
HAL Id: hal-03263733
https://hal.science/hal-03263733v1

Submitted on 18 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Context-Aware Adaptive Process Information Systems:
The Context-BPMN4V Meta-Model

Imen Ben Said, Mohamed Amine Chaabane, Éric Andonoff, Rafiq Bouaziz

To cite this version:
Imen Ben Said, Mohamed Amine Chaabane, Éric Andonoff, Rafiq Bouaziz. Context-Aware Adaptive
Process Information Systems: The Context-BPMN4V Meta-Model. 18th East-European Conference
on Advances in Databases and Information Systems (ADBIS 2014), Sep 2014, Ohrid, Macedonia.
pp.366–382, �10.1007/978-3-319-10933-6_27�. �hal-03263733�

https://hal.science/hal-03263733v1
https://hal.archives-ouvertes.fr

Context-Aware Adaptive Process Information Systems:

The Context-BPMN4V Meta-Model

Imen Ben Said1, Mohamed Amine Chaabane1, Eric Andonoff2, and Rafik Bouaziz1

1 MIRACL/FSEG, Route de l’aéroport, BP 1088, 3018 Sfax, Tunisia

{Imen.Bensaid,MA.Chaabane,Raf.Bouaziz}@fsegs.rnu.tn
2 IRIT/UT1-Capitole, 2 rue du doyen Gabriel Marty, 31042 Toulouse, France

andonoff@univ-tlse1.fr

Abstract. This paper introduces Context-BPMN4V, an extension of BPMN for

modeling variability of processes using versions and also considering their

contextual dimension. More precisely, it shows how we extend BPMN meta-

models to support version modeling to deal with process adaptation, along with

context modeling to characterize the situations in which instances of processes

are executed. Because of space limitation, this paper only focuses on intra-

organizational processes.

Keywords: Context, Adaption, Process Information Systems, Versions, BPMN.

1 Introduction

In the last two decades, there has been a shift from data-aware information systems to

Process-Aware Information Systems [1]: processes play now a fundamental role in

Enterprise Information Systems (EIS) and they are the support of the alignment

between EIS and business strategies of enterprise actors [2,3]. A Process (aware)

Information System (PIS) is a software system that manages and executes operational

processes involving people, applications, and/or information sources on the basis of

process schemas (models). Examples of PISs are workflow management systems (e.g.

YAWL), case-handling systems (e.g. Flowers), enterprise resource planning systems,

Business Process Management (BPM) suites (e.g. BizAgi) and service oriented

architecture-based process implementation [1].

Adaptation is a major challenge for PIS, before their definitive acceptance and use

in enterprises [4]. This issue is fundamental, as the economic environment in which

enterprises are involved is more and more dynamic, competitive, and open [5,6]:

enterprises frequently change their processes in order to meet, as quickly and

efficiency as possible, new operational, organizational or customer requirements, or

new law regulations. Thus, the economic success of enterprises is closely related to

their ability to integrate changes happening in their environment and to make evolve

their processes accordingly [7].

This need for adaptive PIS has led BPM researchers to intensively investigate

process adaptation issue. Several typologies have been introduced to classify process

adaptation, and even if they are different, they all agree to distinguish two different

times for process adaptation (design-time and run-time), two abstraction levels for

process adaptation (the schema –model– level and the instance –case– level), and

three types of process adaptation [8–11]: (i) adaptation by design, for handling

foreseen changes in processes where strategies are not necessarily defined at design-

time to face these changes and must be specified at run-time by process users (e.g.

late modelling and late biding [12]), (ii) adaptation by deviation, for handling

occasional unforeseen changes and where the differences with initial process are

minimal, and (iii) adaptation by evolution, for handling unforeseen changes in

processes, which require occasional or permanent modifications in process schemas.
We distinguish several approaches to deal with process adaptation issue: activity-

driven approach [13–21], constraint-driven approach [22,23], data-driven approach
[24,25], case-driven approach (case handling) [26], and more recently, social-driven
approach [27]. Activity-driven approach is based on the explicit representation of
process schemas (models): the activities of the process and the way there are
synchronized are modelled along with information handled and resources involved in
it. On the other hand, constraint-driven, case-driven, social-driven and even date-
driven approaches avoid describing the way activities are synchronized: in these
approaches, process schemas are not explicitly and a priori defined. Even if these
approaches are promising, this paper focuses on activity-driven adaptive PIS, as
activity-oriented models are used in the majority of (service-oriented) process
management systems. Consequently, BPM community has to provide solutions to
deal with activity-oriented process adaptation [7].

When dealing with adaptation in activity-driven PIS, in addition to the behavioural,
organisational and informational dimensions usually considered for processes and
which respectively define the activities of the process and their synchronization, the
involved resources in the realization of these activities and the data they produce or
consume, we also have to consider the contextual dimension of processes in order to
characterize the situations in which instances of processes are executed [7,28–30].

This paper focuses on context-aware adaptation in activity-driven PIS. More
precisely, it presents Context-BPMN4V, an extension of BPMN to model context of
versions of processes. Versions have been introduced in activity-driven PIS to deal
with adaptation issue as they facilitate adaptation by design, by deviation and by
evolution [7]. They also facilitate the migration of process instances from an initial
schema to a final one, allowing cases in which this migration is impossible and
enabling the execution of a same process according to different schemas [11,13–16].
BPMN4V (BPMN for Versions) is an extension of BPMN to model process
variability using versions. Basic concepts for process versions have been introduced
in [7,21] and BPMN4V has been presented in [31]. In this paper, we extend BPMN4V
in order to consider context of process versions. Because of space limitation, we
particularly focus on intra-organizational processes [32].

This paper is organized as follows. Section 2 focuses on related works about

adaptation in activity-driven PIS and context in BPM area. Section 3 presents BPMN4V

to deal with process adaptation using version of processes. Section 4 shows how we

extend BPMN4V in order to take into account the contextual dimension of processes.

Finally, section 5 concludes the paper and gives some directions for future works.

2 Related Works

Adaptation in activity-driven PIS is a highly investigated issue since the end of the

nineties. Even if existing contributions are significant [12–21], considering run-time

and design-time adaptation, both at the schema and the instance level, we can observe

that they mainly focus on adaptation of process behavior, leaving aside the

organizational, informational and contextual dimensions of processes. Moreover,

proposed notations are not standards and are unlikely to be used by process designers,

who are in charge of modeling variability of processes.

In order to take into account the second previous remark, some contributions have

extended BPMN, which is now known as the standard notation for processes, to deal

with adaptation issue. For instance, [33] has extended BPMN including concepts of a

generic meta-model to support process goals and process performance. [34] has

investigated more deeply this issue, proposing goals models, depicted as tree-graphs,

to represent process goals and their possible variations. However, these works did not

adopt a comprehensive approach, considering all the dimensions of processes at the

same time, i.e. the behavioral, organizational, informational and contextual

dimensions of processes.

The notion version has been recognized as a key notion to deal with adaptation

issue. On the one hand, handling version of processes facilitate the migration of

instances from an initial schema to a final one, allowing if the migration is not

possible, two different instances of a same process to run according to two different

schemas [7,13–16,21]. On the other hand, as defended in [7], versions are appropriate

to deal with the three types of adaptations identified in the main topologies of the

literature ([8–11]), i.e. adaptation by design, adaptation by deviation and adaptation

by evolution. Consequently, in a previous proposition, and with respect to the

concepts of [21], we introduced BPMN4V (BPMN for Versions), an extension of

BPMN to support intra-organizational and inter-organizational process version

modeling, both considering behavioral (what, how), organizational (who) and

informational (when) dimensions of processes [31]. Thus, we extended in this

proposition the main contributions about versions in BPM [13–18,20]. We continue

our effort in adaptive in activity-driven PIS area extending BPMN4V to integrate the

contextual dimension of processes in order to characterize the situations in which

instances of processes are executed and thus to define why version of processes are

defined/used instead another according to the context.

Context-awareness has been investigated in several domains of computer science

(e.g. natural language, human computer interaction, mobile application, or web

system engineering). BPM area has also taken advantages from context-awareness. A

process context is defined in [28] as the minimum set of variables containing all

relevant information that impact the design and execution of a process. This

contribution also introduced a taxonomy for contextual information by distinguishing

four natures of context: (i) immediate context, which covers information on process

components, i.e. context of activities, events, control flow, data and organization, (ii)

internal context, which covers information on the internal environment of an

organization that impacts the process (e.g. process goals, organization strategies and

policies), (iii) external context, which covers information related to external

stakeholders (e.g. customers, suppliers, government) of the organization, and finally

(iv) environmental context, which covers information related to external factors (e.g.,

weather, time, workforce, economic data). Other works (e.g. [21], [34]) only

distinguish two types of information to represent process context: functional

information related to process components (activities, events, resources…) and non-

functional information related to quality of process (safety, security, cost, time…). In

this work, we rather adopt the taxonomy introduced in [28], which is more

comprehensive.

In addition to these taxonomies, several contributions have been done to support

context awareness in process modeling. For instance, [29,30,35] proposed a rule-

based approach to define contextual information used to configure process instances

to particular situations. On the other hand, [34,36] proposed goals models, depicted as

tree-graph, to represent process goals and their possible variations. In these works, a

goal model is used to adapt process definition according to the context. But only

considering goal is not enough to describe context of processes. Finally, [21] also

investigated the contextual dimension of processes, but as indicated in the previous

section, the underlying context taxonomy is rather incomplete, and the proposed

notation is unlikely to be used by process designers.

To sum up, in this paper we advocate the modeling of process versions using

BPMN4V (BPMN for Versions) to deal with adaptation in activity-driven PIS [31].

We also define Context-BPMN4V, an extension of BPMN4V in order to take into

account context for (process) versions and considering the taxonomy introduced in

[28]. This contextual dimension is fundamental to help PIS users (i) at design-time, to

indicate why a process version is defined (different variables and conditions are

specified for the considered process version), and (ii) at run-time, to instantiate a

particular version of a process according to a concrete situation, i.e. a set of values

given to the different variables specified in the context of the considered process

version.

3 Modeling Process Versions: The BPMN4V Meta-Model

As indicated before, this paper focuses on intra-organizational processes. Such

processes are modelled in BPMN2.0 through private processes, which are internal to a

specific organization.

This section first introduces the notion of version and then present BPMN4V, an

extension of BPMN for modeling versions of private process.

3.1 Notion of Version

As illustrated in Fig. 1 below, a version corresponds to one of the significant states a

process may have during its life cycle. So, it is possible to describe the changes of a

process through its different versions. These versions are linked by a derivation link;

they form a version derivation hierarchy. When created, a process is described by

only one version. The definition of every new version is done by derivation from a

previous one: such versions are called derived versions. Of course, several versions

may be derived from the same previous one: they are called alternatives or variants.

The derivation hierarchy looks like a tree if only one version is directly created from a

process entity, and it looks like a forest if several versions are directly created from

the considered process entity.

Fig. 1. Versions to Model Process Variability

We defend that this version notion subsumes the notion of variant as it is defined in

[17,19,20,29] as, when considering versions, we both model process evolution and

process alternative (i.e. variant) to describe process variability and deal with

adaptation by design, adaptation by deviation and adaptation by evolution [7].

3.2 BPMN4V: BPMN2.0 for Versions

BPMN4V meta-model for private processes results from the merging of BPMN2.0

meta-model for private processes and a versioning pattern used to make classes of

BPMN2.0 meta-model versionnable, i.e. able to handle versions. We present briefly

these two layers.

Versioning Pattern. The versioning pattern is very simple: it includes only two

classes: Versionable class and Version of Versionable class, and two relationships:

Is_version_of and Derived_From as illustrated in Fig. 2. A versionable class is a class

for which we would like to handle versions. In addition we define a new class which

contains versions, called Version of Versionable.

Fig. 2. Versioning Pattern

The Is_version_of relationship links a class to its corresponding versions. The

Derived_From relationship allows for building version derivation hierarchies (cf. Fig.

1). This latter relationship is reflexive and the semantic of both relationship sides is

the following: (i) a version (SV) succeeds another one in the derivation hierarchy, and

(ii) a version (PV) precedes another one in the derivation hierarchy. Regarding

properties of a Version of Versionable class, we introduce the classical version

properties, i.e. version number, creator name, creation date and status.

Main Concepts of BPMN 2.0 Meta-Model [37]. These concepts are presented in

Fig. 3 hereafter. The three main dimensions of processes are considered in BPMN2.0

meta-model.

The behavioral dimension of processes supports the description of process

activities and their synchronization along with events happening during process

execution through the notions of FlowElementContainer which contains

SequenceFlow, FlowNode (Gateway, Event, and Activity), and Data Object. A

SequenceFlow is used to show the order of FlowNode in a process. A SequenceFlow

may refer to an Expression that acts as a gating condition. The Expression class is

used to specify a condition using natural-language text. A Gateway is used to control

how SequenceFlow interact within a process. An Event is something that happens

during the course of a process. It can correspond to a trigger, which means it reacts to

something (catchEvent), or it can throw a result (throwEvent). An Event can be

composed of one or more EventDefinitions. There are many types of Event

Definitions: ConditionalEventDefinition, TimerEventDefinition… An Activity is a

work performed within a process. An Activity can be a Task (i.e. an atomic activity) or

a Sub Process (i.e. a non-atomic activity). A Task is used when the work is

elementary (i.e. it cannot be more refined). BPMN2.0 identifies different types of

tasks: Service Task, User Task, Manual Task, Send Task and Receive Task.

Regarding the organizational dimension of processes, an activity is accomplished

by a ResourceRole. A ResourceRole can refer to a Resource. A Resource can define a

set of parameters called ResourceParameters. A ResourceRole can be a Performer,

which can be a HumanPerformer, which can be in turn a PotentialOwner.

Regarding the informational dimension of processes, an ItemAwareElement

references element used to model the items (physical or information items) that are

created, manipulated and used during a process execution. An ItemAwareElement can

be a DataObject, a DataObjectReference, a Property, a DataStore, a DataInput or a

DataOutput.

BPMN4V Meta-Model. The idea is to use the versioning pattern introduced before

(cf. Fig. 2) to make some classes of the BPMN2.0 meta-model versionable, i.e. able to

handle versions. Fig. 3 below presents the resulting meta-model. White rectangles and

relationships correspond to classes and relationships of BPMN2.0, while grey

rectangles and blue relationships correspond to classes and relationships involving

versions, and resulting from the introduction of the versioning pattern.
We propose to handle versions for seven classes: Process, Sub Process, Event,

Activity, ItemAwareElement, Resource, and ResourceRole in order to support adaptive

activity-driven PIS. Different instances (versions) of these classes can be created,

each one representing a significant state (alternative or derived) of the considered

element (e.g. a process). A new version of an element (e.g. a process or a resource) is

defined according to the changes occurring to it: these changes may correspond to the

adding of new information (property or relationship) or to the modification or the

deletion of an existing one. Actually, these changes can affect all the dimensions of a

process. The general idea is to keep track of changes occurring to components

participating to the description of the way business is carried out.

v

vv vv

v

v

v

Fig. 3. BPMN4V Meta-model for Modeling Process Versions

Regarding the organizational dimension of a process, we create a new version of

Resource when we change its parameters. For instance, a Manager resource may be

defined using two parameters: name and experience. A new version of Manager may

be defined if it becomes necessary to consider another parameter (e.g. region of the

manager) and this definition can lead to the definition of a new process in which this

resource is involved [21]. We also propose to create versions of ResourceRole when

there is a change in its privileges. For instance, an Employee is a HumanPerformer

resource that performs three activities. Because some activities of the process in

which this employee is involved become automatic, the employee can perform

anymore only two activities. A new version of the ResourceRole employee has then to

be defined.

Regarding the informational dimension of processes, and more particularly

ItemAwareElement, we consider that changes in the structure and/or the type of an

ItemDefinition results in the creation of a new version. For example, if Report is an

ItemAwareElement corresponding to a paper data (Itemkind is a Physical data), and if

after technical changes it becomes an electronic data (Itemkind becomes an

Information data), then a new version of Report has to be created.

Regarding the behavioral dimension of processes, several classes are versionable:

Event, Activity, Sub-Process and, of course, Process. More precisely regarding

activities, we create a new version of an activity when there are changes in the type of

the activity (a manual activity becomes a service one), in the involved resources, or in

the required or produced data. Regarding events, we create a new version of an event

when there is change in the associated EventDefinition. For instance, if an Alert is a

signal event (i.e. it has a SignalEventDefinition), and if, after technical changes, it

becomes a message event (i.e. it has a MessageEventDefinition), then a new version

of Alert has to be created. Regarding sub processes and processes, we create new

versions when there are changes in the involved activities and events or in the way

they are linked together (used patterns, i.e. gateways, are changed).

3.3 Example

We illustrate in Fig. 5 the instantiation of BPMN4V meta-model according to the

damage compensation process of an insurance company. This process is shown in

Fig. 4 below. Basically, it contains five activities: Receive Request, Review Request,

Send reject letter, Calculate claim amount, and Financial settlement. For

simplification reasons, we only focus on the behavioral dimension of this process.

Fig. 4. Versions of the Damage Compensation Process

Two versions of this process are described in Fig. 4. The first one is given in Fig.

4(a). This version starts when the client files a claim. After checking the claim, a

reject letter is sent, by mail, if the request is not accepted. Otherwise, the claim

amount is calculated by the insurance manager using GridCalculator, and the

financial service prepares and sends the financial settlement. On the other hand,

further to an increase in the number of its customers, the insurance agency has

modeled a second version of this process. Fig. 4(b) illustrates this version introducing

an Expertise activity (a new activity, used when the damage amount exceeds 1000$)

and both modifying the start ClaimReceived event and the ReceiveRequest and

CalculateClaimAmount activities (their type have changed). To sum up, regarding the

damage compensation process we have two versions of the process itself, two

versions of ClaimReceived event and two versions of the ReceiveRequest and

CalculateClaimAmount activities: the first version of both ReceiveRequest and

CalculateClaimAmount activity hold for the first version of the process while the

second ones hold for the second version of the process. In addition, the sequence

flows and patterns have been modified in the second version of the process. Finally,

regarding the ClaimReceived event, in the first version of the process, it is a None

Event, used to indicate that this version starts when the client presents its ClaimFile (a

paper data). However, in the second process version, it becomes a Message Event,

indicating that the client sends the ClaimFile (an electronic data) as a message via the

insurance web site.

P1: Process
Name : Damage compensation

VP1-1: Version of Process

VP1-2: Version of Process

:FlowElementContainer

Is_version_of

SV

PV

:FlowElement

:FlowElementContainer

A1: Activity
Name: Receive Request

A2: Activity

Name: Review Claim

A3: Activity

Name: Send Reject Letter

A5: Activity

Name: Financial settlement

A4: Activity
Name: Calculate claim

amount

VA1-1: Version of Activity

:Sub Process

VA2-1: Version of Activity

:Send Task

VA3-1: Version of Activity

:Send Task

VA5-1: Version of Activity

:Manual Task

VA4-1: Version of Activity

:User Task

VA4-2: Version of Activity

A6: Activity

Name: Expertise:Manual Task

VA6-1: Version of Activity
E1: Event

Name: claim
received

:catch Event

:Message EventDefinition
:

catch Event

:FlowNode
Is_version_of

Is_version_of

Is_version_of

Is_version_of

Derived_From

PV

SV

Is_version_ofPV

SV

Derived_From

VE1-1: Version of Event

VE1-2: Version of Event

VA1-2: Version of Activity

User Task

Receive Task

Derived_From

PV

SV

:FlowElement :FlowNode

:FlowElement :FlowNode

:FlowElement :FlowNode

:FlowElement :FlowNode

:FlowElement :FlowNode

:FlowElement :FlowNode

:FlowElement :FlowNode

:FlowElement

:FlowNode
:FlowElement

:FlowNode

Is_version_of

Is_version_of

Derived_From

Fig. 5. BPMN4V Instantiation for the Damage Compensation Process

4 Considering Context in BPMN4V: The Context-BPMN4V

Meta-Model

We advocate using the version notion to support adaptation in activity-driven PIS.

Thus, several versions can be defined for a process: versions of the process itself, but

also versions of activities, sub-processes, events, data produced or consumed by

activities (i.e. ItemAwareElement) and versions for the organizational dimension of

processes (i.e. Resource and ResourceRole). Each of the defined versions is required

in a specific context, i.e. has to be used in a given situation. Therefore, it becomes

crucial to consider the contextual dimension of versions in order to characterize the

situations in which these versions have to be used. Indeed, this contextual dimension

is fundamental to help PIS users (i) at design-time, to indicate why a (process) version

is defined –different variables and conditions are specified for the considered

(process) version–, and (ii) at run-time, to instantiate a particular version of a process

according to a concrete situation, i.e. a set of values given to the different variables

specified in the context of the considered process version.

We present below Context-BPMN4V, an extension of BPMN4V considering the

contextual dimension of processes. We first introduce a Context meta-model for

context description in PIS. Then, we present Context-BPMN4V which results from

the merging of this Context meta-model and BPMN4V to model context for (process)

versions. Finally, we illustrate context definition for process versions using the

damage compensation process introduced previously.

4.1 Context Modeling

The Context meta-model given in Fig. 6 below allows the definition of a Context

Model as the aggregation of a set of context parameters. A Context Parameter

corresponds to a variable characterizing a situation, and to which a condition will be

defined. A context parameter has a Context Nature, which can be immediate, internal,

external or environmental, according to the taxonomy given in [28]. This taxonomy is

used to specify the source of each parameter that composes a Context Model. In

addition to this taxonomy, we also consider the type of a Context Parameter, which

refers to the dimension to which it belongs to. Thus, we consider Behavioral

Parameters, i.e. variables related to the behavioral dimension of processes (e.g.

activity execution mode, activity duration), Role Parameters, i.e. variables related to

the organizational dimension of processes (e.g. availability of a resource, experience

of a human performer), and Data Parameters, i.e. variables related to the

informational dimension of processes (e.g. data type, data structure). We finally

consider Goal Parameters, i.e. variables describing objectives to be achieved (e.g.

quality, cost, quantity); such type of context parameters belongs to the intentional

dimension of processes [35,38].

Fig. 6. Context Meta-model

4.2 Extending BPMN4V Meta-Model to Consider Context for (Process)

Versions: The Context-BPMN4V Meta-Model

Context-BPMN4V, visualized in Fig. 7, results from the merging of BPMN4V and

Context meta-models. It defines the necessary concepts for modeling context of

process versions. Of course, context can be defined for each versionable component

of the process; thus, in addition to process versions, contexts can be defined for

versions of activities, sub processes, events, resource roles, resources and

ItemAwareElements.

The proposed meta-model links a process to a context model aggregating a set of

context parameters, corresponding to variables from the different dimensions of the

considered process: goal parameters from the intentional dimension of the process,

behavior parameters from the behavioral dimension of the process, resource

parameters from the organizational dimension of the process, and data parameters

from the informational dimension of the process. Thus, each versionable component

of the process can be linked to one or several context parameters of its corresponding

context model, in order to define conditions on these parameters.

More precisely, goal parameters specify objectives of versionable concepts through

goal conditions. A Goal Condition is a boolean expression defining why a version is

created (cf. section 4.3 for an goal condition example). As indicated before, each

versionable component of a process can be linked to a parameter of its corresponding

context model. As a consequence, a goal parameter, used in the definition of goals of

a versionable component of a process, has to be part of the set of context parameters

that form the context model of this process. In the proposed meta-model, we also use

OCL constraints to define restrictions. We give a textual definition of these

restrictions in Fig. 7.

Regarding behavioral, data and role parameters, we specify conditions, called

Assignment conditions that allow the assignment of versionable components. These

conditions, described as boolean expressions, define for a specific version of process,

the situation in which versions of activities, of events, of resource role and of

ItemAwareElement involved in this process have to be used.

v

v

vv

v

Fig. 7. Context-BPMN4V Meta-model

Context-BPMN4V extends BPMN4V adding three classes used to define

assignment conditions within relationships between BPMN components:

• Context of FlowNode Assignment attached to the relationship between

FlowElementContainer and FlowElement, defines conditions indicating in which

situation a version of activity (or a version of event) has to be used in a version of

process or a version of sub-process.

• In the same vein, Context of Resource Assignment, attached to the relationship

between Version of Activity and Version of ResourceRole, defines conditions

indicating in which situation a version of activity is performed by a version of

ResourceRole.

• Finally, Context of Data Assignment, attached to the relationship between Version

of Activity and InputOutputSpecification, defines conditions indicating in which

situation a version of activity consumes or produces versions of

ItemAwareElement.

Finally, a context parameter used in the definition of an assignment condition must

belong to the set of context parameters that form the context model of the

corresponding process. Constraints CI2, CI3 and CI4 express these restrictions with

respect to Context of FlowNode Assignment, Context of Resource Assignment and

Context of Data Assignment classes.

4.3 Defining Context in the Damage Compensation Process

To better illustrate our proposition, we refer to the damage compensation process

previously presented (cf. section 3.3), and gives the context of each version of this

process. Even if this example is rather simple, it illustrates suitably this context notion

for processes. Table1 below summarizes context parameters involved in the first and

the second version context definition of this process.

Table 1. Context Parameters and Conditions in the Damage Compensation Process

Context

Nature

Parameter/ (Parameter type) Context of the first

version

Context of the second

version

External

Context

NumberofDailyClaims /

 (Goal parameter)
<50 50

Immediate

Context

ClaimFile / (Data parameter) is-a paperData is-a ElectronicData

GridCalculator / (Data

parameter)
is-a paperData is-a ElectronicData

CalculateClaimAmount /

(Behavioral parameter)

is-a ManualActivity is-a ElectronicActivity

CalculateClaimAmountRole

/ (Role parameter)

is-performed-by

Human
is-performed-by ACA

Expertise / (Behavioral

parameter) is-a ManualActivity

The first version of the damage compensation process is defined at the beginning,

i.e. when insurance agency is created: only few clients and thus only few daily claims,

rather simple, to deal with, and only few IT investments. In this process version, the

insurance manager calculates the claim amount using a grid calculator. Parameters

that characterize this situation are the number of daily claims to deal with, the claim

file modeled as a paper data, and the way the claim amount is calculated: manually

from a grid calculator. The second version of the process is defined to face the

increasing number of clients, and thus the increasing number of daily claims to deal

with. The insurance agency invested in IT software: clients no longer fill in claim files

manually but rather declare their claims via the website of the insurance agency, and

specific software is used to calculate claim amounts. In addition, a new role and a new

activity are introduced in the process when specific claim require expertise.

Parameters that characterize this second version of the damage compensation process

are the number of daily claims, the claim file which is modeled as an electronic data,

the presence of the expertise activity, and the way claim amounts are calculated:

automatically using specific software, or manually using grid calculator.
More precisely, NumberofDailyClaims is a goal parameter whose nature is external:

the two conditions NumberofDailyClaims<50 and NumberofDailyClaims>=50 define
the possible values for this parameter in the two versions of the damage compensation
process. ClaimFile and GridCalculator are immediate data parameters. The conditions,
is-a paperData and is-a ElectronicData, define the possible values for these parameters
in the two process versions. Note that ClaimFile and GridCalculator refer to data
handled by the process activities. In the same vein, we refer to existing activities with the
immediate behavioral parameters CalculateClaimAmount and Expertise. Regarding this
latter, it is not involved in the first version of the process but it is a manual activity in the
second version of the process (is-a ManualActivity condition). Regarding
CalculateClaimAmount parameter, two conditions are defined, respectively in the context
of the first and the second process versions: it is a manual activity in the first version (is-a

ManualActivity) while it is an electronic activity in the second version (is-a

ElectronicActivity). Finally, immediate resource parameters are defined for both
CalculateClaimAmount and Expertise activities in order to define how these activities are
performed. Thus, CalculateClaimAmountRole is performed by a human in the first
process version (is-performed-by Human), while it is performed by a software
application in the second process version (is-performed-by ACASoftwareApplication). In
the same way, ExpertiseRole is performed by a human in the second process version.
Note that classical and specific operators are used to specify these conditions (e.g. is-a, is-
performed-by, has-experience) [21]. Fig. 8 below gives an extract of the instantiation of
damage compensation process context.

In this figure, CG1 and CG2 are context goals (i.e. instances of the ContextGoal
class) of the first and the second version of this process (VP1-1 and VP1-2). These goals
are defined using NumberofDailyClaims context parameter and <50 (Gc1) and >=50
(Gc2) goal conditions. In addition, CFA1, CFA2, CDA1, CDA2, CRA1 and CRA2 define
why a version of the calculate claim amount activity is used in the two damage
compensation process versions. Actually, two versions of this activity are created: VA4-1
and VA4-2, each involved in one of the two process versions. VA4-1 holds for the first
version of this process: in this version, CalculateClaimAmount is a ManualActivity,
CalculateClaimAmountRole is performed by Human, and GridCalculator is a
paperData. Regarding VA4-2, it holds for the second version of the damage
compensation process: in this case, CalculateClaimAmount is a ElectronicActivity,
CalculateClaimAmountRole is performed by ACA, and GridCalculator is an
electonicData.

v
v

v

Fig. 8. Extract of the damage compensation process context instantiation

5 Conclusion

This paper has presented Context-BPMN4V, an extended BPMN meta-model to

support context-aware process variability modeling in activity-driven PIS. It results

from the merging of BPMN4V and a Context meta-model. Context-BPMN4V

supports the modeling of adaptive processes using versions. Indeed, versions are a

powerful mechanism to model process variability: (i) they facilitate the migration of

process instances from an initial schema to a final one, allowing cases in which this

migration is impossible and enabling the execution of a same process according to

different schemas, and (ii) they are appropriate to deal with the three types of

adaptation identified in the different typologies of literature: adaptation by design,

adaptation by deviation and adaptation by evolution.

In addition, Context-BPMN4V also considers the contextual dimension of

processes, which rather focuses on the why dimension of a process. This dimension is

considered for each versionable component of Context-BPMN4V: thus, context can

be defined for versions of processes of course, but also for versions of activities, sub-

processes, events, resource roles, and data consumed and produced by activities or

sub-processes. This contextual dimension is fundamental to help PIS users (i) at

design-time, to indicate why a process version is defined (different variables and

conditions are specified for the considered process version), and (ii) at run-time, to

instantiate a particular version of a process according to a concrete situation, i.e. a set

of values given to the different variables specified in the context of the considered

process version.

The advantages of our contribution are the following. First, it extends BPMN

which is a standard notation: it makes our proposition potentially to be used by

process designers. Second, regarding versions, it extends the different contributions of

literature considering the notion of version for both dimensions of processes:

behavioral, organizational, informational, and contextual in order to define in which

situation a given (process) version has to be used.

Our future works will take two directions. First, we will define a language to help

PIS users at run-time, to instantiate a particular version of a process according to a

concrete situation: this language must support the matching between current concrete

situations and contexts defined for process versions. Second, we will implement

Context-BPMN4V in order to provide PIS users with a specific tool for context-aware

and adaptive intra and inter organizational processes. The consequence will be the

introduction of a specific graphical notation for versions and their context.

References

1. Dumas, M., van der Aalst, W., ter Hofstede, A.: Process-Aware Information Systems:

Bridging People and Software through Process Technology. Wiley (2005)

2. Rolland, C.: Fitting System Functionality to Business Needs: Alignment Issues and

Challenges. In: International Conference on Software Methodologies, Tools and

Techniques, Yokohama City, Japan, pp. 137–147 (September 2010)

3. Simonin, J., Nurcan, S., Barrios, J.: Evolution organisationnelle fondée sur la cohérence

des relations entre acteurs avec les buts métier. In: National Conference on Informatique

des Organisations et des Systèmes d’Information et de Décision, Paris, pp. 225–240 (May

2013)

4. Smith, H., Fingar, P.: Business Process Management: the Third Wave. Megan-Kiffer Press

(2003)

5. Reijers, H.: Workflow Flexibility: the Forlon promise International Workshop on Enabling

Technologies: Infrastructure for Collaborative Enterprises, Manchester, United Kingdom,

pp. 271–272 (June 2006)

6. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer

(2007)

7. Chaâbane, M.A., Andonoff, E., Bouaziz, R., Bouzguenda, L.: Versions to Address

Business Process Flexibility Issue. In: Grundspenkis, J., Morzy, T., Vossen, G. (eds.)

ADBIS 2009. LNCS, vol. 5739, pp. 2–14. Springer, Heidelberg (2009)

8. Nurcan, S.: A Survey on the flexibility Requirements related to Business Process and

Modelling Artifacts. In: International Conference on System Sciences, Waikoloa, Big

island, Hawaii, USA, pp. 378–387 (January 2008)

9. Schonenberg, H., Mans, R., Russel, N., Mulyar, N., van der Aalst, W.: Process Flexibility:

a Survey of Contemporary Approaches. In: Dietz, J.L.G., Albani, A., Barjis, J. (eds.)

CIAO! 2008 and EOMAS 2008. LNBIP, vol. 10, pp. 16–30. Springer, Heidelberg (2008)

10. Weber, B., Sadiq, S., Reichert, M.: Beyond Rigidity – Dynamic Process Lifecycle Support:

a Survey on Dynamic Changes in Process-Aware Information Systems. International

Journal on Computer Science, Research and Development 23(2), 47–65 (2009)

11. Andonoff, E., Nurcan, S., Hanachi, C.: Adaptation des processus d’entreprise. In:

Lopisteguy, P., Rieu, D., Roose, P. (eds.) L’adaptation dans tous ses états, ch. 3, Cepadues

(2012)

12. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: a

Service-Oriented Implementation of Dynamic Flexibility in Workflows. In: Meersman, R.,

Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg (2006)

13. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow Evolution. In: Thalheim, B. (ed.) ER

1996. LNCS, vol. 1157, pp. 438–455. Springer, Heidelberg (1996)

14. Kammer, P., Bolcer, G., Taylor, R., Bergman, R.: Techniques for supporting dynamic and

adaptive workflow. International Journal on Computer Supported Cooperative

Work 9(3/4), 269–292 (1999)

15. Kradolfer, M., Geppert, A.: Dynamic workflow schema evolution based on workflow type

versioning and workflow migration. In: International Conference on Cooperative

Information Systems, Edinburgh, Scotland, pp. 104–114 (September 1999)

16. Reichert, M., Rinderle, S., Dadam, P.: ADEPT workflow management system: flexible

support for enterprise-wide business processes. In: van der Aalst, W.M.P., ter Hofstede,

A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 370–379. Springer,

Heidelberg (2003)

17. Lu, R., Sadiq, S.K.: Managing process variants as an information resource. In: Dustdar, S.,

Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 426–431. Springer,

Heidelberg (2006)

18. Zhao, X., Liu, C.: Version Management in the Business Change Context. In: Alonso, G.,

Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 198–213. Springer,

Heidelberg (2007)

19. Lu, R., Sadiq, S., Governatori, G., Yang, X.: Defining adaptation constraints for business

process variants. In: Abramowicz, W. (ed.) BIS 2009. LNBIP, vol. 21, pp. 145–156.

Springer, Heidelberg (2009)

20. Hallerbach, A., Bauer, T., Reichert, M.: Capturing Variability in Business Process Models:

the Provop Approach. Journal of Software Maintenance 22(6-7), 519–546 (2010)

21. Chaâbane, M., Andonoff, E., Bouaziz, R., Bouzguenda, L.: Modélisation

multidimensionnelle des versions de processus. Journal on Ingénierie des Systèmes

d’Information 15(5), 89–114 (2010)

22. Pesic, M., Schonenberg, H., Sidorova, N., van der Aalst, W.: DECLARE: full support for

Loosely-Structured Processes. In: International Conference on Enterprise Distributed

Object Computing, Annapolis, Maryland, USA, pp. 287–300 (October 2007)

23. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-based

workflow models: Change made easy. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.

LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)

24. Müller, D., Reichert, M., Herbst, J.: Data-driven Modeling and Coordination of Large

Process Structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803,

pp. 131–149. Springer, Heidelberg (2007)

25. Müller, D., Reichert, M., Herbst, J.: A New Paradigm for the Enactment and Dynamic

Adaptation of Data-Driven Process Structures. In: Bellahsène, Z., Léonard, M. (eds.)

CAiSE 2008. LNCS, vol. 5074, pp. 48–63. Springer, Heidelberg (2008)

26. van der Aalst, W., Weske, M., Grünbaur, D.: Case Handling: a New Paradigm for Business

Process Support. International Journal on Data Knowledge Engineering 53(2), 129–162

(2005)

27. Bruno, G., Dengler, F., Jennings, B., Khalaf, R., Nurcan, S., Prilla, M., Sarini, M.,

Schmidt, R., Silva, R.: Key challenges for enabling agile BPM with social software.

Journal of Software Maintenance and Evolution: Research and Practice 23(4), 297–326

(2011)

28. Rosemann, M., Recker, J.: Context-aware Process Design Exploring the Extrinsic Drivers

for Process Flexibility. In: CAiSE Conference on Business Process Modeling,

Development and Support, Luxembourg (June 2006)

29. Hallerbach, A., Bauer, T., Reichert, M.: Context-based Configuration of Process

Variants.In: ICEIS Workshop on Technologies for Context-Aware Business Process

Management, Barcelona, Spain (June 2008)

30. Saidani, O., Nurcan, S.: Context-Awareness for Adequate Business Process Modelling. In:

International Conference on Research Challenges in Information Science, Fés, Morocco,

pp. 177–186 (May 2009)

31. Ben Said, I., Chaabane, M., Andonoff, E., Bouaziz, R.: Extending BPMN 2.0 meta-models

for Process Version Modelling. In: International Conference on Enterprise Information

Systems, Lisbon, Portugal (April 2014)

32. Divitini, M., Hanachi, C., Sibertin-Blanc, C.: Inter Organizational Workflows for

Enterprise Coordination. In: Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R. (eds.)

Coordination of Internet Agents, pp. 46–77. Springer (2001)

33. Korherr, B., List, B.: Extending the EPC and the BPMN with Business Process Goals and

Performance Measures. In: International Conference on Enterprise Information Systems,

Funchal, Madeira, Portugal (June 2007)

34. Santos, E., Pimentel, J., Castro, J., Sánchez, J., Pastor, O.: Configuring the variability of

business process models using non-functional requirements. In: Bider, I., Halpin, T.,

Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Ukor, R. (eds.) BPMDS 2010 and

EMMSAD 2010. LNBIP, vol. 50, pp. 274–286. Springer, Heidelberg (2010)

35. Saidani, O., Nurcan, S.: Towards Situational Business Process Modelling. In: CAiSE

Forum, Montpellier, France, pp. 93–96 (June 2008)

36. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On Goal-based Variability

Acquisition and Analysis. In: International Conference on Requirements Engineering,

Minneapolis/St.Paul, Minnesota, USA, pp. 76–85 (September 2006)

37. OMG,. Business Process Model and Notation (BPMN) Version 2.0. OMG Document

Number: formal/2011-01-03 (2011), http://www.omg.org/spec/BPMN/2.0 .

38. Nurcan, S., Edme, M.: Intention Driven Modelling for Flexible Workflow Applications.

International Journal on Software Process: Improvement and Practice 10(4), 363–377

(2005)

