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Abstract. We give new formulas for �nding the complex (phased) scattering amplitude at
�xed frequency and angles from absolute values of the scattering wave function at several points
x1, ..., xm. In dimension d ≥ 2, for m > 2, we signi�cantly improve previous results in the
following two respects. First, geometrical constraints on the points needed in previous results are
signi�cantly simpli�ed. Essentially, the measurement points xj are assumed to be on a ray from
the origin with �xed distance τ = |xj+1 − xj|, and high order convergence (linearly related to m)
is achieved as the points move to in�nity with �xed τ . Second, our new asymptotic reconstruction
formulas are signi�cantly simpler than previous ones. In particular, we continue studies going
back to [Novikov, Bull. Sci. Math. 139(8), 923-936, 2015].
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1 Introduction

We consider monochromatic scattering modelled using the equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 1, E > 0, (1)

where
v ∈ L∞(D), v ≡ 0 on Rd \D,
D is an open bounded domain in Rd.

(2)

We assume that v is complex-valued. The regularity assumption that v ∈ L∞(D) is just for
simplicity and can be relaxed; see Remark 2.1. The main point is that for equation (1), under
such an assumption, we can consider the scattering solutions ψ+ speci�ed via Sommerfeld type
radiation condition like (3).

Equation (1) arises in quantum mechanics as the Schr�odinger equation at �xed energy and in
acoustics and electrodynamics as the Helmholtz equation at �xed frequency. Under assumption
(2), the coe�cient v describes a scatterer contained in D. The number E is related to the time-
harmonic frequency and corresponds to the energy in the framework of the Schr�odinger equation.
In addition, v may depend on E, at least, in acoustics and electrodynamics. See, for example, [5],
[7], [9], [13].

For equation (1) we consider the solutions ψ+(x, k), k ∈ Rd, k2 = E, speci�ed by the following
asymptotic as |x| → ∞ :

ψ+(x, k) = eikx +
ei|k||x|

|x|(d−1)/2
f1(k, |k|

x

|x|
) +O

(
1

|x|(d+1)/2

)
, (3)

for some a priori unknown f1. The solutions ψ+ = ψ+(x, k) are the scattering solutions, or
scattering wave functions, for equation (1). These solutions describe scattering of the incident
plan waves described by eikx on the scatterer described by v. In particular, the second term on
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the right-hand side of (3) describes the leading scattered spherical waves. The coe�cient f1 arising
in (3) is a function de�ned on

ME = {k, l ∈ Rd : k2 = l2 = E} = Sd−1√
E
× Sd−1√

E
, (4)

where l = |k| x|x| , Sd−1r is the sphere of radius r centered at the origin in Rd.

The function f1 is the scattering amplitude, or far �eld pattern, for equation (1).
In order to study ψ+ and f1 one can use, in particular, the Lippmann�Schwinger integral

equation (16) for ψ+ and formulas (20)�(22) for f1; see Subsection 2.1.
We recall that in quantum mechanics the complex values of the functions ψ+ and f1 have no

direct physical sense, whereas the phaseless values of |ψ+|2 and |f1|2 have probabilistic interpre-
tation (according to the Born's rule) and can be directly measured. See [6] and, for example,
[12], for details. In turn, in acoustics or electrodynamics the complex values of ψ+ and f1 can
be directly measured, at least, in principle. However, in electro�magnetic wave propagation at
very high frequencies (as for X�rays and lasers) only phaseless values of |ψ+|2 and |f1|2 can be
measured in practice by modern technical devices; see, e.g., [17] and references therein.

For equation (1) under assumptions (2), we consider, in particular, the following problems:
Problem 1.1. Reconstruct potential v from its scattering amplitude f1.
Problem 1.2. Reconstruct potential v from its phaseless scattering data |ψ+|2 appropriately

given outside of D.
Problem 1.3. Find f1 from |ψ+|2 appropriately given outside of D.
A recent survey on these problems is given in [30]. Actually, in the present work we continue

studies of [11], [26]�[31], [33] on Problem 1.3. These studies on Problem 1.3 and results on Problem
1.1 admit straightforward applications to Problem 1.2. For other possible approaches to Problem
1.2, see, for example, [40], [41], [22], [10], [16], [23], [24], [19], [35].

In particular, in the present work we give, for �xed (k, l) ∈ME, l 6= k, for d ≥ 2,

formulas for �nding f1(k, l) up to O(s−n) as s→ +∞,
from |ψ+(x, k)|2 given at m points x = x1(s), ..., xm(s),

(5)

where m depends linearly on n,

xj(s) = (s+ τj)l̂, j = 1, ...,m, l̂ = l/|l|,
s > 0, τ1 = 0, τj1 < τj2 , j1 < j2.

(6)

These formulas are explicit and are presented in detail below in Introduction and in Section 3,
where our precise assumptions on m = m(n) and on τ1, ..., τm are speci�ed.
One can see that in formulas (5), (6) the measurement points xj = xj(s) are on the ray starting

at the origin in direction l̂, where s is the distance between the origin and the set of these points,
and the distances τj+1 − τj = |xj+1 − xj| are �xed. In addition, the reconstruction formulas
mentioned in (5) are asymptotic, where n can be considered as their convergence rate in terms of
O(s−n) as s→ +∞, that is when the points xj = xj(s) move to in�nity.

Note that, to our knowledge, for the �rst time formulas (5), (6) were realized in [26], [28] for
n = 1, m = 2, d ≥ 3 and for n = 1/2, m = 2, d = 2, and in [29] for n = 1, m = 2, d = 2. In
addition, for m = 3, d = 1, an exact (not asymptotic !) analog of formulas (5), (6) was given
in [27]. In the present work, for the �rst time we realize formulas (5), (6) for n > 1, d ≥ 2. In
this respect we proceed from studies recently developed in [29] and [31]; more comments are given
below in Introduction and in Section 2.

Let

a(x, k) = |x|(d−1)/2(|ψ+(x, k)|2 − 1), (7)

where x, k ∈ Rd \ {0}.
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Assume in (5), (6) that d = 3, m = 2n, n ∈ N = {1, 2, 3, ...}, and that

τj =

{
(j − 1)τ, j = 1, ..., n,

σ + (j − 1− n)τ, j = n+ 1, ..., 2n,
(8)

τ = τ(k, l) =
2π

κ
, 0 < σ 6= 0 (mod

π

κ
), κ = κ(k, l) = |k| − kl̂. (9)

Then our formulas (5), (6) are as follows:

f1(k, l) =
e−i(s+σ)κa1(s)− e−isκa2(s) +O(s−n)

−2i sin (σκ)
, s→ +∞, (10)

a1(s) = a1(k, l, s) =
n∑
j=1

(−1)n−j(s+ τj)
n−1a(xj(s), k)

(j − 1)!(n− j)!τn−1
, (11)

a2(s) = a2(k, l, s) =
2n∑

j=n+1

(−1)j(s+ τj)
n−1a(xj(s), k)

(j − 1− n)!(2n− j)!τn−1
, (12)

where (k, l) ∈ ME, l 6= k, d = 3, a(x, k) is de�ned by (7), xj(s) are de�ned in (6), (8), (9),
τ, τj, σ, κ are the numbers of (8), (9).

Formulas (10)�(12) are new for n ≥ 2; for n = 1 these formulas were given in [26], [28].
Somewhat more general version of formulas (10)�(12) is given as Theorem 3.1; see Subsection

3.1.
One can see that formulas (10)�(12) and formulas of Theorem 3.1 are completely explicit !

However, a possible practical inconvenience of these formulas is that the di�erences between the
measurement points xj(s), j = 1, ..., n, or xj(s), j = n + 1, ..., 2n, in (10)�(12) (and between the
related points in Theorem 3.1) are multiple to τ = τ(k, l) = 2π/κ, where κ = κ(k, l) is de�ned in
(9). The inconvenience is that this τ depend on k, l. Besides, these formulas are valid for d = 3
but are not valid for d = 2 (because of slightly di�erent structure of the asymptotic expansions
(3), (19) for ψ+ for d = 3 and for d = 2). Therefore, in the present work we also give the following
further results without the aforementioned multiplicity condition for the di�erences between xj(s),
for d ≥ 2.

We give an explicit version of formulas (5), (6) for the case of the linearised Problem 1.3 (near
v = 0) for d ≥ 2, m = 2n, n ∈ N, where

τj = (j − 1)τ, j = 1, ..., 2n, τ > 0, τ 6= 0 (mod
π

κ
), (13)

κ = κ(k, l) in de�ned in (9); see Theorem 3.2 of Subsection 3.2.
We give explicit versions of formulas (5), (6) for the general non�linearised case for d = 3, m =

3n− 1, and for d = 2, m = 3n, where

τj = (j − 1)τ, j = 1, ...,m, τ > 0, τ 6= 0 (mod
π

κ
), (14)

κ = κ(k, l) in de�ned in (9); see Proposition 3.1 of Subsection 3.3 and Proposition 3.2 of Subsection
3.4. For the general non-linearized case, �nding such formulas for m = 2n is an open question for
n > 1, for d = 3 or d = 2, under assumption (14). We recall that for n = 1, d = 3, this question
was solved in [26], [28]; whereas for n = 1, d = 2, this question was solved in Section 9 of [29].

Note that τ in (13), (14) is �xed and independent of k, l (except the property that τ 6=
0 (modπ/κ)) in contrast with τ in (9).

The results of the present work are obtained proceeding from methods developed in [26], [29],
[31]. In particular, for �xed (k, l) ∈ ME, l 6= k, for d = 3 or d = 2, the work [29] gives a version
of formulas (5), where

xj(s) = rj(s)l̂, j = 1, ..., 2n, l̂ = l/|l|,
r2i−1(s) = λis, r2i(s) = λis+ τ, i = 1, ..., n,

λ1 = 1, λi1 < λi2 for i1 < i2, τ > 0.

(15)

3



Formulas (5), (15) realized in [29] are recurrent in n. For n = 1, d = 3, these formulas were
given in [26].

Advantages of formulas (5), (6) (realized in the present work) in comparison with formulas (5),
(15) (realized in [29]) can be summarized as follows:

(a) The geometry of xj(s) in (5), (6) is essentially simpler in the sense that the distances
between all these points are �xed and are independent of s→ +∞.

(b) Formulas (5), (6) (realized as formulas (10)�(12), (53)�(55), (64)�(66), (72)�(75), (83)�
(85)) are drastically more explicit for large n.

Note that the results of the present work essentially use the technique of the recent work [31],
where [31] gives explicit asymptotic multipoint formulas for �nding f from ψ+.

Note also that explicit estimates on the reminder O(s−n) in our formulas (5), (6) can be given
proceeding from methods developed in [31], [33].

Numerical aspects of formulas of [26], [28], [29], [33] and of the present article with their
applications to Problem 1.2 will be addressed in further works.

In addition to Problem 1.3 and Problem 1.2, there are also other possible formulations of
phase retrieval and phaseless inverse scattering problems for equation (1) and for other equations
of wave propagations. In connection with such other formulations and related results, see, for
example, [8], [13], [15], [17], [18], [20], [28], [30], [34], [36], [37], [38], [42] and references therein.
Note that formulas of [26], [28], [29] and the present work can be also used for Problems 1.3 and
1.2 when coe�cient v in equation (1) is replaced, e.g., by an impenetrable obstacle (see, e.g., [9]
for de�nition of impenetrable obstacles).

The further structure of the present article is as follows. In Section 2 we recall, in particular,
some results on direct scattering for equation (1) under assumptions (2) and some formulas of [29]
and [31]. The results of the present work on Problem 1.2, consisting in realizations of formulas
(5), (6), are given in Section 3. These results are proved in Sections 4, 5, and 6. In Section 7,
for completeness of presentation, we give a sketch of proof of formulas (23)�(25) for the higher
scattering amplitudes fj, j ≥ 2.

2 Preliminaries

2.1 Asymptotics of the scattering solutions

We recall that the scattering solutions ψ+ satisfy the following Lippmann-Schwinger integral
equation:

ψ+(x, k) = eikx +

∫
D

G+(x− y, k)v(y)ψ+(y, k)dy,

G+(x, k) := −(2π)−d
∫
Rd

eiξxdξ

ξ2 − k2 − i · 0
= G+

0 (|x|, |k|),
(16)

where x, k ∈ Rd, k2 = E; see, for example, [5], [9], [30].
Note also that

G+(x, k) =
ei|k||x|

2i|k|
, d = 1,

G+(x, k) = − i
4
H1

0 (|x||k|), d = 2, G+(x, k) = −e
i|k||x|

4π|x|
, d = 3,

(17)

where H1
0 is the Hankel function of the �rst type.

Actually, in the present work, in addition to (2), we assume that, for �xed E > 0,

equation (16) is uniquely solvable for ψ+(·, k) ∈ L∞(D). (18)
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In addition, if v satis�es (2) and is real-valued, then (18) is ful�lled automatically.
Remark 2.1. The regularity assumption that v ∈ L∞(D) can be essentially relaxed in (2)

(although this assumption is used often in the literature). In the results of Section 3 on Problem
1.3 in place of (2), (18), it is su�cient to assume that v supported in D is such that:

equation (1) for �xed E > 0 has an unique solution ψ+(·, k) speci�ed via Sommerfeld type
radiation condition like (3) for each k ∈ Rd, k2 = E, in Subsections 3.1, 3.3, 3.4;

and in addition ψ+(x, k)− eikx is small on ∂D if v is small, where ∂D is regular, in Subsection
3.2.

Proceeding, for example, from (16) one can show that the scattering solutions ψ+ have the
following Atkinson-type expansion:

ψ+(x, k) = eikx +
ei|k||x|

|x|(d−1)/2

(
N∑
j=1

fj(k, |k| x|x|)
|x|j−1

+O
(

1

|x|N

))
, |x| → +∞, N ∈ N, (19)

where the coe�cients fj arising in (19) are functions de�ned on ME; see [3], [39], [25], [29],
[31].

Formula (19) for N = 1 reduces to (3). We say that the functions fj for j ≥ 2 are the higher
scattering amplitudes for equation (1).

It is well-known that

f1(k, l) = c(d, |k|)f(k, l), (20)

c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2, for
√
−2πi =

√
2πe−iπ/4, (21)

f(k, l) = (2π)−d
∫
D

e−ilyv(y)ψ+(y, k)dy, (22)

where (k, l) ∈ME; see, for example, [30].
It is also well-known that fj ≡ 0 for j ≥ 2, d = 1, under assumptions (2), (18).
Besides, in the present work we also use the following formulas, for d ≥ 2:

fj(k, l) = (2π)−dc(d, |k|)
∫
D

ϕj(y, l)v(y)ψ+(y, k)dy, j ≥ 1, (23)

ϕ1(y, l) = e−ily, (24)

ϕj(y, l) =
(d− 3/4− d2/4 + (j − 1)(j − 2))ϕj−1(y, l) + ∆Sϕj−1(y, l)

2i|l|(j − 1)
, j ≥ 2, (25)

where ∆S is the Beltrami-Laplace operator on the unit sphere Sd−1, acting with respect to
l̂ = l/|l|. Formulas (23)-(24) follow from (20)-(22) and the following Barrar-Kay-Wilcox type
recursion formulas:

fj(y, l) =
(d− 3/4− d2/4 + (j − 1)(j − 2))fj−1(y, l) + ∆Sfj−1(y, l)

2i|l|(j − 1)
, j ≥ 2, (26)

see [39] in connection with (26) for d = 3.
For completeness of the presentation, a sketch of proof of formulas (23)�(25), for j ≥ 2, is

given in Section 7. Note that the precise form of the recurrent relations (25) is not essential for
the main results of the present work.

2.2 Asymptotic formulas for a(x, k)

Consider the function a = a(x, k) de�ned by (7). Let κ = κ(k, |k| x|x|) be de�ned as in (9). Let

fj = fj(k, |k|
x

|x|
), (27)

5



where fj are the functions arising in (19), j ∈ N, x, k ∈ Rd \ {0}. Then a(x, k) can be presented
as follows (see [29] for d = 3 or d = 2):

a(x, k) = aN(x, k) + δNa(x, k), (28)

aN(x, k) = a1N(x, k) + a2N(x, k), (29)

a1N(x, k) =
N∑
j=1

ei|x|κfj
|x|j−1

+
N∑
j=1

e−i|x|κf j
|x|j−1

, (30)

a2N =

N−[(d−1)/2]∑
j=1

hj
|x|j−1+(d−1)/2 , hj =

j∑
α=1

fαf j−α+1, (31)

δNa(x, k) = O(|x|−N), as |x| → +∞, (32)

where x ∈ Rd \ {0}, k ∈ Rd, k2 = E > 0, d ≥ 2, [·] stands for the integer part.
Note that formulas (7), (19) imply formulas (28)�(32) as follows:

a(x, k) = a1N(x, k) +O(|x|−N) +
1

|x|(d−1)/2

(
N∑
j1=1

fj1
|x|j1−1

+O(|x|−N)

)(
N∑
j2=1

f j2
|x|j2−1

+O(|x|−N)

)
=

= a1N(x, k) +O(|x|−N) +
1

|x|(d−1)/2

(
N∑

j1,j2=1

fj1f j2
|x|j1−1|x|j2−1

+O(|x|−N)

)
j=j1+j2−1

=

= a1N(x, k) +O(|x|−N) +
1

|x|(d−1)/2

(
N∑
j=1

j∑
j1=1

fj1f j−j1+1

|x|j−1
+O(|x|−N)

)
=

= a1N(x, k) +

N−[(d−1)/2]∑
j=1

hj
|x|j−1+(d−1)/2 +O(|x|−N), (33)

where we used the change of variables (j1, j2)→ (j1, j), j = j1 + j2 − 1.
Consider also the case of the Born approximation for small potentials. Suppose that potential

v is small, for example, in the sense of the norm ‖·‖L∞(D), for �xed D. Then in formulas (28)�(32)
the quadratic term a2N is negligible in comparison with the linear term a1N . Such a situation arises
in many applications (see, for example, [6], [13], [16], [23], [24], [40], [41]). Thus, in the Born
approximation for small potentials formula (29) reduces to the formula

aN(x, k) ≈ a1N(x, k). (34)

The aforementioned smallness assumption on v can be speci�ed as

‖v‖L∞(D) = O(ε), where ε→ 0. (35)

Then using (16), (20)�(25), (35) one can show that

‖fj‖C(ME) = O(ε), for each j ∈ N. (36)

In turn, formulas (29), (31) imply that

aN(x, k)− a1N(x, k) = |x|−(d−1)/2O(ε2), (37)

where N ∈ N.
Formula (37) speci�es (34) under assumption (35).

6



2.3 Some results of [31]

We recall that the work [31] gives, in particular, explicit asymptotic multipoint formulas for �nding
f1 from ψ+ for d ≥ 2. This work proceeds from formula (19) and considers, in particular, the
functions z = z(s), s ∈ [r,+∞), r > 0, of the form

z(s) =
N∑
j=1

fj
sj−1

+O(s−N), as s→ +∞, (38)

where fj, j = 1, ..., n, are the complex numbers.
Functions of the form (38) arise in the second term on the right-hand side of (19), where

s = |x|. Functions of the form (38) also arise in the framework of direct and inverse scattering at
high energies for equation (1) with smooth v; see [25] and [32].

For functions z satisfying (38) the work [31] considers, in particular, the problem of �nding f1
from z(s) given at n points sj ∈ [r, +∞), j = 1, ..., n, of the form

sj = sj(s) = s+ τj, j = 1, ..., n,

s > r, τ1 = 0, τj+1 > τj, j = 1, ..., n− 1,

~τ = (τ1, ..., τn).

(39)

Suppose that N ≥ 2n− 1. Then the following formulas of [31] hold:

f1 =
n∑
j=1

yj(s, ~τ)z(s+ τj) +O(s−n), as s→ +∞, (40)

where yj(s, ~τ) are de�ned by

n∑
j=1

yj(s, ~τ)

(s+ τj)i−1
=

{
1, for i = 1,

0, for i = 2, ..., n;
(41)

in addition:

yj(s, ~τ) =
(−1)n−j(s+ τj)

n−1

αj(~τ)βn,j(~τ)
, 1 ≤ j ≤ n, (42)

αj(~τ) = Πj−1
k=1(τj − τk), βn,j(~τ) = Πn

k=j+1(τk − τj), (43)
n∑
j=1

yj(s, ~τ)

(s+ τj)i−1
= O(s−n) as s→ +∞, for n < i < 2n. (44)

3 Main results

3.1 Formulas for �nding f1 from a at 2n points for d = 3

For d = 3, the function a(x, k) of formulas (7), (28)�(32) at �xed k and x̂ = x/|x| can be written
as

a(s) = a(s, x̂, k) := a(sx̂, k), (45)

a(s) =
N∑
j=1

eisκfj + e−isκf j + hj

sj−1
+O(s−N), s→ +∞, h1 = 0, (46)

hj =

j−1∑
k=1

fkf j−k, j = 1, ..., N, (47)
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where s = |x|, κ = |k| − kx̂, and κ > 0 if x̂ = x/|x| 6= k̂ = k/|k|.
Proceeding from this motivation we consider arbitrary functions a = a(s), s ∈ [r,+∞), r > 0,

such that formula (46) holds for some �xed κ > 0 and some complex numbers fj, j = 1, ..., N,
and hj, j = 2, ..., N.

We consider 2n points s1,j, s2,j ∈ [r,+∞), j = 1, ..., n, of the form

s1,j = s1,j(s) = s+ τ1,j, j = 1, ..., n, (48)

s2,j = s2,j(s) = s+ σ + τ2,j, j = 1, ..., n, (49)

τ1,j = ν1,jτ, j = 1, ..., n, τ =
2π

κ
, 0 = ν1,1 < ν1,2 < ... < ν1,n, {ν1,j} ∈ N, (50)

τ2,j = ν2,jτ, j = 1, ..., n, τ =
2π

κ
, 0 = ν2,1 < ν2,2 < ... < ν2,n, {ν2,j} ∈ N, (51)

s > r, σ > 0, σ 6= 0 (mod
π

κ
). (52)

Theorem 3.1. Let a = a(s) satisfy (46) for some N ≥ 2n − 1, n ∈ N. Then a(s) at 2n points
s1,j, s2,j of (48)�(52) approximately determines f1 as follows:

f1 =
e−i(s+σ)κa1(s)− e−isκa2(s) +O(s−n)

−2i sin (σκ)
, s→ +∞, (53)

a1(s) :=
n∑
j=1

(−1)n−j(s1,j(s))
n−1a(s1,j(s))

τn−1Πj−1
k=1(ν1,j − ν1,k)Πn

k=j+1(ν1,k − ν1,j)
, (54)

a2(s) :=
n∑
j=1

(−1)n−j(s2,j(s))
n−1a(s2,j(s))

τn−1Πj−1
k=1(ν2,j − ν2,k)Πn

k=j+1(ν2,k − ν2,j)
. (55)

Remark 3.1. Suppose that ν1,j = ν2,j = j − 1, j = 1, ..., n. Then formulas (54), (55) reduce
to the formulas

a1(s) =
n∑
j=1

(−1)n−j(s1,j(s))
n−1a(s1,j(s))

(j − 1)!(n− j)!τn−1
, (56)

a2(s) =
n∑
j=1

(−1)n−j(s2,j(s))
n−1a(s2,j(s))

(j − 1)!(n− j)!τn−1
. (57)

Theorem 3.1 is proved in Section 4.
Formulas (53)�(57) of Theorem 3.1 and Remark 3.1 are completely explicit ! But a possible

inconvenience of these formulas is that the di�erences between the points s1,j, j = 1, ..., n, or
s2,j, j = 1, ..., n, are multiple to 2π/κ. Below in Subsections 3.2, 3.3, we give approaches for
relaxing this multiplicity condition.

Formulas (7), (45), (48)�(57) realize (5), (6) for d = 3. In addition, due to formulas (7), (33),
function a(s) de�ned in (45) satis�es (46) for any odd d ≥ 3 for some hj, where h1 = h2 = ... =
h(d−1)/2 = 0 (and further hj are given by analogs of (33) for odd d > 3). Therefore, formulas
(48)�(57) remain valid for any odd d ≥ 3; in fact, these formulas follow just from (46).

3.2 Formulas for �nding f1 from a at 2n points for small potentials

In the Born approximation for small potentials v formula (29) reduces to formula (34).
In these framework, the function a(x, k) of (28)�(32) at �xed k and x̂ = x/|x|, for d ≥ 2, can

be written as
a(x, k) ≈ a(s), (58)
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where

a(s) =
N∑
j=1

eisκfj + e−isκf j
sj−1

+O(s−N), s→ +∞, (59)

where s = |x|, κ = |k| − kx̂, and κ > 0 if x̂ = x/|x| 6= k̂ = k/|k|. Formulas (58), (59) follow from
(28), (30), (32), (34).

Proceeding from this motivation, we consider arbitrary functions a = a(s), s ∈ [r,+∞), r > 0,
such that formula (59) holds for some �xed κ > 0 and some complex numbers fj, j = 1, ..., N.

We consider 2n points sj ∈ [r,+∞), j = 1, ..., 2n, of the form

sj = sj(s) = s+ τj, j = 1, ..., 2n, (60)

τj = (j − 1)τ, j = 1, ..., 2n, (61)

s > r, τ > 0, τ 6= 0 (mod
π

κ
). (62)

Let Σn,τ be the operator acting on functions u on [r,+∞) and de�ned by the formula

Σn,τu(s) =
n∑
j=1

(−1)n−j(sj(s))
n−1u(sj(s))

(j − 1)!(n− j)!τn−1
, s ∈ [r,+∞), (63)

where sj are de�ned according to (60)�(62), j = 1, ..., n.

Theorem 3.2. Let a = a(s) satisfy (59) for some N ≥ 2n−1, n ∈ N. Let Σn,τ be de�ned by (63).
Then a(s) at 2n points sj of (60)�(62) approximately determines f1 as follows:

f1 = C(κ, τ, n)(τn−1(e−2iτκa2(s)− a2(s+ τ)) +O(s−n)), s→ +∞, (64)

a2(s) := Σn,τa1(s), a1(s) :=
e−2isκ

sn−1
Σn,τ (e

isκa)(s), (65)

C(κ, τ, n) :=
(n− 1)!

(e2iτκ − 1)n−1(e−2iτκ − 1)
. (66)

Remark 3.2. For Σn,τ de�ned by (63) and 2n points sj of (60)�(62), we have that

Σn,τ (w2Σn,τ (w1u))(s) =

=
∑

1≤j1, j2≤n

(−1)j1+j2(sj1(s))
n−1(sj1+j2−1(s))

n−1w2(sj1(s))w1(sj1+j2−1(s))

(j1 − 1)!(n− j1)!(j2 − 1)!(n− j2)!τ 2n−2
u(sj1+j2−1(s)), (67)

where w1, w2 are �xed functions on [r,+∞), and u is a test function on [r,+∞). In addition,

sj1+j2−1(s+ τ) = sj1+j2(s), 1 ≤ j1, j2 ≤ n. (68)

Formulas (67), (68) explain that formula (64) involves a(s) exactly in 2n points sj of (60)�
(62), j = 1, ..., 2n. Actually, formula (67) explains that computing a2(s) via (65) requires a(s) in
2n− 1 points sj of (60)�(62), j = 1, ..., 2n− 1; formulas (68), (67), (64) explain that computing
a2(s+ τ) requires a(s) in shifted 2n− 1 points sj of (60)�(62), j = 2, ..., 2n.

Theorem 3.2 is proved in Section 5.
Note that formulas (64)�(66) for �nding f1 from a(s) coincide with formulas (53)�(55) for the

case when N = n = 1, σ = τ .
Note also that Theorem 3.2 is used in the proofs of Propositions 3.1 and 3.2; see Subsections

3.3, 3.4 and Section 6.
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3.3 Formulas for �nding f1 from a at 3n− 1 points for d = 3

In this Subsection we give formulas for �nding f1 up to O(s−n), as s → +∞, from a(sj(s)), j =
1, ..., 3n − 1, where a(s) is de�ned by (45), sj = sj(s) are the points of (69)�(71). We use that
a(s) satis�es (46). In constrast to Theorem 3.1, we do not assume that di�erences between some
of these points are multiple to π/κ. In addition, in constrast to Theorem 3.2, we do not assume
that a is reduced to the linearised a of the form (59). On the other hand, the disadvantage of
approximate �nding f1 mentioned above, is that this �nding uses a at 3n− 1 points, in contrast
to 2n points of Theorems 3.1 and 3.2.

We consider 3n− 1 points sj ∈ [r,+∞), j = 1, ..., 3n− 1, of the form

sj = sj(s) = s+ τj, j = 1, ..., 3n− 1, (69)

τj = (j − 1)τ, j = 1, ..., 3n− 1, (70)

s > r, τ > 0, τ 6= 0 (mod
π

κ
). (71)

Proposition 3.1. Let a = a(s) satisfy (46) for some N ≥ 2n − 1, n ∈ N. Let Σn,τ be de�ned by
(63). Then a(s) at 3n− 1 points sj of (69)�(71) approximately determines f1 as follows:

f1 = C1(κ, τ, n)(τn−1(e−2iτκa2(s)− a2(s+ τ)) +O(s−n)), s→ +∞, (72)

a2(s) := Σn,τa1(s), a1(s) :=
e−2isκ

sn−1
Σn,τ (e

isκa0)(s), (73)

a0(s) :=
1

sn−1
Σn,τa(s), (74)

C1(κ, τ, n) =
(n− 1)!τn−1

(eiτκ − 1)n−1
C(κ, τ, n), (75)

where C(κ, τ, n) is given by (66).

Remark 3.3. For Σn,τ de�ned by (63) and 3n− 1 points sj of (69)�(71), we have that

Σn,τ (w3Σn,τ (w2Σn,τw1u))(s) =

=
∑

1≤j1, j2, j3≤n

(−1)n+j1+j2+j3(sj1(s))
n−1(sj1+j2−1(s))

n−1(sj1+j2+j3−2(s))
n−1

(j1 − 1)!(n− j1)!(j2 − 1)!(n− j2)!(j3 − 1)!(n− j3)!τ 3n−3
×

w3(sj1(s))w2(sj1+j2−1(s))w1(sj1+j2+j3−2(s))u(sj1+j2+j3−2(s)), (76)

where w1, w2, w3 are �xed functions on [r,+∞), and u is a test function on [r,+∞). In addition,

sj1+j2+j3−2(s+ τ) = sj1+j2+j3−1(s), 1 ≤ j1, j2, j3 ≤ n. (77)

Formulas (76), (77) explain that formula (72) involves a(s) exactly in 3n − 1 points sj of
(69)�(71), j = 1, ..., 3n− 1. Actually, formulas (73), (74) and (76) explain that computing a2(s)
via (73), (74) involves a(s) in 3n− 2 points sj of (69)�(71), j = 1, ..., 3n− 2; formulas (76), (77)
explain that computing a2(s + τ) via formulas (73), (74) requires a(s) in shifted 3n− 2 points sj
of (69)�(71), j = 2, ..., 3n− 1.

Proposition 3.1 is proved in Section 6.
Note that formulas (45), (69)�(75) for �nding f1 from a remain valid for any odd d ≥ 3, in a

similar way with formulas (45), (48)�(57).
Note also that formulas (72)�(75) for �nding f1 from a(s) coincide with formulas (53)�(55)

and with formulas (64)�(66) for the case when N = n = 1, σ = τ . For this case these formulas
were given in [26], [28].
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3.4 Formulas for �nding f1 from a at 3n points for d = 2

For d = 2, the function a(x, k) of formulas (7), (28)�(32) at �xed k and x̂ = x/|x| can be written
as a(s) de�ned according to (45), where

a(s) =
N∑
j=1

eisκfj + e−isκf j
sj−1

+
N∑
j=1

hj
sj−1/2

+O
(

1

sN

)
, s→ +∞, (78)

hj =

j∑
k=1

fkf j−k+1, j = 1, ..., N, (79)

where s = |x|, κ = |k| − kx̂, and κ > 0 if x̂ = x/|x| 6= k̂ = k/|k|.
Proceeding from this motivation, we consider arbitrary functions a = a(s), s ∈ [r,+∞), r > 0,

such that formula (78) holds for some �xed κ > 0 and some complex numbers fj, j = 1, ..., N,
and hj, j = 1, ..., N.

In this Subsection we give formulas for �nding f1 up to O(s−n), as s→ +∞, from a(sj(s)), j =
1, ..., 3n, where a(s) is of the form (78), sj = sj(s) are the points of (80)�(82). In constrast to
Theorem 3.2, we do not assume that a is reduced to the linearised a of the form (59). On the
other hand, the disadvantage of approximate �nding f1 mentioned above, is that this �nding uses
a at 3n points, in contrast to 2n points of Theorem 3.2.

We consider 3n points sj ∈ [r,+∞), j = 1, ..., 3n of the form

sj(s) = s+ τj, j = 1, ..., 3n, (80)

τj = (j − 1)τ, j = 1, ..., 3n, (81)

s ≥ r > 0, τ > 0, τ 6= 0 (mod
π

κ
). (82)

Proposition 3.2. Let a(s) satisfy (78) for some N ≥ 2n+ 1, n ∈ N. Let Σn,τ be de�ned by (63).
Then a(s) at 3n points sj of (80)�(82) approximately determines f1 as follows:

f1 = C2(κ, τ, n)(τn−1(e−2iτκa3(s)− a3(s+ τ)) +O(s−n)), s→ +∞, (83)

a3(s) := Σn,τa2(s), a2(s) :=
e−2isκ

sn−1
Σn,τ (e

isκa1)(s), a1(s) =
1

sn−1/2
Σn+1,τa0(s), a0(s) = a(s)/

√
s,

(84)

C2(κ, τ, n) =
n!(n− 1)!τn

(eiτκ − 1)n(e2iτκ − 1)n−1(e−2iτκ − 1)
. (85)

Remark 3.4. For Σn,τ de�ned by (63) and 3n points sj of (80)�(82), we have that

Σn,τ (w3Σn,τ (w2Σn+1,τw1u))(s) =

=
∑

1≤j1, j2≤n

∑
1≤j3≤n+1

(−1)n+j1+j2+j3(sj1(s))
n−1(sj1+j2−1(s))

n−1(sj1+j2+j3−2(s))
n−1

(j1 − 1)!(n− j1)!(j2 − 1)!(n− j2)!(j3 − 1)!(n− j3)!τ 3n−3
×

× w3(sj1(s))w2(sj1+j2−1(s))w1(sj1+j2+j3−2(s))u(sj1+j2+j3−2(s)), (86)

where w1, w2, w3 are �xed functions on [r,+∞), and u is a test function on [r,+∞). In addition,

sj1+j2+j3−2(s+ τ) = sj1+j2+j3−1(s), 1 ≤ j1, j2, j3 ≤ n. (87)

Formulas (86), (87) explain that formulas (83) involves a(s) exactly in 3n points sj of (80)�(82),
j = 1, ..., 3n. Actually, formulas (86) and (84) explain that computing a2(s) via (84) involves a(s)
in 3n − 1 points sj of (80)�(82), j = 1, ..., 3n − 1; formulas (86), (87) explain that computing
a2(s+ τ) via formulas (84) involves a(s) in 3n− 1 shifted points sj of (80)�(82), j = 2, ..., 3n.

Proposition 3.2 is proved in Section 6.
Note that formulas (45), (80)�(85) for �nding f1 from a remain valid for any even d ≥ 2, in a

similar way with formulas (45), (48)�(57), (69)�(75) for odd d ≥ 3.
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4 Proof of Theorem 3.1

Let

~τ1 = (τ1,1, ..., τ1,n), ~τ2 = (τ2,1, ..., τ2,n). (88)

Let yj(s, ~τ1), yj(s, ~τ2), j = 1, ..., n, be de�ned according to (41), (42). We have that

a1(s) =
n∑
j=1

yj(s, ~τ1)a(s1,j(s)), a2(s) =
n∑
j=1

yj(s, ~τ2)a(s2,j(s)). (89)

Note that
eis1,j(s)κ = eisκeiν1,jτκ = eisκ, j = 1, ..., n,

eis2,j(s)κ = ei(s+σ)κeiν2,jτκ = ei(s+σ)κ, j = 1, ..., n.
(90)

Using formulas (41)�(44), (46), (89), (90) and the assumption that N ≥ 2n − 1, we obtain
that:

a1(s) =
n∑
j=1

yj(s, ~τ1)

(
N∑
m=1

eis1,j(s)κfm + e−is1,j(s)κfm + hm
(s+ τ1,j)m−1

+O(s−N)

)
=

=
N∑
m=1

(eisκfm + e−isκfm + hm)
n∑
j=1

yj(s, ~τ1)

(s+ τ1,j)m−1
+O(s−n) =

= eisκf1 + e−isκf 1 +O(s−n), as s→ +∞;

(91)

a2(s) =
n∑
j=1

yj(s, ~τ2)

(
N∑
m=1

eis2,j(s)κfm + e−is2,j(s)κfm + hm
(s+ σ + τ2,j)m−1

+O(s−N)

)
=

=
N∑
m=1

(ei(s+σ)κfm + e−i(s+σ)κfm + hm)
n∑
j=1

yj(s, ~τ2)

(s+ σ + τ2,j)m−1
+O(s−n) =

= ei(s+σ)κf1 + e−i(s+σ)κf 1 +O(s−n), as s→ +∞.

(92)

We consider formulas (91), (92) as a linear system for approximate �nding f1, f 1 from a1(s), a2(s),
where s is su�ciently large.

If σ > 0, σ 6= 0 (mod π/κ), then from (91), (92) we obtain that(
f1
f 1

)
=

1

e−iσκ − eiσκ

(
e−i(s+σ)κ −e−isκ
−ei(s+σ)κ eisκ

)(
a1(s)+ O(s−n)
a2(s)+ O(s−n)

)
. (93)

Formula (53) follows from (93).
Theorem 3.1 is proved.

5 Proof of Theorem 3.2

Lemma 5.1. Let Σn,τ be de�ned via (63). Let

u(s) =
N∑
j=1

eisκfj
sj−1

, s ∈ [r,+∞), (94)
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for some �xed κ ∈ R and some complex numbers fj, j = 1, ..., N, where N ≥ 2n− 1. Then:

Σn,τu(s) = sn−1
2n−1∑
m=1

eisκfm,κ
sm−1

+O(s−n), s ∈ [r,+∞), (95)

fm,κ = fm,κ,n,τ (f1, ...., fm) =
m∑
j2=1

fj2C
m−j2
n−j2

τn−1

n∑
j1=1

(−1)n−j1τm−j2j1
eiτj1κ

(j1 − 1)!(n− j1)!
, ∀m = 1, ..., 2n− 1, (96)

where Cα
β denote the binomial coe�cients,

f1,κ =
(eiτκ − 1)n−1

(n− 1)!τn−1
f1, (97)

fn,κ =
(eiτκ − 1)n−1

(n− 1)!τn−1
fn if f1 = ... = fn−1 = 0. (98)

Proof of Lemma 5.1. Using (63), (94), we obtain that

Σn,τu(s) =
n∑

j1=1

N∑
j2=1

(−1)n−j1(s+ τj1)
n−1

(j1 − 1)!(n− j1)!τn−1
ei(s+τj1 )κfj2
(s+ τj1)

j2−1
=

=
eisκ

τn−1

N∑
j2=1

fj2

n∑
j1=1

(−1)n−j1(s+ τj1)
n−j2eiτj1κ

(j1 − 1)!(n− j1)!
, s ∈ [r,+∞). (99)

(100)

Note that

(s+ τj1)
n−j2 =

n−j2∑
j3=0

Cj3
n−j2s

n−j2−j3τ j3j1 =

2n−j2−1∑
j3=0

Cj3
n−j2τ

j3
j1
sn−j2−j3 , n− j2 ≥ 0, (101)

(s+ τj1)
n−j2 =

1

sj2−n

∞∑
j3=0

Cj3
n−j2τ

j3
j1
s−j3 =

2n−j2−1∑
j3=0

Cj3
n−j2τ

j3
j1
sn−j2−j3 +O(s−n), n− j2 < 0, (102)

where Cα
β are the binomial coe�cients; we used in (101) that Cα

β = 0, for α > β, if β ∈ N.
Using (99), (101), (102) we obtain that

Σn,τu(s)

sn−1
=

eisκ

τn−1

N∑
j2=1

fj2

n∑
j1=1

(−1)n−j1
∑2n−j2−1

j3=0 (Cj3
n−j2τ

j3
j1
/sj2+j3−1)eiτj1κ

(j1 − 1)!(n− j1)!
+O(s−2n+1) =

=
eisκ

τn−1

2n−1∑
j2=1

fj2

n∑
j1=1

(−1)n−j1
∑2n−j2−1

j3=0 (Cj3
n−j2τ

j3
j1
/sj2+j3−1)eiτj1κ

(j1 − 1)!(n− j1)!
+O(s−2n+1) =

=
eisκ

τn−1

2n−2∑
j3=0

2n−j3−1∑
j2=1

fj2C
j3
n−j2

sj2+j3−1

n∑
j1=1

(−1)n−j1τ j3j1 e
iτj1κ

(j1 − 1)!(n− j1)!
+O(s−2n+1)

m=j2+j3
=

=
2n−1∑
m=1

eisκ

sm−1

m∑
j2=1

fj2C
m−j2
n−j2

τn−1

n∑
j1=1

(−1)n−j1τm−j2j1
eiτj1κ

(j1 − 1)!(n− j1)!
+O(s−2n+1) =

2n−1∑
m=1

eisκfm,κ
sm−1

+O(s−2n+1),

(103)

where

fm,κ =
m∑
j2=1

fj2C
m−j2
n−j2

τn−1

n∑
j1=1

(−1)n−j1τm−j2j1
eiτj1κ

(j1 − 1)!(n− j1)!
, (104)

f1, κ =
f1C

0
n−1

τn−1

n∑
j=1

(−1)n−jeiτ(j−1)κ

(j − 1)!(n− j)!
=

(eiτκ − 1)n−1

(n− 1)!τn−1
f1. (105)
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Note that in (103) we used the change of variables (j1, j2, j3)→ (j1, j2,m), m = j2 + j3.
Formulas (95), (97) follows from (103), (104), (105).
In addition, if f1 = ... = fn−1 = 0, then

fn, κ = fn
C0

0

τn−1

n∑
j=1

(−1)n−jei(j−1)τκ

(j − 1)!(n− j)!
=

(eiτκ − 1)n−1

(n− 1)!τn−1
fn. (106)

Lemma 5.1 is proved.
The rest of the proof of Theorem 3.2 is as follows. Due to (59), we have that

eisκa(s) = u(s) + z(s),

u(s) =
N∑
j=1

e2isκfj
sj−1

, z(s) =
N∑
j=1

f j
sj−1

+O(s−N), as s→ +∞.
(107)

Due to formulas (40), (42), (44), (63), and the formula for z in (107), we have that

Σn,τz(s) = f 1 +O(s−n), as s→ +∞. (108)

Due to Lemma 5.1 (with 2κ in place of κ) and the formula for u in (107), we have that

Σn,τu(s) = sn−1
2n−1∑
m=1

e2isκfm,2κ
sm−1

+O(s−n), where

f1,2κ =
(e2iτκ − 1)n−1

(n− 1)!τn−1
f1.

(109)

Due to (107), (108), (109), we have that

Σn,τ (e
isκa)(s) = sn−1

2n−1∑
m=1

e2isκfm,2κ
sm−1

+O(s−n) + f 1 +O(s−n), as s→ +∞. (110)

The de�nition of a1 in (65) and formula (110) imply that

a1(s) = u1(s) + z1(s), where

u1(s) =
e−2isκf 1

sn−1
, z1(s) =

2n−1∑
m=1

fm,2κ
sm−1

+O(s−2n+1), as s→ +∞.
(111)

Due to formulas (40), (42), (44), (63), and the formula for z1 in (111), we have that

Σn,τz1(s) = f1,2κ +O(s−n), as s→ +∞. (112)

Besides, the following formula holds,

Σn,τu1(s) = e−2isκf 1,−2κ, f 1,−2κ =
(e−2iτκ − 1)n−1

(n− 1)!τn−1
f 1. (113)

Formula (113) follows from formulas (95), (96), (98) of Lemma 5.1, with (−2κ) in place of κ,
fn = f 1, where f 1 is the number in de�nition of u1 in (111).

The de�nition of a2 in (65) and formulas (109), (111)�(113) imply that

a2(s) = f1,2κ + e−2isκf 1,−2κ +O(s−n) =

=
(e2iτκ − 1)n−1f1 + e−2isκ(e−2iτκ − 1)n−1f 1

(n− 1)!τn−1
+O(s−n), s→ +∞. (114)
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From (114) we obtain that

(e2iτκ − 1)n−1f1 + e−2isκ(e−2iτκ − 1)n−1f 1 = (n− 1)!τn−1a2(s) +O(s−n), s→ +∞, (115)

(e2iτκ − 1)n−1f1 + e−2i(s+τ)κ(e−2iτκ − 1)n−1f 1 = (n− 1)!τn−1a2(s+ τ) +O(s−n), s→ +∞.

We consider formulas (115) as a linear system for approximate �nding f1, f 1 from
(n− 1)!τn−1a2(s), (n− 1)!τn−1a2(s+ τ), where s is su�ciently large. From this system, for τ > 0,
τ 6= 0 (modπ/κ), we obtain that(
f1
f 1

)
=

1

(e2iτκ − 1)n−1(e−2iτκ − 1)n−1e−2isκ(e−2iτκ − 1)
×(

e−2i(s+τ)κ(e−2iτκ − 1)n−1 −e−2isκ(e−2iτκ − 1)n−1

−(e2iτκ − 1)n−1 (e2iτκ − 1)n−1

)(
(n− 1)!τn−1a2(s) +O(s−n)

(n− 1)!τn−1a2(s+ τ) +O(s−n)

)
, s→ +∞.

(116)

Formula (116) implies that

f1 =
(n− 1)!τn−1(e−2iτκa2(s)− a2(s+ τ)) +O(s−n)

(e2iτκ − 1)n−1(e−2iτκ − 1)
, s→ +∞. (117)

This completes the proof of Theorem 3.2.

6 Proofs of Propositions 3.1 and 3.2

Proof of Proposition 3.1. The following formula holds:

Σn,τa(s) = sn−1
n∑

m=1

eisκfm,κ + e−isκfm,−κ
sm−1

+O(s−n), s→ +∞, (118)

where fm,κ and fm,−κ are de�ned according to (96) in terms of f1, ..., fm and f 1, ..., fm, respectively.
In particular, according to (97), we have that

f1,κ =
(eiτκ − 1)n−1

(n− 1)!τn−1
f1, f 1,−κ =

(e−iτκ − 1)n−1

(n− 1)!τn−1
f 1. (119)

Formula (118) follows from formula (46), Lemma 5.1 and formulas (40), (42), (44), (63).
Formula (72), where a2 is de�ned by (73), (74), follows from formulas (118), (119), and Theorem

3.2.
Proposition 3.1 is proved.

Proof of Proposition 3.2. Assume that

nτ/s < 1, where s ≥ r > 0. (120)

From the de�nition of a0 in (84) and formula (78) we have that

a0(s) =
N∑
j=1

eisκfj
sj−1/2

+
N∑
j=1

e−isκf j
sj−1/2

+

(
N∑
j=2

hj−1
sj−1

+O
(

1

sN

))
=: a0,1(s) + a0,2(s) + a0,3(s). (121)

Using that N ≥ 2n+ 1 and formulas (38), (40) with n+ 1 in place of n, we obtain that

Σn+1,τa0,3(s) = O(s−(n+1)), s→ +∞. (122)
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We also have that

Σn+1,τa0,1(s) =
n+1∑
j=1

(−1)n+1−j(s+ τj)
n
∑N

k=1 e
i(s+τj)κfk/(s+ τj)

k−1/2

(j − 1)!(n+ 1− j)!τn
=

= eisκ
n+1∑
j=1

N∑
k=1

(−1)n+1−j(s+ τj)
n−k+1/2ei(j−1)τκfk

(j − 1)!(n+ 1− j)!τn
. (123)

Note that

(s+ τj)
n−k+1/2

sn−1/2
=

(1 + τj/s)
n−k+1/2

sk−1
, (124)

(1 + τj/s)
n−k+1/2 =

2n∑
l=0

C l
n−k+1/2

(τj
s

)l
+O(s−2n−1), s→ +∞, (125)

where in (125) we used assumption (120) and that τj = (j − 1)τ, j = 1, ..., n + 1. Using that
N ≥ 2n+ 1 and formulas (123), (124), (125), we obtain that

Σn+1,τa0,1(s)/s
n−1/2 = eisκ

n+1∑
j=1

N∑
k=1

(−1)n+1−j(1 + (j − 1)τ/s)n−k+1/2ei(j−1)τκfk
(j − 1)!(n+ 1− j)!τnsk−1

=

=
eisκ

τn

n+1∑
j=1

N∑
k=1

 2n∑
l=0

(−1)n+1−jC l
n−k+1/2

(
(j−1)τ
s

)l
ei(j−1)τκfk

(j − 1)!(n+ 1− j)!sk−1
+O(s−2n−1)

 =

=
eisκ

τn

n∑
j=0

2n+1∑
k=1

2n∑
l=0

(−1)n−jC l
n−k+1/2 (jτ)l eijτκfk

j!(n− j)!sk−1+l
+O(s−2n−1)

l=m−k
=

=
eisκ

τn

2n+1∑
m=1

m∑
k=1

n∑
j=0

(−1)n−jCm−k
n−k+1/2(jτ)m−keijτκ

j!(n− j)!sm−1
fk +O(s−2n−1) =

=
1

τn

2n+1∑
m=1

eisκ

sm−1

m∑
k=1

fkC
m−k
n−k+1/2

n∑
j=0

(−1)n−j(jτ)m−keijτκ

j!(n− j)!
+O(s−2n−1) =

=
2n+1∑
m=1

eisκfm,κ
sm−1

+O(s−2n−1), s→ +∞,

(126)

where

fm,κ =
1

τn

m∑
k=1

fkC
m−k
n−k+1/2

n∑
j=0

(−1)n−j(jτ)m−keijτκ

j!(n− j)!
, m = 1, ..., 2n+ 1, (127)

f1,κ =
f1
τn

n∑
j=0

(−1)n−jeijτκ

j!(n− j)!
=

(eiτκ − 1)n

τnn!
f1, where

(eiτκ − 1)n

τnn!
6= 0. (128)

Note that in (126) we used the change of variables (j, k, l)→ (j, k,m), l = m− k.
In (128) we have that eiτκ 6= 1 due to (82). In a similar way with (126) we also have that

Σn+1,τa0,2(s)/s
n−1/2 =

2n+1∑
m=1

e−isκfm,κ
sm−1

+O(s−2n−1), s→ +∞. (129)
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From formulas (122), (126), (129) we obtain that

a1(s) :=
Σn+1,τa0(s)

sn−1/2
=

2n+1∑
j=1

eisκfj,κ + e−isκfj,κ
sj−1

+O(s−2n−1) +O(s−2n−1/2) =

=
2n+1∑
j=1

eisκfj,κ + e−isκfj,κ
sj−1

+O(s−2n−1/2) =
2n−1∑
j=1

eisκfj,κ + e−isκfj,κ
sj−1

+O(s−2n+1), s→ +∞.

(130)

From (130) one can see that the function a1(s) satis�es the assumptions of Theorem 3.2 for
N = 2n−1. Therefore, applying Theorem 3.2 to the function a1(s) we reconstruct f1,κ via formulas

f1,κ = C(κ, τ, n)(τn−1(e−2iτκa3(s)− a3(s+ τ)) +O(s−n)), s→ +∞, (131)

a3(s) := Σn,τa2(s), a2(s) :=
e−2isκ

sn−1
Σn,τ (e

isκa1)(s), (132)

C(κ, τ, n) :=
(n− 1)!

(e2iτκ − 1)n−1(e−2iτκ − 1)
. (133)

In addition, formula (128) implies that

f1 =
n!τnf1,κ

(eiτκ − 1)n
. (134)

Formulas (83), (84), (85) follow from formulas (131)�(134) and the de�nitions of a1(s), a0(s).
This completes the proof of Proposition 3.2.

7 Sketch of proof of formulas (23)�(25)

We will use that

G+(x− y, k) = G+
n (x− y, k) + ρn(y, x, |k|),

G+
n (x− y, k) =

ei|k||x|

|x|(d−1)/2

(
n∑
j=1

gj(y, x̂, |k|)
|x|j−1

)
,

g1(y, x̂, |k|) = e−i|k|yx̂, ρn(y, x, |k|) :=
ei|k||x|

|x|(d−1)/2
εn(y, x, |k|),

εn(y, x, |k|) = O
(

1

|x|n

)
, |x| → +∞, uniformly in y ∈ D,

(135)

where G+ is de�ned in (16), x̂ = x/|x|. The Lippman-Schwinger integral equation (16) and formula
(135) imply formulas (19), (23), (24), where

(2π)−dc(d, |k|)ϕj(y, l) = gj(y, l̂, |k|), l̂ = l/|l|. (136)

The recurrent relations (25) can be proved using also that:

(∆x + k2)G+(x− y, k) = 0, for x ∈ Rd \D, y ∈ D; (137)

∆x =
∂2

∂r2
+
d− 1

r

∂

∂r
+

1

r2
∆S, (138)

where r = |x|, ∆S is the Beltrami�Laplace operator with respect to x̂ ∈ Sd−1, x̂ = x/|x|;

∆xρn(y, x, |k|) = O
(

1

|x|n+(d−1)/2

)
, |x| → +∞. (139)
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We prove below the recurrent relations (25) proceeding from (135)�(139). Our approach con-
sists in expanding equation (137) in |x|−j, as |x| → +∞.

Note that

∂

∂r

ei|k|r

r
d−1
2

+j
=
ei|k|r

r
d−1
2

(
i|k|
rj

+
(−d−1

2
− j)

rj+1

)
, (140)

∂

r∂r

ei|k|r

r
d−1
2

+j−1
=
ei|k|r

r
d−1
2

(
i|k|
rj

+
(−d−1

2
− j + 1)

rj+1

)
, (141)

1

r2
∆SG

+(x− y, k) =
ei|k|r

r(d−1)/2

(
n∑
j=1

∆Sgj(y, x̂, |k|)
rj+1

)
+O

(
1

rn+(d+3)/2

)
, r → +∞. (142)

Using (135), (141) we obtain that

∂G+
n (x− y, k)

r∂r
=

n∑
j=1

gj(y, x̂, |k|)
∂

r∂r

ei|k|r

r
d−1
2

+j−1
=

=
ei|k|r

r(d−1)/2

n∑
j=1

(
i|k|gj(y, x̂, |k|)

rj
+ (−d− 1

2
− j + 1)

gj(y, x̂, |k|)
rj+1

)
=

=
ei|k|r

r(d−1)/2

(
n+1∑
j=2

i|k|gj−1(y, x̂, |k|)
rj−1

+
n+2∑
j=3

(−d− 1

2
− j + 3)

gj−2(y, x̂, |k|)
rj−1

)
=

=
ei|k|r

r(d−1)/2
(
i|k|g1(y, x̂, |k|)

r
+

n+1∑
j=3

i|k|gj−1(y, x̂, |k|) + (−d−1
2
− j + 3)gj−2(y, x̂, |k|)

rj−1
+

+ (−d− 1

2
− n+ 1)

gn(y, x̂, |k|)
rn+1

) =
ei|k|r

r(d−1)/2

n∑
j=2

θj,d
rj−1

, (143)

θj,d =


i|k|gj−1(y, x̂, |k|), j = 2,

i|k|gj−1(y, x̂, |k|) + (−d−1
2
− j + 3)gj−2(y, x̂, |k|), j = 3, ..., n+ 1,

(−d−1
2
− j + 3)gj−2(y, x̂, |k|), j = n+ 2.

(144)

Using (141) and the result of the second equality in (143) we obtain that:

∂2G+
n (x− y, k)

∂r2
=

∂

∂r

(
ei|k|r

r(d−1)/2

(
n∑
j=1

i|k|gj(y, x̂, |k|)
rj−1

+
n+1∑
j=2

(−d− 1

2
− j + 2)

gj−1(y, x̂, |k|)
rj−1

))
=

=
n∑
j=1

i|k|gj(y, x̂, |k|)
∂

∂r

ei|k|r

r
d−1
2

+j−1
+

n+1∑
j=2

(−d− 1

2
− j + 2)gj−1(y, x̂, |k|)

∂

∂r

ei|k|r

r
d−1
2

+j−1
=

=
n∑
j=1

i|k|gj(y, x̂, |k|)
(
i|k|ei|k|r

r
d−1
2

+j−1
+ (−d− 1

2
− j + 1)

ei|k|r

r
d−1
2

+j

)
+

+
n+1∑
j=2

(−d− 1

2
− j + 2)gj−1(y, x̂, |k|)

(
i|k|ei|k|r

r
d−1
2

+j−1
+ (−d− 1

2
− j + 1)

ei|k|r

r
d−1
2

+j

)
=
ei|k|r

r
d−1
2

n∑
j=1

ωj,d
rj−1

,

(145)

ωj,d =


−|k|2gj(y, x̂, |k|), j = 1,

−|k|2gj(y, x̂, |k|) + i|k|(−d− 2j + 5)gj−1(y, x̂, |k|), j = 2,

−|k|2gj(y, x̂, |k|) + i|k|(−d− 2j + 5)gj−1(y, x̂, |k|)+
+(−d−1

2
− j + 3)(−d−1

2
− j + 2)gj−2(y, x̂, |k|), j = 3, ..., n.

(146)
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From (135), (137)�(139), (142), (143), (145) we have that

(d− 1)
ei|k|r

r
d−1
2

n∑
j=1

θj,d
rj−1

+
ei|k|r

r(d−1)/2

n∑
j=2

ωj,d
rj−1

+
ei|k|r

r(d−1)/2

n+2∑
j=3

∆Sgj−2
rj−1

=

= −k2 ei|k|r

r(d−1)/2

n∑
j=1

gj
rj−1

+O
(

|k|2

rn+(d−1)/2

)
, r → +∞, (147)

where θj,d, ωj,d, gj do not depend on r. Since n is arbitrary, we obtain, from (147), for j ≥ 3,
that

(d− 1)θj,d + ωj,d + ∆Sgj−2 = −k2gj. (148)

Using de�nitions (144) for θj,d, (146) for ωj,d and equation (148) we obtain, for j ≥ 2,

gj(y, x̂, |k|) =
1

2i|k|(j − 1)

((
4d− 3− d2

4
+ (j − 1)(j − 2)

)
gj−1(y, x̂, |k|) + ∆Sgj−1(y, x̂, |k|)

)
.

(149)

Formulas (25) follow from (136), (149).
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