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I. INTRODUCTION

Cavitation is the formation of vapor cavities in a liquid due to a pressure drop. The phenomenon occurs in hydraulic systems or turbomachinery and can, eventually, cause structural damage, noise and degrade the performance of the apparatus. Such effects drive the study of the different types of cavitation, and in particular considerable efforts have been made to explore the dynamics of partial cavities appearing along solid bodies. Such cavitation pockets are characterised by a fluctuating closure region leading to cavity length oscillations and the shedding of vapor structures. Partial cavity can be classified in two main forms of appearance: closed or quasi-stable cavity and open cavity or cloud cavitation, depending on the flow in the cavity closure region [START_REF] Laberteaux | Partial cavity flows. Part 1. Cavities forming on models without spanwise variation[END_REF] . A quasi-stable cavity presents only small shedding at its closure region with a relatively stable cavity length.

In opposite, cloud cavitation is a highly unsteady phenomenon presenting a periodically varying length that is associated to the large shedding of vapor clouds. Both types of cavities have been studied, experimentally and numerically, to describe the physical mechanism, the internal structure of cavities, the turbulence-cavitation interaction and to investigate the transition from quasi-stable to cloud cavitation [START_REF] De Lange | On the mechanism of cloud cavitation -experiment and modelling[END_REF][START_REF] Kawanami | Mechanism and control of cloud cavitation[END_REF][START_REF] Reisman | Observations of shock waves in cloud cavitation[END_REF][START_REF] Gopalan | Flow structure and modeling issues in the closure region of attached cavitation[END_REF][START_REF] Callenaere | The cavitation instability induced by the development of a re-entrant jet[END_REF][START_REF] Coutier-Delgosha | Internal structure and dynamics of sheet cavitation[END_REF][START_REF] Hayashi | Unsteady behavior of cavitating waterjet in an axisymmetric convergent-divergent nozzle: High speed observation and image analysis based on frame difference method[END_REF][START_REF] Kravtsova | Cavitation on a semicircular leading-edge plate and NACA0015 hydrofoil: Visualization and velocity measurement[END_REF][START_REF] Jahangir | Dynamics of partial cavitation in an axisymmetric converging-diverging nozzle[END_REF] . Two main mechanisms have been identified for the break-off cycles: the development of a liquid re-entrant jet and the propagation of pressure waves created by the cloud collapses [START_REF] Arndt | Instability of partial cavitation: A numerical/experimental approach[END_REF][START_REF] Stanley | Periodic cavitation shedding in a cylindrical orifice[END_REF][START_REF] Stanley | Re-entrant jet mechanism for periodic cavitation shedding in a cylindrical orifice[END_REF][START_REF] Ganesh | Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities[END_REF][START_REF] Charrière | Numerical investigation of periodic cavitation shedding in a Venturi[END_REF] .

The structures of partial cavities have a fully three-dimensional topology as observed on hydrofoils with high-speed imaging method. The re-entrant jet does not progress only on the streamwise direction and a spanwise component was depicted [START_REF] De Lange | Sheet cavitation and cloud cavitation[END_REF] . To distinguish between various directions of the re-entrant flow, the term side-entrant jet was introduced. This term refers to the part of the jet that has a strong spanwise velocity component directed into the cavity originating from the sidewalls. The term re-entrant jet or middle jet is reserved for the flow originating from the part of the cavity where the closure is more or less perpendicular to the incoming flow and is thus mainly directed upstream. Foeth et al. (2006) [START_REF] Foeth | Time resolved PIV and flow visualization of 3D sheet cavitation[END_REF] investigated the cavitating flow structures on the Delft twisted hydrofoil and reported the joint action of the re-entrant and side-entrant jets in the shedding. Dular et al. (2007) [START_REF] Dular | Investigation of a re-entrant jet reflection at an inclined cavity closure line[END_REF] studied hydrofoils with swept leading edges and their experiments showed that the re-entrant jet velocity has a spanwise component if the closure line of the cavity is inclined. The numerical simulation of Schnerr et al. (2008) [START_REF] Schnerr | Numerical investigation of three-dimensional cloud cavitationwith special emphasis on collapse induced shock dynamics[END_REF] on a twisted hydrofoil showed that the interactions between the re-entrant jet and the spanwise velocity component also cause separation of sheet cavities. The spanwise pressure gradients greatly affect the three-dimensional struc-ture of the cavity, which cause the U-shaped feature observed and discussed by many authors [START_REF] Kubota | Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique[END_REF][START_REF] Peng | Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils[END_REF] .

Recently, experimental observations on hydrofoils highlighted the important role played by the two side-entrant jets which propagated diagonally upstream to the leading edge affecting the attached part of the cavity [START_REF] Kadivar | Stabilization of cloud cavitation instabilities using cylindrical cavitating-bubble generators (CCGs)[END_REF][START_REF] Che | Dynamic behaviors of re-entrant jet and cavity shedding during transitional cavity oscillation on NACA0015 hydrofoil[END_REF] . Such comments was also reported in the numerical study of Long et al. (2018) [START_REF] Long | Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil[END_REF] on a twisted hydrofoil using a Lagrangian method.

Another discussion on three-dimensional cavity structures concerns the existence of an oblique mode of the pocket oscillations. This mode was firstly discussed by Decaix and Goncalves (2013) [START_REF] Decaix | Investigation of three-dimensional effects on a cavitating Venturi flow[END_REF] on a quasi-stable cavity appearing on a Venturi geometry using Scale-Adaptive Simulation (SAS). Later, Timoshevskiy et al. (2016) [START_REF] Timoshevskiy | Cavitating flow around a scaled-down model of guide vanes of a high-pressure turbine[END_REF] maintained that the oblique mode associated with the development of the spanwise instability exists for all test objects independent of their shape. Yet, the existing visualisations did not clearly report such alternating sheet movement. On the other hand, various experimental studies showed different cavity shedding appearances and behaviors due to the influence of the scale of the geometry and the surface effects [START_REF] Kawakami | An assessment of the influence of environmental factors on cavitation instabilities[END_REF][START_REF] Dular | Scale effect on unsteady cloud cavitation[END_REF] . Authors observed that at a certain ratio between the length of the sheet cavity and the channel width, an irregular break-off pattern occured.

The experimental study of complex three-dimensional sheet and cloud cavitation still suffers from the limitation in experimental technique, thus the numerical simulation appears to be an attractive tool for a better understanding of the two-phase structures and their dynamics. The framework for such turbulent cavitating flows is usually the one-fluid mixture approach based on an average statistical treatment with local thermodynamics assumption. Two main families are often used: the Homogeneous Equilibrium Model (HEM) with a suitable equation of state for the liquid-vapor mixture [START_REF] Delannoy | Two phase flow approach in unsteady cavitation modelling[END_REF][START_REF] Clerc | Numerical simulation of the homogeneous equilibrium model for two-phase flows[END_REF][START_REF] Sinibaldi | A numerical method for 3D barotropic flows in turbomachinery[END_REF] or the Transport Equation Model (TEM) or Homogeneous Relaxation Model (HRM) involving a transport equation for the void ratio [START_REF] Downar-Zapolski | The non-equilibrium relaxation model for one-dimensional flashing liquid flow[END_REF][START_REF] Kunz | A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[END_REF][START_REF] Zwart | A two-phase flow model for predicting cavitation dynamics[END_REF][35] . This equation includes a source term modeling the mass transfer between phases. Another crucial point for cavitating flow simulation is the turbulence modeling. Different approaches have been investigated in order to capture the finer-scale dynamics. Firstly, computations were performed solving the unsteady Reynolds-Averaged Navier-Stokes (URANS) equations naturally adapted to the two-phase averaged models [START_REF] Saito | Numerical analysis of unsteady behavior of cloud cavitation around a NACA0015 foil[END_REF][START_REF] Park | Numerical analysis of the three-dimensional cloud cavitating flow around a twisted hydrofoil[END_REF] and more recently using advanced models such as SAS [START_REF] Sedlar | Numerical and experimental investigation of three-dimensional cavitating flow around the straight NACA2412 hydrofoil[END_REF]39 , Filter-Based turbulence Model (FBM) [START_REF] Sun | Numerical modeling and simulation of the shedding mechanism and vortex structures at the development stage of ventilated partial cavitating flows[END_REF] or Partially-Averaged Navier-Stokes (PANS) [START_REF] Ji | Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil[END_REF] . As the URANS approach did not fully account for the turbulent-cavitation interactions, Large Eddy Simulations were tested on both hydrofoil and Venturi geometries [START_REF] Huang | Large eddy simulation of turbulent vortex-cavitation interactionsin transient sheet/cloud cavitating flows[END_REF][START_REF] Ji | Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil[END_REF][START_REF] Gnanaskandan | laminar-turbulent transition and turbulence-cavitation interaction in the cavitating flow around hydrofoil[END_REF][45][START_REF] Sun | Numerical investigation of positive effects of ventilated cavitation around a naca66 hydrofoil[END_REF] . Yet, due to the large Reynolds number of usual applications (greater than 1 million), the necessity to consider the channel with sidewalls, the use of very small time step and the problem of the statistics convergence for low-frequency periodic phenomenon, the cost a well-resolved simulation remains prohibitive even using supercomputers.

To circumvent such difficulties, micro-channel cavitating flows has been considered by Egerer et al. (2014) [START_REF] Egerer | Large-eddy simulation of turbulent cavitating flow in a micro channel[END_REF] .

The present study focuses on a 3-D quasi-stable cavity flow on a 4 o divergent angle Venturi geometry, used in the experiment of Barre et al.(2009) [START_REF] Barre | Experiments and modeling of cavitating flows in Venturi: Attached sheet cavitation[END_REF] . The selection of the configuration is motivated by the modest number of experiments with quantitative data and by a configuration compatible with URANS approach. Particular attention is paid to sidewalls effects and the 3-D topology of the pocket. In the first part, the system of equations and the numerical formulation is developed. Numerical simulations are performed, in a second part, to compare results with experimental data. Then, the results of 3-D computations with sidewalls and with periodic boundary conditions are investigated. Numerical tools such as Power Spectral Densities or Spectral Proper Orthogonal Decompositions are used to compare both cases and analyse the flow dynamics. In the last part, the authors' interpretation of the encountered phenomenon is discussed regardings the dominant mechanisms of sheet cavitation flows.

II. GOVERNING EQUATIONS A. The 1-fluid homogeneous approach

There are several ways to simulate two-phase flows, the most straightforward one is to use a two-fluid model. Nevertheless, in the case of sheet cavitation simulation, this choice would lead to unaffordable computational costs and difficulties related to the interface tracking with the creation and the destruction of vapor pockets or the transfer terms computation due to the phase change.

Therefore, a one-fluid homogeneous approach is selected in the present study and hypothesis over thermodynamical and mechanical equilibrium between the liquid and vapor phases are applied [START_REF] Merkle | Computation modeling of the dynamics of sheet cavitation[END_REF] .

The flow is considered as a mixture and the phases are assumed to share the same pressure, velocity and temperature. The averaged fraction of presence α k , for a given k phase, is introduced to define 4 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
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the conservative form of mixture properties as:

ρ m = ∑ k α k ρ k , (1) 
ρ m u i,m = ∑ k α k ρ k u i,k , (2) 
ρ m e m = ∑ k α k ρ k e k . (3) 

B. The compressible RANS equations

The compressible Reynolds-Averaged Navier-Stokes (RANS) system of equations is used to calculate the two-phase flow in the present work. The k -ℓ two-equations model of Smith [START_REF] Smith | The kkl turbulence model and wall layer model for compressible flows[END_REF][START_REF] Smith | A near wall model for the kl two equation turbulence model[END_REF] is selected to calculate turbulence quantities. The choice of the turbulence model is motivated by previous works over a panel of models [START_REF] Charrière | Numerical investigation of periodic cavitation shedding in a Venturi[END_REF][START_REF] Goncalvès | Wall model and mesh influence study for partial cavities[END_REF][START_REF] Charrière | A comparative study of cavitation model in a Venturi flow[END_REF] .

A limiter term is applied to the calculation of the turbulent viscosity property of mixture fluid, µ tm .

The correction is motivated by previous results [START_REF] Reboud | Two-phase flow structure of cavitation: experiment and modelling of unsteady effects[END_REF][START_REF] Decaix | Time-dependent simulation of cavitating flow with k -ℓ turbulence models[END_REF] , which indicate an overestimation of such a quantity for the two-phase flow configurations of interest. The limitation, for the k m -ℓ m model, is computed using a function over ρ m and is here written as :

µ tm = f (ρ m ) Φ √ 2k m ℓ m B 1/3 1 , (4) 
f (ρ m ) = ρ v + ρ v -ρ m ρ v -ρ l n (ρ l -ρ v ) , (5) 
where ρ v and ρ l stand for the saturation vapor and liquid density, respectively. Φ and B 1 come from the k -ℓ model described by Smith (1994) [START_REF] Smith | A near wall model for the kl two equation turbulence model[END_REF] . The limitation is controlled by the parameter n >> 1 which is precised in section IV. Furthermore, the work of Dandois (2014) [START_REF] Dandois | Improvement of corner flow prediction using the quadratic constitutive relation[END_REF] indicates the possibility of non-physical flow results related to an overestimation of the turbulent viscosity in corners. Hence, the Quadratic Constitutive Relation (QCR) correction [START_REF] Spalart | Strategies for turbulence modelling and simulations[END_REF] is applied into the Reynolds stress tensor:

τ QCR m,i j = τ m,i j -c nl1 (O ik τ m, jk + O jk τ m,ik ) , (6) 
where c nl1 = 0.3 is an empirical constant and O ik is the normalised rotation tensor:

O ik = ∂ u i ∂ x k - ∂ u k ∂ x i s ∂ u n ∂ x p ∂ u p ∂ x n , ( 7 
)
5
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The mixture viscous stress tensor σ m and the heat flux vector q m are defined as

σ m,i j = µ m ∂ u m,i ∂ x j + ∂ u m, j ∂ x i - 2 3 ∂ u m,n ∂ x n δ i j ; q m,i = λ m ∂ T m ∂ x i ; (8) 
where λ m = ∑ k α k λ k , is the thermal conductivity of the mixture and λ k is the thermal conductivity of the k-th phase. Moreover, the mixture turbulent stress tensor τ m and the turbulent heat flux vector q t m are formulated using the Boussinesq relation and the Fourier law, respectively defined as:

τ m,i j = µ tm ∂ u m,i ∂ x j + ∂ u m, j ∂ x i - 2 3 ∂ u m,n ∂ x n δ i j - 2 3 ρ m k m δ i j , (9) 
q t m, j = λ tm ∂ T m ∂ x j ≈ µ tm C pm Pr t ∂ T m ∂ x j , (10) 
with turbulent Prandtl number Pr t = 1. Due to the lack of data over turbulent two-phase flow, the value of the Prandtl number is transposed from aerodynamic studies for monophasic flow. The thermal capacity of the mixture C pm is defined based on C pv and C p l , which stand for the thermal capacity of the vapor and the liquid, respectively,

ρ m C pm (α) = αρ v C pv + (1 -α)ρ l C p l . (11) 

C. The four-equation cavitation model

The cavitation modeling approach used in the current work combines the mass conservation, momentum, and energy equations of the Navier-Stokes formulation to another transport equation over the fraction of presence of phases. Moreover, an appropriate set of equations of state is used to model the cavitation.

Void ratio transport equation

The void ratio α is defined as the averaged fraction of presence for the vapor phase. A transport equation for the void ratio is added to complete the cavitation model:

∂ α ∂t + u m, j ∂ α ∂ x j = K ∂ u m, j ∂ x j + ṁ ρ I . ( 12 
)
The formulation of the transport equation is based on the work of 

ṁ = ρ l ρ v ρ l -ρ v 1 - c 2 m c 2 Wallis ∂ u m, j ∂ x j . ( 13 
)
The calculation is based on the Wallis speed of sound c Wallis , which is expressed as a weighted harmonic mean of each one of the two flow phases speed of the sound 60 :

1

ρ m c 2 Wallis = α ρ v c 2 v + (1 -α) ρ l c 2 l , ( 14 
)
where c k stands for the pure phase speed of sound. The interface density ρ I and the constant K are respectively defined as

ρ I = ρ l c 2 l 1 -α + ρ v c 2 v α c 2 l 1 -α + c 2 v α and K = ρ l c 2 l -ρ v c 2 v ρ v c 2 v α + ρ l c 2 l 1 -α . ( 15 
)

Equations of state

Two different equations of state (EOS) are used for the mixture temperature T m and the mixture pressure p m depending on a pressure threshold. Pressure and temperature are defined by the stiffened gas EOS for the pure phase while sinusoidal EOS are applied for computing the mixture part of the flow 53 . The threshold is calculated from the vaporisation pressure P vap and a delta pressure based on a chosen parameter c min , the minimal speed of sound in the mixture:

Δp m = ρ l -ρ v 2 c 2 min π 2 . ( 16 
)
The selection of c min is based on the study of Charriere (2015) [START_REF] Charrière | Modélisation et simulation d'écoulements turbulents cavitants avec un modèle de transport de taux de vide[END_REF] and set to 0.472 m.s -1 . This parameter allows the activation in advance of the phase change in order to smooth the density gradient around the interface. The density jump between the liquid and the vapor is stiff for a mixture problem. Thus, the mixture pressure is computed according to the relation :

   p SG if p m ≥ P vap + Δp p sinus otherwise , (17) 
with p SG and p sinus the pressure respectively defined by the stiffened gas EOS and the sinusoidal EOS:

p SG (ρ m , e m ) = (γ m -1)ρ k (e m -qm ) -γ m p m,∞ , (18) 7 
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p sinus (α) = P vap + ρ l -ρ v 2 c 2 min arcsin(1 -2α) , (19) 
where the mixture energy of formation ρ m qm = αρ v qv + (1 -α)ρ l ql is calculated from qv and ql , which stand respectively to the vapor and the liquid energies of formation. The mixture temperature is set equally above and below the pressure threshold :

T m (ρ m , e m ) = h m (α) -qm (α) C pm (α) = e m (α) + p m (α)/ρ m (α) -qm (α) C pm (α) , ( 20 
)
where h m and e m are the specific mixture enthalpy and internal energy respectively. The mixture speed of sound c m is processed following the same approach. Above the pressure threshold, the Wallis speed of sound, Eq. ( 14), is considered while below the threshold, the speed of sound is computed using the sinusoidal EOS, Eq. 21. The reader can find more details on the study of the speed of sound development performed by Charriere (2015) [START_REF] Charrière | Modélisation et simulation d'écoulements turbulents cavitants avec un modèle de transport de taux de vide[END_REF] . For the current case, the phase change does not affect the temperature of the mixture. Therefore, the phase enthalpy h k and phase density ρ k are defined as constants for a reference temperature T re f .

c 2 m = (γ m -1) ρ v ρ l (h re f v -h re f l ) ρ m (ρ l -ρ v ) + A c 2 min p 1 -(A(1 -2α)) 2 . ( 21 
)
The phase enthalpy is

h re f k = C p k T re f + q k .
The A coefficient is added in order to guarantee the velocity fitting with Wallis speed of sound above the pressure threshold. In the current case, A is fixed to 0.9999 [START_REF] Goncalves | Numerical simulation of cavitating flows with homogeneous models[END_REF] .

III. NUMERICAL FORMULATION

The global system is the four-equation model coupled with the turbulence model:

∂ w ∂t + ∇ • [F c (w) -F v (w)] = S(w), (22) 
with

w =           ρ m ρ m u m,i ρ m E m α ρ m ψ k           , F v =             0 σ m,i j + τ m,i j (σ m,i j + τ m,i j )u m, j -q m, j -q t m, j 0 µ m + µ t m σ ψ k ∂ ψ k ∂ x j             , F c =           ρ m u m, j ρ m u m,i u m, j + p m ρ m E m + p m αu m, j ρ m ψ k u m, j           , S =             0 0 0 (K + α) ∂ u m, j ∂ x j + ṁ ρ I C ψ k            
.

The variable ψ k depends on the choice of the turbulence model of k equations. The turbulent source terms C ψ k and the constant σ ψ k also relies on this model.

A. Low Mach number preconditionning

Some parts of the flow into the venturi configuration are supposed to be incompressible (Mach number around 0.1) despite using a compressible hypothesis. Therefore, it is necessary to use a low Mach number preconditioning method to deal with numerical errors and stiffness of the equation system. A preconditioning matrix is computed based on the work of Turkel (1987) [START_REF] Turkel | Preconditioned methods for solving the incompressible and low speed compressible equations[END_REF] using a β all-speed flow parameter proportional to the Mach number [START_REF] Choi | The application of preconditioning to viscous flows[END_REF] ,

β 2 = min[max(M 2 , θ M 2 ∞ ), 1]. ( 23 
)
with the constant θ set to 3. The preconditioning is applied only on the dissipation terms to preserve the time discretisation consistency.

B. Time integration

An explicit third-order Strong Stability Preserving Runge-Kutta method (SSPRK3), described by Spiteri and Ruuth (2002) [START_REF] Spiteri | A new class of optimal high-order strong-stability-preserving time discretization methods[END_REF] and Gottlieb (2005) [START_REF] Gottlieb | On high order strong stability preserving Runge-Kutta and multi step time discretizations[END_REF] , is used as a time-marching scheme. The explicit equation is given by

w n+1 = w n + h 1 6 k 1 + 1 6 k 2 + 2 3 k 3 , (24) 
with

         k 1 = F (t n , w n ), k 2 = F (t n + h, w n + hk 1 ), k 3 = F (t n + h 2 , w n + h 4 (k 1 + k 2 ))
, in which h is the time-step and F represents the numerical fluxes and the source terms of Eq.( 22). 9 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
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C. Spatial discretisation

A cell-centered finite-volume technique is used for the spatial discretisation of the RANS equations. The numerical fluxes are calculated using a centered scheme coupled with an artificial dissipative term. The chosen scheme is based on the 2 nd order Jameson-Schmidt-Turkel [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF] and, it is extended to the precision of the 3 rd order. Furthermore, an additional term is added to the dissipation, with a density sensor η

(I)
i , to allow dissipation around the phase interface:

η (I) i = |ρ i+1 -2ρ i + ρ i-1 | ρ i+1 + 2ρ i + ρ i-1 . ( 25 
)
The global scheme formulation is developed in Appendix A.

D. Boundary conditions

The venturi-type geometry configuration used in the current article requires the use of wall and inlet/outlet boundary conditions. The former is implemented here using wall-functions regarding a less expensive representation of the boundary layer while the latter is calculated using Euler characteristic equations.

a. Wall function: The boundary condition for a wall is defined by the following wall function:

u + = y + if y + < 11.13, u + = 1 κ ln y + + 5.25 if y + > 11.13, (26) 
with the Von Karman constant κ = 0.41. This no slip boundary condition combined with the adiabatic hypothesis for walls results in normal derivatives of the void ratio, the density and the pressure are set to zero at the wall boundary.

b. Inlet and outlet boundaries:

The void ratio α, the phase density ρ k and the velocity components are imposed at the inlet boundary. Then, the pressure is computed using the Euler's characteristic equations:

-c 2 (ρ b -ρ s ) + (P b -P s ) = 0, v b -v s = 0, ρ(α b -α s ) -K(ρ b -ρ s ) = 0, (λ + -u)(P b -P s ) + ρβ 2 c 2 (u b -u s ) = 0, (λ --u)(P b -P s ) + ρβ 2 c 2 (u b -u s ) = 0, ( 27 
)
10 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0052913

where b index stands for boundary variables and s index stands for variables computed with the numerical scheme. λ ± are the highest and the lowest eigenvalues of the preconditionning system. The static pressure is selected while other variables are calculated using the characteristic equations at the outlet boundary condition.

IV. VENTURY CONFIGURATION AND COMPARISON

The present section is devoted to introduce the studied case and to compare numerical re- [START_REF] Barre | Experiments and modeling of cavitating flows in Venturi: Attached sheet cavitation[END_REF] , is selected for the study. Figure 1 illustrates the venturi geometry, and Tab. I indicates flow and sections parameters used in the current case. Probes positioning is calibrated to capture data adjacent to the cavitation pocket at four stations (S1 to S4 in Fig. 1) located at 20.9 mm, 38.4 mm, 55.8 mm and 73.9 mm from the venturi throat. The inflow parameters are set as followed:

the streamwise velocity u in = 10.8m.s -1 , the temperature T in = 293 K, the void ratio α in = 10 As observed in other works [START_REF] Zhou | Numerical simulation of cavitation around a hydrofoil and evaluation of a rng k-epsilon model[END_REF][START_REF] Ducoin | Numerical modeling of unsteady cavitating flows around a stationary hydrofoil[END_REF][START_REF] Ji | Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction[END_REF] , the choice of n in the 3-D configuration is motivated by an underprediction of the re-entrant jet development for the k-l model using n = 10. For that reason, the n parameter is calibrated to correctly capture the re-entrant jet by comparing with experimental data.

The dissipative terms parameters of the extended Jameson-Schmidt-Turkel scheme k 2 , k I 2 and k 4 are respectively set to 1.0, 1.5 and 0.045. Furthermore, the time step is fixed to 4.58 × 10 -6 s and 2.29 × 10 -7 s for the 2-D and 3-D simulations, respectively, and a total of 2.06 s physical time is run for the two numerical studies. Table II presents the required parameters for the computation of the cavitation model for both phases. Another 3-D computation is carried out on the same geometry with the same parameters except for a twice larger width and periodic side boundary conditions. 12 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
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ρ sat (kg/m 3 ) γ p ∞ (Pa) q (J/

B. Comparison with experimental data

The numerical results of the in-flow simulation are then compared to the experimental data from Barre et al. ( 2009) [START_REF] Barre | Experiments and modeling of cavitating flows in Venturi: Attached sheet cavitation[END_REF] . This experiment provides measures of time-averaged velocity, void ratio, and wall pressure profiles at stations located in the midspan of the venturi. 

Velocity and void ratio profiles

Wall pressure profiles

The mean wall pressure and pressure fluctuations profiles are extracted from computations and are presented in Fig. 5 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
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for the case with sidewalls present a pocket length of L c = 78.8 mm, which is consistent with the experiment. This length is selected to be the characteristic length for the current study. The maximum value of the time-averaged re-entrant jet velocity is also used as the characteristic velocity,

u jet max = 2.38 m.s -1 .
The selection of these two characteristic variables is motivated by the observation of the cavitating flow behavior and the identification of the leading mechanism. Moreover, the study of Dular and Bachert (2009) [START_REF] Dular | The issue of Strouhal number definition in cavitating flow[END_REF] defines the re-entrant jet velocity at the cavity closure and the length of the attached vapor pocket as the most correct values to investigate the cavitating flow over a hydrofoil. The maximum reverse flow is also considered as the characteristic velocity in non-cavitating flows with separation bubble, Hammond and Redekopp (1998) [START_REF] Hammond | Local and global instability properties of separation bubbles[END_REF] or Rist and Maucher (2002) [START_REF] Rist | Investigations of time-growing instabilities in laminar separation bubbles[END_REF] show the important role of the reverse flow in the triggering of instabilities. The Strouhal number is then defined as :

St = L c f u jet max . (28) 
In the literature, for sheet to cloud cavitation cases, the Strouhal number is mostly defined with inlet velocity [START_REF] Ganesh | Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities[END_REF][START_REF] Gnanaskandan | Numerical investigation of near-wake characteristics of cavitating flow over a circular cylinder[END_REF][START_REF] Budich | Numerical simulation and analysis of condensation shock in cavitating flow[END_REF] . The choice of the characteristic velocity will be justified for the venturi with side periodic boundary conditions A symmetrical attached cavity is detected in Fig. 6a with a longer cavitation pocket length near sidewalls than near of the midplane of the Venturi. The U-shape of the cavitation pocket is detected as described in many references [START_REF] Kubota | Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique[END_REF][START_REF] Peng | Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils[END_REF] . The lower amount of void ratio suggests vapor release and/or pocket oscillations around the mid-width. Figure 6b presents the cavitation pocket 17 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0052913 shape for the periodic case. Unlike the case with sidewalls, the cavity length is constant in all the venturi width. Then, the observation of the flow direction velocity in Fig. 7a and7b underlines the presence of the re-entrant jet along the wall. The jet geometry is symmetric and is not present close to sidewalls whereas it is localised in all the venturi width for the periodic case. Moreover, for the venturi with sidewalls, the vertical velocity is also symmetric, while the spanwise velocity is anti-symmetric. 

B. Dynamic analysis

A study of the flow dynamics is carried out to statistically interpret the behavior of the cavitation pocket and velocity components over time for configurations with sidewalls and with side periodic boundaries. First, the analysis is focused on the case with sidewalls. Figure 8 shows the void ratio α into the flow at six different times. It is worth to notice that the pocket shape is not symmetric and evolves with time. A small high-frequency vapor shedding appears around the cavity closure while the pocket seems to oscillate in the spanwise direction. A statistical analysis is carried out to check any data fluctuations within the venturi flow. The RMS results over the spanwise velocity v are presented in Fig. 9. The highest values of fluctuation are located at the pocket closure, mostly around the mid-width. Therefore, it corroborates the occurrence of a spanwise oscillation of the flow nearby this area.
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This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. Subsequently, the time evolution of flow variables is extracted for points in the flow direction and in the spanwise direction to perform Power Spectral Densities (PSD). The result is presented as a map of PSD along the longitudinal and spanwise axis. PSD maps provide information to identify any high energy frequencies and locate the associated phenomenon into the venturi. Figure 10 presents the PSD map over the spanwise direction, respectively for the void ratio and the spanwise velocity, positioning at almost the two thirds of the mean cavity length. A sample of signal used for the PSD computations can be observed in Fig. ). The same behavior as for the void ratio is underlined at both positions but with also a propagation of the dynamics downstream. Furthermore, at the eighth width positioning, the two first harmonics are also detected around the cavity closure and downstream. The PSD analysis identified a dominant dynamics at the Strouhal number St 0 . This phenomenon appears nearby the cavity closure and is propagated downstream. Furthermore, a motion of the cavitation pocket has been highlighted close to sidewalls. A spanwise velocity variation also emerges at the mid-width of the venturi. The dominant flow fluctuations and its location has been determined. However, a correlation study is carried out by extracting the flow variables over time close to both sidewalls to specify the cavity behavior. One can remark that, in Fig. 13, data are in opposition of phase, which can lead to a conclusion that the cavitation pocket motion is assimilated to a periodic oscillation from one sidewall to another.
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Dynamics analysis of the case with periodic boundaries is then carried out to invastigate the sidewall effects. First observations of snapshots do not allow to identify any periodic oscillations of the cavitation pocket. However, a three-dimensional dynamic behavior of the cavity is observed around the closure. Figure 14 shows PSD maps along the longitudinal axis for the void ratio 

VI. RE-ENTRANT JET

In this section, the behavior of the re-entrant jet is studied in regards to the cavitation pocket oscillation for the case with sidewalls. Figure 15 describes the re-entrant jet position in relation to the cavity position at different times over an oscillation period. As expected, the re-entrant jet is located nearby the cavity closure and is time-dependent. Moreover, PSD maps of the streamwise velocity highlight a dynamics around the cavity closure based on the Strouhal number St 0 . Thus, the re-entrant jet oscillates at the same frequency as the cavitation pocket from a spanwise wall to another. However, the position of the re-entrant jet compared to the cavity has to be determined. position. The time evolution of u and α indicates an opposition in both oscillations of the cavitation pocket and the re-entrant jet. When the pocket is asymmetric in the spanwise direction, the reentrant jet presents an opposite asymmetry. The cavity growth near side walls is smoother when compared to the cavity disappearance at the same position. For the re-entrant jet signal, it is the opposite behavior, high growth and a smoother decrease. Therefore, the maximum peaks of void ratio exactly correspond, in time, to the maximum ones of flow direction velocity, while both minimum ones are time-shifted. Hence, the spanwise movement is not uniform. When the cavity moves nearby sidewalls, it is pushed back with acceleration and, at the same time, the re-entrant jet motion changes its spanwise direction with an acceleration. Such behavior indicates a possible 25 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0052913
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Given a snapshot q ′ i = q iq which represents the fluctuation of the flow result for the density and the velocity components at a time t i , the data matrix Q is defined as:

Q = [q ′ 1 q ′ 2 q ′ 3 ... q ′ N ], (29) 
with q the temporal mean. The cavitating flow is modeled using a compressible formulation, therefore, the instantaneous energy is defined based on the Chu norm [START_REF] Chu | On the energy transfer to small disturbances in fluid flow (Part I)[END_REF] with the temperature fluctuation neglected. It is expressed with a spatial inner product:

kq ′ i k E = hq ′ i , q ′ i i E = q ′T i M q ′ i = q ′T i R T Rq ′ i = kRq ′ i k 2 , (30) 
M = R T R =         T 2 ργM 2 ∞ A 0 0 0 0 ρ 2 A 0 0 0 0 ρ 2 A 0 0 0 0 ρ 2 A         .
Where A stands for the diagonal cell volume matrix, T the temporal mean temperature, ρ the temporal mean density and M ∞ the far-field Mach number. The first step of the SPOD decomposition is to apply Welch's method to the data matrix. It consists of separating the data in N blk overlapping blocks of snapshots and then performed the discrete Fourier transform on each block. Thus, N blk matrix of N f req discrete frequency realisations are obtained. Then, the Fourier realisations of all blocks are grouped by frequency to obtain N f req matrix Q f r :

Q f r = [ q1 f r q2 f r q3 f r ... qN blk f r ], (31) 
where qi f r denotes the Fourier realisation of the i th block at the frequency f r. The second part of the SPOD decomposition is to compute the cross-spectral density matrix at each frequency:

S f r = Q f r Q * f r , (32) 
(.) * denotes the complex conjugate. Thus, the SPOD modes Ψ f r are generated by the eigenvalue decomposition of the cross-spectral density matrix:

S f r M Ψ * f r = Ψ f r Λ f r , (33) 
with Λ f r the diagonal matrix of eigenvalues representing the mode energy from the most energetic, corresponding to the leading SPOD mode, to the less one.
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This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0052913 for both cases. Arrows underline the time evolution of the mode. For the density in the simulation with sidewalls in Fig. 18a, the mode is antisymmetric and corresponds to a spanwise oscillation coupled with a non-uniform upstream flow. It is noticed that the mid-width plane is not affected by the fluctuations. Similarly, the spanwise oscillations are observed by the antisymmetric mode for the streamwise velocity in Fig. 19a and the vertical velocity in Fig. 21a with the upstream behavior. Conversely, the mode of the spanwise velocity in Fig. 20a is symmetric but also corresponds to the spanwise oscillation between sidewalls. However, in contrast with the density oscillation, the dominant mode for velocity components is also propagated downstream by the flow with a higher speed. These results substantiate the previous ones observed in the PSD analysis. By examining the harmonic modes, it is determined that, contrary to the dominant one, the first presents a symmetric behavior for density, longitudinal velocity and vertical velocity while it illustrates an antisymmetric behavior for the spanwise velocity. Nevertheless, the second harmonic mode shows the same symmetrical and antisymmetrical characteristics as the dominant mode. Hence, an alternation of symmetry and antisymmetry is observed in harmonic modes. The dominant SPOD mode for the case with periodic sides mainly differs from the sidewalls case for the density and the spanwise velocity component. In the first one, as observed in Fig. 18b,a 2012) [START_REF] Dular | Scale effect on unsteady cloud cavitation[END_REF] . In this case, vapor release into the flow appears under certain conditions and, for one of the studied geometry, the cavity presents a non-symmetrical shape. The authors suggest that it is caused by the re-entrant jet, which, besides going upstream, turns to the side. Nevertheless, due to the higher divergent angle, the pocket is cut by the re-entrant jet and leads to a vapor release. The second experiment is a flow around a guide vane profile carried out by Timoshevskiy et al. (2016) [START_REF] Timoshevskiy | Cavitating flow around a scaled-down model of guide vanes of a high-pressure turbine[END_REF] . Under the vapor release regime, non-symmetrical cavitation pocket behavior appears, as for the previous experiment. However, this regime is defined as non-persistent by the authors. Both experiments present a vapor release regime which could explain that the re-entrant jet bifurcation and the cavity shape do not lead to an identical spanwise oscillation. Nonetheless, it is suggested that the leading mechanism of those phenomena could be the same. The behavior of the re-entrant jet against the cavitation pocket in both experiments and the current work is identical: when the cavity is expanded on one side, the re-entrant jet is more developed on the other side.

The SPOD analysis validates the presence of a dominant dynamics of the flow at a Strouhal number of 1.09. First, for the case with sidewalls, such a phenomenon is associated to the spanwise oscillation of the flow. The re-entrant jet is then captured as observed in the mode dynamics for density and velocity components. For this reason, it presents a significant role in the spanwise oscillation. The present study does not give enough information to ensure that the re-entrant jet 31 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0052913

is the mechanism which leads to the oscillation. Nevertheless, experiments describing the vapor release regime considered that the shedding is triggered by the re-entrant jet which "cuts" the cavity by going upward. Therefore, given the promiscuity of the physical phenomenon, it can be presumed that the re-entrant jet is the leading mechanism of the oscillation for the present case.

The spanwise oscillation is easily observed through the dominant mode dynamics for the spanwise velocity which highlights an alternation of positive and negative velocity around the cavity closure. By analysing the predominant mode dynamics for the velocity components, it is noticed that the oscillation pattern is simultaneously propagated upstream, by the re-entrant jet, and downstream by the main flow. The downstream flow is thus highly influenced by the pocket and the re-entrant jet dynamics while the oscillation seems to be self-sustained by the upstream flow suggesting the possible existence of a global mode driving this dynamic.

Fluctuations observed just downstream the cavitation pocket are interpreted as an oscillation of magnitude for the vertical and the streamwise velocity components. When the pocket is expanded near a sidewall, the magnitude of these two components is increased on the same side and decreased on the other. This information involves that the longer the cavity is, the more accelerated the downward and the downstream speeds are. When the pocket moves to the other side, the velocity effects are reversed. Hence, the cavitation pocket interferes with the flow can be seen as a dynamic fluidic obstacle.

The results of the simulation with periodic sides boundaries give relevant information about the sidewalls impact on the flow. For this case, the cavity and the re-entrant jet shapes are unchanged along the spanwise axis. Therefore, the U-shape of the cavitation pocket and the re-entrant jet shape are linked to the presence of sidewalls. However, the extraction of a dominant mode at the same Strouhal number suggests that the sidewalls do not trigger the spanwise oscillation but only amplify a phenomenon. The dominant dynamics is then led by a mechanism specific to the cavitating flow. The Strouhal number of 1.09 linked to the dominant mode is obtained by using two characteristic quantities: the length of the cavitation pocket L c = 0.0788 m and the maximum time-averaged velocity of the re-entrant jet at the midspan u max jet = 2.38 m.s -1 . Hence, the mechanism highlighted by the current study seems to be inherent to the pocket development.

For the periodic case, the associated energy of the two first SPOD modes extracted at the Strouhal number St 0 are close. The impact of these modes on the flow is then almost identical. Furthermore, both present an opposite spanwise movement of the fluctuations for the density and the spanwise velocity component. The two modes could be described as a bifurcation of the flow with an equal probability of appearance. This hypothesis could be investigated by simulating the case on a much longer time.

IX. CONCLUSION

The 3-D effects of cavitating flow, with a partial cavity, are studied in the case of a 4 o divergent angle venturi. Two configurations, with sidewalls and with periodic side boundaries, are computed for an identical physical time. Time-averaged data and dynamic analysis highlight flow structure differences, in particular in the cavitation pocket and re-entrant-jet shapes. Nonetheless, an identic Strouhal number of 1.09 linked to flow fluctuations is extracted in both cases. The SPOD analysis provides details about this phenomenon. A dominant mode at this Strouhal number is captured for both cases. For the simulation with sidewalls, it represents a spanwise oscillation of the flow observed through the cavitation pocket and re-entrant jet oscillation. It is noticed that the cavity and the re-entrant jet oscillations are in opposition of phase. Moreover, the flow bypassing the cavitation pocket accelerates and follows the pocket oscillation. Thus, the cavitation pocket acts as a dynamic obstacle. For the case with periodic spanwise boundaries, the dominant SPOD mode is energetically close to the second one at the same Strouhal number. Both show similar dynamics but with an opposite spanwise motion. These two modes could represent a flow bifurcation concerning spanwise fluctuations and are ideally equiprobable. Finally, the analysis of both cases involves that 3-D effects, non-related to the presence of sidewalls, appeares in this cavitating flow configuration.

The results also suggests that the phenomenon is linked to two characteristic variables of the flow: the cavity length and the maximum of the time-averaged re-entrant jet velocity at midspan. The link between the extracted Strouhal number and the two characteristic variables could be investigated. Other flow configurations presenting distinct cavity length could be used to attest the robustness of this conclusion.

A0072A06362 made by GENCI. The authors thank Jean-Christophe Loiseau for providing the SPOD code.

Appendix A: Modified third order Jameson-Schmidt-Turkel scheme For stiff problems like sheet cavitation modeled with a 1-fluid method, centered schemes with artificial dissipation has been selected. The Jameson-Schmidt-Turkel (JST) scheme is a secondorder scheme proposed by Jameson et al. (1981) [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF] . It is composed of a second-order centered scheme and a dissipation term:

F c i+ 1 2 , j = 1 2
(F c i+1, j + F c i, j ) -D 1 i+ 1 2 , j (w i+1, jw i, j ).

(A1)

In this 2-D example, the flux is computed on the interface i + 1 2 in the x direction. The term D 1 represents the dissipation separated in two parts. The first part is a second-order dissipation based on a pressure sensor η i and the second part is a four-order dissipation. It can be written, for the current example, as: D i+1/2, j (w i+1, jw i, j ) = ε

(2) i+1/2, j ρ(A i+1/2, j )(w i+1, jw i, j ) -ε

i+1/2, j ρ(A i+1/2, j )(w i+2, j -3w i+1, j + 3w i, jw i-1, j ), (A2) with ρ(A i+1/2, j ) the spectral radius of the jacobian matrix A. The term ε

(2) i+1/2, j is defined with a parameter k [START_REF] De Lange | On the mechanism of cloud cavitation -experiment and modelling[END_REF] ∈ [0, 1] and the pressure sensor η i :

ε (2) i+ 1 2 , j = k (2) max[η i ; η i+1 ], η i = |p i+1 -2p i + p i-1 | p i+1 + 2p i + p i-1 .
This sensor allows triggering the second-order dissipation only around high pressure gradients.

The term ε

i+1/2, j is defined with a parameter k (4) ∈ [0.008, 0.064] and allows to damp small oscillation far from shocks:

ε (4) i+ 1 2 , j = max h 0, k (4) -ε 2 i+ 1 2 , j i
Nevertheless, in the 1-fluid flow, high density gradients appear along with the interface between liquid and vapor. To prevent computational problems, a third term is added to the dissipation with the same formula that the ε

(2) i+1/2, j but with another sensor η (I)

i based on the density:

η (I) i = |ρ i+1 -2ρ i + ρ i-1 | ρ i+1 + 2ρ i + ρ i-1 . (A3)
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 10 FIG. 1: Schematic view of the venturi used in the computation.

FIG. 3 :FIG. 4 :

 34 FIG. 3: Time-averaged comparison at midspan between experiment, 2-D, 3-D and 3-D periodic for void ratio (left) and velocity (right) at stations S1 (top) and S2 (bottom).

FIG. 5 :

 5 FIG. 5: Time-averaged comparison between experiment, 2-D, 3-D and 3-D periodic for wall pressure and wall pressure RMS over wall pressure.

FIG. 6 :

 6 FIG. 6: Volume rendering of the time-averaged void ratio: (a) for the venturi with sidewalls; (b)

FIG. 7 :

 7 FIG. 7: Volume rendering of the time-averaged streamwise velocity : (a) for the venturi with sidewalls; (b) for the venturi with side periodic boundary conditions

t 6 FIG. 8 :

 68 FIG. 8: Time evolution of the attached cavity with snapshots separated by Δt = 4.58 10 -3 s with a volume rendering; (b)-(g) Snapshots extracted at different time represented in the void ratio signal (a).

13 .FIG. 9 :FIG. 10 :

 13910 FIG. 9: Volume rendering of the RMS fluctuation of the spanwise velocity v.

Figure 11

 11 Figure 11 shows the PSD map over the streamwise direction for the void ratio at the quarter width. As previously noticed, neither particular dynamic is detected in the mid-width for the void ratio. Nevertheless, at the quarter width, the highest values of the PSD are observed around the cavity closure at the same Strouhal number St 0 .

Figure 12

 12 Figure 12 presents the PSD map over the streamwise direction for the spanwise velocity, at two 21

FIG. 12 :

 12 FIG. 12: PSD maps for spanwise velocity v along longitudinal axis at a vertical distance z * p = 0.032 from the bottom wall : (a) at y * = L * y /8; (b) at y * = L * y /2.

FIG. 13 :FIG. 14 :

 1314 FIG. 13: Temporal evolution of the flow direction velocity u and the void ratio α at x * = 0.64 along both sidewalls (one in red, the other in blue) for the case with sidewalls.

Figure 16 presentst 6 FIG. 15 :

 16615 Figure 16 presents the time evolution of the void ratio α and the flow direction velocity u around the cavity closure at the quarter width. The negative values of the streamwise velocity component illustrate the re-entrant jet position and the highest value of the void ratio represents the cavity 24

  FIG. 16: Time evolution of the flow direction velocity u and the void ratio α at x * = 0.64 and y * = L y /4 for the case with sidewalls.

Figure 17 FIG. 17 :FIG. 18 :

 171718 Figure 17 presents the SPOD spectrum for both studied cases. The Strouhal number St 0 = 1.09and its harmonics emerge from the spectrum for the simulation with sidewalls. Similarly, for the periodic sides simulation, the Strouhal number St 0 is extracted from the spectrum but with only the first harmonic. Hence, the dominant flow mechanism seems to be characterised by the Strouhal number St 0 . Moreover, for the sidewalls case, the observation of the energy gain gap between the first and the second SPOD mode at the corresponding frequency proves that the associated mechanism is mostly led by the first mode. Nevertheless, for the periodic sides case, the energy gap is between the second and the third mode. The associated mechanism is then mostly driven by the two first modes.

FIG. 19 :FIG. 20 :FIG. 21 :

 192021 FIG. 19: Volume rendering of the dominant mode of the SPOD for u at St = 1.09; � : Time evolution behavior; (a) for the case with sidewalls; (b) for the case with periodic side boundaries.
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	be written as:
	Saurel et al. (2008) 58 and written
	by Goncalves (2013) 59 in a four-equation model. The mass flow rate ṁ from liquid to vapor 59 can
	6

TABLE I :

 I Geometric dimensions.

A 4 o divergence angle venturi configuration, as the one used in the experiment of

Barre et al. (2009) 

TABLE II :

 II Parameters of the cavitation model.

					kg)	Cp (J/K kg)
	liquid	998.16	1.01	1.211 × 10 7	-1.142 × 10 6	4183
	vapor	0.0173	1.32	0	1.985 × 10 6	1883
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Hence, the dissipation term ε

(2) i+1/2, j could be written as a sum of a dissipation around shocks and another around interface with their own constant k [START_REF] De Lange | On the mechanism of cloud cavitation -experiment and modelling[END_REF] and k

(2)

Finally, the second-order centered scheme could be updated to a fourth-order one:

The global numerical scheme (centered part plus dissipation) is, therefore, a third-order one.