
HAL Id: hal-03263713
https://hal.science/hal-03263713v1

Submitted on 21 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Semantics of States and Transitions in statecharts-based
markup languages: a comparative study between SWC

and SCXML
Marco Winckler, Charly Carrère, Eric Barboni

To cite this version:
Marco Winckler, Charly Carrère, Eric Barboni. Semantics of States and Transitions in statecharts-
based markup languages: a comparative study between SWC and SCXML. 1st Workshop on Engi-
neering Interactive Computer Systems with SCXML (EICS 2014), Jun 2014, Rome, Italy. pp.28–32.
�hal-03263713�

https://hal.science/hal-03263713v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Semantics of States and Transitions in statecharts-based
markup languages: a comparative study between SWC

and SCXML

Marco Winckler, Charly Carrére, Eric Barboni

ICS-Team, Institute of Research in Informatics of Toulouse (IRIT), Univerity Paul Sabatier (UPS)

118 route de Narbonne, 31062 Toulouse Cedex, France

{winckler, carrere, barboni}@irit.fr

ABSTRACT

Statecharts has been demonstrated as a suitable solution for

specifying the navigational behavior of hypermedia

systems. However, in order to cope with the idiosyncrasies

of the Web development (such as representation of client

and server stages) we have been proposed an extension to

the original Harel’s statecharts called StateWebCharts

(SWC). In this paper we discuss the rationale for extending

statecharts notations for specific application domains such

as the Web. Moreover, we illustrate how the domain-

specific constructs provided by SWC might help to solve

problems that would require specific semantics for states

and transitions. Then, we compare the constructs proposed

by the SWC notation with Harel’s statecharts and SCXML.

We argue that it would be possible to convert SWC

specification into SCXML by losing some semantic on

transitions and states. Conversely, extensions for adding

domain-specific semantics on SCXML would benefit not

only its inner utility to specifying Web application but it

could also useful in other application domains.

Author Keywords

Statecharts, Web navigation, Web applications, SCXML,

StateWebCharts, SWC.

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI).

INTRODUCTION

Research on navigation modelling has a long history in

hypertext and hypermedia domain and it has strongly

influenced the technology for the Web. State-based

notations such as Petri nets [7] and StateCharts

[2][4][6][7][9] have been explored to model navigation for

hypertext systems. However, such proposals are not able to

represent some aspects of Web applications such as

dynamic content generation, support to link-types (toward

external states, for instance), client and server-side

execution. However, some of them [2, 7, 12] do not make

explicit the separation between interaction and navigation

aspects in the models while this is a critical aspect for the

usability of Web application. Connallen [1] proposed an

efficient solution for modelling Web applications using

UML stereotypes. Such as an approach mainly target data-

intensive applications and even propose prototyping

environments to increase productivity. However, the

limitation is that navigation is described at a very coarse

grain (for instance navigation between classes of

documents) and it is almost impossible to represent detailed

navigation on instances of these classes or documents. The

same problem appears in Kock [5] which may reduce

creativity at design time as they impose the underlying

technology and as they do not provide efficient abstraction

views of the application under development. In order to

cope with the idiosyncrasies of Web navigation, we have

proposed in previous work [10] an extension to Harel’s

statecharts called StateWebCharts notation (SWC). Such as

a notation dedicated constructs for modelling specificities

of states and transitions in Web applications. Most elements

included in SWC notation aim at providing explicit

feedback about the interaction between users and the

system.

In this paper we discuss the importance of representing

domain-specific semantics that can be associated to states

and transitions whilst using statechart-based markup

languages such as SWC and SCXML [13]. We illustrate

how domain-specific constructs can help to solve problems

that would require specific semantics for states and

transitions for the Web. We assume that the semantics of

states and transitions of SWC might be specific to the Web

domain and not easily generalizable. However, other

application domains have their idiosyncrasies thus require

different semantics for transitions and states. Nonetheless,

we argue that by adding semantics to states and transitions

of SCXML, it would be possible to employ SCXML as a

markup language for copying with the same challenges

addressed by SWC. In the next section we present the SWC

notation and we illustrate its uses. Then we compare the

syntax of construct present in the original Harel’s

statecharts, those proposed by SWC and SCXML markup

languages.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish,to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

EICS 2014 Workshop, Engineering Interactive Systems with SCXML, June

17, 2014, Rome, Italy

Copyright is held by the author/owner(s)

28

THE STATEWEBCHART NOTATION (SWC)

SWC is rooted on Harel’s StateCharts [3] but it adds

semantics to it to address Web domain issues. SWC’ states

are abstractions of containers for objects (graphic or

executable objects). For Web applications such containers

are usually HTML pages. States in SWC are represented

according to their function in the modelling. In a similar

way, a SWC transition explicitly represents the agent

activating it. Each individual Web page is considered a

container for objects and each container is associated to a

state. Links and interactive objects causing transitions are

triggered by events. The semantic for a SWC state is:

current states and their containers are active while non-

currents are hidden. Figure 1 show all SWC elements.

Figure 1. Graphical representation of StateWebCharts.

Static states (Figure 1.a) are the most basic structures to

represent information in SWC. They refer to a container

with a static set of objects; in a static state all objects are

present in the browser. However, those objects are not

necessarily static by themselves; they could have dynamic

behaviour as we usually find, for example, in applets,

JavaScript or animated images. Static is the default type.

Transient states (Figure 1.b) describe a non-deterministic

behaviour in the state machine. Transient states are needed

when a single transition cannot determine the next state for

the state machine. Only completion or system events are

accepted as outgoing transitions of transient states.

Transient states only process instructions and they do not

have a visual representation towards users. They refer to

server-side parts of Web applications, such as PHP scripts.

Dynamic states (Figure 1.c) represent content that is

dynamically generated at runtime. They are usually the

result of a transient state processing. The associated

container of a dynamic state is empty. The semantics for

this state is that in the modelling phase designers are not

able to determine which content (transitions and objects)

will be made available at run time. However, designers can

include static objects and transitions inside dynamic states;

in such case transitions are represented, but the designer

must keep in mind that missing transitions might appear at

run time and change the navigation behaviour.

External states (Figure 1.d) represent information that is

accessible through relationships (transitions) but are not

part of the current design. For example, consider two states

A and B. While creating a transition from A to B, the

content of B is not accessible and cannot be modified. Thus,

B is considered external to the current design, which is

often the case of external sites. External states avoid

representing transitions without a target state, however all

activities (i.e. entry, do, and exit) in external states are null.

SWC’s events indicate the agent triggering them: user (e.g.

a mouse click), system (e.g. a method invocation that

affects the activity in a state) or completion (e.g. execution

of the next activity). A completion event is a fictional event

that is associated to transitions, e.g. change the system state

after a timestamp. This classification of event sources is

propagated to the representation of transitions. Transitions

whose event is triggered by a user are graphically drawn as

continuous arrows (Figure 1.k.) while transitions triggered

by system or completion events are drawn as dashed arrows

(Figure 1.l and Figure 1.m, respectively).

In order to represent behaviour such as those found in

StateCharts, SWC provides the following pseudo-states (g)

shallow history, (h) deep history, (i) end state and (j) initial

state. These pseudo-states do not have any container

associated to them. Pseudo-states and composite state in

SWC are very close of the definition given by StateCharts

(see [10] for details). Both states and transitions can have

associated actions. When associated to transitions, actions

represent what is executed by the system while traversing a

transition. When associated to state, actions represent the

activity performed by the state. All SWC constructs are

stored in a XML format as illustrated at the Figure 2.

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with SWCEditor -->

<swc>

<CompositeState id="root" label="root" file="null"
initial="S1" concurrent="false">

<BasicState id="S1" label="main intro" type="BasicState"
file="spider_intro.html" >

</BasicState>

<BasicState id="S2" label="schedule" type="BasicState"
file="spider_schedule.html">

</BasicState>

...

</CompositeState>

<Transition id="t1" type="user" label="" source="S1"
target="S2" trigger="mouseClick" guard="true" action="">

</Transition>

...

</swc>

Figure 2. XML file describing a SWC model.

29

SWC IN PRACTICE

SWC models can be built using the tool SWCEditor [11]

which supports the creation, edition, visualisation,

simulation and analysis of SWC models. Hereafter we

illustrate how the some elements of the SWC notation have

been operationalized using the SWCEditor to solve

problems associated to navigation modelling of Web

applications.

Separation between client/server states

One of the main features of SWC is the possibility to

associate specific semantics for states and transitions in the

navigation diagrams. Figure 3 illustrates these semantics by

a simple SWC statemachine diagram which models the

navigation behaviour for client/dynamic/transient states and

user/system driven transitions.

Figure 3. Navigation modelling client/dynamic/transient states

and user/system transitions.

As we shall see at Figure 3, states are depicted accordingly

to the semantic given to states. For example, the state “input

form” is a Web page that contains a web form whilst the

page “results” is automatically generated at the client-side

(i.e. the browser) as a response to an execution of a state

that can only be processed on the server side (i.e. “search

database”). User driven transitions, depicted with

continuous lines, are interpreted as users’ clicks whilst

transitions automated by the system (ex. “t2”) are depicted

as dashed lines. Such as inner semantic for states and

transitions can properly mapped to the proper constructs

used to build the Web sites.

Setting boundaries between local and external models

During early evaluation phases of development designers

have to check if abstract modelling will behave as expected.

Simulations of models can be useful for that purpose.

Thanks to the special constructs of SWC it is possible to

associate navigation model with advanced Web prototypes.

Figure 4 presents how SWCEditor allows simulation and

co-execution of SWC models. First of all, let us to focus on

the left part of the figure 4. There are two windows: the

simulator window (at top-left) and the visualization window

(at bottom-left). The window simulator is composed of two

panels showing: the set of active state (grey panel at left)

and the set of enabled transitions at a time (white panel at

right). The visualization window is the main graphic editor

of SWC models (the SWCEditor module).

When an enabled transition is selected the system fires it

immediately causing the changing of the system, which

displays the next stable configuration. The current

statemachine configuration is shown in red. If a container is

associated to a state, it is possible to concurrently display

the corresponding container (typically a Web page) in a

browser during the simulation. The concurrent simulation

of model and implementation is suitable during the

prototyping activity. Thus, designers can follow the

changes in the abstract specification at the SWCEditor as

well as its concrete implementation at the Web browser.

Figure 4 shows in a browser window (at right part) the

corresponding Web page for the current state in that

simulation. Notice that external states are used to represent

external links attached to the current web site design.

Figure 4. Co-execution of navigation models and Web prototypes.

Automated usability inspection of SWC models

One of the advantages of the semantic added to constructs

is to support the reason about models in a certain way. In

previous work [14] we have investigated how to use SWC

models to support guidelines verification in early phases of

development. The basic idea was to map concepts present

in ergonomic guidelines (ex. “page”) to SWC constructs as

show in Figure 5. After that, we have implemented

automated parsers for guidelines such as “Each page must

have a link to it” that inspect SWC models as follows

“Each state must have a transition pointing to it”. Those

tools thus exploit the semantic of models for automatically

inspecting models in

Figure 5. Mapping SWC constructs and Ontological concepts.

COMPARING NOTATIONS

In order to assess the expressiveness power of SWC, we

compare in Table 1 its constructs with those defined by the

original Harel’s statecharts and duly supported by SCXML.

30

Table 1. Comparing constructs in Harel’s statecharts, SCXML and SWC.

Harel’s SCXML SWC

Statemachine

The language start by an <scxml> tag, example:

<scxml>

 <state> … </state>

</scxml>

The language start by an <swc> tag, ex :

<swc>

 <state type="BasicState"> … </state>

</swc>

States
Basic state reference, example:

<state> … </state>

<BasicState> … </BasicState>

Possible types: Basic/Static/TransientState/External

Composite State

Composition defined by inner hierarchy, example:

<state id="S" initial="s1" >

 <state id="s1"> </state>

</state>

--

AND states:

Classic state hierarchy, ex :

<state id="S" initial="s1" >

 <state id="s1"> </state>

</state>

OR states: The <parallel> element encapsulates a set of child states which are simultaneously, ex :

<parallel id="Test5P">

 <state id="Test5PSub1" initial="Test5PSub1Final"> <final id="Test5PSub1Final"/>

 </state>

 <state id="Test5PSub2" initial="Test5PSub2Final"> <final id="Test5PSub2Final"/>

 </state>

 <onexit>

 <log expr="'all parallel states done'"/>

 </onexit>

</parallel>

Dedicate state type, ex :

<CompositeState id="root" label="root" file="null"

initial="S1" concurrent="false">

</CompositeState>

AND states:

<CompositeState id="root" label="root" file="null"

initial="S1" concurrent="false" />

--

OR states:

<CompositeState id="root" label="root" file="null"

initial="S1" concurrent="true"/>

History

Determined by a pseudo-state, ex :

<history type="deep" id="history-actions">

</history>

Determined by a pseudo-state, ex :

<CompositeState id=”root” …>

 <DeepHistory id=”S1” />

 <ShallowHistory id=”S2” />

</CompositeState>

Final states
Determined by a pseudo-element, ex :

<final id="Test5PSub1Final"/>

Determined by a pseudo-element, ex :

<EndState id=”S1” />

Variables

<datamodel> is a wrapper element which encapsulates any number of <data> elements, ex :

 <datamodel>

 <data id="door_closed" expr="true"/>

 </datamodel>

<script> time.setHours(_event.data.currentHour + (_event.isAm ? 0 : 12) - 1); </script>

The name and value are in the parameter

declaration, ex :

<parameters>

 <parameter name="param1" value="0" />

</parameters>

Conditions

The conditions are defined using multiple tags, ex :

<if cond="true">

 <foreach array="cart.books" item="book">

 <log expr="'Cart contains book with ISBN ' + book.isbn"/>

 </foreach>

 <elseif cond="false"/>

 <log expr="You can't use it"/>

 </else>

 <log expr="Error boolean"/>

</if>

Condition in transition definition, ex :

<Transition id="t1" type="user" label="" source="S1"

target="S2" trigger="mouseClick" guard="true"

action="" />

Action

<state id="s1" initial="s11">

 <onexit> <log expr="'leaving s1'"/> </onexit>

 <onentry> <log expr="'entering S'"/> <onentry>

</state>

Action defined in the Transition definition, ex :

<Transition id="t1" type="user" label=""

source="S1" target="S2" trigger="mouseClick"

guard="true" action="methodCall()" />

Transition

<transition event="ping" target="takeOrder"/> <Transition id="t2" type="user" label="" source="S1"

target="S3" trigger="mouseClick" guard="true"

action=""> </Transition>

External

communication

<invoke id="timer" type="x-clock" src="clock.pl">

 <finalize>

 <script> time.setHours(_event.data.currentHour + (_event.isAm ? 0 : 12) - 1); </script>

 </finalize>

 </invoke>

<send target="csta://csta-server.example.com/" type="x-csta">

 <content>

 <csta:MakeCall>

 <csta:callingDevice>22343</callingDevice>

 <csta:calledDirectoryNumber>18005551212</csta:calledDirectoryNumber>

 </csta:MakeCall>

 </content>

</send>

31

As we shall see in Table 1, SWC and SCXML cover most

of the original elements proposed by Harel’s statecharts.

Nonetheless, a few elements differ with respect to the inner

Document Type Definition (DTD) they implement. Indeed,

whilst SWC features a specific tag, SCXML implicitly

represent for composite states by adding sub-states inside

the tags. In addition, actions in SCXLM are represented by

dedicated tags whilst SWC embedded them as expressions

associated to attributes elements in the tag transition. Some

tags have different names for addressing the same element,

ex. final and endstate for indicating end pseudostates. Most

of these differences are syntactic and can be easily

overcome by a few transformation rules ensuring the

compatibility between notations.

However, SWC does not take into account complex

external communication mechanisms. Further investigate

would be required to determine in which extension

communication mechanisms could correspond to dynamic

states in SWC. In all cases, all these difference worth to be

carefully discussed, and would require extension in both

notations if compatibility should be assured.

Lastly but not less important, a significant difference

between SWC and SXCML is that the latter one provides a

generic representation of states and transitions without any

domain-specific semantics, whilst the former clearly

features a semantics for navigation of Web application.

Indeed, SWC offers four alternative types which specific

semantics for basic states, whilst SCXML only provides

one type of state. This is observable by the attribute type

that can be associated to states and transitions. Moreover,

SWC also provides another attribute to states that allows

the mapping to contents, namely file.

CONCLUSION

SWC and SCXML are both based on Harel’s statecharts

and therefore share many similarities. In some extensions,

models built in one notation could be translated to another,

however, the compatibility is not 100% accurate and we

would lose semantic and functionality in this operation.

Further studies are required to determine the compatibility

level and the side-effect implications of converting models.

But still, we estimate that some level of compatibility

ensured by model-transformation is possible.

However, if we consider the Web as a suitable application

domain for SCXML we might argue that this notation lacks

of some attributes to express the rich semantic of

navigation. This lack of semantics of states and transitions

would prevent the reasoning about the application and the

development of dedicated tools as illustrated by the

research around SWC. Moreover, we assume that this lack

of semantics might not be specific to Web navigation

models and other researchers would be interested in

proposing other elements.

The proliferation of DLS might not be a definite solution

for similar problems in different application domains. For

that purpose, as standard language such as SCXML would

be ideal as a lingua franca between statechart-based DSL

like SWC. We argue that the level of semantic expected for

state and transitions in SCXML could be easily solved by a

couple of attributes that could be added to markup

language. If so, we could pursue the research about

navigation modeling using SCXML as a replacement to

SWC and still achieve similar results as those previous

illustrated in this paper.

REFERENCES

1.Connallen, J. Building Web Applications with UML.

Addison-Wesley, 1999.

2.Dimuro, G. P.; Costa, A. C. R. Towards an automata-

based navigation model for the specification of Web sites.

In: 5th Workshop on Formal Methods, Gramado, 2002.

Electronic Notes in Theoretical Computer Science.

3.Harel, D. StateCharts: a visual formalism for computer

system. Science of Computer Programming, 8, N. 3:231-

271 p., 1987.

4.Horrocks, I. Constructing the User Interface with

Statecharts. Addison-Wesley, 1999.

5.Koch, N.; Kraus, A. The expressive Power of UML-based

Web Engineering. In 2nd Int. Workshop on Web-oriented

Software Technology (IWWOST02). June 2002.

6.Leung, K., Hui, L., Yiu, S., Tang, R. Modelling Web

Navigation by StateCharts. In proc. 24th Inter. C.S.A.,

2000, Electronic Edition (IEEE Computer Society).
7.Oliveira, M.C.F. de; Turine, M. A. S.; Masiero, P.C. A

Statechart-Based Model for Modeling Hypermedia
Applications. ACM TOIS. April 2001.

8.Stotts, P. D.; Furuta, R. Petri-net-based hypertext:
document structure with browsing semantics. ACM
Trans. on Inf. Syst. 7, 1 (Jan. 1989), Pages 3 - 29.

9.Turine, M. A. S.; Oliveira, M. C. F.; Masieiro, P. C. A

navigation-oriented hypertext model based on statecharts.

In Proc. 8th ACM Hypertext. 1997, Southampton, UK.

10.Winckler, M.; Palanque, P. StateWebCharts: a Formal

Description Technique Dedicated to Navigation

Modelling of Web Applications. DSVIS'2003, Portugal,

June 2003.

11.Winckler, M.; Barboni, E.; Farenc, C.; Palanque, P.

SWCEditor: a Model-Based Tool for Interactive

Modelling of Web Navigation. International Conference

on Computer-Aided Design of User Interface -

CADUI'2004, Funchal, Portugal, 13-16 January 2004.

12.Zheng, Y.; Pong, M. C. 1992. Using statecharts to model

hypertext. In Proc.of the ACM Conference ECHT'92,

Milan, Italy. ACM Press, New York, NY, 242-250.

13.State Chart XML (SCXML): State Machine Notation for

Control Abstraction. W3C Candidate Recommendation

13 March 2014. At: http://www.w3.org/TR/scxml/

14.Xiong, J., Farenc, C., Winckler, M. Towards an

Ontology-based Approach for Dealing with Web

Guidelines. In Proc. Int. Workshop on Web Usability and

Accessibility. Auckland, New Zealand, September 1-4,

2008. Springer LNCS 5176, pages 132-141.

32

