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Abstract

Avoiding acetate accumulation is a major challenge in Escherichia coli fed-batch
cultures, since it leads to an inhibition of the cell respiratory capacity. A closed-loop
regulation ensuring a low acetate concentration offers a practical solution to maintain
the cultures near the optimal operating conditions.

In this work, a robust Generic Model Controller (GMC) is designed and implemented
to regulate the acetate concentration in E. coli BL21 (DE3) fed-batch cultures. To
compensate for model mismatch, disturbances, and measurement noise, a robust design
using the LMI formalism is achieved, considering robustness and transient performance
requirements. Since the acetate concentration is not available for on-line measurement,
an Unscented Kalman Filter (UKF) is also designed and implemented to estimate the
acetate concentration based on an on-line biomass measurement.

The proposed GMC-UKF strategy is validated through simulation runs and exper-
imental tests at lab-scale. The control strategy shows good performance in regulating
the non-measured acetate concentration. The estimation of this latter signal from the
biomass measurement is performed accurately by the UKF.
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1. Introduction1

Recombinant proteins are widely used to produce a vast array of biopharmaceutical2

products. One of the common ways to achieve industrial-scale production is through3

fed-batch cultivation of genetically modified strains of Escherichia coli. The operational4

advantage is the scalable process, the low operational costs, and the relatively simple5

media conditions. On the other hand, Escherichia coli is known for its physiological and6

biological features, such as flexible culture conditions, fast growth and high production7

yields [1, 2].8

The main challenge to ensure the process efficiency and productivity is the accumu-9

lation of acetate, a metabolic by-product inhibiting cell growth [3]. Acetate formation10

occurs when the capacity for energy generation within the cell is exceeded, due to high11

flux into the main metabolic pathways caused by an excess in the carbon source [4, 5].12

This mechanism is referred to as overflow metabolism [6].13

Acetate presence in high concentration causes the inhibition of the cell respiratory ca-14

pacity, leading to the decrease of biomass production yield and consequently the decrease15

of the recombinant protein production [7, 8].16

Keeping the feeding at a sufficiently low rate prevents acetate formation, but can lead17

to low productivity and a long cultivation time. It is therefore required to determine a18

feeding profile that maximizes biomass productivity while avoiding overflow metabolism19

[9].20

Several optimization strategies and process control architectures have been developed21

to reduce or avoid overflow metabolism [10–17]. Basically, two different approaches can22

be followed. The first approach consists in controlling the specific biomass growth rate23

[18, 19] and to impose a reference biomass evolution profile. This type of control is made24

possible by the availability of reliable on-line biomass probes which allow convenient25

real-time implementation. However, the definition of a biomass reference profile is not26

straightforward as it relies on prior process knowledge (i.e., a growth model based on27

past experimental observations), and in practice, a suboptimal solution is often selected28

such as to ensure sufficient margin of security. Limiting the specific growth rate presents29

some practical and metabolic limitations, since its maximal level depends on the oxidative30

capacity of the cells which is by essence, uncertain. Therefore, targeting a growth rate31

close to its maximal value could lead to several uncontrolled metabolic switches provoking32

latencies. An example can be found in [20] where the glucose and oxygen consumption33

rates and CO2 evolution rate suddenly and reproducibly decreased, causing a break of34

the metabolism for a period of 40 min, and a drop in the biomass productivity.35

The second approach consists in regulating, either the substrate or the by-product36

concentration at specific levels [14–16]. The substrate concentration should be close37

to a threshold corresponding to the critical oxidation capacity, while the by-production38

concentration should be close to zero. The main obstacle is the difficulty of on-line imple-39

mentation, due to the requirement of accurate measurements of low-level concentrations40
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of acetate and/or glucose.41

It is reported in [21] that industrially relevant inhibitory levels of acetate concentration42

are on the order of 100 mM (6 g/L). The authors studied the effect of acetate presence in43

the culture medium on E. coli metabolism and showed that a concentration of 16.67 mM44

(1 g/L) corresponds to less than 20% drop in the growth rate compared to its maximal45

value.46

In this context, the contribution of this paper is twofold:47

� to propose a control strategy combining robust linearizing control with a software48

sensor to monitor and regulate the acetate concentration on-line. In this way, the49

need of an accurate process model is less pressing, and acetate concentration can50

be reconstructed from the biomass signal.51

� to develop a proof of concept through experimental runs at lab-scale. Indeed, even52

though several control paradigms have been proposed in earlier publications there53

is a dire lack of reports on experimental validation, most of the published results54

being based on simulation studies.55

To the authors’ knowledge, the only successful report of an experimental application56

of linearizing control to fed-batch cultures of Escherichia coli cultures is published in57

[10], where the acetate concentration is regulated to a pre-defined set-point. However,58

the control strategy relies on an accurate knowledge of the model parameters, which is59

a major drawback since a bioprocess model is always uncertain. Parameter adaptation60

strategies are usually applied to compensate the uncertainty in the kinetic terms of the61

process model. However, stability is not guaranteed in presence of unmodeled dynamics62

and high noise levels, and this is why we propose a robust LMI-based linearizing control,63

which will be able to alleviate this difficulty. Moreover, the control loop developed in [10]64

is based on a flux injection analysis (FIA) device, whose market distribution has long been65

disrupted, and no other similar device has been (re)developed in the meantime. The use66

of state estimation, or software sensors, seems therefore the most appropriate solution67

to avoid the burden of complex, unreliable, sensing techniques. The results reported in68

[10] show that exponential growth could not be sustained in the experimental studies,69

which might be an indication of the lack of accuracy of the FIA device. In this study, we70

propose an Unscented Kalman Filter (UKF) for the online recontruction of the acetate71

concentration.72

More specifically, we aim at the development of Generic Model Control (GMC) [22],73

which is an adaptive control strategy based on feedback linearization, embedding the74

process non-linearities in the design of the control law. GMC has been used in several75

process control applications, e.g. [23] where it was applied to track the foreign protein76

level reference trajectory in E. coli fermentations, [24] where is was applied to anaerobic77

digestion, and [25] where dual product composition was controlled in an industrial high78

purity distillation column. In this study, a robust version of the Generic Model Control79
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(GMC) strategy is developed to control the acetate concentration to a low predefined80

value. LMIs are considered in the control synthesis to derive the GMC control gains.81

The control design includes performance requirements using the regional pole placement82

technique. The approach ensures both the robust stability of the process in presence of83

model uncertainties and measurement noise, and the desired transient performance of the84

closed-loop system.85

This paper is organized as follows. In section 2, the mechanistic model describing E.86

coli growth is presented. The Generic Model Control strategy is presented and applied to87

the E. coli model in section 3. In section 4, the robust control design approach with the88

LMIs formulation is presented. Process observability analysis and acetate estimation89

using an Unscented Kalman Filter (UKF) are developed in section 5. Numerical simula-90

tion results are illustrated in section 6. Section 7 presents the materials and methods and91

experimental results are detailed and discussed in section 8. Conclusions and perspectives92

end this study in section 9.93

2. Process dynamic model94

In this section, we consider a generic mechanistic model describing E. coli growth in95

fed-batch cultures.96

This model describes E. coli cells catabolism through the following three main reac-97

tions [26]:98

kS1S + kO1O
µ1 X−−−→ kX1X + kC1C (1a)

kS2S + kO2O
µ2 X−−−→ kX2X + kA2A+ kC2C (1b)

kA3A+ kO3O
µ3 X−−−→ kX3X + kC3C (1c)

99

where X,S,A,O,C are respectively, the concentrations in the culture medium of biomass,100

substrate (glucose), acetate, dissolved oxygen, and carbon dioxide. kξi(ξ = X,S,A,O,C ;101

i = 1, 2, 3) are the yield coefficients. µ1, µ2, and µ3 are the specific rates related to the102

catabolic reactions describing substrate oxidation (1a), acetate production (fermentation)103

(1b), and acetate oxidation (1c) [27]. Their proposed kinetic structures read: [28]:104

µ1 =
min(qs, qscrit)

kS1
(2a)

µ2 =
max(0, qs − qscrit)

kS2
(2b)

µ3 =
min(0, qAC)

kA3
(2c)
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The kinetic terms related to consumption rates q? are defined by:

qs = qsmax

S

Ks + S
(3a)

qscrit =
qOmax

kOS

KiA

KiA + A
(3b)

qAC =
kOS(qscrit − qs)

kOA

A

KA + A
(3c)

where qs and qAC denote the substrate and acetate consumption rates respectively,105

qsmax and qOmax are the maximal consumption rates for substrate and dissolved oxygen106

respectively, and qscrit represents the substrate critical consumption rate. In the following,107

mass balances are normalized with respect to the substrate and acetate (kS1 = kS2 = kA3108

= l).109

The kinetic model (2) is based on the Sonnleitner and Käppeli bottleneck assumption110

[29], applied to Saccharomyces cerevisiae (Figure 1). Two different operating modes can111

be distinguished depending on the substrate concentration level. If the latter is higher112

than the critical threshold corresponding to the available oxidative capacity (S > Scrit),113

acetate is produced by the cells through the fermentative metabolic pathway (reactions114

(1a) and (1b)). The culture is said in respiro-fermentative mode (RF). Conversely, a115

substrate concentration lower than the critical threshold (S < Scrit) leads to substrate116

and acetate (if present in the culture medium) oxidation (reactions (1a) and (1c)), and117

the culture is said in respirative mode (R). When the substrate concentration is at the118

critical level and fills exactly the respirative capacity, the culture is in optimal condi-119

tions corresponding to the edge between the two operating modes, and acetate is neither120

produced nor consumed.121

Applying component-wise mass balances to (1), we obtain the following differential
equations [28]:

Ẋ = (kX1µ1 + kX2µ2 + kX3µ3)X −D X (4a)

Ṡ = −(µ1 + µ2)X −D (S − Sin) (4b)

Ȧ = (kA2µ2 − µ3)X −D A (4c)

Ȯ = −(kO1µ1 + kO2µ2 + kO3µ3)X −D O +OTR (4d)

Ċ = (kC1µ1 + kC2µ2 + kC3µ3)X −D C − CTR (4e)

V̇ = Fin (4f)

where Sin is the substrate concentration in the feed, and Fin is the inlet feed rate. V is122

the culture medium volume and D is the dilution rate (D =
Fin
V

).123

OTR and CTR represent respectively the oxygen transfer rate from the gas phase to124

the liquid phase and the carbon transfer rate from the liquid phase to the gas phase, that125

can be modeled as follows [30]:126
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OTR = kLaO (Osat −O) (5)

CTR = kLaCO2 (C − Csat) (6)

where kLaO and kLaCO2 are respectively the volumetric transfer coefficients of oxygen and127

carbon dioxide. Osat and Csat are respectively the dissolved oxygen and carbon dioxide128

concentrations at saturation.129

S
u

b
st

ra
te

S < Scrit

A
ce

ta
te

︸︷︷︸
Respirative mode

S
u

b
st

ra
te

︸︷︷︸
Optimal conditions

S = Scrit

AcetateS
u

b
st

ra
te

︸︷︷︸
Respiro fermentative mode

S > Scrit

Figure 1: Illustration of the bottleneck assumption ([29]) describing the limited respiratory capacity

The optimal operating conditions maximizing the biomass productivity are at the
boundary of the respiro-fermentative and respirative modes [14], where all the available
substrate is assumed to be allocated for biomass production. Thus, the specific fermen-
tation rate µ2 and the specific acetate oxidation rate µ3 are equal to zero:

µ1 = qs = qscrit (7)

µ2 = 0 (8)

µ3 = 0 (9)

Maintaining the culture at the edge between the respirative and respiro-fermentative130

modes requires controlling the substrate concentration to the critical value Scrit. An131

efficient on-line substrate measurement around this value is required [14], but the con-132

centration level is below the resolution of currently available glucose probes.133

At the optimal operating conditions, the acetate quantity (V A) is constant. How-134

ever, the volume evolution is exponential, and the acetate concentration must therefore135

decrease with the same rate to maintain V A constant and reach the optimal operating136

conditions. This is a difficult task, especially at a concentration lower than the sensitivity137

level of the measurement and estimation tools.138
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A practical sub-optimal solution to these limitations is to control the acetate concen-139

tration around a low value Aref , depending on the sensitivity of the measurement devices140

and the accuracy of the estimation methods.141

3. Generic Model Control (GMC)142

3.1. GMC background143

The Generic Model Control (GMC) is a two-step control approach developed by Lee
and Sulivan [31]. In a first step, a feedback linearizing controller is derived (as illustrated
in Figure 2) assuming a perfect process knowledge, and allowing the linearization of the
nonlinear process behavior. In a second step, the output is forced to track a reference
trajectory using a proportional-integral controller. Consider the following single-input
single-output (SISO) system:

d

dt
x = f(x) + g(x)u (10)

y = h(x) (11)

where x ∈ Rn is the state vector, y ∈ Rm is the process output vector, f and g are
nonlinear functions, and h is the measurement function. The time derivative of the
output y is given by:

d

dt
y = ẏ =

∂h

∂x
ẋ =

∂h

∂x
[f(x) + g(x)u] = Lfh(x) + Lgh(x)u (12)

where L•h(x) = ∂h
∂x
• (x) is the Lie derivative of h along •. If Lgh(x) 6= 0 the following

input:

u =
1

Lgh(x)
(−Lfh(x) + û) (13)

leads to a linear relation between y and the fictive input û ( i.e. ẏ = û) [32]. The144

equivalent linear model is then coupled to a proportional integral (PI) controller of the145

form:146

û = λ1(yref (t)− y(t)) + λ2

∫ t

0

(yref (τ)− y(τ))∂τ (14)

where yref is the reference, and λ1 and λ2 are the controller parameters chosen accord-147

ingly to the desired closed-loop system behavior. The integral action role is to account148

for model uncertainties, nonlinearities, and disturbances.149

150
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yref
PI Controller

ε
Linearizing law

û
System

u = Fin y

x

−

Figure 2: Generic model control scheme

The nonlinear closed-loop stability and the performance analysis of the GMC algo-151

rithm are detailed in [33]. Robust stability is ensured for any positive values of λ1 and λ2.152

The proof is based on finding a strict Lyapunov function for the nominal process model153

and on applying a perturbation theorem. Another stability proof for a similar control154

structure with kinetic parameter estimation using the Kalman filter is given in [17].155

3.2. Application of GMC to E. coli cultures156

GMC is applied to an E. coli culture as illustrated in Figure 3. Considering acetate157

concentration as the controlled output, and assuming its availability for measurement158

(y = A).159

Aref
GMC

ε u = Fin A

x

−

Figure 3: Generic model control applied to fed-batch E. coli cultures

As the theoretical value of Scrit is very small (below 0.1 g/L) and assuming a quasi-160

steady state of S (i.e. no accumulation of glucose in the neighborhood of the optimal161

operating conditions), the small quantity of substrate V S is almost instantaneously con-162

sumed by the cells (d(V S)
dt
≈ 0 and S ≈ 0), and Equation (4b) yields:163

µ2X = −µ1X +DSin (15)

where µ1 and µ2 are nonlinear functions of S, A and O as given by equations (2) and (3).164

Replacing µ2X by Equation (15), the mass balance equation of A (Equation (4c)) can be165

expressed as:166
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Ȧ = −kA2µ1X − µ3X − u (A− kA2Sin) (16)

where u = D = Fin

V
is the control input. Applying the GMC scheme yields:

Ȧ = û = λ1(Aref − A) + λ2

∫ t

0

(Aref − A)∂τ (17)

Equating (16) and (17), the following control law is obtained:

Fin = V
û+ (kA2µ1 + µ3)X

kA2Sin − A
(18)

û = λ1(Aref − A) + λ2

∫ t

0

(Aref − A)∂τ (19)

where (kA2µ1 + µ3) is an assumed uncertain kinetic term. The next section therefore167

explores a robust control design in order to compensate this uncertainty.168

4. Robust control design169

The linearizing control law obtained in the previous section can be written in the
following form:

Fin = V
û+ θX

kA2Sin − A

û = λ1(Aref − A) + λ2

∫ t

0

(Aref − A)∂τ

(20)

where θ is the kinetic term given by:

θ = kA2µ1 + µ3 (21)

Structural and parametric uncertainties as well as estimation errors can be lumped into
a global parametric error:

δ = θ̄ − θ (22)

where δ is a nonlinear function of (S,A,O) representing possible inexact cancellations
of nonlinear terms due to model uncertainties, and θ̄ represents the hypothetical exact
(unknown) value. Rewriting the control law in Equation (20) using the new expression
of the kinetic term from Equation (22), we obtain:

Fin = V
û+ θ̄X − δX
kA2Sin − A

(23)
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which corresponds to the perturbed reference system:

Ȧ = û− δX (24)

Following a similar approach to the one developed in [14], the time-varying parameter δ
is assumed bounded and belonging to the set ∆ defined by:

∆ := {δ : δ ≤ δ ≤ δ̄} (25)

with δ and δ̄ respectively representing the minimal and maximal values of the assumed170

bounded polytope set.171

The control parameters λ1 and λ2 are designed to ensure some robustness and tracking172

performance to the overall closed-loop system. To this end, the acetate tracking error173

(Ã1 = Aref−A) dynamics can be modeled by the following augmented system, illustrated174

in Figure 4:175

˙̃A1 =
d

dt
(Aref − A) = −û+ δX

˙̃A2 = Aref − A = Ã1

(26)

Considering the state vector x = Ã =
[
Ã1 Ã2

]T ∈ Rn, the performance output e = Ã1 =
(Aref − A) ∈ Rne and the disturbance w = [X Aref ]T ∈ Rnw , the control problem can
be formulated as a state feedback controller (û = Kx) applied to the augmented system
M:

M :

{
ẋ = AMx+Bww +Buû

e = Cex+Deww +Deuû
(27)

M
w

û

e

x

K

Figure 4: Robust control scheme

The state-space matrices are given by:

AM =

[
0 0
1 0

]
Bw =

[
δ 0
0 0

]
Bu =

[
−1
0

]
Ce = [1 0] Dew = [0 0] Deu = 0

(28)
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and the representation of the closed-loop system is therefore given by:[
ẋ
e

]
=

[
Af Bf

Cf Df

] [
x
w

]
=

[
AM +BuK Bw

Ce +DeuK Dew

] [
x
w

]
(29)

4.1. Robustness constraints176

The control design problem consists in determining the controller parameters λ1 and177

λ2 so as to limit the infinity norm of the closed-loop transfer function within a predefined178

performance index, (
∥∥T (s) = Df + Cf (sIn − Af )−1Bf

∥∥
∞ < γ∞), where s is the Laplace179

variable. First, the following assumptions on the plant parameters are considered:180

Assumption 1. The pair (AM, Bu) and (AM, Ce) are respectively stabilizable and de-181

tectable182

Assumption 2. Dyu = Ony ,nu183

Under the previous assumptions, the Bounded Real Lemma [34] for continuous-time184

systems gives an equivalent LMI formulation of the control problem:185

Lemma 1. The H∞ norm of the continuous-time transfer function T (s) associated to the
closed-loop system (29) is strictly smaller than γ∞ if and only if there exists a symmetric
positive definite matrix Q∞ verifying:

Q∞ > 0 AfQ∞ +Q∞A
T
f Bf Q∞C

T
f

BT
f −γ∞Inw DT

f

CfQ∞ Df −γ∞Ine

 < 0
(30)

According to the bounded real lemma, the closed-loop system (29) is stable if and
only if there exists: Q∞ = QT

∞ > 0 verifying: AQ∞ +BuKQ∞ +Q∞A
T +Q∞K

TBT
u Bw Q∞C

T
e +Q∞K

TDT
eu

BT
w −γ∞Inw DT

ew

CeQ∞ +DeuKQ∞ Dew −γ∞Ine

 < 0 (31)

Considering L = KQ∞, the following LMI is obtained: AQ∞ +BuL+Q∞A
T + LTBT

u Bw Q∞C
T
e + LTDT

eu

BT
u −γ∞Inw DT

ew

CeQ∞ +DeuL Dew −γ∞Ine

 < 0 (32)

and the controller given by K = LQ−1∞ ensures a level of robustness w.r.t the bounded186

uncertainty δ. Next, the desired performance constraints are defined and added to the187

robustness condition (32).188
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4.2. Performance constraints189

Besides ensuring the robustness of the closed-loop, it is desirable to achieve some190

performance in terms of the transient response (e.g., damping, response time, etc.). In191

other words, constraints are added to the location of closed-loop poles of system (29).192

For a second-order system with poles λ = −ζωn± jωd, the step response is character-193

ized by the undamped natural frequency ωn = |λ|, the damping ratio ζ, and the damped194

natural frequency ωd. To ensure a desired transient response, specific bounds are imposed195

on these quantities, thus constraining the closed-loop poles λ in a prescribed region of196

the complex plane. Pole placement constraints can be expressed using LMI regions,197

which are known to have interesting geometric properties for control purposes (convexity,198

symmetry, ...) [34]. A suitable region satisfying this criterion is the intersection of the199

half-plane s < −α < 0, the disk of radius r and the conic sector defined by an angle Θ.200

The corresponding region S(α, r,Θ) is defined as follows:201

S(α, r,Θ) = {a < −α < 0, |s = a+ jb| < r, tan Θa < −|b|} (33)

In this way, it is possible to set a minimum decay rate α, a minimum damping ratio202

ζ = cos(Θ), and a maximum undamped natural frequency ωd = rsin(Θ) [35].203

r

Θ

α

S

Figure 5: Representation of the region S(α, r,Θ)

The poles of the closed-loop system (29) are contained in the region S(α, r,Θ), if there204

exists a symmetric positive definite matrix Q = QT verifying [34]:205

AfQ+QATf + 2αQ < 0[
−rQ AfQ
QATf −rQ

]
< 0[

sin Θ
(
AfQ+QATf

)
cos Θ

(
AfQ−QATf

)
cos Θ

(
QATf − AfQ

)
sin Θ

(
AfQ+QATf

) ] < 0

(34)

Our control design problem consists then in finding a state-feedback gain K that:206
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� guarantees the H∞ performance ‖T (s)‖∞ < γ∞.207

� places the closed-loop poles in the LMI region S(α, r,Θ) defined by Equation (33).208

The first criterion (robustness) is ensured by solving Equation (32), and computing209

the matrix Q∞. On the other hand, a sufficient condition to ensure the performance210

constraints given by Equation (34) is to take Q = Q∞, yielding:211

AfQ∞ +Q∞A
T
f + 2αQ∞ < 0[

−rQ∞ AfQ∞
Q∞A

T
f −rQ∞

]
< 0[

sin Θ
(
AfQ∞ +Q∞A

T
f

)
cos Θ

(
AfQ∞ −Q∞ATf

)
cos Θ

(
Q∞A

T
f − AfQ∞

)
sin Θ

(
AfQ∞ +Q∞A

T
f

) ] < 0

(35)

The robust GMC control design procedure based on LMIs is summarized in the212

following steps:213

� Step1: Select a suitable range for the uncertain variable δ.214

� Step2: Determine the values of α, r, Θ in order to meet a suitable transient215

performance.216

� Step3: Solve (off-line) the bounded real lemma (Equation (32)) and the perfor-217

mance LMI (Equation (35)) simultaneously, to compute the gain K, and obtain218

the robust GMC controller parameters λ1 and λ2.219

5. Acetate estimation220

The acetate concentration needs to be determined on-line to apply the proposed GMC221

strategy and drive the system close to the optimal operating conditions. However, no222

device presenting a sufficient level of accuracy is currently available on the market. This223

study proposes estimating the acetate and glucose concentrations from the viable biomass224

concentration signal, which is efficiently measurable with low noise amplitudes via spec-225

trophotometric probes. However, before implementing a state estimation algorithm, the226

mechanistic model presented in section 2 has to be observable.227

Observability is a system property that relates to the possibility of estimating the228

system state based on the available measurement information. A detailed analysis of the229

observability of the bioprocess model under consideration is given in [30]. The biomass230

concentration measurement is sufficient to reconstruct the acetate concentration as long231

as the substrate concentration remains at a sufficiently low level (0 g/L < S < 0.1 g/L).232

Since the bioprocess’s observability is guaranteed, acetate concentration can be esti-233

mated using a state observer, which can take various forms [36]. In [30], an extended234
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Kalman filter (EKF) was applied -under specific conditions- to estimate the glucose and235

acetate concentrations using various sensor configurations. Whereas the EKF was able236

to reconstruct the acetate concentration from the biomass measurement efficiently, the237

strong nonlinearities in the kinetic model (4) can lead to significant estimation errors and238

a low convergence rate EKF based on the linearization of the nonlinear process.239

In the present study, the Unscented Kalman Filter (UKF) [37, 38] is considered.240

Unlike the EKF, the UKF does not involve any linearization around the current state241

estimate. A set of sample points is propagated through the nonlinear system, which allows242

the reconstruction of the state estimate’s mean and covariance under the assumption of243

a Gaussian distribution of the noise.244

The UKF algorithm implemented in this study is detailed in [39], where it was imple-245

mented for a similar overflow mechanistic model for fed-batch cultures of hybridoma cells.246

Since the biomass measurements are provided in discrete samples of time, the continuous-247

discrete version of the UKF is implemented, i.e., a continuous-time model prediction and248

a discrete-time measurement update.249

The UKF estimator combined with the robust GMC controller applied to the E. coli250

culture is illustrated in Figure 6.251

Aref
GMC

ε

Reactor

u = Fin X

UKF

−
Â

Figure 6: Generic Model Control combined with the Unscented Kalman filter applied to fed-batch E.
coli cultures

6. Numerical simulations252

In this section, several numerical simulations are achieved before the experimental253

validation. First, the estimation of the acetate concentration using the Unscented Kalman254

filter is tested. Second, the performance and robustness of GMC are assessed assuming255

that the acetate concentration is available for measurement. Finally, the estimation and256

control algorithms are combined. The cultures are achieved in a 5-L bioreactor and the257

kinetic and stoichiometric parameters are those estimated in a previous work [28].258

A predefined feeding profile is applied to the system, consisting of a batch phase259

followed by a fed-batch phase with an exponential feeding profile. The UKF tuning260

parameters (α, β, κ), the process and measurement noise covariance matrices Q and R,261

and the initial state covariance matrix P0 are given in Table 1.262
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Table 1: UKF covariance matrices, sigma point tuning parameters, and initial conditions
Parameter Value Unit

Q diag[10−4, 10−2, 10−2, 10−8] g/L
R 10−4 g/L
P0 10−4 × eye(N) g/L

[α, β, κ] [1, 2, 0] -
X0 0.1 g/L
S0 5 g/L
A0 0.1 g/L
V0 3.5 L
Sin 500 g/L

The convergence of the UKF is first tested with (largely) erroneous initial conditions.263

Figure 7 shows the performance of the UKF in estimating glucose and acetate concentra-264

tions based on the biomass concentration measurement affected by additive white noise265

with zero mean and a standard deviation of 0.1 g/L. After a transient phase of 3 h, both266

states are well estimated and the convergence is achieved. The mean square errors of the267

substrate and acetate estimates during this test are: eS = 0.53 g/L and eA = 0.23 g/L268

respectively, which include the initial transient phase but are coherent with the sensitivity269

of the measurements and the noise levels (0.1 g/L).270

Further, the performance of the robust GMC design based on the LMI approach with271

the regional pole assignment is tested. The control objective is to regulate the acetate set-272

point Aref , chosen sufficiently low to approach the neighborhood of the optimal trajectory273

but also sufficiently high to stay within the limit of the observation sensitivity (0.1 g/L)274

and maintain the culture in respiro-fermentative mode. The acetate concentration is275

assumed available on-line for feedback, with the consideration of measurement noise.276

The first step in our design approach is to define upper and lower bounds for the
parametric uncertainty δ. The expression of the kinetic parameter θ is given by:

θ = kA2µ1 + µ3 (36)

The expression of the uncertain term θ, and the kinetic terms µ1 and µ3 contain the pa-277

rameters kA2, Ks, KiA, kOS, KA. These parameters can deviate from their nominal values,278

thereby deviations of maximum 15% are considered. Consequently, the range ∆ can be279

defined by δ = 0 and δ̄ = 0.1.280

Regarding the performance constraints, we desire to enforce a maximal settling time281

Ts = 4
ζωn

= 4
α

equal to 2 h, and to prevent fast controller dynamics.282

To this end, we characterize the section S(α, r, θ) as the intersection of the half-plane283

x < −α = − 4
Ts

with the disk of radius r = 4 centred at the origin, and the conic section284

defined by Θ = π
2

rad.285

In light of these constraints, the LMIs (Equations (32) and (35)) are solved numer-
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Figure 7: Convergence of UKF starting from erroneous initial conditions - estimation of glucose and
acetate concentrations based on biomass concentration measurements.

ically using the solver SeDuMi [40] and the following results are obtained:

Q∞ =

[
0.143 −0.034
−0.034 0.015

]
λ =

[
λ1 = 5.61
λ2 = 9.55

]
(37)

corresponding to the following damping ratio and natural frequency:

ζ = 0.91 ωn = 3.09 rad/h (38)

satisfying the performance constraints regarding the settling time Ts = 4
ζωn

= 1.43 h.286

Figures 8 and 9 show the closed-loop response of biomass, substrate, acetate concen-287

trations, and the corresponding feed flow-rate in 50 different runs, with Aref = 0.5 g/L288

and kinetic parameter deviations. A white noise is added to the acetate concentration289

measurement with zero mean and a standard deviation of 0.1 g/L. In all the runs, biomass290

follows a similar exponential growth in the first hours, while the model errors show their291

effect in the final hours. Nevertheless, the model uncertainties have a minor influence on292

the controller performance as can be observed in the acetate evolution, where the set-293

point is regulated and robust convergence is achieved by the controller. The noisy acetate294
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signal has a mean value of 0.49 g/L and the tracking error (Aref − A) has a RMSE of295

0.0314 g/L which is lower than the measurement noise amplitude (0.1 g/L). Note that the296

maximal 2h settling time condition is also satisfied. The biomass productivity remains297

higher than 90 % of the nominal value in 90% of the runs, which is satisfactory from an298

operational point of view.299

Figure 8: Biomass and substrate concentrations in 50 runs with kinetic parameter deviations (up to
15%) and a measurement noise standard deviation of 0.1 g/L using the robust GMC control strategy.

Figure 9: Acetate concentration and feed flow-rate in 50 runs with kinetic parameter deviations (up to
15%) and a measurement noise standard deviation of 0.1 g/L using the robust GMC control strategy.
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Figure 10: Coupled UKF-GMC with random parameter values (±15% variation) and a white measure-
ment noise (std =0.1 g/L)).

Finally, the UKF and robust GMC are coupled, and their overall performance assessed300

in a new set of numerical simulations. The UKF initial conditions are selected randomly301

with a maximum deviation of 20% from the real values. Kinetic parameter variations of302

±15% of the nominal values and a white measurement noise with a standard deviation of303

0.1 g/L are considered. As shown in Figure 10, the UKF behaves very well and converges304

in the first hours to the real state trajectories. We can observe small estimation errors305

with peaks and troughs around the real substrate value when the substrate (glucose)306

concentration reaches a critical level of Scrit. Fortunately, this is not too detrimental for307

the controller which is still able to track the acetate concentration reference set-point.308

In order to test further the performance and robustness of the control approach, a
comparison is achieved with the classical GMC algorithm presented in [22]. The parame-
ter tuning is performed by selecting a desired rise time. In the presented simulations the
following parametrization is chosen:

ξ = 1, tr = 2 h, λ1 = 3, λ2 = 2.25

The classical and the robust controllers are tested in the ideal model case (no param-309

eter variation), and in the case of a random variation in all model parameters up to 30%310
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of their nominal value. A series of 100 Monte Carlo (MC) simulations is performed and311

the results are summarized in Table 2.312

The results of one simulation are shown in Figure 11, where both approaches perform313

similarly in the ideal model case. However, we can see that with increasing levels of314

parameter variation, the robust GMC performs better in terms of reference tracking.315

The mean square errors (eA) and the mean acetate concentration (A) show that the316

robust tuning of the parameters allows the controller to achieve the control objective317

accurately. We can also observe that a 30% variation is the breakpoint of both methods,318

with a slight advantage to the robust GMC design.319

0 5 10 15
0.4

0.5

0.6

0.7

time (h)

a
ce
ta
te

(g
/
L
)

0% variation (ideal model)

Robust GMC
Classic GMC

0 5 10 15
0.4

0.5

0.6

0.7

time (h)

a
ce
ta
te

(g
/
L
)

10% variation

Robust GMC
Classic GMC

0 5 10 15
0.4

0.5

0.6

0.7

time (h)

a
ce
ta
te

(g
/
L
)

20% variation

Robust GMC
Classic

0 5 10 15
0

0.2

0.4

0.6

time (h)

a
ce
ta
te

(g
/
L
)

30% variation

Robust GMC
Classic GMC

Figure 11: Comparison between the classical and robust tuning of the GMC strategy, with increasing
levels of parameter variation.
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Table 2: Results of 100 Monte Carlo simulations comparing the classical and robust GMC strategies

A (Classic) A (Robust) eA (Classic) eA (Robust)
0% 0.4996 0.4996 0.0226 0.0192
10% 0.4968 0.4989 0.02 0.0293
15% 0.5009 0.5001 0.0343 0.0207
20% 0.4992 0.4998 0.0456 0.0224
25% 0.4885 0.4974 0.0643 0.0261
30% 0.4744 0.4944 0.0843 0.0294
35% 0.4741 0.4913 0.0889 0.0418

7. Materials and methods320

This section describes the strain, materials, growth media, and preparation methods321

utilized in the experiments.322

7.1. Microbial strain323

The E. coli BL21(DE3) strain was used for all fermentations. BL21 is known to lead324

to a low acetate formation compared to E. coli K12, which is suitable for high cell density325

cultivations, as well as lower sensitivity to varying growth conditions [41].326

7.2. Growth media and culture conditions327

The media were prepared according to the protocol cited in [10, 23]. The media used328

during the different stages of the cultures are the Lysogeny broth medium (LB) and a329

defined high-density fermentation medium (HDF) [23]. Their respective compositions330

for the batch (precultures & bioreactor) and fed-batch cultures are given in Tables 3331

and 4. During the preparation, solutions were filtered and sterilized in autoclave to avoid332

contamination.333

Table 3: Composition of the LB media used during preparations

Component Concentration
(g/L)

Peptone 10
Yeast extract 5

NaCl 6
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Table 4: Composition of the defined HDF media

Components Batch medium Feeding solution
(./L) (./L)

Glucose 5 g 500.0 g
KH2PO4 13.3 g −

(NH4)2 HPO4 4.0 g −
MgSO4 · 7H2O 1.2 g 20.0 g

Citric acid 1.7 g −
EDTA 8.4 mg 13.0 mg

CoCl2 · 6H2O 2.5 mg 4.0 mg
MnCl2 · 4H2O 15.0 mg 23.5 mg
CuCl2 · 4H2O 1.5 mg 2.5 mg

H3BO3 3.0 mg 5.0 mg
Na2MoO4 · 2H2O 2.5 mg 4.0 mg

Zn (CH3COO)2 · 2H2O 13.0 mg 16.0 mg

FeIIICitrate 100.0 mg 40.0 mg
Thiamine ·HCl 4.5 mg −

7.3. Reactor setup334

The cultivations were performed in a bioreactor consisting of a 5L jacketed glass335

vessel and a digital control unit or DCU (BIOSTAT B plus, Sartorius Stedim Biotech,336

Germany). The reactor is equipped with a water jacket and an agitation motor.337

The monitoring of the cultures is possible thanks to a potentiometric pH sensor338

(Hamilton, Switzerland), optical dissolved oxygen (DO) probe (Hamilton, Switzerland),339

and a temperature sensor (Sartorius, Germany). Also, biomass concentration is available340

on-line via an absorption-based photometric turbidity probe (Fundalux II, Sartorius, Ger-341

many).342

7.4. Analytical Methods343

During the fermentation, samples were taken every hour. The optical density (OD) of344

the samples was measured at 600 nm in a UV spectrophotometer (Shimadzu, Pharmacia345

Biotech, USA). Samples were diluted with deionized water to obtain OD in the linear346

range (0-0.3 OD), and then correlated with dry cell weight (DCW) using a calibration347

curve to obtain the off-line biomass concentration. To determine dry cell weights (DCW),348

10 mL aliquots of culture medium were filtered and placed in pre-weighed polystyrene349

micro weighing dishes, dried at 65◦C for 24 h until constant weight, and weighed (1 OD350

= 0.39 g/L).351

Samples were centrifuged and the supernatant was decanted and then stored at -8352

◦C. Glucose concentration was measured using the Dinitro Salicylic Acid (DNS) Method.353
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Acetate determination was performed using an enzymatic acetic acid test kit (Megazyme,354

Ireland). The sensitivity level of analytical methods is estimated around 0.1 g/L [30].355

7.5. Operating conditions356

The batch and fed-batch fermentations were conducted under controlled conditions.357

The pH is regulated at 7 by adding solutions of 12.5% ammonium hydroxide (base)358

or phosphoric acid 0.5 M (acid). Dissolved oxygen (pO2) was maintained above 30%359

air saturation by a two-level controller, increasing the agitation rate when the oxygen360

demand of the cells increases. When the maximal agitation rate is reached, the airflow361

is increased. Minimum values for airflow and agitation were imposed (1 L/min and 200362

rpm, respectively).363

The temperature was controlled by the DCU at 37 ◦C using a heating water jacket.364

7.6. Pre-cultures365

The cryogenic culture was incubated for 24h on LB-agar Petri dishes at 37◦C. Primary366

inocula consisting of Lysogeny broth (LB) media (Table 3), and one colony of E. coli were367

prepared in 150-mL Erlenmeyer shake flasks (50 mL working volume) and grown 8h at368

37◦C in an air shaker at 250 rpm.369

To adapt cell populations to fermentor conditions, shake flasks containing the HDF370

media (Table 4) (250 mL) were inoculated from the LB media cultures (5% v/v) and371

incubated overnight (14-16h) at 37◦C in the air shaker at 200 rpm.372

7.7. Batch and fed-Batch cultures373

All fermentations were carried in batch, followed by a fed-batch phase. Initial batch374

cultures of V = 3.5 L were pre-equilibrated to the appropriate operating conditions (pH,375

pO2 temperature) before inoculation with 5% v/v seed culture, where the initial OD600376

in the fermentor reaches 0.3-0.6. It is noteworthy that a lower initial volume was not377

possible, since the biomass probe would not be completely immersed. Sterile filtered378

anti-foam was added via a peristaltic pump when necessary throughout the cultivations.379

The batch phase was monitored during the day. Once the glucose was nearly depleted,380

the fed-batch phase started, and the feeding solution was added with a rate determined381

by the controller, and applied by a Reglo-digital peristaltic pump (Ismatec, Germany).382

7.8. Culture monitoring and control383

The measurements provided by the DCU (pH, pO2, Temperature ...) were monitored384

in real-time by the MFCS software (Sartorius, Germany). The control and estimation385

algorithms were coded in Matlab for simulations and implemented on-line in LabView386

using shared-library and MathScript nodes. Measurements provided by MFCS were im-387

ported to LabView by shared libraries. The biomass signal was measured separately by388

a data acquisition device from national instruments (NI USB-6000USB Multifunction389
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DAQ Device, National Instruments, USA) and squired in LabView using DAQMax li-390

brary. Figure 12 shows a diagram of the different devices used for online implementation.391

NI
USB-

6000USB

MFCS

LabView Pump

Reactor

X Fin

pH

pO2

T◦

Stirring

Turb

Figure 12: Real-time implementation diagram

8. Experimental results and discussion392

Two control experiments were performed to test the tracking performance and robust-393

ness of the developed UKF-GMC strategy in a real-time environment. Each experiment394

consisted of a batch phase followed by a fed-batch phase (control phase). The evolution of395

the measured biomass (on-line & off-line), glucose, acetate concentrations (off-line), and396

their estimates, as well as the feed flow-rate (controller output), are shown in Figures 13397

and 15. The operating conditions are also illustrated in Figures 14 and 16.398

8.1. Culture evolution399

After reaching the desired operating conditions, the reactor is inoculated with the seed400

culture, and the batch phase begins. As shown in Figures 13 and 15, the initial biomass401

concentration in the reactor ranges from 0.1-0.2 g/L. During this phase, the biomass402

follows an exponential growth and reaches up to 2 g/L. Since glucose consumption leads403

to acetate production, the culture is in respiro-fermentative mode.404

The batch phase ends after 4-5 h, after the almost complete consumption of the glucose405

in the medium. On-line indicators of the glucose depletion are the sudden decrease of the406

stirring speed due to the decrease of cell demand for oxygen, the sudden increase of the407

pH combined with the decrease of injected base volume (see Figures 14 and 16). Note408

that the estimation algorithm is launched during the batch phase. The initial conditions,409

control parameters, and acetate references for each experiment, as well as the values for410

the measurement and process noise covariance matrices are given in Table 5,.411

The fed-batch phase starts right after the first on-line flags and preferably before412

complete depletion of glucose, to avoid the switch to the respirative mode. The GMC413

controller is launched after setting up the acetate reference and the control parameters.414

The feed solution is injected and the cells resume their growth, resulting in an increase415

of the stirring speed due to the glucose oxidation, and the decrease of pH due to CO2416

emission which requires base addition to maintain the pH around its set-point. The417
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fed-batch phase continues until reaching the saturation limit of the turbidimetric probe418

(around 7-8 g/L). The maximum attainable cell density depends on the oxygenation419

limitation related to the bioreactor scale as can be observed in several studies [10, 28,420

42]. Therefore the end of the fed-batch phase is forced by either an exhausted feed421

medium, or the limiting oxygenation conditions.422

Table 5: Control & estimation parameters and initial conditions used in the experiments

Experiment 1 Experiment 2

Sampling time te = 0.05 h te = 0.05 h
Acetate reference Aref = 0.5 g/L Aref = 0.7 g/L

Q diag[10−4, 10−2, 10−2, 10−8] g/L diag[10−4, 10−2, 10−2, 10−8] g/L
R 10−4 g/L 10−4 g/L

8.2. Acetate and glucose estimation423

As presented in the simulation section, the on-line biomass concentration measurement424

provided by the turbidimetric probe, and the kinetic model with identified parameter425

values from [28] are used to estimate the acetate and glucose concentrations using the426

UKF. The estimation is launched during the batch phase (around 4h).427

The measurement noise affecting the biomass concentration signal is considered as a428

centered white noise with a standard deviation of 0.1 g/L. On the other hand, the degree429

of confidence in the model regarding the substrate and acetate concentration signals is430

lower compared to the biomass concentration.431

In both experiments, the UKF performance in the fed-batch phase is satisfactory,432

despite the initialization errors and the model uncertainties. The glucose and acetate433

estimations fit very well with the off-line measurements, and the convergence is achieved434

in less than 1 h. Table 6 shows the estimation mean square error values for each estimated435

state (i.e., substrate and acetate ) during the fed-batch phase of both experiments, which436

are lower than the measurement sensitivity (0.1 g/L).437

Table 6: Experimental study - UKF estimation mean square errors (in g/L)

eS(g/L) eA(g/L)

Experiment 1 0.0885 0.0679
Experiment 2 0.0381 0.1132

8.3. GMC control performance438

The control objective, as explained in previous sections, is to regulate the acetate con-439

centration to a predefined set-point, and maintain the culture in the respiro-fermentative440
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mode close to the optimal limit. As can be seen in Figures 13 and 15, acetate accumu-441

lation is avoided in both cultures, and the concentration is limited to less than (1 g/L)442

during the fed-batch phase.443

In the first experiment (Figure 13), the estimated acetate concentration is regulated444

and converges to the desired reference, respecting the chosen settling time. The second445

experiment (Figure 15) presents the same performance regarding the GMC algorithm446

convergence, with a different set-point and a longer control time.447
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Figure 13: Experiment 1: Time evolution of the measured biomass, glucose, acetate concentrations
estimates, and feed-rate
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Figure 14: Experiment 1: Time evolution of the pO2, acid and base concentrations, pH and stirring
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Figure 15: Experiment 2: Time evolution of the measured biomass, glucose, acetate concentrations, and
feed-rate
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Figure 16: Experiment 2: Time evolution of the pO2, acid and base concentrations, pH and stirring

8.4. Discussion448

The presented control method provides a practical approach to avoid overflow metabolism449

in E. coli fed-batch cultures. However, it offers a suboptimal solution, since accurate on-450

line measurements of the substrate concentration at the critical level are impractical.451

In order to evaluate the efficiency of the proposed approach, a comparison is performed452

with another suboptimal regulation strategy. In this approach, the growth rate is regu-453

lated to a set reference value µset, usually chosen slightly below the maximal growth rate454

in order to avoid acetate accumulation while maximizing the biomass productivity. This455

control objective is attained by tracking a predefined biomass trajectory corresponding456

to the chosen reference growth rate [43, 44].457

In this study, we compare the robust acetate regulation to an adaptive GMC strategy458

tracking a defined growth rate presented in [19]. For this purpose, we set the biomass459

regulation to track a defined growth rate µset chosen at 90% of the theoretical maximal460

value (µmax = 0.26 L/h), corresponding to the critical substrate concentration and the461

maximal oxidative capacity. On the other hand, we set the acetate regulation to track a462

reference of 0.5 g/L.463

First, we assume that the model parameters and maximal growth rate µXmax are464

perfectly known. Then, we introduce a fixed variation in the maximal oxidative capacity465

qOmax, leading to a variation in the maximal growth rate.466
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Simulation results are shown in Figures 17 and 18. In the ideal model case (no pa-467

rameter variation), the biomass growth regulation (GMC-X) has a slightly better overall468

performance. The reference growth rate is tracked accurately at 0.23 h−1 corresponding469

to 89% of its maximal value. On the other hand, regulating the acetate concentration470

(GMC-A) at 0.5 L/h leads to a biomass growth rate of 0.21 h−1 corresponding to 81%471

of the maximal value as can be seen in Table 7. This result shows that the presence472

of acetate in the medium reduces the biomass growth rate, due to lower substrate con-473

sumption rate caused by the activation of the acetate consumption pathways according474

to the bottleneck theory. However, keeping the acetate at a low concentration reduces475

its inhibitory effect, and keeps the culture close to the optimal conditions.476

Ideal model case
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Figure 17: Comparison between the control approaches in the ideal model case, and in the presence of
parametric variation. Plot of the state variables and the feed-rate.

Table 7: The effect of parameter variation on the control performance

Variation in qOmax
µX
µmax

% (GMC-X)
µX
µmax

% (GMC-A) Scrit

0% 89% 81% 0.0375
10% 81% 85% 0.046
20% 75% 89% 0.0529
30% 70% 93% 0.0628

The introduction of a 20% variation in qOmax leads to an increase of the critical477

substrate concentration Scrit and consequently the maximal growth rate µmax.478

Despite the model mismatch, the biomass growth rate regulation presents a good479

performance in tracking the reference rate. However, it corresponds to only 75% of the480
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Ideal model case
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Figure 18: Comparison between the control approaches in the ideal model case, and in the presence of
parametric variation. Plot of the specific biomass growth rates.

new maximal value, and therefore the biomass productivity is also lower than its optimal481

value compared to the nominal case. The acetate regulation on the other hand offers a482

more consistent performance, and gives a better growth rate ratio (89% ). Furthermore,483

the growth rate ratio is higher with increasing variation in the maximal oxidative capacity484

as can be seen in Table 7. This result highlights a problem with targeting a specific485

growth rate as a control objective, as it requires accurate determination of the maximal486

value. This is a difficult task due to the uncertain nature of bioprocesses, as parameter487

variation depends on several factors such as the variation in operating conditions between488

batches. If the maximal growth rate is under estimated, the resulting suboptimal biomass489

productivity is lower than the desired one. If the maximal growth rate is overestimated, a490

regulation at 90% of this value could lead to acetate accumulation and metabolic switches,491

and thereby a growth inhibition.492

On the other hand, regulating the acetate concentration and maintaining it at a493

low value offers a better practical trade-off, since the accumulation is avoided, and the494

obtained growth rate is consistent in the case of model mismatch. This is an interesting495

result since the acetate regulation approach is robust towards the change in operating496

conditions, and is not specific to the bacterial strain. The strategy could be applied to a497

different strain while ensuring the same level of performance without the need to estimate498

µmax accurately.499

9. Conclusions500

In this paper, a robust Generic Model Control scheme is presented and applied to501

regulate the acetate concentration in E. coli BL21 (DE3) fed-batch cultures. The pro-502
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posed controller is based on feedback input-output linearization of the nonlinear model503

dynamics. A mechanistic model based on overflow metabolism is considered in the de-504

sign phase. Due to the uncertain nature of the model, a robust design procedure using505

the LMI formalism is carried out, to compensate the model mismatch, disturbances,506

and measurement noise. Performance constraints are also formulated with LMIs to en-507

sure desired properties of the closed-loop transient response. The controller performance508

and robustness are validated through a series of simulations. The controller manages to509

stabilize the uncertain system near the optimal operating conditions despite unmodeled510

dynamics and external disturbances. Since the controlled variable (acetate) is not avail-511

able for on-line measurement, a state estimation algorithm is required and an Unscented512

Kalman Filter (UKF) is implemented. The UKF is tuned based on experimental data,513

and validated both in simulation runs and in real-time experimental conditions. Finally,514

fed-batch experiments with a lab-scale reactor are performed in order to validate the515

efficiency of the coupled GMC-UKF strategy in driving the cultures near the optimal516

operating conditions.517

Although the presented approach is suboptimal, it provides a practical solution to518

avoid overflow metabolism, since accurate measurements of the substrate concentration519

at the critical level are not possible. Furthermore, the strategy is not restricted to the520

studied strain since accurate determination of the maximal growth rate is not required.521

It is also adaptable to different control objectives such as substrate regulation at high522

concentrations in order to promote the product formation.523

An improvement of the proposed control scheme is tracking a successively decreasing524

set-point calculated by numerical on-line optimization based on the estimation of the525

maximal growth rate. An experimental validation of this approach in future works could526

improve the process productivity since it provides a good trade-off between practicality527

and best achievable sub-optimality.528
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