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1.  Introduction
The Mediterranean is a miniature ocean where most of the processes documented in the global ocean are 
encountered (Lejeusne et al., 2010). Indeed, important global features are present in it, but on smaller spa-
tial and temporal scales (Bethoux et al., 1999) such as the thermohaline circulation forced by dense water 
formation in winter. In addition, several features of the Mediterranean make it a hotspot of marine biodi-
versity (Coll et al., 2010) and potentially vulnerable to climate change.

At regional scale, the Mediterranean Sea plays a role of sentinel with regard to global warming since it is 
very sensitive to climate change (Giorgi, 2006). Indeed, the Mediterranean Sea was one of the first ocean 
places where a warming trend was observed in the deep-water temperatures in the western basin and attrib-
uted to global warming (Bethoux et al., 1990). The Mediterranean Sea Surface Temperature (SST) has expe-
rienced an intensive and continuous warming since the mid-1980s, which is expected to increase through-
out the 21st century under present climate scenarios (Somot et al., 2008). Several studies have shown an 
increase of the mean Mediterranean SST in the last three decades. Based on the 4 km Advanced Very High 
Resolution Radiometer (AVHRR) Pathfinder SST data set, Nykjaer (2009) estimated a mean warming trend 
of 0.03 ± 0.008°C/year in the western Mediterranean Sea and 0.05 ± 0.009°C/year in the eastern basin from 
1985 to 2006. Similar results were found by (López García & Camarasa, 2011) from 1985 to 2007. Based on 
Reynolds' SST reanalysis (Reynolds et al., 2007), Shaltout and Omstedt (2014) found a mean warming trend 
of 0.035 ± 0.007°C/year during a 31-year period (1982–2012) over the Mediterranean Sea. And recently, 

Abstract  We revisited the partitioning of the Mediterranean Sea into bioregions by processing 
satellite Sea Surface Temperature (SST) and Chlorophyll-a concentration (Chla) from ocean color 
observations combined with Argo mixed-layer depth for a period ranging from 2003 up to 2020. This 
regionalization was performed using an innovative classification based on self-organizing maps, the so-
called 2S-SOM. We clustered the Mediterranean Sea waters into seven bioregions governed by specific 
physical and biogeochemical characteristics. We studied the interannual variability of these bioregions 
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is increasing. The bioregion trends could be related to global warming. The whole Mediterranean Sea is 
shifting to an eastern Mediterranean state.

Plain Language Summary  The Mediterranean is a miniature ocean where most of the 
processes documented in the global ocean are encountered. At a regional scale, the Mediterranean Sea 
plays a role of sentinel with regards to global warming. Indeed, the Mediterranean Sea has shown a 
warming trend throughout several studies, but the primary production seems to be stable. In this study, 
we propose a new decomposition of the surface Mediterranean waters into bioregions based on a neural 
network classifier applied to satellite and Argo-float observations. The resultant bioregionalization 
shows a significant interannual variability and trends that coincide with the warming of the basin. Using 
satellite estimates of Phytoplankton groups, show significant changes in the phytoplankton community 
composition in every bioregion throughout the 18 years studied period. The bioregion trends could be 
related to global warming.
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Pisano et al. (2020) highlighted a mean warming trend of 0.041 ± 0.006°C/year over the whole Mediterra-
nean Sea from 1982 to 2018.

The increase of the Mediterranean SST modifies its vertical stratification and consequently the exchanges 
between the surface and the deeper layers. This incited us to study the surface warming impact on the phy-
toplankton and particularly on its distribution according to bioregions. It is therefore important to charac-
terize the state of the Mediterranean Sea with robust estimators and then to study its long-term evolution. 
In this study, we address this problematic by introducing a new bioregionalization of the Mediterranean Sea 
based on neural network methods.

Regionalization is defined by specific physical conditions, chemical properties, and biological communities, 
which are homogeneous in each region we have defined. Since the 1990s, satellite remote sensing of phy-
toplankton chlorophyll-a (Chla) has made it possible to describe the dynamics of the phytoplankton and to 
delimit provinces at basin and global scales (Longhurst et al., 1995).

Longhurst (1998) described the Mediterranean as a specific region, without proposing sub-regions within 
the basin, despite its heterogeneity. Since then the regionalization of the Mediterranean has been the subject 
of many studies. Spalding et al. (2007) described the Mediterranean as a temperate province belonging to 
the North Atlantic domain. It has been subdivided into seven eco-regions: The Adriatic Sea, the Aegean Sea, 
the Levantine Basin, the Tunisian Plateau/Gulf of Sidra, the Ionian Sea, the Western Mediterranean, and 
the Alboran Sea. D'Ortenzio and Ribera d'Alcalà (2008) and Mayot et al. (2016) considered the phenology 
of phytoplankton; Nieblas et al. (2014) and Reygondeau et al. (2017) dealt with geochemical variables, such 
as temperature, salinity and nutrient concentration; Berline et al. (2014), Nieblas et al. (2014), and Rossi 
et al. (2014) considered the hydrodynamic properties of the basin's surface waters; Reygondeau et al. (2014) 
exploited the biological composition given by a modeling of marine species habitats in the basin.

The study of Reyngondeau et al. (2017) confirms that classical variables, such as SST, Chla, and mixed-layer 
depth (MLD) well describe the west-east gradient of the Mediterranean Sea and allow a coherent partition-
ing of surface waters. D'Ortenzio et al. (2020) extended the work of D'Ortenzio and Ribera d'Alcalà (2008) 
by incorporating observations of biogeochemical Argo floats to ocean color satellite observations. They 
found that the Argo floats observations are in good agreement with the partition in five bioregions done by 
D'Ortenzio and Ribera d'Alcalà (2008).

All these regionalization studies are issued from multivariate analysis of ocean data such as k-means analy-
sis or Hierarchical Ascending Clustering (HAC). These methods have been shown to be efficient in defining 
coherent data patterns that can be related to the main oceanic features (D'Ortenzio & Ribera d'Alcalà, 2009; 
Foukal & Thomas, 2014; Yoder & Kennelly, 2003). Each method has its own drawbacks: The k-means al-
gorithm must determine an a priori number of clusters (for computational efficiency this number must be 
limited), the HAC has difficulties when the number of patterns under study is too large. The Self-Organiz-
ing Maps (SOMs; Kohonen, 2013) is a useful alternative method which can be considered as an extension of 
the k-means; as an example in Basterretxea et al. (2018) the Mediterranean sea was clustered into bioregions 
using Chla satellite data and the SOM algorithm.

In this study, we used a modified Self-Organizing method, called 2S-SOM to provide a robust decomposition 
of the Mediterranean into bioregions using a well-documented set of variables (SST and Chla given by the 
satellite observations of MODIS Aqua; MLD from Argo floats in situ observations). The 2S-SOM has been 
proposed by Yala et al. (2020) to retrieve phytoplankton pigment concentration from ocean color satellite 
data. The 2S-SOM algorithm differs from the classical SOM algorithm by introducing, during the learning 
phase, a system of weights acting on the most sensitive variables. The use of this type of algorithm offers the 
advantage of taking the existing relationships between the variables into account, to consider the non-linear 
relationships among the variables at regional scale and to provide the weights associated with the variables 
during the learning phase according to their geographical location in the Mediterranean Sea. Once the re-
gionalization via 2S-SOM is made, it is possible to evaluate the interannual variability and calculate trends 
during the study period from 2003 till 2020.

The study is articulated as follows: In Section 2, we present the data we used (in situ and remote sensing 
observations). The principle of the clustering method (2S-SOM) is given in Section 3. The statistical results 
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of the method are presented in Section 4. In Section 5, we analyze the different bioregions. In Section 6, 
we study the interannual variability and the trends of the bioregions. Interannual variabilities and trends 
of phytoplankton composition in the Mediterranean Bioregions are discussed in Section 7. A conclusion is 
presented in Section 8.

2.  Databases
In the following, we present the satellite and in situ measurements we processed.

2.1.  Satellite Data

Chla and SST are based on the MODIS-Aqua averaged products over an 18-year period (2003–2020). This 
monthly climatology data was downloaded from the ocean color portal (oceancolor.gsfc.nasa.gov), with 
a resolution of 4 km. By default, these variables were calculated by specific algorithms described in the 
following.

2.1.1.  Chlorophyll-a

Chla is calculated by an empirical relationship derived from in situ Chla measurements and marine reflec-
tance (Rrs) in the blue-green region of the visible spectrum. The current implementation of the Chla algo-
rithm uses the default OC3M algorithm for the MODIS sensor (Campbell & Feng, 2005), merged with the CI 
algorithm (color index of Hu et al., 2012). The use of such an algorithm is restricted to relatively clear water, 
and its contribution is to reduce artefacts and bias in the estimation of Chla in these waters (Hu et al., 2012).

The Chla concentration is estimated with the CI algorithm for concentrations less than 0.15 mg m−3; for 
concentrations greater than 0.2 mg m−3, the OC3M algorithm is used. Between these two values, the CI and 
OC3M algorithms are merged by weighted averages.

2.1.2.  Sea Surface Temperature

The algorithm used for calculating the SST is based on a modified version of the (Walton et al., 1998) algo-
rithm, most recently described in Kilpatrick et al. (2015). The use of this algorithm provides product conti-
nuity between NASA's current and future infra-red sensors and heritage Pathfinder SST from AVHRRs, thus 
enabling the generation of a 30+ year record of space-based measurements of SST from satellites.

2.2.  Mixed-Layer Depth Climatology Data

The Mediterranean monthly MLD climatology data was extracted from the global monthly MLD climatol-
ogy data (Holte et al., 2017; http://mixedlayer.ucsd.edu/) which consists of 1.5M Argo temperature profile 
measurements made between January 2000 and April 2018 and processed using a method described by 
Holte and Talley (2009) in order to obtain the MLD. The monthly MLD climatology is then determined by 
clustering the MLD values into 1° × 1° boxes and averaging for each month over the 18 years.

2.3.  Learning Database, D

The study area is delineated by the following geographic coordinates: 46.5°N, 30°N, and 7.5°W, 36°E. To 
each ocean pixel of this zone corresponds 12-monthly values of Chla, SST, and MLD averaged over the du-
ration of the study period (2003–2020).

The MLD is averaged in boxes of (1° × 1°) which is a limitation to a fine study of the Mediterranean Sea; a 
monthly image of MLD on the Mediterranean is composed of 56 × 17 = 952 boxes, while that of Chla or SST 
is 1,081 × 397 = 429,157 pixels. Each MLD box is therefore associated with Chla and SST values averaged 
on the MLD boxes.

Therefore, the final database (D) gathers the three variables (Chla, SST, and MLD) in boxes of 1° × 1° cover-
ing the Mediterranean Sea and averaged at a monthly rate. It consists of a matrix of dimension 952 × (12 × 3) 
where each line (among the 952) corresponds to a box of the studied region, and the 36 columns are the 
variables; that is, 12-monthly climatology of Chla, SST, and MLD.
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The monthly climatology of these three variables (SST, Chla, and MLD) constitutes the signature of the 
physical and biochemical processes which characterize oceanic regions having well defined specificities. 
The classification presented in this study tackles this problem by using a specific topological map: The 
2S-SOM. Indeed, D consists of three blocks of variables, each one being the signature of specific phenome-
na. The learning phase of 2S-SOM allows the determination of the weights that spatially modify the impor-
tance of each block in the classification.

3.  Methodology
3.1.  The Bioregionalization Procedure

We used the 2S-SOM algorithm (Outtara, 2014; Yala et al., 2020), which is a modified version of the SOMs 
(Kohonen, 2013). The SOMs are unsupervised neural network classifiers, which have been commonly used 
to solve environmental problems (El Hourany, Abboud-Abi Saab, Faour, Aumont, et al., 2019; El Hourany, 
Abboud-Abi Saab, Faour, Mejia, et al., 2019; Jouini et al., 2013, 2016; Liu & Weisberg, 2005; Liu et al., 2006; 
Niang et al., 2003, 2006; Richardson et al., 2003). The SOM is structured in two layers. The first layer, which 
is the input layer, receives the vectors N

iz    of the multivariate data set D we want to cluster. The second 
layer is a rectangular neural grid with m neurons. Each neuron c is associated with a reference vector wc 
characterizing a subset of D that gathers data having common statistical characteristics (usually not line-
ar). The objective of the SOM is hence to compress the information contained in the multivariate set D by 
producing a small number m of reference vectors wc, which are statistically representative of D. Each data 
is not too different of its nearest referent according to a distance (The Euclidean distance for the basic SOM 
algorithm). The number of neurons determines the granularity of the mapping, which in turn is respon-
sible for the accuracy and the SOM map's generalization capabilities. A fundamental property of a SOM is 
the topological ordering provided at the end of the clustering phase: Close neurons on the map represent 
data that are close in the data space. The estimation of the referent vectors wc of a SOM and the topological 
order is achieved through an iterative learning process consisting in minimizing a specific nonlinear cost 
function as in the K-Means algorithm. The number of neurons is determined empirically from solutions of 
similar problems and then adjusted, as described in Badran et al. (2005). The number of referents, that is 
the number of neurons, does not really matter because this number will be reduced into a small number of 
classes by using the HAC; we denote SOM + HAC this procedure.

When dealing with environmental data, the exact number of classes at the end of the SOM + HAC pro-
cedure is not known a priori. This number is determined at the end of the study by looking at the HAC 
dendrogram, which suggests several possibilities for the number of classes to estimate. When the SOM (or 
the 2S-SOM) is used for vector quantization, the number of neurons is large, and each neuron is dedicated 
to a small geographic area. A compromise between the number of classes that can be explained from a 
physical point of view and the number needed to include the information embedded in the data set is made. 
This procedure has been used with success in several papers (Farikou et al., 2015; Jouini et al., 2016; Niang 
et al., 2003; Sawadogo et al., 2009).

In the present study, we used the 2S-SOM + HAC procedure which consists in substituting the SOM with 
another more power-full Self-Organizing algorithm, the 2S-SOM, which is designed to take variables of 
different nature into account. In what follows, we used a simplified version of the 2S-SOM in which the var-
iables are gathered in blocks of environmental variables having specific attributions. Indeed, the underlying 
assumption is that different geophysical phenomena appear depending on the geographic location. Conse-
quently, the importance of an environmental variable varies from one location to another. In the 2S-SOM, 
the neurons collect data so that the relative influence of each environmental variable is considered through 
a set of weights. The block weighting facilitates the clustering procedure by considering the most relevant 
environmental variables for each cluster (or neuron). The different weights are estimated during the learn-
ing phase by minimizing a cost function similar to this used in the SOM estimation where, in addition to 
the classical cost, the entropy of each cluster is minimized (a complete presentation of the 2S-SOM can be 
found in Yala et al., 2020). We note that the weight attributed to every block of variable varies from one neu-
ron c to another. The 2S-SOM can deal with a large quantity of variables and consequently of phenomena 
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embedded in these variables, choosing those that are the most significant for a given cluster and neutraliz-
ing those which are the least significant.

3.2.  Implementation of the 2S-SOM

The learning database D is constituted of 952 boxes representing the Mediterranean Sea, each box being 
characterized by a vector zi composed of the 12-monthly climatology of Chla, SST, and MLD, respectively, 
computed over the studied period. Each vector zi is divided in three homogeneous blocks corresponding to 
the three climatology of the environmental variables we classify. The block weighting facilitates this clas-
sification by considering the most pertinent environmental block of variables on each cluster (or neuron). 
During the learning phase, the 2S-SOM takes advantage of the structuring of D into blocks and allows to 
distinguish the different influence of each climatology variable for each neuron corresponding to a specific 
geographical location. The 12 Chla monthly climatology values are log10 transformed, to better take the 
variability of low Chla values with respect to the high ones into account. The variables are then normalized 
by their variances, which homogenizes the range of variability of the different variables, and consequently 
facilitates the learning of the 2S-SOM.

We followed the algorithm implementation described in Ouattara (2014) and Yala et al. (2020); we trained 
80 different 2S-SOM rectangular maps of size 10 × 5 and chose the one that minimizes the within-group 
variance at best.

We partitioned the variables in three blocks, one comprising the 12 Chla monthly values, the second one, 
the 12 SST monthly values, and the third one, the 12 MLD monthly values. This block partition permits a 
better determination of the influence of each environmental block of variables (j) on the classification with 
respect to the geographical location. For each neuron c, the weights αjc (j = 1, 2, 3, c = 1, 2, …, 50) attributed 
to each block of variables are determined during the learning phase (Yala et al., 2020). We note that the 
values of αjc vary between 0 and 1 by construction and that  3

1 1j jc . The αjc allow to consider the per-
centage of importance of each variable in the constitution of the boxes assigned to a given neuron.

4.  Results
4.1.  Analysis of the 2S-SOM-Med

As mentioned above, the referent vectors wc are statistically representative of the data set D. Figure 1 shows 
the components of the referent vectors associated with the neurons of the 2S-SOM for January, April, July, 
and October. The neurons are well organized. Each month evidences different gradients of Chla, SST, and 
MLD. Chla maxima are reached in January for the lower half of the 2S-SOM map and in April for the sec-
ond upper half. Second, the SST shows a positive gradient from top to bottom of the neural map. All neurons 
recorded a maximum of SST in summer (represented by July in Figure 1) and this with a heterogeneous 
intensity reflecting a certain geographical regionalization of the data. The MLD presents a positive gradient 
from right to left with all neuron reaching their maximum of MLD in January. By analyzing the different 
arrangements of the variables in the 2S-SOM, relationships can be highlighted qualitatively; in winter, the 
MLD reaches maximum values that coincide with the high values of Chla and low SST; whilst in summer, 
the high values of SST coincide with low values of MLD and Chla.

4.2.  Block Weight Analysis

Figure 2 shows the different weights αjc assigned to the blocks of variables for every neuron of the 2S-SOM-
Med map. For a given neuron, the sum of its weights (one for each block) is equal to 1. Note that, at the end 
of the training, the weights were distributed heterogeneously on the 2S-SOM-Med. Neurons attributed with 
a weight close to 1 for a given variable, represent geographical areas where this variable is highly significant 
for the classification.
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At the end of this first analysis, we applied a HAC algorithm (Jain & Dubes, 1988) to regroup the neurons 
into a smaller number of classes which can be easily interpreted in terms of biogeochemical and physical 
processes. On the other hand, the assignation of neurons to a smaller number of classes allows to further 
analyze the αjc weights distribution for each class.

4.3.  Classification of Neurons

The HAC algorithm clustered the 2S-SOM-Med neurons into seven well separated classes (Figure 3). This 
number of classes was selected by choosing the most significant discriminative partition with respect to 

the full dendrogram of the HAC. The classification of the neurons of the 
2S-SOM map and the representation of the block weight distribution as-
sociated with these neurons (one weight for each neuron) in each class 
are shown in Figure 2, respectively. The seven classes are well delineated, 
highlighting the good organization of the 2S-SOM-Med. More precisely, 
we can describe the different classes using the mean weight (see Table 1) 
estimated during learning in the following manner:

�–	� Class 1 is characterized by important weights on MLD and SST, Chla 
playing an insignificant role

�–	� Class 2 is characterized by strong MLD weights
�–	� Classes 3 and 4 are characterized by strong SST weights
�–	� Classes 6 and 7 are characterized by high Chla weights
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Figure 1.  Values of Chla, SST, MLD inscribed by the 2S-SOM map for four months, showing the seasonal variation of the variables. The scale for the MLD 
varies according to the season. Chla, chlorophyll-a; MLD, mixed-layer depth; SOM, Self-Organizing Map; SST, Sea Surface Temperature.

Figure 2.  Weights α of the neurons represented on the 2S-SOM-Med map. 
SOM, Self-Organizing Map.
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4.4.  Analysis of the Monthly Climatology of the Three Variables 
in the Different Classes

Figure 4 shows the geographic location of the 7 classes and Table 2 pre-
sentes the surface occupation of each bioregion calculated in number of 
pixels, Area (km2) and percentage compared to the whole Med. The boxes 
belonging to a class are geographically contiguous. The 2S-SOM + HAC 
algorithm defines homogeneous regions whose characteristics mainly 
vary along the west-east axis of the Mediterranean Sea.

Except for class 7, the variables are well correlated inside every class in 
agreement with the homogeneity of the classes. The Spearman correlation 
was estimated for the three possible pairs of variables (Chla/SST, Chla/
MLD, and SST/MLD) within each class and for the whole Mediterrane-
an Sea (denoted whole Med in the following). Table 3 shows that the de-
composition of the Mediterranean Sea in regions impacts the correlations. 
The three correlation module values are significantly higher for the pairs 
of variables in the C1…C6 regions than those for the whole Med. This is 
mainly because of the small correlation modules of C7. We note that the 
Chla/MLD correlation module, which is quite small for the whole Med, is 
significant for the regions C1 to C6 in agreement with the Chla/SST and 

SST/MLD high correlation values. C7, which is an atypical region, shows smaller correlations than those 
for the whole Med. This is due to the large diversity of the waters forming C7, which include waters flowing 
along the coast, influenced by the discharge of rivers (Nile, Po, and Rhone rivers) on the one hand (El Houra-
ny et al., 2017; Lavender et al., 2009; McCall, 2008), shallow waters of the Gulf of Tunisia and in the Northern 
part of the Adriatic Sea, which are polluted by resuspended materials coming from the bottom on the other 
hand (Armi et al., 2010; Ferrara & Maserti, 1992; Raicich, 1996; Salem et al., 2015; Wang et al., 2007). This 
large diversity of variables affecting the quality of C7 waters leads to an important variability of Chla concen-
tration which can explain the small correlation between Chla/SST and Chla/MLD (El Hourany et al., 2017).

We then analyzed the monthly climatological cycles corresponding to each class with respect to the three 
variables for the 18-year period. Figure 5 shows the climatological cycles and the associated box plots com-
puted from the climatological cycle of the different geographical boxes constituting each class. In the last 
column, we illustrated the monthly climatology of Chla, SST, and MLD for the whole Med. We note a well-
marked seasonal variability. We performed statistical tests to determine whether the climatological cycles 
of the seven classes are different from this of the whole Med. We compared the climatological cycle of each 
variable within each class to the corresponding climatological cycle of the whole Med by using ANOVA tests 
with confidence limits of 1% and 5%. In Figure 5, for each variable (Chla, SST, and MLD), the stars denote 

the classes for which a climatological cycle presents a significant difference from that 
of the whole Med. The arrow above each box plot denotes, for each month, a signifi-
cant difference with respect to the same month of the whole Med (red arrow stands for 
a confidence limit <1% and dark arrow for a confidence limit <5%).

5.  Physical Analysis of the Seven Bioregions
The 2S-SOM algorithm provided a classification which is pertinent since the boxes be-
longing to a class are geographically contiguous and define homogeneous and non-pix-
elated regions. The MLD, SST, and Chla associated with a class have coherent annual 
cycles (Figure 5).

The Mediterranean Sea presents a well-marked seasonal cycle. SST is minimum in 
Winter (February, March) and maximum in summer (August, September) whilst 
Chla and MLD are minimum in summer and maximum winter. Except for class 7, 
which is atypical, Chla and MLD are anti-correlated with SST (see Table 3) which is 
a consequence of convection in the surface layers in winter (Somot et al., 2018). The 
dissimilarities between the classes can be explained by physical factors and air sea 
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Figure 3.  Representation of the 7 classes on the 2S-SOM-Med map. SOM, 
Self-Organizing Map.

The gray color highlights which parameter, among Chla, 
SST and MLD, contributed the most to the delimitation 
of the cluster (C1…C7).
Abbreviations: Chla, chlorophyll-a; MLD, mixed-layer 
depth; SST, Sea Surface Temperature.

Table 1 
Average α Weights with Respect to Classes and Variables
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exchange forcing: The most significant difference with the whole Med behavior is encountered for C3 (Lig-
uro-Provençal basin and adjacent Balearic Sea) where the cycles of the three variables differ from those of 
the whole Med. In C3, Chla increases sharply in February–April, following a winter period of deep MLD 
and low SST resulting from deep winter convection which enriches the surface layers with nutrients.

C5 (respectively C6) occupies the largest surface of the western (eastern) Mediterranean Sea. C5 has a low-
er SST and a higher Chla concentration than those of C6. The western basin is strongly influenced by the 
fresh and warm Atlantic waters which inflow through the strait of Gibraltar. C6 occupies the eastern basin 
which is very warm with respect to the other classes and consequently oligotrophic (Tsiola et al., 2016) with 
a strong summer stratification and a shallow MLD. The cyclonic Rhodes gyre, which is located between 
Crete and Cyprus, is characterized by an intense winter convection with Ligurian Intermediate Water (LIW) 
formation that fills the intermediate depths of the eastern basin. This convection generates a cooling of 
the surface waters and an enrichment in nutrients, which causes an increased phytoplankton production, 
explaining why the Rhodes gyre belongs to C5 rather than C6.

C2 is present in several regions which are geographically disconnected: In the Alboran Sea, along the southern 
Spanish coast, then along the Moroccan, Algerian and Tunisian coasts advected by the Algerian current. C2 is 
also encountered in the central Adriatic flowing towards the Ionian Sea and in the northern Tyrrhenian Sea off 
the coasts of Italy and France. We also note the presence of C2 waters in the northern part of the Aegean Sea.

C7 includes coastal areas, such as those encountered along the east coast (Adriatic) and west of Italy 
(Tyrrhenian), part of the coast of the Gulf of Lion, and the coasts of Egypt and Lebanon. C7 waters are 

strongly influenced by river discharge, notably from the river Rhône and 
the Ebro (Syvitski & Saito, 2007), the Nile (Shata & El Fayoumy, 1970), 
and by human activities. C7 waters are also found in shallow areas where 
the tide is intense and re-suspends sediments (the Gulf of Gabes, the 
northern Adriatic Sea, and the Sea of Marmara). The SST seasonal cycle 
has a high amplitude, the minimum being about 10°C in February and 
the maximum 25°C, in August. The MLD is shallow in summer and can 
reach important values during winter due to mixing. One observes a large 
number of outliers for the three variables. This class is characterized by 
high Chla concentration reaching up to 2 mg m−3 during winter-spring 
and presenting low values during summer.

C1 is similar to the mean behavior of the whole Med; it regroups are-
as with low Chla concentration and a pronounced SST seasonal cycle. 
The MLD presents a seasonal cycle characterized by important values up 
to several hundred meters in January, February, and March, and is very 
shallow in August and to September. C1 waters are mainly found in the 
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Figure 4.  Geographic location of the 7 classes following 2S-SOM and HAC classification. HAC, Hierarchical 
Ascending Clustering; SOM, Self-Organizing Map.

#Pixels Area (*10−3 km2) Percentage of the whole Med

C1 6,166 98.65 4.01

C2 18,052 288.83 11.73

C3 10,020 160.32 6.51

C4 1,925 30.8 -

C5 53,632 858.11 34.84

C6 56,204 899.26 36.51

C7 9,852 157.63 6.40

Since C4 represents Atlantic Waters, this bioregion was neglected in the 
calculations of the percentages.

Table 2 
Surface Occupation of Each Bioregion Calculated in Number of Pixels, 
Area (km2) and Percentage Compared to the Whole Med
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central Adriatic Sea and the Aegean Sea. These areas are subject to winter convection leading to Adriatic 
water formation on the one hand and LIW on the other hand.

C4 characterizes the Atlantic surface water of the Gulf of Cadiz and is observed in the Strait of Gibraltar 
forming a small tongue entering the Mediterranean.

5.1.  Refining the Bioregions

Some atypical clusters could not have been detected through this procedure due to some subjectivity in 
cutting the branches of the connection tree associated with the HAC algorithm as discussed in Mignot 
et al. (2020). As an example, the 2S-SOM allows to refine the classification of C2 waters which presents 
well-marked spatial discontinuities. We showed that the neurons which constitute C2 (neurons 34-35, 43-
44-45 in Figure 4) are associated with specific area of the Mediterranean Sea (Figure 6). The Alboran Sea 
and the Algerian Current are associated with neurons 43 and 44; the south-western part of the Balearic Sea, 
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Abbreviations: Chla, chlorophyll-a; MLD, mixed-layer depth; SST, Sea Surface Temperature.

Table 3 
Spearman Correlations of the Climatological Cycles Computed for the Mediterranean Sea and the 7 Classes

Figure 5.  Monthly climatological cycles of the seven different classes and for the whole Med for the different variables and the associated box plots showing 
the variability extent. The box plots give the median, the first and last quartiles (respectively deciles); the red crosses represent the outliers.



Journal of Geophysical Research: Oceans

with neuron 45; the eastern part of the Ligurian Sea, with neuron 35; and the center of Adriatic Sea and 
the north western part of the Aegean Sea, with neuron 34. Moreover, the waters observed along the south 
coast of Sicily are also associated with neuron 44, but they are colder than the Adriatic Sea waters and 
saltier than the Algerian current waters generating a quasi-permanent sharp North- South gradient of tem-
perature and Chla across the strait. They correspond to a coastal upwelling generated by the thermohaline 
circulation forced by the density gradients between the Ionian Sea and the Tyrrhenian Sea, as argued by 
Jouini et al. (2016). They are constituted of salty and cold deep LIW coming from intermediate depths of the 
eastern Mediterranean basin and penetrating the western basin.

We were thus able to partition the C2 waters in different subclasses without any additional variable up to 
a certain limit for which additional variables, such as the salinity in the present case, should be necessary.

5.2.  Comparison With Previously Proposed Bioregionalization

Several recent studies have proposed an objective regionalization of the Mediterranean Sea by using statis-
tical clustering methods applied to various oceanic variables.

D'Ortenzio and Ribera d'Alcalà (2009), Mayot et al. (2016), Palmiéri (2014), and Uitz et al., (2012) focused 
their interest on phytoplankton phenology; Nieblas et al. (2014) and Reygondeau et al. (2017) used clima-
tological averages of key biogeochemical variables (such as temperature, salinity, and nutrient concentra-
tions); Berline et al. (2014), Nieblas et al. (2014), and Rossi et al. (2014) used the hydrodynamical properties 
of surface water masses; Reygondeau et al. (2014) used the composition of biological communities, inferred 
from the modeled habitats of marine species over the basin.

In the present study, we subdivided the Mediterranean Sea into 7 bioregions using satellite and Argo ob-
servations of classical oceanic variables (SST, MLD, and Chla). When comparing the bioregionalization 
obtained with the previous studies, we observe similarities but also some differences.

We have identified regions which are homogeneous and present coherent hydrodynamic, biogeochemi-
cal, and ecological features. The Liguro-Provençal Basin and the Balearic Sea (C3), the West Alboran Sea 
(C2), the Levantin Sea (C6), the Aegean and the Adriatic Sea (C1) were also identified as bioregions by 
Berline et  al.  (2014), D'Ortenzio and Ribera d'Alcalà  (2009), Mayot et  al.,  (2016), Nieblas et  al.  (2014), 
Palmiéri (2014), Reygondeau et al. (2014, 2017), and Rossi et al. (2014). This agreement in the statistical de-
limitation of these bioregions highlights their specificity regarding the hydrodynamic and biogeochemical 
variables. This congruence suggests that the observed physical parameters explain a significant part of the 
partition of hydrological and ecological variables at basin scale, which is based on homogeneous environ-
mental conditions and well-marked gradients (Nieblas et al., 2014).
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Figure 6.  Neuronal decomposition of C2, showing the geographical areas associated with the different neurons forming this class.
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However, the dissimilarities correspond to areas whose boundaries present marked differences in the re-
gionalization studies, depending on the variables considered. These areas of scattered frontiers are found 
within the Alboran Sea, the Tyrrhenian Sea, the western Algerian Sea, and the western Levantine Sea. 
Contrary to the homogeneous bioregions, these regions present some spatial variability and characterized 
by gradients of hydrological and biogeochemical conditions associated with a highly variable hydrography 
(d'Ovidio et al., 2004).

We can argue that the delimitation of the bioregions is due to an arbitrary choice regarding the variables 
considered, the clustering algorithms, and the cutoff level chosen in each study. This was already recog-
nized in Ayata et al. (2018), by introducing a synthetic and contiguous consensus of bioregion partition for 
the Mediterranean Sea.

6.  Interannual Variability and Trends of the Bioregions
The bioregions shown in Figure 4 represents the average state of the Mediterranean Sea from 2003 up to 
2020. Due to the high discrimination properties of the 2S-SOM algorithm, we were able to monitor the in-
terannual variability of the bioregions using yearly SST and Chla data.

We monitored the interannual variability of the bioregions by processing the monthly SST and Chla data 
with the 2S-SOM + HAC algorithms whose parameters were estimated in Section 3. As we do not have 
enough monthly MLD observations to cover the 2003–2020 period within every bioregion, we did not con-
sider this parameter in this process. The 2S-SOM, like the SOM algorithm, can deal with missing data (El 
Hourany, Abboud-Abi Saab, Faour, Aumont, et al., 2019; Jouini et al., 2013; Yala et al., 2020) and is able 
to assign the available variables to a class using a truncated distance. The twelve monthly satellite values 
(Chla + SST) of each pixel of the Mediterranean for a year are assigned to a neuron (or a class corresponding 
to a bioregion) of the 2S-SOM + HAC algorithm according to the procedure defined in Section 3 using the 
truncated distance. The Mediterranean is thus partitioned in bioregions for every year between 2003 and 
2020 (Figure 7).

The yearly spatial patterns of the seven classes are consistent with the patterns found for the 2003–2020 clima-
tology shown in Figure 4, but they exhibit some interannual variability of their surface extent. Following that, 
we estimated the yearly trends of the SST, the Chla, and the bioregion extent over the studied period 2003–2020.

We estimated the yearly trends of every bioregion extent over the 2003–2020 period by computing the per-
centage of pixels that they occupy in the Mediterranean. A linear fit model was then applied to estimate the 
yearly trend. Concerning the SST and Chla data trends, we computed monthly anomalies by subtracting 
the monthly climatology to the monthly values. This procedure eliminates the seasonal signal. A linear fit 
model was then performed to estimate the yearly trend. The significance of the trends was evaluated using 
a Mann-Kendall test (Colella et al., 2016). This latter is a non-parametric test that characterizes the trend of 
a series of data, whether it is consistently increasing or decreasing (monotonically) or non-existent.

The surface extent of the two largest classes C5 and C6 increase over the studied period at a yearly rate of 
0.36% ± 0.14 and 0.48% ± 0.09, respectively, while C3 and C2 surface extent decrease at a yearly rate of 
−0.19% ± 0.09 (Table 4 and Figure 8). We note that the C2 extent decrease is mainly due to the continuously 
disappearance of the C2 waters along the coast of Spain and in the Tyrrhenian Sea. C3 extent decrease is as-
sociated with the attenuation of deep-water formation events which has been observed in the Gulf of Lyon 
since 2013 (Margirier et al., 2020; Prieur et al., 2020).

We observe trends on SST comprised between 0.030°C ± 0.014 and 0.048°C ± 0.014 per year showing a 
warming of the Mediterranean Sea surface waters. It has been reported in many studies that the water 
temperature in the Mediterranean Sea has been rising at quite a high rate during the last two decades 
(Bethoux and Gentili, 1996; Durrieu de Madron et al., 2011), mirroring the global ocean tendency (Levitus 
et al., 2005). Similar warming trends were observed in remote sensing data, In situ data and model simula-
tions (Herrmann et al., 2008; Mariotti & Dell'aquila, 2012; Marullo et al., 2007, 2011; Nykjaer, 2009; Pisano 
et al., 2020; Skliris et al., 2012; Vargas-Yáñez et al., 2002, 2008) and warming rates of the Mediterranean 
basin differ geographically (Nykjaer, 2009; Pisano et al., 2020; Rixen et al., 2005).
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Atmospheric temperature oscillations have been proposed as a probable cause of these warming trends in 
the Mediterranean water temperature (Lelieveld et al., 2002; Marullo et al., 2007). Among these climate 
variability modes, North Atlantic Oscillation and Atlantic Multidecadal Oscillation (AMO) are particularly 
relevant for triggering the Mediterranean climate (Pisano et al., 2020). Macias et al. (2013) found that the 
SST trend of the Med is consistent with the warming phase of the AMO. This coincidence was observed 
until 2007 and then disappears with the onset of the decreasing phase of AMO, which is not seen in the 
Mediterranean SST evolution as outlines by Pisano et al. (2020). These remarks support that the continuous 
increase of the Mediterranean SST is mainly due to global warming at long time scale as it is found for the 
global ocean (Cazenave et al., 2018). Internal climate variability as AMO can modulate the SST trend at 
short time scale (decade) but is not responsible for long time scale (several decades) trends.

Meanwhile, negative, yet non-significant trends were observed in this study for each Chla's bioregions and 
are associated with a strong yearly variability as shown in Figure 8.
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Figure 7.  Interannual variability of the extent of the seven bioregions.
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7.  Interannual Variability and Trend of 
Phytoplankton Composition in the Mediterranean 
Bioregions
El Hourany, Abboud-Abi Saab, Faour, Aumont, et al. (2019) proposed a 
methodology (SOM-phytoplankton functional type [PFT]) to identify 
phytoplankton groups (phytoplankton functional type i.e., PFT) in the 
Mediterranean Sea from satellite ocean color measurements. This meth-
od is based on phytoplankton pigment estimation. Six groups have been 
identified: Haptophytes, Chlorophytes, Cryptophytes, Synechococcus, 
Prochlorococcus and Diatoms. We therefore applied the SOM-PFT method 
on weekly satellite images of ocean color and SST between 1998 and 2020 
to identify the dominant PFT in each bioregion. For each 4 × 4 km sat-
ellite pixel, we determined the dominant phytoplankton group. We then 
allocated a dominant phytoplankton community structure to each biore-
gion by computing the percentage of satellite pixels assigned to each phy-
toplankton group. For the seven bioregions, a monthly PFT climatology 

was calculated (Figure 9), which are presented as PFT percentages, alongside of the 1998–2020 time series 
illustrated in Figure 10.

The phytoplankton community in the open waters of the Mediterranean Sea is dominated by nanophyto-
plankton types such as Haptophytes and Chlorophytes in winter and Synechococcus in summer (El Houra-
ny, Abboud-Abi Saab, Faour, Mejia, et al., 2019; Navarro et al., 2014, 2017). This is seen in the different 
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Figure 8.  Interannual variability and trend analysis of the geophysical characteristics of the seven bioregions.

Slope Surf (%)/yr SST (°C)/yr Chla (mg m−3)/yr

C1 −0.18 ± 0.11 0.048b ± 0.014 0.0002 ± 0.0006

C2 −0.19a ± 0.09 0.036b ± 0.008 −0.0005 ± 0.0014

C3 −0.19a ± 0.09 0.030a ± 0.014 −0.0015 ± 0.0018

C4 0.021 ± 0.01 0.001 ± 0.009 −0.0007 ± 0.0019

C5 0.36a ± 0.14 0.034b ± 0.009 −0.0001 ± 0.0006

C6 0.48a ± 0.09 0.038b ± 0.009 −0.0002 ± 0.0003

C7 −0.18 ± 0.03 0.023 ± 0.013 −0.0048 ± 0.009

Abbreviations: Chla, chlorophyll-a; SST, Sea Surface Temperature.
asignificant at 5%. bsignificant at 1%.

Table 4 
Yearly Trends in Surface Extents, SST and Chla Concentration of the 
Different Bioregions
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open water bioregions C1, C2, C5, and C6. As for C3, it is directly influenced by the deep winter convection 
that enriches the surface waters with nutrients (Margirier et al., 2020; Prieur et al., 2020). It results abrupt 
diatom blooms in late winter (February–March), coinciding with the end of deep convection (Navarro 
et al., 2017). In coastal bioregions (C7), diatoms tend to dominate in winter and spring, and this is due to 
the important availability of nutrient from terrigenous input throughout rivers and anthropogenic activity. 
Figure 10 highlights the PFT weekly variability for the whole studied period for the seven bioregions. We 
note well-marked seasonal cycles with an interannual variability. This can be associated with several phys-
ical and biogeochemical drivers, which can trigger or inhibit the evolution of phytoplankton communities. 
The study of the mechanisms driving this variability should deserve a full dedicated study.

In El Hourany, Abboud-Abi Saab, Faour, Aumont, et al., 2019, the different sub-basins of the Mediterranean 
Sea were characterized in terms of PFT variability. This partition was based on the geographical delimita-
tions of the Mediterranean sub-basins. However, comparing this PFT distribution at sub-basins scale, with 
the PFT distribution observed in the proposed bioregionalization is not straight-forward.

Since physical and biogeochemical gradients can be observed at sub-basin scale, it may result in an occur-
rence of several bioregions within a sub-basin. As an example, the Adriatic sub-basin is partitioned into four 
Bioregions, C7, C2, C1, and C5. In other cases, adjacent sub-basins represent a continuum, and therefore 
share a same bioregion, such as the Levantine and the Ionian Sea sharing bioregion C6. At last, some biore-
gions are encountered in different sub-basins separated geographically, such as C2 in the Adriatic and the 
Aegean basins and C7 representing the coastal regions. This occurrence can be explained by similarity in 
the physical and biogeochemical variability found in some parts of these sub-basins.

Di Cicco et al. (2017), Marty et al. (2002), Organelli et al. (2013), and Sammartino et al. (2015) analyzed 
algal pigment content and ocean color data to explore the relative contribution of different taxa to total 
phytoplankton biomass in the Mediterranean Sea. These authors found that spring blooms were dominated 
by diatoms, while stratifying conditions favor the development of nanophytoplankton, which are then re-
placed by cyanobacteria (picophytoplankton). The two latter phytoplankton size classes can be considered 
as markers of oligotrophic conditions, while microphytoplankton (diatoms) are opportunistic and burst 
after nutrient replenishment. Over the year, nanophytoplankton account for 43%–50% of the total primary 
production of the Mediterranean Sea, which is largely dominated by Haptophytes (Uitz et al., 2012). Using 
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Figure 9.  Monthly climatology of the percentage of phytoplankton groups nanophytoplankton (haptophytes, chlorophytes, cryptophytes); picophytoplankton 
(Prochlorococcus, Synechoccocus); Diatoms for the 7 Mediterranean bioregions.
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the method developed in (El Hourany, Abboud-Abi Saab, Faour, Mejia, et al., 2019), we found a similar 
phytoplankton variability pattern.

The Mediterranean Sea appears to be a host to diverse phytoplankton communities responding to forcing 
variability differently according to the bioregion (Figures 9 and 10). Studying phytoplankton variability in 
such a manner highlights the impact of small changes in the physical conditions on these communities. 
Since bioregions are evidently showing annual trends of extent variability, along with the increase of surface 
SST, we chose to estimate the annual trends of the satellite-derived PFT communities calculated for each 
bioregion between 1998 and 2020. In the same way as SST and Chla, we calculated the trends by subtracting 
the monthly climatology to the monthly PFT values. Then a linear fit model was performed to estimate the 
yearly trend. The significance of the trends was evaluated using a Mann-Kendall test.

While the Chla concentration does not present any significant trend for this period, Haptophytes exhibited 
negative yearly trends varying between −0.17% ± 0.07 and −0.41% ± 0.13 in every bioregion except in C6, 
Chlorophytes increase by 0.5% ± 0.09 yearly in C3 and decrease in C5 and C6 by −0.3% ± 0.09, Cryptophytes 
increase by around 0.18% ± 0.06 yearly in C5, C6 and C7, while Diatoms decrease with yearly trends varying 
between 0.18% ± 0.04 and 1.1% ± 0.51 in C1, C2, C3, and C7 and last, Synechococcus exhibit a major increase 
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Figure 10.  Weekly variability of the percentage of each phytoplankton group nanophytoplankton (haptophytes, chlorophytes, cryptophytes); 
picophytoplankton (Prochlorococcus, Synechoccocus); Diatoms with respect to Chla (dashed line on the right) between 1998 and 2020 in each of the 
Mediterranean Bioregions.
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in each bioregion with yearly trends between 0.16% ± 0.02 and 0.73% ± 0.11. For the first time, we were able 
to show that SST warming impacts the phytoplanktonic community in the Mediterranean Sea. We observed 
a noticeable temperature increase in the surface layers of the Sea and surprisingly a constant Chla concentra-
tion over the studied period. The machine learning method in (El Hourany, Abboud-Abi Saab, Faour, Mejia, 
et al., 2019) allowed us to evidence a noticeable change in the PFT community composition so that Diatom 
and haptophyte dominations are replaced by Cyanobacteria development. The most affected bioregions by 
the diatom decrease are the marginal ones (C1, C2, C3, and C7). As for C5, which covers the most important 
part of the western Mediterranean Sea, presents a decrease of haptophytes and Chlorophytes, which are re-
placed by Cyanobacteria. The PFT composition of C6 which covers a major part of the eastern Mediterranean 
Sea changes little because Chlorophyte whose relative decrease is significant (see Table 5) represents a small 
percentage of this composition (See Figure 4). A reason of these decreases in diatoms and haptophytes is 
the increase of stratification due the warming of surface waters which blocks the exchanges with the deeper 
waters. The nutrient enrichment of surface layers is stopped, which increases their oligotrophy. In such nu-
trient-poor conditions, cyanobacteria are more adapted to strive. Due to global warming, the Mediterranean 
Sea as a whole (except C7) seems to converge towards an eastern Mediterranean state.

Several multidecadal in situ surveys have been conducted in the Mediterranean Sea (Berline et al., 2012), 
which evidenced strong seasonal patterns in phytoplankton communities (Ribera d'Alcalà et al., 2004). In 
the Gulf of Naples, a time series ranging from 1984 to 2000 revealed an over decadal decrease in phyto-
plankton (Ribera d'Alcalà et al., 2004). Later Mazzocchi et al. (2011) evidenced phytoplankton community 
changes in the Mediterranean using the same time series. These authors showed that the high production 
season was becoming shorter and was starting earlier in the year resulting with a decrease in phytoplankton 
biomass. Using satellite data for the 1998–2009 period (Colella et al., 2016), found heterogeneously distrib-
uted Chla trends. However, at a much bigger scale, a decline in total phytoplankton population has been 
observed in Northern hemisphere basins over the last decade (Gregg & Rousseaux, 2014) and is projected 
to strengthen over the 21st century over wide oceanic regions under all global warming scenarios (Kwiat-
kowski et al., 2020). This decline is one of the consequences of climate change, as highlighted by recent 
IPCC reports (IPCC-SROCC-Pörtner et al., 2019).

8.  Conclusion
The 2S-SOM-Med allowed us to obtain a well differentiated classification of the Mediterranean Sea waters 
by clustering seasonal cycles of monthly climatological values of Chla, SST, and MLD. These classes can 
be considered as bioregions governed by specific physical and biogeochemical processes. The classification 
identified seven distinct bioregions.

C5 and C6 occupy the largest surface of the Mediterranean Sea. C5 characterizes the offshore waters of the 
western basin and is influenced by hydrodynamic processes which govern this basin, such as advection 
of Atlantic water, which causes phytoplankton to proliferate due to nutrients in surface water. C6 extends 
from the center of the Mediterranean basin to the eastern coasts and is characterized by oligo-trophic wa-
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Hapto(%) Chloro(%) Crypto(%) Proc(%) Syn(%) Diat(%)

C1 −0.235b ± 0.05 0.046 ± 0.05 0.055 ± 0.04 0.043 ± 0.03 0.415b ± 0.06 −0.325b ± 0.06

C2 −0.243b ± 0.09 0.088 ± 0.10 0.081 ± 0.05 −0.003 ± 0.02 0.409b ± 0.08 −0.333b ± 0.05

C3 −0.167a ± 0.07 0.515b ± 0.09 0.017 ± 0.07 −0.007 ± 0.01 0.737b ± 0.11 −1.094b ± 0.51

C4 −0.409b ± 0.13 −0.050 ± 0.06 0.029 ± 0.02 −0.012 ± 0.02 0.512b ± 0.09 −0.070 ± 0.03

C5 −0.195a ± 0.07 −0.326b ± 0.07 0.204b ± 0.06 0.024 ± 0.01 0.303b ± 0.06 −0.010 ± 0.009

C6 −0.017 ± 0.05 −0.315b ± 0.09 0.172b ± 0.07 −0.007 ± 0.01 0.164a ± 0.02 0.003 ± 0.006

C7 −0.229b ± 0.06 −0.053 ± 0.06 0.172b ± 0.04 0.006 ± 0.005 0.285b ± 0.05 −0.182b ± 0.04

Abbreviation: PFT, phytoplankton functional type.
asignificant at 5%. bsignificant at 1%.

Table 5 
PFT Yearly Trends in % for the Different Bioregions
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ters associated with high SST. The extent of these two bioregions is quite stable from one year to another 
except the Rhodes gyre area characterized by C5 which is very variable C1 waters characterize the Aegean 
Sea and the Adriatic Sea, which are both intermediate and deep-water formation places. C2 is found in sev-
eral disconnected regions which are governed by large surface currents. C3 is confined to the Ligurian and 
Balearic seas; it is characterized by deep winter convection phenomena, which enriches this region with nu-
trients from the deep layers, causing a significant phytoplankton blooms at the end of winter. This bioregion 
shrinks during the studied period due to a decrease of deep-water formation. C4 characterizes the Atlantic 
water. At last, C7 waters have the highest Chla concentration due to their location (coastal areas, discharge 
of important rivers such as Nil, Po, Rhone, Ebro, shallow shelfs with quite important tides facilitating the 
presence of suspended matters); C7 waters are probably case-2 waters.

We then showed that it is possible to refine this decomposition by analyzing the significance of the neurons 
constituting the seven classes. This was applied with success to the neurons of C2, which is a bioregion encoun-
tered in geographically disconnected regions of the Mediterranean Sea. We were able to break down C2 into 
subclasses, each of them corresponding to a well identified water mass associated with a dedicated neuron of 
the 2S-SOM classifier. The regionalization of every neuron proves that the 2S-SOM-Med has efficiently differ-
entiated these waters without the addition of any complementary parameter. We found in few specific cases, 
it should be necessary to add salinity as an explanatory variable, but most of the bioregions evidenced in the 
present and past studies can be identified with the three variables we used (satellite SST and Chla, and MLD).

The variability of the phytoplankton groups estimated by the El Hourany, Abboud-Abi Saab, Faour, Aumont, 
et al. (2019) method allowed us to better characterize the bioregions. The dominance of the nanophytoplank-
ton groups is largely observed in the western basin (C3 and C5 regions) from autumn to spring. While the 
dominance of different types of the cyanobacteria Synechococcus and Prochlorococcus is highlighted in sum-
mer and more precisely in the waters of the C6 bioregion of the eastern basin. Diatoms dominate throughout 
the year in the C7-marked coastal and shallow regions, which can be explained by the continuous higher 
availability of inorganic nutrient originating from terrigenous input. Diatoms also largely benefit from the 
strong deep convection in the C3 bioregion marked by a large bloom at the end of winter convection in March.

At last, we were able to evidence an interesting behavior of the biomass of the Mediterranean Sea under 
SST warming whose long-term trend can be attributed to climate change (Cazenave et  al.,  2018; Somot 
et al., 2006, 2008). Although the surface layers are becoming warmer the total biomass stays constant dur-
ing the studied period. But we were able to evidence a noticeable change in the estimated phytoplankton 
community composition; diatoms and haptophytes dominance are replaced by cyanobacteria development. 
The Mediterranean Sea is shifting to an Eastern Mediterranean state.

Data Availability Statement
The MODIS Aqua Sea Surface Temperature and Chlorophyll-a data were obtained from the NASA ocean 
color website (https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua). The Mixed-Layer Depth Climatology 
was acquired from http://mixedlayer.ucsd.edu/. Data and codes are publicly available at https://github.
com/RoyElHourany/MEDBioregion_2S-SOM; 2S-SOM algorithm can be found at https://gitlab.in2p3.fr/
carlos.mejia/2S-SOM_versionCM; the SOM algorithm for PFT retrieval is available at https://github.com/
RoyElHourany/SOM-Pigments.
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