until ξk be
observed a second time and the policy index Iuk is computed and another band selected according to the
result. This structure is necessary to deal with the restless nature of the problem in order to re-create the
condition of continuous observation of Markov chain. It is worth mentioning, however, that exploitation
in this context occurs whenever a free band is detected.

Moreover, the multi-player setting makes the problem rather involved since collisions between agents
need to be handled. The random rank idea from [43] has been adapted to this problem. Each user
maintains an ordered set of channel indexes (arms indexes), i.e. Ku = σu (K), where σu is a permutation
of {1, · · · ,K} for user u, with σu(1) > · · · > σu(K) from the best to the worst rated. The rank r for user
u corresponds to the r−th entry in the set Ku. If users u and u′ choose the same channel to sense the
next time slot, they collide. In that case, they draw a random number from their respective sets Ku and
Ku′ as their new rank and go for these new channels in the next time slot.

Green networking

The radio access networks are not used at their full capacity all the time. Experimental results in voice
call information recorded by operators over one week exhibit periods with high traffic load and others
with moderate to low traffic [44]. Hence, it may be beneficial for a network operator to dynamically
switch off BS that does not handle high traffic in its cell at a given time in order to maximize the energy
efficiency of the network. However, the set of BS to be switched OFF should be chosen with care while
maintaining a sufficient quality of service for users.

Let us consider an heterogeneous wireless cellular network made of macro and small cells where the
set of BS Y = {1, 2, · · · , Y } lies in a two dimensional area in R2, each serving a cell k. The decision
to switch ON or OFF a BS is taken by a central controller and depends on the traffic load of each cell
and its power consumption. The traffic load ρk(t) of a cell k at time t depends on the statistic of the
arrival and departure processes and on the data rate Θk(x, t) that can be provided by cell k to the user
positioned at x at time t.

27



CHAPTER 9. RL FOR PHY LAYER COMMUNICATIONS

The maximization of the energy efficiency of the network by selecting the set of transmitting BS is
an NP-hard problem and can be expressed as following [45]:

Yon∗ (t) = arg max
Yon(t)

[ ∑
k∈Yon(t)

∑
x∈Ck(t)

Θk(x,t)

Pk(t)

]
s.t.

(c1) 0 ≤ ρk(t) ≤ ρth,∀k ∈ Yon (t)
(c2) Θk(x, t) ≥ Θmin,∀x ∈ Ck (t) ,∀k ∈ Yon (t)
(c3) Yon (t) 6= ∅

(9.55)

where Yon(t) is the set of active BS at time t, Pk(t), Ck(t) are the power consumed and the coverage of
cell k at time t, respectively. Moreover, ρth and Θmin are the traffic load upper limit and the minimum
required data rate per user, respectively. Constraint (c1) is stated for stability reason16, (c2) states that
each user has to be served with a minimum data rate and (c3) ensures that at least one BS is active at
each time slot. Finding the optimal configuration by an exhaustive search would be prohibitive in large
networks since the optimal BS active set belongs to a set of 2Y − 1 combinations.

Authors in [45] have shown that this problem can be solved with MAB formulation. The problem
can be illustrated with Fig. 9.5 where at each iteration, the central controller chooses an action a among
|A| = 2Y − 1 possible actions, i.e. a(t) = [a1(t), · · · , aY (t)]

T
with ak(t) = 1 if BS k is switched ON

at t and 0 otherwise, and where A is the action space. The state is represented by a random variable
S(t) ∈ {0, 1} where s(t) = 1 if all constraints in (9.55) are satisfied and 0 otherwise. In other words,
the value of the state of the Markov chain relies on the fact that the selected action leads to a feasible
solution of (9.55). Observing the state s(t) and taking the action a(t) at time t lead to the network in
the state S(t+ 1) and give a reward R(t+ 1) in the next time slot according to the conditional transition
probability distribution introduced in (9.4). The reward is the energy efficiency computed as in the cost
function in (9.55).

Controller

RQoS-UCB policy

Action a(t) = [a1(t), · · · , aY (t)]

ai(t) =

{
1 BS i active
0 BS i inactive

Reward
R(t+ 1)

State
S(t+ 1)

Network environment

Macro BS

Micro BS

Figure 9.5: RL framework for BS switching operation

In [45] the authors proposed to apply the same policy as in (9.52), where the index of the user can
be dropped out, k represents the number of the actions and where the middle term qk(t) is expressed as

16A traffic load that is too high results in diverging queue size in the network.

28



9.3. RL AT PHY LAYER

in (9.53) and where r1(t) in (9.54) is the energy efficiency of the network at time t when the set of active
BS is such that constraints in (9.55) are satisfied, i.e. s(t) = 1.

Remark 2. Of course, modeling (9.55) with MAB framework does not change that the problem dimen-
sionality is exponential in the number of BS. However, MAB explores only once all network configurations
to assign an index to each of them and then chooses the next configuration according to the highest index
computed at the previous iteration with (9.52), instead of doing an exhaustive search at each time slot.

Remark 3. This problem could also be addressed with DRL technique. Indeed, if the number of BS is
too large, the convergence time of MAB algorithms is too large which makes the problem unsolvable for
large scale networks. DRL can be used instead and the set of BS to switch on may be obtained by a DNN
for each state of the environment.

9.3.4 Real world examples

We propose to give details on a few concrete implementations of RL for communication, which rely on
theoretical applications of RL using the UCB algorithms for single user cognitive radio MAB-modeled
problems in [46] and for the opportunistic spectrum access (OSA) scenario in [47]. In these examples,
UCB1 [21] algorithm is mostly used as a proof of the pertinence of bandit algorithms for free spectrum-
access problems, but other bandit algorithms have also been considered and could be implemented as
well.

In the spectrum access context, the goal is to be able to manage a large spectrum without adding
complexity to the radio system by enlarging its bandwidth (and consequently without adding complexity
to the transceivers). Figure 9.6 shows that learning is a mean to decrease the receivers architecture
complexity while maintaining a legacy bandwidth to the OSA radio system with extended capabilities.
RL enables to reconstruct the global bandwidth knowledge, thanks to successive small scale investigations.
RL offers a light solution, in terms of implementation complexity cost compared to wide (full)band OSA
systems.

Figure 9.6: Comparison of the receiver architectures for OSA with or without RL.
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Implementation at the post-processing level

Due to the unique world wide covering characteristic of high frequency (HF) transmissions, there is a high
necessity to reduce collisions between users which act in a decentralized manner. RL algorithms have been
applied on real measurements of the HF spectrum that has been recorded during a radio-ham contest
[48], i.e. when HF radio traffic is at its highest. Figure 9.7 shows the subset of the spectrum data the
MAB algorithms considered in [48]. The goal of learning is to enable users to find yellow unoccupied slots
in time and frequency before transmitting and to maximize the probability that no collision occurs during
the transmission duration. For instance, the cognitive device should avoid the frequencies delimited by
the rectangle in Figure 9.7, as it is a highly used bandwidth by primary users.

Figure 9.7: HFSA IDeTIC F1 V01 database extraction for HF channel traffic during a radio-ham contest
at 14.1 MHz (area highlighted in the rectangle) [48].

The solution in [48] proposes a new hybrid system which combines two types of machine learning tech-
niques based on MAB and Hidden Markov Models (HMM). This system can be seen as a meta-cognitive
engine that automatically adapts its data transmission strategy according to the HF environment’s be-
haviour to efficiently use the spectrum holes. The proposed hybrid algorithm, i.e. combining a UCB
algorithm and HMM, allows to increase the time the opportunistic user transmits when conditions are
favourable, and is also able to reduce the required signalling transmissions between the transmitter and
the receiver to inform which channels have been selected for data transmission.

Table 9.1 sums-up the characteristics of the RL algorithm implementation for this use case. The reward
is the channel availability detected by the cognitive users. More details about these measurements can
be found in [48].

Implementation in a Proof-of-Concept

First real-time RL implementation on real radio signal took place in 2013 for OSA scenario and was first
published in 2014 [49] at the Karlshruhe Workshop of Prof. Friedrich Jondral and extended hereafter in
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Characteristics Comment

RL algorithm HMM combined with UCB1
Reward channel availability

Implementation side HF transceiver
method for RL feedback loop Sensing

Table 9.1: Summary for HF signals post-processing.

[50]. This consisted of a proof-of-concept (PoC) in the laboratory conditions with one USRP17 platform
emulating the traffic generated by a set of primary users, i.e. users that own the frequency bands, and
another USRP platform running the sensing and learning algorithm of one secondary user, i.e. user that
opportunistically exploits the licensed band. Both i.i.d and Markovian MAB traffic models have been
tested. UCB1 algorithm was used first in order to validate the RL approach, but then other bandit
algorithms have been implemented later, e.g. Thompson Sampling, KL-UCB. The multi-user version
has been implemented in [51], moreover, several videos implementing the main UCB algorithms in a
USRP-based platform demonstrating the real-time learning evolution under various traffic models (i.i.d.
and Markovian) can be found on Internet18. In order to help the experimental community to verify and
develop new learning algorithms, an exhaustive Python code library and framework for simulations have
been provided on GithHub19 20 21 that encompasses a lot of MAB algorithms published until mid-2019.

Table 9.2 summarizes the main characteristics of the RL algorithm implementation for this use case.
More details about these measurements can be found in [49].

Characteristics Comment

RL algorithm UCB1 (or any other bandit algorithm)
Reward channel ’availability’

Implementation side secondary user
method for RL feedback loop Sensing

Table 9.2: Summary for OSA proof-of-concept.

A PoC implementing MAB algorithms for internet of things (IoT) access has been done in [52]. It
consists in one gateway, one or several learning IoT devices, embedding UCB1 and Thompson Sampling
algorithms, and a traffic generator that emulates radio interferences from many other IoT devices. The
IoT network access is modeled as a discrete sequential decision making problem. No specific IoT stan-
dard is implemented in order to stay agnostic to any specific IoT implementation. The PoC shows that
intelligent IoT devices can improve their network access by using low complexity and decentralized algo-
rithms which can be added in a straightforward and cost-less manner in any IoT network (such as Sigfox,
LoRaWAN, etc.), without any modification at the network side. Table 9.3 summarizes the characteristics
of the RL algorithm implementation for this use case. More details about these measurements can be
found in [52], but we present the main outcomes here.

Figure 9.8 shows the UCB parameters during an execution on 4 channels numbered as channels #2,
#4, #6 and #822 23. We can see on top left of Fig. 9.8 that the left channel (channel #2) has been only

17https://www.ettusresearch.com/
18https://www.youtube.com/channel/UC5UFCuH4jQ_s_4UQb4spt7Q/videos
19“SMPyBandits: an Open-Source Research Framework for Single and Multi-Players Multi-Arms Bandits (MAB) Algo-

rithms in Python”
20code on https://GitHub.com/SMPyBandits/SMPyBandits
21documentation on https://SMPyBandits.GitHub.io/
22The entire source code for this demo is available on-line, open-sourced under GPLv3 license, at https://bitbucket.org/

scee_ietr/malin-multi-armed-bandit-learning-for-iot-networks-with-grc/src/master/. It contains both the GNU
Radio Companion flowcharts and blocks, with ready-to-use Makefiles to easily compile, install and launch the demonstration.

23A 6-minute video showing the demonstration is at https://www.youtube.com/watch?v=HospLNQhcMk&feature=youtu.be
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tried twice over 63 trials by the IoT device and it did not receive the ACK from the network at both
times, as it can be seen at the top right panel which represents the number of successes on each channel.
So the success rate for channel #2 is null, as seen at the bottom right panel. The more the channel index
increases, i.e. from the left to the right, the better the success rate. That is why channel #8, with 90%
of success rate has been preferably used by the algorithm with 35 trials over 63 (top left panel) and 30
successes (top right panel) over the 49 total successes obtained until the caption of this figure during the
experiment.

Figure 9.8: UCB parameters monitored during PoC execution [52].

Real world experimentations

The ultimate step of experimentation is the real world, validating the MAB approaches for intelligent
spectrum access. It has been done on a LoRaWAN network deployed in the licence free 868 MHz ISM
band for Europe. The experiment has been conducted in two steps. The first step consists of emulating
an artificial IoT traffic in controlled radio conditions, i.e. inside an anechoic chamber, in order to validate
the devices and the gateway implementation itself [53]. The second step is to make it run in real world
conditions without being able to neither control the spectrum use, nor the propagation conditions in the
area [54]. On step 1, seven channels have been considered, whereas on step 2, only three channels were
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Characteristics Comment

RL algorithm UCB1 and Thomson Sampling
Reward channel ’availability’

Implementation side embedded on device
method for RL feedback loop Emulated ACK

Table 9.3: Summary for IoT proof-of-concept.

Channel % of jamming Frequency (in MHz)
#0 30% 866.9
#1 25% 867.1
#2 20% 867.3
#3 15% 867.5
#4 10% 867.7
#5 5% 867.9
#6 0% 868.1

Table 9.4: Channels characteristics for step 1 experiments.

used due to the configuration of the gateway, which was controlled by the LoRaWAN network provider.
For the two measurement campaigns, Pycom equipped with Lopy424 shields have been used as devices
and a standard gateway from Mutlitech.

STEP 1 - The characteristics of the seven channels are given in Table 9.4 which gives the index of
the channel, the percentage of time occupancy (or jamming) the channels experience due to other IoT
devices in the area, the center frequency of each channel (channel bandwidth is set to 125 kHz). USRP
platforms have been used to generate the surrounding IoT traffic.

Figure 9.9 shows that, due to the surrounding IoT traffic, the channel number #6, i.e. the curve with
star markers, has been much more played by the cognitive device, thanks to the learning algorithm it
embeds. This device is therefore named IoTligent and is hence able to maximise the success rate of its
transmission. A transmission is called a ”success” when a message has been sent by the IoT device in
uplink, received by the LoRaWAN gateway, transmitted to the application server which sends an ACK
back towards the IoT device, which is transmitted by the gateway in downlink at the same frequency
used in uplink and finally received by the IoT device. A normal device following standard LoRaWAN
features used by default, served as reference and the results in term of number of channel uses and success
rate have been summarized in Table 9.5.

As we can see on Table 9.5, whereas the reference IoT device uniformly transmits on all channels
(around 75 times during this experiment), we can see that the IoTligent device concentrates its trans-
missions on the most vacant channels, with a clear choice for channel #6. Over a total of 528 iterations,
323 transmissions have been done in this channel for IoTligent, which is more than 4 times compared to
the reference IoT, with 75 transmissions. Moreover, IoTligent selects the channel #6 much more than
channel #0, i.e. almost 27 times more. Hence, the IoT device with learning capability is able to increase
its global success rate drastically that reaches 80% (420 successful ACK received over 528) compared to
50% for the reference IoT device (266 successful ACK received only).

On this example, due to its ability to favor the use of less occupied channels, IoTligent demonstrates
2.5 times improvement in performance compared to standard IoT LoRaWAN device, in terms of number
of successes. Note that in this experimental setup, radio collisions are only considered as obstacles to the
reception of ACK by the IoT devices.

It is worth mentioning that adding this learning capability does not impose changes to LoRaWAN
protocols: no additional re-transmissions to be sent, no additional power consumed, no data to be added
in frames. The only condition is that the proposed solution should work with the acknowledged (ACK)

24https://pycom.io/
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Figure 9.9: Number of selections for each of the seven channels used in step 1 for IoTligent device [53].

Reference IoT IoTligent
Channel % of success nb of Tx % of success nb of Tx

#0 21% 76 8% 12
#1 20% 76 25% 16
#2 24% 75 25% 16
#3 49% 76 50% 32
#4 62% 74 62% 47
#5 76% 76 74% 82
#6 96% 75 94% 323

Table 9.5: Success rate and number of attempts for each channel of regular IoT device and IoTligent.
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mode for IoT. The underlying hypothesis, however, is that the channels occupancy by surrounding radio
signals (IoT or not) is not equally balanced. In other words, some ISM sub-bands are less occupied or
jammed than others, but it is not possible to predict it in time and space, so the need to learn on the
field. Table 9.6 sums-up the characteristics of the RL algorithm implementation for this use case. More
details about these measurements can be found in [53].

Characteristics Comment

RL algorithm UCB1 (or any other bandit algorithm)
Reward received ACK

Implementation side embedded on device
method for RL feedback loop Standard LoRaWAN ACK

Table 9.6: Summary for step 1 experiments

STEP 2 - Real world experiments have been done on a LoRa network deployed in the town of
Rennes, France, with 3 channels 868.1 MHz, 868.3 MHz, 868.5 MHz. IoTligent is completely agnostic
to the number of channels and can be used in any country or ITU Region (i.e. 866 MHz and 915 MHz
ISM bands as well). Since this experiment is run in real conditions, we have no means to determine
exactly which of the four following possible phenomenon influences the IoTligent devices behavior: i)
collisions with other LoRaWAN IoT devices, ii) collisions with IoT devices running other IoT standards,
iii) collisions with other radio jammers in the ISM band, iv) propagation issues.

We now look at the results obtained by IoTligent, for 129 transmissions done every 2 hours, over
an 11 days period. Figure 9.10 shows the empirical mean experienced by the device on each of the 3
channels. This represents the average success rate achieved in each channel since the beginning of the
experiment. The average success rates for the three channels, i.e. #0 (868,1 MHz), #1 (868.3 MHz)
and #2 (868.5 MHz), are represented by the curves with squares, stars and bullets, respectively. Each
peak corresponds to a LoRa successful bi-directional exchange between the device and the application
server: from device transmission, to ACK reception by the device. Each peak in Figure 9.10 reveals a
successful transmission where ACK has been received by IoTligent device. We can see that channel #1,
star markers, has been the most successful, before channel #2, while channel #0 always failed to send
back an ACK to the device. During the experiment indeed, channel #0 has been tried 29 times with
0 success. IoTligent device uses channel #1 61 times with 7 successful bi-directional exchanges, i.e. 7
peaks on the curve with stars, and channel #2 39 times with 2 successes, i.e. 2 peaks on the curve with
bullets. At the end of the experiment, one can observe 11.5% successful bi-directional connections for
channel #1 and 5% for channel #2, whereas channel #0 never worked from the device point of view. For
comparison, a regular IoT device, performing a random access, achieves a global average successful rate
of 5.5%. Table 9.7 summarizes the characteristics of the RL algorithm implementation for this use case.
More details about these measurements can be found in [54].

Characteristics Comment

RL algorithm UCB1 (but could be any bandit algorithm)
Reward channel ’availability’ (collisions, jamming and propagation)

Implementation side embedded on device
method for RL feedback loop Standard LoRaWAN ACK

Table 9.7: Summary for step 2 experiments.
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Figure 9.10: Empirical mean evolution through time over 11 days [54]
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9.4 Conclusions and Future Trends

During recent years, we have witnessed a shift in the way wireless communication networks are designed,
at least in the academic community, by introducing ML techniques to optimize the networks. With the
complexity of wireless systems increasing, it becomes more and more difficult to build explainable math-
ematical model to predict the performance of large scale systems. Exhaustive and complex simulations
are not always an option because they are highly resource-intensive. In this sense, ML in general and
RL in particular have the potential to overcome the network modelling deficit by learning the optimal
network functioning with minimal assumptions on the underlying phenomena. This is of particular im-
portance when non linear phenomena needs to be taken into account and for which it is very difficult to
get analytical insights.

In this Chapter, we focused on RL for PHY layer communications. Even if this domain enjoys a long
successful history of well-defined mathematical models, the heterogeneity of the use-cases envisaged in 5G
for instance, advocates for adding smartness in the PHY layer of upcoming wireless systems. All along
this Chapter, we have provided some PHY examples in which RL or deep RL can help to achieve good
performance results. The key point to apply RL algorithms to a PHY layer problem is when one cannot
solve the problem analytically or by writing an explicit program to do so. There are, without any doubt,
many practical situations where one cannot explicitly solve the associated optimization problem related
to the communication system design, e.g. non linear peak to average power ratio reduction, acoustic
transmission, non linear power-amplifier.

The key benefit of RL is its adaptability to unknown system dynamics. However, the convergence
time is crucial in wireless communications and real networks cannot afford to spend too much time to
learn a good strategy. For instance, the deep Q-learning in [37] converges around 104 iterations, for two
popularity profile states. This cannot be directly converted into time delay because it depends on the
number of requests the users do, but if the network records 1 request per second, it takes almost 3 hours
to converge toward the optimal strategy. The converging time is also around 103-104 iterations in the
problem of optimal buffer state and transmission power dealt with in [32]. In case of non stationary
environment, it can be prohibitive.

The feasibility of a PHY layer data-driven designed has been proved in [55, 56]. However, even if
possible, learning an entire PHY layer without any expert knowledge is not necessarily desirable. For
instance, the synchronisation task requires an huge amount of computation and a dedicated NN in
[56] to synchronize the transmission while it can be simply performed using well-known OFDM signal
structures [57]. Hence it is apparent that DRL can be an efficient tool to design the PHY layer of
future wireless systems, however, it would may gain in efficiency if cross-fertilization research between
ML and model-based approach would be undertaken. In order to achieve this goal, explainable ANN with
information-theoretic tools is a promising research direction, as attempted in [58]. The transfer learning
concept, which consists in transferring the knowledge acquired in a previous task to a current one in order
to speed up the converge, is also a promising research direction if a mixed transfer, i.e. model-based to
data-driven, is considered.
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9.5 Bibliographical remarks

This Chapter aimed at being the most self-content as possible and at presenting, in a tutorial way, the
theoretical background of RL and some application examples, drawn from the PHY layer communication
domain, where RL techniques can be applied. The theoretical part of Section 9.2 revisits the fundamentals
of RL and is largely based on the great books of Sutton and Barto [5] and Csaba Szepesvari [6] that
gathered in a comprehensive way the original results of Bellman [7] who introduced the notion of dynamic
programming and Watkins [9] who proposed the Q-learning algorithm.

Example in Section 9.3.1 follows from [31, 32]. The problem of joint power and delay management can
be dated back to at least the early 2000s. In [59] the authors studied the power adaptation and transmis-
sion rate to optimize the power consumption and the buffer occupancy as well. They characterized the
optimal power-delay tradeoff and provided the former steps of a dynamic scheduling strategy achieving
the Pareto front derived earlier. While the previous work investigated the power-delay Pareto front in
block fading channels, authors in [60] came back to AWGN channel but proposed more explicit schedulers
to operate close to the fundamental bound. The authors in [35] revisited the same problem as in [59] and
proved the existence of a stationary policy to achieve the power-delay Pareto front. The formulation of
the joint delay-power management problem as a constrained MDP can be reported in [35, 36, 31, 32].

Example in Section 9.3.2 has been considered in [37] with a more complex setting, where the authors
introduced two kind of popularity profiles, i.e. local and global. The local popularity profile allows to
cache the requested files according to the local demand while the global one allows to anticipate the local
demand by monitoring the most wanted files over the network. We simplified the system model in order
to make a toy example easily with this application. Due to the potentially large number of files to be
cached, this problem can be addressed with deep neural network as well, see for instance [61, 62].

Examples of Section 9.3.3 follow from [23, 42] for the OSA problem with quality of the transmission
and from [45] for the switch ON/OFF base station problem. The opportunistic spectrum access problem
has been considered as the typical use-case for the application of MAB and RL algorithms in wireless
communications since their inception in the field. This matter of fact comes from the RL framework
in general, and MAB in particular, are well suited for describing the success and the failure of a user
that tries to opportunistically access to a spectral resource that is sporadically occupied. The second
reason is that the performance of the learning algorithm strongly depends on the ability of the device to
detect good channels, that motivates the reborn of the research on signal detection algorithms. A broad
overview on signal detection and algorithms to opportunistically exploit the frequency resource has been
provided in [63].

The examples we proposed in this chapter are not exhaustive since it was not the objective and at
least two very complete surveys have been provided recently on that topic [64, 4]. We invite the interested
reader to consult these articles and the references therein to go further in the application of (deep)-RL
techniques to some specific wireless communication problems. In this section, we give some articles that
may be interesting to consult when addressing PHY layer communication challenges.

An interesting use-case in which DRL can be applied is the IoT. The huge number of cheap devices to
be connected with small signalling overheads make this application appealing for some learning approaches
implemented at BS for instance. Authors in [65] revisited the problem of dynamic spectrum access for one
user. Even if this set up has been widely studied in literature, the authors modeled the dynamic access
issue as a POMDP with correlated states and they introduce a deep Q-learning algorithm to choose what
are the best channels to access at each time slot. An extension to multiple devices has been provided
in [66]. A relay with buffering capability is considered to forward the packets of the other nodes to the
sink. At the beginning of each frame, the relay chooses packets from buffers to transmit on some channels
with the suitable power and rate. They propose a deep Q-learning approach with a FNN to optimize
the packet transmission rate. IoT networks with energy harvesting capability can also be addressed with
deep Q-learning in order to accurately predict the battery state of each sensor [67].

The works above consider centralized resource allocation, i.e. the agent is run in the BS, relay or
another server but is located at one place. In large scale heterogeneous networks, with multiple kind of
BS, e.g. macro, small or pico BS, this approach is no longer valid and distributed learning has to be
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implemented. In [68], the authors considered the problem of LTE access through WiFi small cells by
allocating the communication channels and managing the interference. The small BS are in competition
to access the resources and hence the problem is formulated as a non cooperative game which is solved
using deep RL techniques. The same kind of problem has been tackled in [69] while in a different context
and different utility function.

DRL has also been successfully applied to complex and changing radio environments with multiple
conflicting metrics such as in satellite communications in [70]. Indeed, the orbital dynamics, the variable
propagation environment, e.g. cloudy, clear sky, the multiple optimization objectives to handle, e.g. low
bit error rate, throughput improvement, power and spectral efficiencies, make the analytical optimization
of the global system untractable. Authors used a deep Q-learning with a deep NN to choose the actions to
perform at each cognitive cycle, e.g. modulation and encoding rate, power transmission, and demonstrate
that the proposed solution achieved very good performance compared to the ideal case obtained with a
brute force search.

There are still lots of papers dealing with RL and deep-RL for PHY layer communications, ranging
from resource allocations to PHY layer security for instance. Since this is a hot topic rapidly evolving
at the time we write this book, one can expect very interesting and important contributions in this field
in the upcoming years. Since the feasibility and the potential of RL techniques has been demonstrated
for PHY layer communications, we encourage the research community to also address important issues
such as the convergence time reduction of learning algorithms or the energy consumption reduction for
training a deep NN instead of an expert-based design of PHY layer.
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Acronyms

ACK Acknowledgement

ANN Artificial Neural Network

AWGN Additive White Gaussian Noise

BPSK Binary Phase Shift Keying

BS Base Station

DL Deep Learning

DRL Reinforcement Deep Learning

HF High Frequency

HMM Hidden Markov Model

MAB Multi-Armed Bandit

MDP Markov Decision Process

NN Neural Network

OFDM Orthogonal Frequency Division Multiple Access

PHY Physical layer of the OSI stack

POMDP Partially Observable Markov Decision Process

ML Machine Learning

QoS Quality of Service

RL Reinforcement Learning

SINR Signal to Interference plus Noise Ratio

SU Secondary User(s)

UCB Upper Confidence Bound
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Notation and symbols

A(t) Action random variable at t

a A realization of the random variable action A

EP [X(t)] Expectation of X(t) under the distribution P

PX [X(t) = x] Probability measure of the event X(t) = x, under the distribution of X

PX(t+1)|X(t)(x
′ | x) Conditional probability measure of X at t+ 1 knowing X at t

π(a | s) Policy π, i.e. probability to choose action a, while observing state s

π∗ Optimal policy

qπ(a, s) Action-state value of the pair (a, s) and following hereafter the policy π

q∗(a, s) Optimal action-state value of the pair (a, s) and following hereafter π∗

R(t) Reward random variable at t

r A realization of the random variable reward R

S(t) State random variable at t

s A realization of the random variable state S

vπ(s) Value function of the state s under the policy π

v∗(s) Optimal value function of the state s under π∗

[·]+ max (·, 0)

1 {a} Indicator function equals to 1 if a is true and 0 otherwise

1n Column vector full of ones of length n

A Set of possible actions

N Set of positive integers

R Set of possible rewards

R Set of real numbers

R+ Set of real and positive numbers

S Set of possible states
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