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Abstract. We give explicit formulas for finding the complex (phased) scattering amplitude
at fixed frequency and angles from absolute values of the scattering wave function given at 2n
points in dimension d = 3, where distances between these points are fixed and satisfy a multi-
plicity condition. These formulas are asymptotic and their convergence rate is proportional to n.
Our further results include: similar 2n—point formulas without the aforementioned multiplicity
condition in dimension d = 3 and in dimension d = 2 for the linearised case; related multipoint
formulas without the multiplicity condition in dimension d = 3 and in dimension d = 2 for the
general non—linearised case, but with somewhat more slow convergence. In particular, we continue
studies going back to [Novikov, Bull. Sci. Math. 139(8), 923-936, 2015].

Keywords: Schrodinger equation, Helmholtz equation, Monochromatic scattering data, Phase
retrieval, Phaseless inverse scattering
AMS subject classification: 35J10, 35P25, 35R30, 81U40

1 Introduction

We consider monochromatic scattering modelled using the equation
—AYFo(x)p=Ep, r€RY d>1, E >0, (1)

where
ve L®(D), v=0onR*\ D,

D is an open bounded domain in R% 2)

We assume that v is complex-valued. The regularity assumption that v € L*°(D) is just for
simplicity and can be somewhat relaxed.

Equation (1) arises in quantum mechanics as the Schrodinger equation at fixed energy and in
acoustics and electrodynamics as the Helmholtz equation at fixed frequency. Under assumption
(2), the coefficient v describes a scatterer contained in D. The number E is related to the time-
harmonic frequency and corresponds to the energy in the framework of the Schrodinger equation.
In addition, v may depend on E, at least, in acoustics and electrodynamics. See, for example, [4],
(6], [8], [12].

For equation (1) we consider the solutions ¢ (x, k), k € R?, k? = E, specified by the following
asymptotic as |z| — oo :

ilk||2|

_ _ikx € X —1
O (x,k) = e +|x,(d—_1)/2f1(k7\k|m)+0 <|x|(d+1)/2)’ )

for some a priori unknown f;. The solutions ¢+ = ¢ (x, k) are the scattering solutions, or
scattering wave functions, for equation (1). These solutions describe scattering of the incident
plan waves described by e** on the scatterer described by v. In particular, the second term on
the right-hand side of (3) describes the leading scattered spherical waves. The coefficient f; arising
in (3) is a function defined on

Mp={kleR": K =01=E} =8 xS (4)



The function f is the scattering amplitude, or far field pattern, for equation (1).

In order to study ¢+ and f; one can use, in particular, the Lippmann-Schwinger integral
equation (16) for )™ and formulas (20)—(22) for fi; see Subsection 2.1.

We recall that in quantum mechanics the complex values of the functions ¢+ and f; have no
direct physical sense, whereas the phaseless values of |¢)7|* and | f1|* have probabilistic interpre-
tation (according to the Born’s rule) and can be directly measured. See [5] and, for example,
[11], for details. In turn, in acoustics or electrodynamics the complex values of ¢t and f; can
be directly measured, at least, in principle. However, in electro-magnetic wave propagation at
very high frequencies (as for X-rays and lasers) only phaseless values of [¢)"|? and |f;|* can be
measured in practice by modern technical devices; see, e.g., [16] and references therein.

For equation (1) under assumptions (2), we consider, in particular, the following problems:

Problem 1.1. Reconstruct potential v from its scattering amplitude f;.

Problem 1.2. Reconstruct potential v from its phaseless scattering data |
given outside of D.

Problem 1.3. Find f; from [¢"|* appropriately given outside of D.

A recent survey on these problems is given in [29]. Actually, in the present work we continue
studies of [10], [25]-[30], [32] on Problem 1.3. These studies on Problem 1.3 and results on Problem
1.1 admit straightforward applications to Problem 1.2. For other possible approaches to Problem
1.2, see, for example, [38], [39], [21], [9], [15], [22], [23], [18], [34]-

In particular, in the present work we give, for fixed (k,1) € Mg, | # k, for d > 2,

| appropriately

formulas for finding fi(k,[) up to O(s™") as s — +o0,

from [ (x, k)|* given at m points z = x1(s), ..., T (5),
where m depends linearly on n,

zi(s) = (s+7)l, j=1,...,m, [ =1/]l],
8>0, 7'1:0, Ty <Tj2,j1 <j2.

(6)

These formulas are explicit and are presented in detail below in Introduction and in Section 3,
where our precise assumptions on m = m(n) and on 7y, ..., 7,,, are specified.
Let,

a(z, k) = |2V (0t (2, k)P~ 1), (7)

where z, k € R\ {0}.
Assume in (5), (6) that d =3, m =2n, n € N={1,2,3,...}, and that

(] - 1)7—7 ] = 17"'7”7
Jj— . - (8)
o+ (—-1—-n)r,j=n+1,..,2n,

2 .
T:Tmo:—i0<a¢mmwg%n:dho:mpwb 9)
K
Then our formulas (5), (6) are as follows:

e—i(s—o—o)nal s _e—i5ﬁa2 s g
Stk 1) = | 12@‘ sin (0/—6)( o )’ T (10
(=D)" (s + 75)"alx;(s), k)

G—Dl(n—jlrm1t

n

ai(s) = ay(k,l,s) = Z

(11)

as(s) = az(k, 1, 5) = 4_21 ((_jlfffgf(; Cf(?jfil’ ), 12



where (k,1) € Mg, 1 # k,d = 3, a(z, k) is defined by (7), z;(s) are defined in (6), (8), (9),
T, T;, 0, k are the numbers of (8), (9).

Formulas (10)—(12) are new for n > 2; for n = 1 these formulas were given in [25], [27].

Somewhat more general version of formulas (10)—(12) is given as Theorem 3.1; see Subsection
3.1.

One can see that formulas (10)—(12) and formulas of Theorem 3.1 are completely explicit !
However, a possible inconvenience of these formulas is that the differences between the points
zi(s), 5 = 1,..,n, or z;(s),j = n+1,..,2n, in (10)-(12) (and between the related points in
Theorem 3.1) are multiple to 7 = 27 /k, where k = k(k,[) is defined in (9). Besides, these
formulas are valid for d = 3 but are not valid for d = 2. Therefore, in the present work we
also give the following further results without the aforementioned multiplicity condition for the
differences between x;(s).

We give an explicit version of formulas (5), (6) for the case of the linearised Problem 1.3 (near
v=0) for d > 2, m=2n,n €N, where

i=0G-1rji=1..,2n,7>0, T%O(modg), (13)

k = k(k,1) in defined in (9); see Theorem 3.2 of Subsection 3.2.
We give explicit versions of formulas (5), (6) for the general non-linearised case for d = 3, m =
3n — 1, and for d = 2, m = 3n, where

Tj:(j—l)T,jZl,...,m,T>0,T7’é0(m0d£), (14)

k = k(k, 1) in defined in (9); see Proposition 3.1 of Subsection 3.3 and Proposition 3.2 of Subsection
3.4. For the general non-linearized case, finding such formulas for m = 2n is an open question for
n > 1, for d = 3 or d = 2, under assumption (14). For n = 1, d = 3, this question was solved in
[25], [27]; for n = 1, d = 2, this question was solved in Section 9 of [28].

Note that 7 in (13), (14) is fixed and independent of k, [ (except the property that 7 #
0 (mod 2w /k)) in contrast with 7 in (9).

The results of the present work are obtained proceeding from methods developed in [25], [28],
[30]. In particular, for fixed (k,l) € Mg, | # k, for d = 3 or d = 2, the work [28| gives a version
of formulas (5), where

z;(s) =ri(s)l, j=1,...2n, [ =1/]I],
7”21'71(5’) = /\i57 TQZ'(S) = )‘iS +7, L= 17 ey 1, (15)
Al = 1, )\i1 < >\i2 for 1 < ig, 7> 0.

Formulas (5), (15) realized in [28| are recurrent in n. For n = 1, d = 3, these formulas were
given in [25].

Advantages of formulas (5), (6) (realized in the present work) in comparison with formulas (5),
(15) (realized in |28]) can be summarized as follows:

(a) The geometry of z;(s) in (5), (6) is essentially simpler in the sense that the distances
between all these points are fixed and are independent of s — +oc.

(b) Formulas (5), (6) (realized as formulas (10)—(12), (52)—(54), (63)—(65), (71)—(74), (82)—
(84)) are drastically more explicit for large n.

In addition, the results of the present work essentially use the technique of [30], where [30]
gives explicit asymptotic multipoint formulas for finding f from ™.

Note also that explicit estimates on the reminder O(s™") in our formulas (5), (6) can be given
proceeding from methods developed in [30], [32].

In addition to Problem 1.3 and Problem 1.2, there are also other possible formulations of
phase retrieval and phaseless inverse scattering problems for equation (1) and for other equations
of wave propagations. In connection with such other formulations and related results, see, for



example, [7], [12], [14], [16], [17], [19], [27], [29], [33], [35], [36], [37], [40] and references therein.
Note that formulas of the present work can be also used for Problems 1.3 and 1.2 when coefficient
v in equation (1) is replaced, e.g., by an impenetrable obstacle (see, e.g., [8] for definition of
impenetrable obstacles).

The further structure of the present article is as follows. In Section 2 we recall, in particular,
some results on direct scattering for equation (1) under assumptions (2) and some formulas of [28]
and [30]. The results of the present work on Problem 1.2, consisting in realizations of formulas
(5), (6), are given in Section 3. These results are proved in Sections 4, 5, and 6. In Section 7,
for completeness of presentation, we give a sketch of proof of formulas (23)—(25) for the higher
scattering amplitudes f;, 7 > 2.

2 Preliminaries

2.1 Asymptotics of the scattering solutions

We recall that the scattering solutions " satisfy the following Lippmann-Schwinger integral
equation:

(k) = 6 / Gz — y, Kyo(y)d* (4, K)dy,
D (16)

G k) =~ [ = G (el )
’ ' Rd 52 - k2 - 7/ * O 0 ’ ’
where x,k € R?, k? = E; see, for example, [4], [8], [29].
Note also that
GHoky = S
(l’, )_ 2Z|k|7 -
; cilklle] (17)
+ = ——H, =2, G* =—
G (.T,k) 4 o(lek’)a d ) G ($7k) 47_‘_‘1"7 )
where H} is the Hankel function of the first type.
Actually, in the present work, in addition to (2), we assume that, for fixed £ > 0,
equation (16) is uniquely solvable for ¥ (-, k) € L>(D). (18)

In addition, if v satisfies (2) and is real-valued, then (18) is fulfilled automatically.
Proceeding from (16) one can show that the scattering solutions ¥t have the following asymp-
totics:

, ikl (I (s Rl ) 1
+ _ ikx € JAT ||
v k) = e+ (Z T O (IIIN> , 2] = +o0, NeN,  (19)
where the coefficients f; arising in (19) are functions defined on Mg; see [24], [28], [30].
Formula (19) for N = 1 reduces to (3). We say that the functions f; for j > 2 are the higher
scattering amplitudes for equation (1).
It is well-known that

fl(kvl) :C(d"kDf(kvl)? (20)
co(d, |k]) = —mi(=2mi) 2k D2 for /=270 = /2me /4, (21)
1) = 27 [ )it 0.k, (22)



where (k,1) € Mg; see, for example, [28].
It is also well-known that f; =0 for j > 2, d = 1, under assumptions (2), (18).
Besides, in the present work we also use the following formulas, for d > 2:

£k, 1) = (2m)~e(d, [k]) / o3 (5, Doy (g, K)dy, 5 > 1, (23)
or(y.1) = e, (24)
st(y,l) _ <2d+1/4_d /4+] ;Z|§|(;2_)f;l(ya l>+A590j*1(y7l)’ ] Z 2’ (25)

where Ag is the Beltrami-Laplace operator on the unit sphere S9!, acting with respect to
[ =1/|l|. For completeness of the presentation, a sketch of proof of formulas (23)(25), for j > 2,
is given in Section 7. Note that the precise form of the recurrent relations (25) is not essential for
the main results of the present work.

2.2 Asymptotic formulas for a(z, k)
Consider the function a = a(z, k) defined by (7). Let k = x(k, \k\é—l) be defined as in (9). Let

f5 = fi(k, \k\é—,x (26)

where f; are the functions arising in (19), j € N, 2,k € R\ {0}. Then a(z, k) can be presented
as follows (see [28] for d = 3 or d = 2):

a(z, k) = an(z, k) + dya(z, k), (27)
ay(z, k) = a}v(x k) + a?\,(x k), (28)
z|x‘/@f —Z‘i'f{f
2
w(z: k) ZWI rrEe (29)
N—[(d-1)/2] h
2
N = Z Wr—dlﬂ’ Zfa Jj—a+1» (30)
j=1
Sna(z, k) = O(|z|™Y), as |z| = +oo, (31)

where z € R4\ {0}, k € RY, k> = E > 0, d > 2, -] stands for the integer part.
Note that formulas (7), (19) imply formulas (27)—(31) as follows:

a(x’k) :a}v<x,k)+0(’er) <Z‘ f;jll 1 | ‘ N) <

J1=1

> s + Ol N>) -

Jj2=1

N _
1 finf;
1 —N J1J 92 —N
=ay(x, k) + O(|z| )+W < Z W—I—O(Lﬂ )) =

J1,j2=1

== i+ 2= 1] = (o) + Oal ™) + s (szh|;|/i“ 0<|x|-N>>=

Jj=1 =1
N—[(d-1)/2] B
= a,]lv<$, k) + Z m + O(’.IFN) (32)
j=1

Consider also the case of the Born approximation for small potentials. Suppose that potential
v is small, for example, in the sense of the norm || ||z (p), for fixed D. Then in formulas (27)—(31)

the quadratic term a% is negligible in comparison with the linear term a}. Such a situation arises

5



in many applications (see, for example, [5], [12], [15], [22], [23], [38], [39]). Thus, in the Born
approximation for small potentials formula (28) reduces to the formula

an(z,k) =~ ay(z, k). (33)

The aforementioned smallness assumption on v can be specified as

|v]| oo (py = O(e), where ¢ — 0. (34)
Then using (16), (20)—(25), (34) one can show that
| fillcmy) = Ofe), for each j € N. (35)

In turn, formulas (28), (30) imply that
an(z, k) — a(z, k) = || "D20(?), (36)

where N € N.
Formula (36) specifies (33) under assumption (34).

2.3 Some results of [30]

We recall that the work [30] gives, in particular, explicit asymptotic multipoint formulas for finding
f1 from ¢ for d > 2. This work proceeds from formula (19) and considers, in particular, the
functions z = z(s), s € [r,+00), of the form

N
z(s) = Z % +0(s7™), as s — +oo, (37)

where f;, j =1,...,n, are the complex numbers.

Functions of the form (37) arise in the second term on the right-hand side of (19), where
s = |z|. Functions of the form (37) also arise in the framework of direct and inverse scattering at
high energies for equation (1) with smooth v; see [24] and [31].

For functions z satisfying (37) the work [30] considers, in particular, the problem of finding f;
from z(s) given at n points s; € [r, +00), j = 1, ...,n, of the form

s;=si(s)=s+1,j=1,...,n,
s>r,m=0,711>7,j=1,..,n—1, (38)
7_:: (Tl,...,Tn).

Suppose that N > 2n — 1. Then the following formulas of [30] hold:

fi= Zyj(s, T)z(s+ 1)+ O(s™"), as s = +oo, (39)

j=1
where y;(s,7) are defined by

- Yj 1, fori=1, (40)
(s + 7)1 B 0, fori =2, ... n;

7=1
in addition:
L (D) (s )

Yi\s, 7) = — — 71§j§n7 41
D P “
a;(7) = 2115 = 7), Bug(F) = iy (76 — 7). (42)
Z M =0(s™") as s » 400, forn <i<2n. (43)
= (s + ;)L



3 Main results

3.1 Formulas for finding f; from a at 2n points for d = 3

For d = 3, the function a(x, k) of formulas (7), (27)-(31) at fixed k and & = z/|z| can be written
as

a(s) = a(s, &, k) := a(sz, k), (44)
N o
1SK + 1SK + h
a(s) = . ;.71 / L4+ 0(s™), s = 400, hy =0, (45)
j=1
j—1
hj = fk‘fjfka .] = 1a"'7N7 (46)
k=1

where s = |z|, & = |k| — ki, and k > 0if & = 2/|x| # k = k/|k].

Proceeding from this motivation we consider arbitrary functions a = a(s), s € [r,+00),r > 0,
such that formula (45) holds for some fixed x > 0 and some complex numbers f;, j = 1,..., N,
and hj, 7 =2,...,N.

We consider 2n points sy, s2; € [r, +00), j = 1,...,n, of the form

s1;=51,(s) =s+1, j=1,..,n, (47)
Soj=5824(s) =s+o0+m, j=1.,n, (48)
T =w,T,j=1..,nT= 2/: O0=w,1 <1g<..<vi, {n;}eN, (49)
To; =V T, ] =1,..,n, 7= 2%, 0=191 <ty <..<Upy {1a;} €N, (50)
s>r,a>0,a7é()(modg). (51)

Theorem 3.1. Let a = a(s) satisfy (45) for some N > 2n — 1, n € N. Then a(s) at 2n points
S1,5, S2.; Of (47)-(51) approzimately determines fi as follows:

e—i(s—s—a)nal(S) _ e—isna2(5) + (’)(S_")
= 52
h —2isin (oK) 8T (52)

(s) = 3 () ol 53

T 1Hi 1\ — Vlk:)HZ—]H(Vlk Vl,j)’

Jj=1

i
CZQ(S) — Z ( {L j<52j(5)) (SQJ( )) ' (54)

T L (v — vaw) Iy (o — 12)

Jj=1

Remark 3.1. Suppose that v1; = 15; = j—1, 7 =1,....,n. Then formulas (53), (54) reduce
to the formulas

al(s) _ Z (_1)n_j(817j<8) n_1a<817j(5)) (55)

2 Dl et

CZQ(S) _ Z <_1)n'_j(527'j<5> n_.l.a<82,j(5)) ' (56)

Theorem 3.1 is proved in Section 4.
Formulas (52)—(56) of Theorem 3.1 and Remark 3.1 are completely explicit ! But a possible
inconvenience of these formulas is that the differences between the points s;;, 7 = 1,...,n, or



S2j,7 = 1,...,n, are multiple to 27/k. Below in Subsections 3.2, 3.3, we give approaches for
relaxing this multiplicity condition.

Formulas (7), (44), (47)-(56) realize (5), (6) for d = 3. In addition, formulas (7), (44), (47)-
(56) remain valid for any odd d > 3. The reason is that a(s) defined in (44) satisfies (45) for any
odd d > 3, for some h;, where hy = ... = h_1)2 = 0.

3.2 Formulas for finding f; from a at 2n points for small potentials

In the Born approximation for small potentials v formula (28) reduces to formula (33).
In these framework, the function a(z, k) of (27)-(31) at fixed k and & = z/|x|, for d > 2, can
be written as

a(z, k) ~ a(s), (57)
where

eZSK/f + e—ZSK)f
J
si—1

+0(s7), s = +o0, (58)

Jj=1

where s = |z|, k = |k| — k&, and x > 0 if & = 2/|z| # k = k/|k|. Formulas (57), (58) follow from
(27), (29), (31), (33).
Proceeding from this motivation, we consider arbitrary functions a = a(s), s € [r, +00), r > 0,
such that formula (58) holds for some fixed £ > 0 and some complex numbers f;, j =1,...,N.
We consider 2n points s; € [r, +00), j = 1, ...,2n, of the form

s;j=si(8)=s+1,7=1,..2n, (59)

=G—-1rj=1..2n, (60)

s>7",7'>0,7'7£0(m0dz). (61)
K

Let ¥, , be the operator acting on functions u on [r, +00) and defined by the formula

En77u(3) _ Z (_1)n_j(8j(5>)n_1u(sj<3))7 s € [n —I—OO), (62)

j=1 (J = Dn —j)lrt

where s; are defined according to (59)-(61), j =1,...,n.

Theorem 3.2. Let a = a(s) satisfy (58) for some N > 2n—1, n € N. Let 3, ; be defined by (62).
Then a(s) at 2n points s; of (59)-(61) approximately determines fi1 as follows:

fi=C(k,7,n) (7" e " ay(s) — as(s + 7)) + O(s™™)), s = +00, (63)

672235

as(s) ==X, ra1(s), a1(s) := Em(eis“a)(s), (64)

(
(n— )
e D) (65)

Remark 3.2. For %, . defined by (62) and 2n points s; of (59)-(61), we have that

C(k,T,n) =

(62”H _

Y Wo Xy ;wru(s) =

— (_1)j1+j2( jl(s))nil(sjl-l-jz 1(3))n71w2(sj1(S))wl(sj1+j2—1(8))u Si L s
L (2 = D — 1)1z = 1 — jo) =2 Crtinea(o)): (00

1<j1,j2<n

where wy, we are fized functions on [r,+00), and u is a test function on [r,4+00). In addition,
Sj1+j2—1<8 + T) = Sj1+j2<5>7 1 <7j1,52 <n. (67)

8



Formulas (66), (67) explain that formula (63) involves a(s) exactly in 2n points s; of (59)-
(61), 7 =1,...,2n. Actually, formula (66) explains that computing as(s) via (64) requires a(s) in
2n — 1 points s; of (59)-(61), j =1,....2n — 1; formulas (67), (66), (63) explain that computing
as(s + 1) requires a(s) in shifted 2n — 1 points s; of (59)-(61), j =2,...,2n.

Theorem 3.2 is proved in Section 5.

Note that formulas (63)—(65) for finding f; from a(s) coincide with formulas (52)—(54) for the
case when N =n=10=r.

Note also that Theorem 3.2 is used in the proofs of Propositions 3.1 and 3.2; see Subsections
3.3, 3.4 and Section 6.

3.3 Formulas for finding f; from a at 3n — 1 points for d = 3

In this Subsection we give formulas for finding f; up to O(s™"), as s — +o0, from a(s;(s)), j =
1,...,3n — 1, where a(s) is defined by (44), s; = s;(s) are the points of (68)—(70). We use that
a(s) satisfies (45). In constrast to Theorem 3.1, we do not assume that differences between some
of these points are multiple to 7/k. In addition, in constrast to Theorem 3.2, we do not assume
that a is reduced to the linearised a of the form (58). On the other hand, the disadvantage of
approximate finding f; mentioned above, is that this finding uses a at 3n — 1 points, in contrast
to 2n points of Theorems 3.1 and 3.2.
We consider 3n — 1 points s; € [r,+00), j =1,...,3n — 1, of the form

si=si(s)=s+m,j=1,...,3n—1, (68)

=G—-1r,j=1,..,3n—1, (69)

s>r,7‘>0,7'7é0(modz). (70)
K

Proposition 3.1. Let a = a(s) satisfy (45) for some N > 2n — 1, n € N. Let 3,,; be defined by
(62). Then a(s) at 3n — 1 points s; of (68)-(70) approzimately determines fi as follows:

f1=Ci(k, T, n)(T”_l(e_%mag(s)‘ —as(s+7))+0(s™), s > +o0, (71)

as(s) = Sy ar(s), ai(s) = GSM S (€% a0) (5), (72)

ag(s) := Sn—l_lEnﬁTa(s), (73)
B (n —1)l7nt P

Ci(k,T,n) = o= C(k,7,n), (74)

where C(k,T,n) is given by (65).
Remark 3.3. For %, . defined by (62) and 3n — 1 points s; of (68)-(70), we have that
En,rw3zn,7w22n,7wlu(3) =

_ (=) (s ()™ (Sjatgo1 ()" (Sjitimris—2(8)" 1

1<41, j2, j3<n (]1 - 1)‘(” - jl)'(]Q - 1)'(” - j?)'(]:’) — 1)‘(” — j3)!7—3n—3

w3(8j1 (S))w2(3j1+j2—1 (S))wl (Sj1+j2+j3—2(S))u(sj1+j2+j3—2(8))7 (75)

where wy, wq, wz are fized functions on [r,+00), and u is a test function on |r,+00). In addition,

Sj1+j2+j3—2(3 + T) = Sj1+j2+j3—1(8)7 1< jl’j27j3 <n. (76)

Formulas (75), (76) explain that formula (71) involves a(s) exactly in 3n — 1 points s; of
(68)-(70), j = 1,....,3n — 1. Actually, formulas (72), (73) and (75) explain that computing as(s)
via (72), (73) involves a(s) in 3n — 2 points s; of (68)-(70), j =1,...,3n—2; formulas (75), (76)



explain that computing as(s + 7) via formulas (72), (713) requires a(s) in shifted 3n — 2 points s;
of (68)~(70), j =2, ...3n — 1.

Proposition 3.1 is proved in Section 6.

Note that formulas (44), (68)—(74) for finding f; from a remain valid for any odd d > 3, in a
similar way with formulas (44), (47)—(56).

Note also that formulas (71)—(74) for finding f; from a(s) coincide with formulas (52)—(54)
and with formulas (63)—(65) for the case when N =n = 1, 0 = 7. For this case these formulas
were given in [25], [27].

3.4 Formulas for finding f; from a at 3n points for d = 2

For d = 2, the function a(x, k) of formulas (7), (27)—(31) at fixed k and & = x/|z| can be written
as a(s) defined according to (44), where

N i —isk T N
€ZSHf‘+€ zsnf‘ I 1
a(s) = Jsj—1 I 4 Z sj—]1/2 +0 (S_N> , 8 — 400, (77)
= =
j fa—
hy =Y fifipens =10 N, (78)
k=1

where s = ||, k = |k| — k&, and k > 0if & = x/|z| # k = k/|k|.

Proceeding from this motivation, we consider arbitrary functions a = a(s), s € [r, +00), r > 0,
such that formula (77) holds for some fixed x > 0 and some complex numbers f;, j = 1,..., N,
and hj, 7=1,...,N.

In this Subsection we give formulas for finding f; up to O(s™"), as s — 400, from a(s;(s)), j =
1,...,3n, where a(s) is of the form (77), s; = s;(s) are the points of (79)—(81). In constrast to
Theorem 3.2, we do not assume that a is reduced to the linearised a of the form (58). On the
other hand, the disadvantage of approximate finding f; mentioned above, is that this finding uses
a at 3n points, in contrast to 2n points of Theorem 3.2.

We consider 3n points s; € [r, +00), j = 1, ..., 3n of the form

sj(s)=s+m, j=1,..,3n, (79)

=0G—-1)r1 7=1,..,3n, (80)

SZT>O,T>O,7’7’£O(mOdZ>. (81)
K

Proposition 3.2. Let a(s) satisfy (77) for some N >2n+1, n € N. Let X, . be defined by (62).
Then a(s) at 3n points s; of (79)-(81) approximately determines fi1 as follows:

fi = Cy(r, T, n)(T"’l(e’QiT”ag(s) —az(s+71))+0O(s™), s — +o0, (82)
az(s) =X, ra2(s), as(s) := esn—1 Yo (€ay)(s), ai(s) = F]mzn+1,7a0(5), ao(s) = a(s)//s,
(83)

nl(n — 1)l

Co(w, 7,m) = (s — 1)n(e2ith — [)n—1(g~2imk — 1)’ (84)
Remark 3.4. For %, . defined by (62) and 3n points s; of (79)-(81), we have that
Y WLy, ;Wo X1 ;WU (S) =
R - S OTCRECETSTOIE
etz = DI =506 = D n = 52)!(Js — Dl n — ja)!7
X ws3(85, (8))w2(85115-1(8)) W1 (8511245 -2(8)) (811245 -2(8)) (85)
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where wy, wy, w3 are fized functions on [r,+00), and u is a test function on [r,+00). In addition,
SJ'1+]'2+J'3*2(S + T) = Sj1+j2+j3*1(5)7 1< J1:J2, J3 < n. (86)

Formulas (85), (86) explain that formulas (82) involves a(s) ezactly in 3n points s; of (79)-(81),
Jj=1,...,3n. Actually, formulas (85) and (83) explain that computing as(s) via (83) involves a(s)
in 3n — 1 points s; of (79)-(81), j = 1,...,3n — 1; formulas (85), (86) explain that computing
as(s + 1) via formulas (83) involves a(s) in 3n — 1 shifted points s; of (79)-(81), j =2, ...,3n.
Proposition 3.2 is proved in Section 6.
Note that formulas (44), (79)—(84) for finding f; from a remain valid for any even d > 2, in a
similar way with formulas (44), (47)-(56), (68)—(74) for odd d > 3.

4 Proof of Theorem 3.1

Let

—

T1 (7'1,1, "'7Tl,n>7 Ty = (72,17 ~-~77—2,n)- (87)

Let y;(s,71),y;(s,72), 7 = 1,...,n, be defined according to (40), (41). We have that

an(s) = D y(s A)alsr(3)), ax(s) = D5, Falsay(3)). (58)

Note that , o ,
ezslyj(s)n — ISRV TR 61511’ ] — 1, n,
(89)

eislj(s)n _ ei(ero)n ive jTH __ ei(ero)n

e , g=1,...n.

Using formulas (40)—(43), (45), (88), (89) and the assumption that N > 2n — 1, we obtain
that:

n N sy -(s)mf —is1 i (8)k £
- e’ m + € 7 fm + hm -N
ai(s) = ;yj(s, 1) (mzl (54 +0(s™™) | =
N n -
iSK —iSK [ yj(87 Tl) —n (90)
=) (€t et hm) ) g T O(™") =
> L Tn
=" e+ O(sT"), as s — +00;
n N . . —
52,5 (s)/{f + 671527j(s)/{f + h
= (5.7 m m__ ™ O(sNY | =
a2(s) ]Zl (s, 72) (mzzl (s+0+m,;)m ! O

i(s+o)k —i(s+o)kf h Yj (87 75) O(s™) =
(e fn + € 7o+ m)z(s+a+m~)m1+ (s™™)

3
I

j=1
T f) e ST L O(sT), as s — +o0.

We consider formulas (90), (91) as a linear system for approximate finding f, f, from a;(s), as(s),
where s is sufficiently large.
If 0 >0, 0 # 0(mod 7/k), then from (90), (91) we obtain that

il _ 1 e—i(s—l—a)/-f _e—isn a ($>+ O(S—n) (92)
fl - e—i0k _ ik _ei(s—i-a)m elisrk a2(8>—|— O(S_n) .

Formula (52) follows from (92).

Theorem 3.1 is proved.
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5 Proof of Theorem 3.2

Lemma 5.1. Let 3, be defined via (62). Let

u(s) = 3" D e o), (93)

i1’
j=1

for some fized k € R and some complex numbers f;,7 =1,...,N, where N > 2n — 1. Then:

2n—1 1SK
" fann

Y u(s) =s"1 Z Sm_l’ +0O(s™), s € [r, +00), (94)

m=1

m fDCv;n sz n (_1)n—j17_m—j26irj1n
m,kx — Jm,kn,T y ey Jm) — : ; szl,...,Zn—l, 95
f, f,,,(fl f) Zl Fn—1 Zl (]1_1>(n_]1)' ( )
Jo= J1=
where C§ denote the binomial coefficients,

(62'7% - 1)n71

Jiw = (n — 1)t Ji. (96)
(eiTK - 1)n71 -
fn,nszn folz-'-:fn—lzo‘ (97)
Proof of Lemma 5.1. Using (41), (93), we obtain that
n N n ]1 S—|-7' )n 1 7:(5“1‘7—]'1)/4]("
J1 Jjo
St ZZ 11—1 (n =G0t (s 7
J1=1j2=
N n n ]1(S—|—T )n—jgeirjln
=— me Z — = , S € [r,+00). (98)
Tt e (i = D =)t
(99)
Note that
n—ja 2n—jo—1
(s+75)" 2= C8 gl = N OB s iy > 0, (100)
Jj3=0 73=0
1 = 2n—jz—1
(s m)" = o DO s = Y Ol TR R £ O(s T n— <0, (101)
J3=0 73=0

where Cf are the binomial coefficients; we used in (100) that C§ = 0, for a > 3, if 3 € N.
Using (98), (100), (101) we obtain that

. N n nein \~2n—ja—1 i
En,Tu(s) B isk Z f Z (_1> J1 Z]g 52 (C’TJL3 i ]1 /5J2+J3 l)e ik N O(S_2n+1) B
n—1 T -1 J2 _ _ o
s 2n—1 n—j 2n 1 1\ i1
= e Z f Z 1) 7 Z]g ({2 (ngg J2 J1 /8]2—"_]3 )6 nt + O(S_2n+1) _
T“]Q At (1 = Din = jr)!
: 2n—22n—j3—1 73 n n—ij1-J3 iTi K
B ersr f]QCn —J2 (_1) le' e —2n+1\ __ 4 ;
ool Z Z gl2tis—l Z ‘(1 — 1)! (n il O = m = ja + sl
Jja=0 j2=1
2n—1 4o m m— ]2 n _1\n—j1-m—J2 jiTi K 2n—1 ;e
€ ijCn —jo ( 1) T’ e —on+1 € fm K —on+1
= + O(s™#"h) = L+ O(s7M ),
2 T e G OO E 2 e e

(102)
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where

e 7l (1= Di(n—ji)!

Jo=1 Jj1=1

B f102_1 i (_1)n—j€i7(j—l)n B (eiTF»' o 1)71—1

S G-Dlin—j)l _ (-1l t

Ji-

—1
TTL
j=1

Formulas (94), (96) follows from (102), (103), (104).

In addition, if f; = ... = f,_1 =0, then
OO n -1 nfjei(jfl)‘l'ﬁ 61'7% -1 n—1
fn,n:fn nglz( ) ; :( )n—lfn'
T (7 — Dl(n—j)! (n—1)!7

j=1

Lemma 5.1 is proved.
The rest of the proof of Theorem 3.2 is as follows. Due to (58), we have that

e"a(s) = u(s) + z(s),

iSK { N T
u(s) = Z s 2(s) = Z % +0(s™), as s — +oo.

Due to formulas (39), (41), (43), (62), and the formula for z in (106), we have that
Y,.2(8) = f1 +O(s"), as s — +oo0.

Due to Lemma 5.1 (with 2k in place of k) and the formula for v in (106), we have that

2n—1 oig
€ fm,2m

Sy u(s) =" Z ———=+0(s™"), where
§™m=

m=1
0TK __ n—1
G 1)

Jios = W

fi.
Due to (106), (107), (108), we have that

2n—1 oig
€ fm,2/@

En,T(eiMa)(*g) = 5" gm—1

+ O™ + f1+0(s7™), as s — +oo.

m=1
The definition of a; in (64) and formula (109) imply that

a1(s) = u1(s) + z1(s), where
2n—1

6—21'5&?
wls) = gn—1 5 oals) = Z
m=1

Due to formulas (39), (41), (43), (62), and the formula for z; in (110), we have that

fm,2n

Smfl

+ O(s72"h) | as s — 400,

Ynr21(s) = fion +O(s™"), as s = +oo.
Besides, the following formula holds,

<€—2i7—/€ _ 1)n—1_
(R

Enﬂ'ul(s) = 6_%8”717—2m ?17—2N =

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

Formula (112) follows from formulas (94), (95), (97) of Lemma 5.1, with (—2&) in place of &,

fn = f1, where f, is the number in definition of u; in (110).
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The definition of as in (64) and formulas (108), (110)—(112) imply that

a2(3) — f1,2/@ 4 672i8n717_2’{ + O(S—n) _

B (621'7'5 . 1>n71f1 4 672’L’8I€(672i7’ﬁ . 1)n7171 .
(n = 1) +0(s™), s = +oo. (113)
From (113) we obtain that
(2™ — 1)L e (e 2T ) = (n— DT ag(s) + O(s™™), s — 400, (114)

(621'7% o 1)n71f1 4 672i(s+7)n<€72i7n _ 1)n71?1 — (n _ 1)!7_7171&2(5 + 7_) 4 O(an), 5 — +00.

We consider formulas (114) as a linear system for approximate finding f,, f, from
(n— D)7t tay(s), (n —1)17"tay(s + 7), where s is sufficiently large. From this system, for 7 > 0,
T # 0 (mod 2w /k), we obtain that

il = 1 X
fl (e2i71€ _ 1)77,—1(6—21'75 _ 1)n—le—2isn(€—2iﬂ'n _ 1)

(62i(8+7')l€(62i7'1€ _ l)nfl _6721'3%(6721'7% _ l)nl) ( (n _ 1)!7_n—1a2(8) + O(S—n)
(

_(622'7'/@ _ 1)n—1 (622'7'/-@ _ 1)n—1 n — 1)!7_n—1a2<8 + 7_) 4 O(S_n>> , S — +00.

(115)
Formula (115) implies that

(n=Dlr e ay(s) — ag(s + 7)) + O(s™) ) -
h= (e2imr — 1)n—1(e=2imn — 1) , § = F00. (116)

This completes the proof of Theorem 3.2.

6 Proofs of Propositions 3.1 and 3.2
Proof of Proposition 3.1. The following formula holds:

- eiSHfmﬂﬁl + eiis,ﬂ?m —K

Ypra(s) =s""" Z n — 4+ 0(s™"), s = +0o0, (117)
sMT

m=1

where f,, . and fm _,. are defined according to (95) in terms of f1, ..., f, and f1, ..., f,,, respectively.
In particular, according to (96), we have that

(eiTm - 1)n—l
(n—1)lrn—t

(e—iTﬁ - 1>n—l _

fl,ﬁ = f17 71,—/{ = (TL — 1)!’7'”_1 fl' (118)

Formula (117) follows from formula (45), Lemma 5.1 and formulas (39), (41), (43), (62).

Formula (71), where ay is defined by (72), (73), follows from formulas (117), (118), and Theorem
3.2.

Proposition 3.1 is proved.

Proof of Proposition 3.2. Assume that
nt/s < 1, where s > r > 0. (119)

From the definition of a¢ and formula (77) we have that

N

, N e T N
e f; e f hj- 1
ao(S) = Z 5’]_—1/]2 + Z 8]_—1/2] + (Z 8;_11 + O (S_N)> = CL071(S) + aO’Q(S) + ao’g(S). (120)

j=1 j=1 j=2
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Using that N > 2n + 1 and formulas (37), (39) with n + 1 in place of n, we obtain that
Sni1-a03(s) = O(s~ ") s — too. (121)

We also have that

ntl n+l—j n N~V i(s+T))k -
Spi1ra = (=)™ (s 4 7)" oy €T/ (s + )R
n+1,74%0,1 - (j — 1) (n+ 1 —j)‘Tn

n+l N . _ e
) —1)nt1-y \n k+1/2 i(j—1)7kK
:ezsnzz( ) (S+T) fk (122)
o U —Din+1 =5l
Note that
(3 + Tj)n—k+1/2 (1 + Tj/s)n7k+1/2 "
12 1 ) (123)
2n N
(L 73/ ™12 = 3l pe (2) + 0771, 5 = 00, (124)
S
1=0

where in (124) we used assumption (119) and that 7; = (j — 1)7, j = 1,...,n + 1. Using that
N > 2n+ 1 and formulas (122), (123), (124), we obtain that

n+1

N —7 : n— W(J—1)TK
n-1/2 _ KZZ 1) (14 (j — 1)1 /s)n R 200 f _
— (=Dl n+1—7)lmnskt

Zn+1,TCl0,1( )
j=1 k=1

j j—1)T ! i(7—
pisk 1L N 2n (_1)n+1—yqll br1/2 ((J 81) > eili—Drx £,

— - ZZ Z (j _1> (n+1—j)'5k T —i—@(s*?n—l) =

j=1 k=1 \ 1=0

isk ™ 2n+l 2n

B ) 3 pmLinc S Lo U

n [ gh—141

T 520 k=1 =0 J)'S (125)
pish 2n+1 min(m,2n+1) n ( )n ]CTT:L kk+1/2(j7_)m k eliTh ot

m=1 k=1 j=0 '] ‘] ’

2n+1 ; m n
1 ezsn ( 1) (]7') ’L]TH Con1
i -1 kaon k+1/2z 1 +O(S ) =
T A= s p = Jl(n ]).
2n+1 e””f
= Z TE L O(sT ), s = Fo0,
sm=
m=1
where
L=y ek N (S (Gr)m e
fm,K=;kaCn ey j.(n_j)' m=1,.. 241, (126)
k=1 7=0
n n—j TR iTH_ln i‘rf-c_ln
[P ol o Cilitnt Y P A ittt S (127)
™ = Jl(n —j)! 77n! 77n!
In (127) we have that ¢ # 1 due to (81). In a similar way with (125) we also have that
2n4-1 e—zsmf_
2n+1,rao,2(8)/8"’1/2 = Z Sm—_;nﬁ +O(s72 1), 5 = +o0. (128)
m=1
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From formulas (121), (125), (128) we obtain that

2n+1 _
ZnJrl,TaO(S) ZS’{f K +e ZSﬁf K —on— —2n—
ars) = 172 Z : si—1 P O(sT) + O(sT ) =
j=1
2n+1 A 2n—1
B ezsnfjﬁ +e ZSRfj,H Como1y2y zst{fj . te zsnfj . Cona1
— Zl pom +O(s )= Zl o +O(s ), § — +00.
Jj= Jj=

(129)

From (129) one can see that the function a,(s) satisfies the assumptions of Theorem 3.2 for
N = 2n—1. Therefore, applying Theorem 3.2 to the function a,(s) we reconstruct f; , via formulas

fin =C(k,T, n)(Tnfl(e’Qimag(s) —a3(s+71))+0(s™)), s > +o0, (130)

as(s) := X, ra2(s), as(s) := esn =Y, (e a1)(s), (131)
, (n—1)!

C(k,T,n) := (@ 1)1 B 1) (132)

In addition, formula (127) implies that

n!T"fLH

fi= (@ — 1) (133)

Formulas (82), (83), (84) follow from formulas (130)—(133) and the definitions of a;(s), ag(s).
This completes the proof of Proposition 3.2.

7 Sketch of proof of formulas (23)—(25)

We will use that
GJF(‘T - Y, k) = G:Lr(x - Y, k) + pn(ywxa |k|>7

i|k||x| " gy A
+ _ o € g](yvma ‘k‘)
Gz —y k) = 2] @172 (Z i1 )
) iy cilkllz] (134)
gl(y7x7|k|):e v 7pn(y7x7‘k:|) = |x|(d——1)/2€”<y’x’|k|)’

1
enl(y,x, k) = O (‘—|) , || = 400, uniformly in y € D,
€T n

where G is defined in (16), & = z/|z|. The Lippman-Schwinger integral equation (16) and formula
(134) imply formulas (19), (23), (24), where

(2m)~e(d, [k))ps(y, 1) = g; (v, 1. kD), T=1/)1]. (135)

The recurrent relations (25) can be proved using also that:

(A, + k)G (z —y,k) =0, forz € R\ D, y € D; (136)
? d—-10 1
= — —_— = 1
Ao or? T or N TQAS’ (137)

where 7 = |z|, Ag is the Beltrami-Laplace operator with respect to # € ST™!, & = x/|z[;

1
Bunlas 6) = O otz ) bl = o (138)
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We prove below the recurrent relations (25) proceeding from (134)—(138). Our approach con-
sists in expanding equation (136) in |x| ™7, as |z| — +oo.

Note that
R iil - = €d71 M + M , (139)
orp*5+i %5 \ 1 ri+l
o ilk|r ilklr i1k —d1 549
= 3Ll-+ 5 - ) , (140)
ror 5+l gt rd ritl

1 ellklr Asg;(y, 2, k) 1
ﬁAS(;+(l' — y,k) = —r(d—l)/2 (Z i+l +0 <rn+(d+3)/2) , I — +00. (141)

j=1

Using (134), (140) we obtain that

8G+ a: _ y7 7,|k|'r
A A E:%y,IM =
Gkl 1 Z|k;|g](y, KD | d—1 9;(y, 2, |k|)
D2 £ 1 ( i ( 9 —Jj+ 1) j+1 )
]:

el (Silklg 1 (y, 2, k) o= d—1 gi—2(y, &, |k|)
D <Z = -1 +Z(_—2 —J+3)7= i1 =

j=2 7j=3

ekl i|k|g1(y, &, |K|) %ZW% 1(y, 2, [k|) + (_%—j+3)gj,2(y,i,\k\)+
Fd-1)/2 r ri=1

7j=3

d—1 gn(y, 2, k), e S b
+ (_—2 —n+1) L )= r(d—1)/2 Zz ri—1’ (142)
J:

ilklgj—1(y, 2,1k]), j =2,
‘gj,d: Z’klgj 1<y7 |k|) (_u_j_FS)g] 2(y7 ’kl) "'7n+17 (143)

(=L — i +3)gj2(y, 2, |k]), j =n+2.

Using (140) and the result of the second equality in (142) we obtain that:

PGl x—y k) 0 [ €l ilk|g;(y, 2, |k|) d—1 . gi-1(y,2,k|)
Or2 = or \ pdD/2 Z ri—1 +Z(_ 9 —Jj+2) i1

j=1 j=2
6\ Ir g 9 cilklr
_Z |klg;(y, & |k|) Z(_T_.]+2)g] 1y, 2, |K]) =~ B T
7j=2
Z|k|€z\k\r d—1 . ei|k|r
—Z [Klgs (0. |k|>( I )
n+1 . . n
Zlk‘ez|k|r d—1 ‘ ez\k\r ez|k|r Wid
42 - —j+1 = J
+Z I+ 29y, |k‘)< lyj—1 ( 2 I )r%ﬂ' ria s ri—1’
(144)
—|kIPg;(y, 2, k), j = 1,
o= ) IR KD + M (= = 25 4+ 59, (v, kD). G = 2 )
8 —|k[2g;(y, &, [k|) +ilk|(—d — 2j + 5)g;-1(y, &, |k])+
(=G =i+ 1) = — i+ 1)gia(y. 2, k), j =3, ...,n.
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From (134), (136)—(138), (141), (142), (144) we have that

€i|k|r n ej,d i ei\k\r n Wi ez‘\k\r n+2 Ang72 B
rizt 2; ri—1 Td=1 r(d=1)/2 z; ri—1 + r(d-1)/2 2; ri-l
J= = j=
i|k|r n . 2
— 2 € gj |l€|
=k r(d=1)/2 ri—1 +0 <7an+(d1)/2 , I +00, (146)

Jj=1

where 6, 4, wj 4, 9; do not depend on r. Since n is arbitrary, we obtain, from (146), for j > 3,

that

de -+ (d — 1)Wj,d + Asgj_g = —k2gj. (147)

Using definitions (143) for 6,4, (145) for w; 4 and equation (147) we obtain, for j > 2,

. 1 8d+1—d* ., . . .
(148)

Formulas (25) follow from (135), (148).
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