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Local asymptotics of cross-validation around the optimal model

When used to estimate the risk of a single predictor, the behaviour of cross-validation can often be understood through a central limit theorem. In model selection however, cross-validation is applied simultaneously to many different estimators in order to compare them. Thus, analyzing CV in this context requires a multi-dimensional or functional CLT. Since the mean and variance may vary widely over the model collection, careful attention must be paid to how the process is centered and scaled. In this article, we conduct the first such analysis of cross-validation in the context of least-squares density estimation by Fourier polynomials. Our results characterize the fluctuations of some CV criteria in the vicinity of the optimal model, at the critical scale at which they become significant. Asymptotically, CV is approximately the sum of a convex function and a symmetrized, time-changed Wiener process. For a slowly increasing number of folds V , the variance decreases proportionally to 1 V : the folds are asymptotically independent. This analysis presents some unusual challenges which we overcome through a combination of tools including strong approximation, concentration inequalities and coupling of Gaussian vectors.

Introduction

Cross-validation is a widely-used class of methods for risk estimation and model selection. Despite its popularity, its behaviour is still not completely understood and much practical advice is based on heuristic arguments or numerical simulations. This sometimes leads to disagreement between experts [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF], such as on the question of whether V-fold [START_REF] Hastie | Basis Expansions and Regularization[END_REF] or leave-1-out [START_REF] Burman | A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods[END_REF] has better performance.

The fluctuations of CV along a given sequence of predictors (indexed by the sample size) can be assessed by computing the variance and establishing a central limit theorem. Precise variance computations were carried out in various settings by Burman [8], Célisse and Robin [START_REF] Célisse | Nonparametric density estimation by exact leave-p-out cross-validation[END_REF], Arlot and Lerasle [START_REF] Arlot | Choice of V for V -fold cross-validation in least-squares density estimation[END_REF] among others -see the review paper by [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF] for a more complete overview. On the other hand, central limit theorems were proved in a general setting by [START_REF] Dudoit | Asymptotics of crossvalidated risk estimation in estimator selection and performance assessment[END_REF][START_REF] Austern | Asymptotics of cross-validation[END_REF] and most recently by [START_REF] Bayle | Cross-validation confidence intervals for test error[END_REF]. Together, these results can provide accurate information about the deviations of cross-validation when estimating the risk of a single predictor, or sequence of predictors.

However, in many cases, cross-validation is applied simultaneously to a whole class of estimators rather than just one: for example, empirical risk minimizers on a nested sequence of models, or Lasso predictors with various values of the penalty parameter. This class of predictors may change with the sample size: for example, models will typically be allowed to grow bigger and penalty parameters to become smaller as n grows. Practically relevant quantities, such as the model or parameter selected by cross-validation and its risk, depend on the whole joint distribution of cross-validation applied to the given class of predictors. The behaviour of cross-validation in the neighbourhood of the optimal model is particularly significant as we typically want and expect model selection estimators to concentrate around the optimal model, at least in the sense of having nearly optimal risk. For cross-validation based model selection, such results, known as oracle inequalities, were established by [START_REF] Van Der Vaart | Oracle inequalities for multi-fold cross validation[END_REF] and [START_REF] Navarro | Slope heuristics and v-fold model selection in heteroscedastic regression using strongly localized bases[END_REF] in regression and by [START_REF] Arlot | Choice of V for V -fold cross-validation in least-squares density estimation[END_REF] in least-squares density estimation. However, oracle inequalities do not tell the whole story as they "only" provide an upper bound on the rate of concentration of the selected estimator. Ideally, we would like to characterize the fluctuations of the CV selected model and estimator around their optimal ("oracle") counterparts, as central limit theorems do for the CV risk estimator at a single model. This raises the question of establishing a multi-dimensional or functional CLT for cross-validation, at least locally around the optimal model.

In this article, we focus on the special case of least-squares density estimation, with a collection of linear models generated by cosine functions with increasing frequencies, a model collection which is both practically useful and allows for explicit computations. The study of cross-validation in that context has several original characteristics which distinguish it from textbook applications of empirical process theory, even in the simplest case of simple validation. The hold-out risk estimator, centered at the optimal model, can be written as

HO T (k) -HO T (k * ) = ŝT k -s 2 -ŝT k * -s 2 -2 P T c n -P (ŝ T k -ŝT k * ),
where ŝT k is the empirical risk minimizer on the k-th model, computed using the training data, s is the true density with corresponding probability measure P and P T c n is the empirical measure on the test data. Hence, it can be remarked that, though HO T (k) -HO T (k * ) is an empirical process conditionally on the training data,

• The class of functions, of the form (ŝ k ) k∈Kn , is random, depends on n and the estimators ŝk range over models of unbounded dimension.

• The variance, Var P ŝT k -ŝT k * , converges to 0 since, for k close enough to the optimum, ŝk and ŝk * converge to s.

• The process, suitably renormalized, may fail to converge in distribution. If so, we want to approximate it by a sequence of "simple" Gaussian process.

In order to find a Gaussian approximation in this non-standard setting, we use the celebrated Komlós-Major-Tusnády (KMT) Theorem [START_REF] Komlós | An approximation of partial sums of independent rv'-s, and the sample df. i[END_REF], which provides a coupling between the empirical process ( √ n(F n -F )(t)) t∈R , where F is the cdf and F n the empirical cdf, and a Brownian bridge process B n (t), such that

E √ n(F n -F ) -B n • F ∞ ≤ C log n √ n ,
for some numerical constant C. The KMT theorem can be used to approximate a general empirical process of the form √ n(P n -P )(f ) f ∈F by the Gaussian process

B n (F (t))df (t) f ∈F , (1) 
whenever the functions in F are of bounded variation. This construction was first used by Hall [START_REF] Hall | Laws of the iterated logarithm for nonparametric density estimators[END_REF] to prove a law of the iterated logarithm for kernel density estimators, then by Rio [START_REF] Rio | Local invariance principles and their application to density estimation[END_REF] in a more general empirical process setting. Other methods were later used to obtain strong approximations to general empirical processes under different assumptions [START_REF] Koltchinskii | Komlos-major-tusnady approximation for the general empirical process and haar expansions of classes of functions[END_REF][START_REF] Berthet | Revisiting two strong approximation results of dudley and philipp[END_REF][START_REF] Chernozhukov | Gaussian approximation of suprema of empirical processes[END_REF]. However, the simple construction [START_REF]Filtering and Asymptotics[END_REF] is sufficient in the present setting.Its main technical advantage, in addition to its simplicity (modulo the KMT construction, used as a black box), is that the underlying Brownian bridge process can clearly be constructed independently of the class of estimators ŝT k . The resulting Gaussian process has a complicated, random covariance function. By approximating it through explicit computations and concentration inequalities, we show that the Gaussian process itself can be approximated by a symmetrized Brownian motion changed in time, W gn , where g n is an increasing function. In combination with concentration inequalities for the risk, ŝT ks2 , this implies that the hold-out process, centered at the optimal model and appropriately rescaled, is approximately the sum of a convex function f n and the zero-mean Gaussian process W gn . The same result applies to "incomplete" Vfold cross-validation (Definition 3), with g n replaced by g n /V . Both functions are deterministic: as a consequence, the distribution of the hold-out is approximately independent from the training data, and the folds of cross-validation are approximately independent. We establish upper and lower bounds on the functions f n , g n which guarantee that f n , W gn do not vanish as n → +∞ and remain bounded /tight, at least when restricted to intervals of non-vanishing length containing the optimal parameter. At larger scales and outside these intervals, the limiting behaviour is trivial in the sense that the (centered and rescaled) holdout concentrates around a deterministic function. Thus, our results characterize the critical scale at which randomness appears in the asymptotic. This analysis was conducted under the assumption that there is a unique optimal model for each value of the sample size. Indeed, our main hypothesis is that the Fourier coefficients of the true density, s, are non-decreasing in absolute value, which is equivalent to the convexity of the squared bias, and implies in particular the approximate convexity of the risk with respect to the model dimension and hence the uniqueness of its minimizer (at least at the critical scale). While this non-standard hypothesis is quite strong, we believe that it need only hold approximately, and discuss several ways in which it could be relaxed.

The results of this article allow to make use of the abundant theory available on Brownian motion in order to study the model selection step. constructing an estimator ŝn that approaches s in terms of the L 2 norm.

Although it is not obvious at first glance (this is not true for the other L p norms), this non-parametric density estimation problem can be reformulated as a risk minimization problem, with a contrast function: γ(t, x) = t 2 -2t(x), which yields the risk E[γ(t, X)] = t 2 -2 s(x)t(x)dx = ts 2s 2 . It follows that s is indeed the minimizer of the risk corresponding to the γ contrast function, and furthermore the excess risk ℓ(s, t) := E[γ(t, X)] -E[γ(s, X)] coïncides with the L 2 norm:

ℓ(s, t) = t -s 2 .
As a result, it is possible to construct an empirical risk estimator,

P n γ(t) = 1 n n i=1 γ(t, X i ) = t 2 - 2 n n i=1 t(X i ),
which can in particular be used to perform cross-validation.

Here we will consider as a family of non-parametric estimators the empirical orthogonal series estimators [1, Section 3.1] on a trigonometric basis. To ease the presentation, we consider only cosine functions, which is equivalent to assuming that s is symmetrical with respect to 1 2 . This restriction is of no fundamental importance -it is reasonable to conjecture that the results remain valid with the complete trigonometric basis.

For every j ∈ N * , let ψ j : x → √ 2 cos(2πjx) and let ψ 0 : x → 1. The collection (ψ j ) j∈N is an orthonormal basis of the subset of L 2 ([0; 1]) of functions symmetrical with respect to 1 2 . Let D n = (X 1 , ..., X n ) be a sample. For any n ∈ N and any T ⊂ {1, . . . , n}, we will denote, for any real-valued measurable function t,

P T n (t) = 1 |T | i∈T t(X i ).
Consider the estimators defined as follows.

Definition 1 For all k ∈ N and all T ⊂ {1, . . . , n},

ŝT k = k j=0 P T n (ψ j )ψ j ,
where ψ 0 = 1 and for all j ≥ 1, ψ j (x) = √ 2 cos(2πjx).

The estimators ŝT k are empirical risk minimizers on the models

E k =    k j=0 v j ψ j : v ∈ R k+1    .
The problem of parameter choice k is therefore a problem of model selection within the model collection (E k ) k≥0 . Here, the models are nested, meaning

E k ⊂ E k ′ for every k ≤ k ′ .
3 Risk estimation for the hold-out

The larger k is, the better the approximation of s by the functions of E k , but the more difficult it is to estimate the best approximation to s within E k . The choice of k is therefore subject to a bias-variance trade-off which, if properly carried out, allows adaptation to the smoothness of s, simultaneously reaching the minimax risk on Lipschitz spaces of periodic functions [START_REF]Filtering and Asymptotics[END_REF].

Cross-validation

Since the risk, except for a constant, is expressed as the expectation of a contrast function

P γ(ŝ T k ) := E X γ(ŝ T k , X) = ŝT k -s 2 -s 2 ,
it can be estimated by hold-out and cross-validation as in regression and classification. This is the subject of the following definition. 

(k) = ŝT k 2 -2P T c n (ŝ T k ). HO T (•)
is indeed an estimator since the norm • is computed with respect to a known dominating measure (in this case the Lebesgue measure) and so does not depend on the distribution of X. Moreover,

HO T (k) = ŝT k -s 2 -s 2 -2(P T c n -P )(ŝ T k ) : (2) 
the hold-out risk estimator can be expressed as the sum of the risk and a centered empirical process. The risk which the hold-out naturally estimates is that of the estimator ŝT k , which is trained on a sub-sample. If n t is close enough to n, we expect its risk to be close to that of the same estimator trained on the full sample and this can indeed be proved in our setting (see Arlot and Lerasle [START_REF] Arlot | Choice of V for V -fold cross-validation in least-squares density estimation[END_REF]Lemma 14]).

The hold-out risk estimator depends on the choice of a subset T of {1, . . . , n}, but its distribution depends only on the cardinality of that subset. The precise choice of a subset T of cardinality n t will thus play no role in the sequel. We will therefore denote by T any subset of {1, . . . , n} of cardinality n t .

Since the distribution of HO T (•) only depends on T through its cardinality n t , it is possible to construct an estimator with smaller variance by averaging several HO Ti (•). This is the idea behind cross-validation. In the V-fold scheme presented below, the T i are chosen such that the test sets T c i are disjoint. Definition 3 Let n t , V be integers such that V -1

V n ≤ n t ≤ n -1. Let (I i ) 1≤i≤V be a collection of disjoint subsets of {1, . . . , n} of equal cardinality |I i | = nn t , chosen independently from the data. For all i ∈ {1, . . . , V }, let T i = {1, . . . , n}\I i . Let T = (T 1 , . . . , T V ). The "incomplete" V-fold CV risk estimator is

CV T (k) = 1 V V i=1 HO Ti (k) .
Similarly to the hold-out, the distribution of CV T (•) only depends on n t , V and in the rest of this article, we will denote by T any collection T 1 , . . . , T V which satisfies the assumptions of Definition 3. Compared to standard V -fold, the cross-validation scheme defined above retains the constraint that the I i be disjoint and of equal size, but decouples the size of the test sets |I i | = n-n t from the number of splits V . In particular, the hold-out (Definition 2) is a special case of Definition 3 (for V = 1). As the collection (I i ) 1≤i≤V may be "completed" into a partition by adding sets I j , we shall call CV T (k) "incomplete V -fold cross-validation".

To analyze the asymptotics of these risk estimators, fix a sequence of integers

(n t (n)) n∈N such that, for all n ∈ N, n 2 ≤ n t (n) ≤ n, and define n v (n) = n-n t (n).
In the following, we shall denote n t = n t (n) and n v = n v (n) for a generic value of n. Whenever n, n v , n t appear in the same expression, it will be understood that n t = n t (n) and

n v = n v (n) = n -n t (n).
Since CV T (•) can be expressed as an average of HO Ti (•), we first focus on analyzing the hold-out risk estimator HO T (•). Consequences for cross-validation will be derived in section 5.3 .

If a sequence k n of model indices is not too badly chosen (such that k n → +∞ and kn n → 0), then the sequence of estimators ŝkn is consistent in L 2 , which implies (under sufficient moment assumptions on s), that

HO T (k n ) ≈ ŝT kn -s 2 -s 2 -2(P T c n -P )(s),
where the random error (P T c n -P )(s) is now independent of the model parameter k n . While this error term is unavoidable when estimating the risk of a single estimator, when comparing several different models k 1,n , . . . , k j,n , the quantities that matter are the pairwise differences, HO T (k i,n ) -HO T (k j,n ), wherein the leading error term, (P T c n -P )(s), cancels out. To account for this effect, we consider a centered and scaled process of the following generic form:

1 e (HO T (k n + α∆) -HO T (k n )) = 1 e ŝT kn+α∆ -s 2 -ŝT kn -s 2 - 2 e (P T c n -P )(ŝ T kn+α∆ -ŝT kn ), (3) 
where k n , ∆ = ∆(n) and e = e(n) are sequences depending on n t (n) and the density s.

Centering sequence

While any centering sequence (k n ) n∈N may a priori be chosen, they are not equally interesting. Sufficiently good model selection estimators are expected to concentrate, in a certain sense, around the optimal model m * (n) corresponding to a given sample size (assuming it is well defined). In the case of crossvalidation, the relevant sample size is rather that of the training set, since cross-validation estimates the risk of estimators trained on a sub-sample. Concentration results of this kind were proved for cross-validation by van der Vaart et al. [START_REF] Van Der Vaart | Oracle inequalities for multi-fold cross validation[END_REF] and Navarro and Saumard [START_REF] Navarro | Slope heuristics and v-fold model selection in heteroscedastic regression using strongly localized bases[END_REF] in regression. These works establish in various frameworks that the risk of the cross-validation based estimator approaches the optimal risk to within an arbitrarily small constant factor, as n → +∞. In contrast, it is known that, relative to the oracle computed on the full sample, cross-validation can be sub-optimal by a constant factor [START_REF] Arlot | V-fold cross-validation improved: V-fold penalization. 40 pages, plus[END_REF] unless the fraction of data in the training set, nt n , approaches 1. Though in that case, concentration around m * (n) can be established (as was done in least-squares density estimation by Arlot and Lerasle [START_REF] Arlot | Choice of V for V -fold cross-validation in least-squares density estimation[END_REF]), it may well be that concentration around m * (n t ) remains asymptotically tighter than around m * (n). The question is in any case left open, as non-asymptotic oracle inequalities provide only an upper bound on the concentration of cross-validation, with no indication whether it is optimal beyond the first order. By characterizing the scale of the random fluctuations of the CV criterion in the vicinity of the optimal parameter, a local asymptotic analysis of CV around the optimal model could provide precise estimates of the deviation between the model selected by CV and the optimal one. For these reasons, we will seek to center the hold-out risk estimator close to the model m * (n t ).

Thus far, we have talked of the optimal model parameter as if it were a well-defined quantity. Under a few conditions, it is possible to guarantee its uniqueness and to give moreover a simple, deterministic approximant to it.

For any j ∈ N, let θ j = s, ψ j denote the Fourier coefficients of s on the cosine basis. The L 2 risk can be approximated as follows with large probability (a precise statement can be found in claim 3):

ŝT k -s 2 ≈ k n t + +∞ j=k+1 θ 2 j .
If the squared Fourier coefficients θ 2 j form a non-increasing sequence, then the approximating function k → k nt + +∞ j=k+1 θ 2 j is convex and, in particular, has a unique minimizer k * (n t ). As a further consequence, the level sets of "nearoptimal" values of k form a nested collection of intervals. These properties greatly simplify the analysis of the hold-out procedure by avoiding situations where the hold-out "jumps" between two widely separated regions. For this reason, in the remainder of the article, we shall always assume that the sequence θ 2 j is non-increasing. We will discuss later how this assumption might be relaxed. Assuming now that θ 2 j is non-decreasing, it is possible to give simple approximate formulas for the argmin and minimum of the true risk, ŝT ks 2 and its expectation.

Definition 4 For all n ∈ N, let k * (n) = max k ∈ N : θ 2 k ≥ 1 n and or(n) = inf k∈N    +∞ j=k+1 θ 2 j + k n    .
Equivalently,

k * (n) = max argmin k∈N    +∞ j=k+1 θ 2 j + k n    and or(n) = +∞ j=k * (n)+1 θ 2 j + k * (n) n .
k * (n t ) and or(n t ) are thus, approximately, the minimizer and the minimum in k of the L 2 risk of the estimators ŝT k , which explains the name or(n t ) (oracle). Thus, we will analyze the hold-out centered at the sequence k n = k * (n t (n)) (cf equation ( 3)).

Scaling

It remains now to choose the scaling sequences ∆(n), e(n). Since e(n) will be chosen so as to obtain a bounded, non-vanishing process, its value is essentially determined by that of ∆(n). Let us now discuss how this sequence is defined. It has already been remarked that, provided that the sequence n t (n) is properly chosen, the hold-out risk estimator, HO T (k), concentrates around the risk of ŝT k , which itself concentrates around its expectation. Thus, if the scale ∆ is too large, the centered and rescaled hold-out process (equation ( 3)) will converge to a deterministic function. The scale chosen is then too large to distinguish the hold-out estimator from the quantity that it estimates. As the scale decreases, the effect of the random fluctuations is magnified and at a certain critical scale, randomness should appear in the asymptotic. Our goal is now to characterize this critical scale, as well as the corresponding limit process.

The appropriate choice of ∆, e is given in the following definition.

Definition 5 For all n ∈ N, let

∆ d (s, n t , n) = max l ∈ N : θ 2 k * (nt)+l ≥ 1 - n t n -n t 1 √ l 1 n t ∆ g (s, n t , n) = min l ∈ {0, . . . , k * (n t )} : θ 2 k * (nt)-l ≥ 1 + n t n -n t 1 √ l 1 n t ∆(s, n t , n) = max (∆ d (s, n t , n), ∆ g (s, n t , n)) E(s, n t , n) = ∆(s, n t , n) n t . e(s, n t , n) = E(s, n t , n) n -n t .
Definition 5 also introduces the quantity E(s, n t , n). This quantity appears often in the proofs, so it is helpful to have notation for it; it also has an interpretation as the order of magnitude of the fluctuations in the variance term,

E ŝT k -E[ŝ T k ] 2 -E ŝT k * -E[ŝ T k * ] 2 ,
and the bias term,

E[ŝ T k ] -s 2 -E[ŝ T k * ] -s 2 = -sign(k -k * ) k∨k * j=k * ∧k+1 θ 2 j ,
of the estimators ŝT k , for kk * "of order" ∆ (in a sense to be made precise later).

As the sequence n t (n) and the density s are considered to be fixed once and for all, the notation ∆(s, n t , n), E(s, n t , n), e(s, n t , n) will frequently be replaced by the abbreviations ∆, E, e. Definition 5 does not make clear how large ∆, E and e are. Their order of magnitude may depend on the sequence (θ j ) j∈N of Fourier coefficients of s as well as on n t (n). However, the following inequalities always hold. Lemme 3.1 For any density s such that the sequence θ 2 j = s, ψ j 2 is nonincreasing,

∆ ≥ n t n -n t (4) E ≥ 1 n -n t (5) e ≥ 1 n -n t (6) 
e ≤ E (7)

E ≤ 2or(n t ) + 1 n -n t . ( 8 
)
This lemma is proved in section 7.1.1. The following two examples show that in extreme cases, lemma 3.1 may be optimal, at least up to constants.

Two examples

• Let n t (n) and u n be two integer sequences, such that nt(n

) n → 1, u n → +∞ and u n ≤ √ n 2 for all n. Assume also that n-nt nt = o( un t nt ). Let for all j ∈ N θ 2 j,n =      1 if j = 0 1 nt if 1 ≤ j ≤ u nt 0 if j ≥ u nt + 1, (9) 
corresponding for example to the pdf s n = 1+

un t j=1 1 nt ψ j . Remark that equation [START_REF] Célisse | Nonparametric density estimation by exact leave-p-out cross-validation[END_REF] implies that k * (n t ) = u nt . Then as n → +∞, E(s n , n t , n) ∼ un t nt ∼ or(n t ) and n-nt nt = o(or(n t )), so e(s n , n t , n) = o(E(s n , n t , n)). • Let s be the pdf associated with the Fourier coefficients

∀j ∈ N, s, ψ j = θ j = 1 3 j . ( 10 
)
Let n t (n) be a sequence of integers such that nt(n) n → 1. Then by Lemma 3.1, ∆ ≥ nt n-nt , but as

9 -n t n-n t = o 1 - 1 1 + n-nt nt , it follows that ∆(s, n t , n) ∼ nt n-nt , hence E(s, n t , n) ∼ n t (n -n t )n t ∼ 1 n -n t .
As a result, E(s, n t , n) ∼ e(s, n t , n) ∼ 1 n-nt , and this for any sequence n t (n) such that n t (n) ∼ n. Now that ∆, e are defined, the hold-out process can be rescaled as in equation [START_REF] Bayle | Cross-validation confidence intervals for test error[END_REF]. More precisely, the rescaled hold-out process is given by Definition 6 below. 

Rho T j ∆ = 1 e ŝT k * +j -s 2 -ŝT k * -s 2 - 2 e P T c n -P ŝT k * +j -ŝT k * .
The Rho T function is extended by linear interpolation to all α ∈ -k * (nt) ∆ ; +∞ .

Let Rcv T be defined in a similar manner, i.e

Rcv T ( j ∆ ) = 1 e (CV T (k * + j) -CV T (k * ))
for all j ∈ [-k * ; +∞[∩Z, extended by linear interpolation to -k * (nt)

∆

; +∞ .

Note that by linearity of the interpolation operation,

Rcv T = 1 V V i=1 Rho Ti .
The extension of Rho T , CV T () by linear interpolation simplifies their approximation by a continuous process. Notice that any minimizer of Rho T (resp. CV T ()) on the grid . Though the excess risk is a priori random (it depends on D T n ), the proof will show that it concentrates around a deterministic function f n , depending on n, which is given by definition 7 below.

Definition 7 For all k ∈ N, let R(k) = +∞ j=k+1 θ 2 j . Extend R to R + by linear interpolation: ∀x ∈ R + , R(x) = (1 + ⌊x⌋ -x)R(⌊x⌋) + (x -⌊x⌋)R(⌊x⌋ + 1). f n :] -k * (nt)
∆ ; +∞[→ R + is now defined by:

f n (α) = 1 e R(k * (n t ) + α∆) -R(k * (n t )) + α∆ n t . (11) 
Thus, for all k ∈ N, k = k * (n t ),

ef n k -k * (n t ) ∆ = k∨k * (nt) j=k∧k * (nt)+1 θ 2 j - 1 n t . (12) 
It is clear by equation ( 12) that f n reaches its minimum at 0, moreover the assumption that the sequence (θ 2 j ) j∈N is non-increasing implies that f n is convex. In particular, f n is non-increasing on ]-k * (nt) ∆ ; 0] and non-decreasing on [0; +∞[. Moreover, the definition of ∆ and e (Definition 5) implies the following bounds on the increments of f n :

Lemme 3.2 For any α 1 , α 2 ∈ R such that α 1 α 2 ≥ 0 and |α 2 | ≥ |α 1 | ≥ 1, f n (α 2 ) -f n (α 1 ) ≥ |α 2 | -|α 1 |.
In particular, since f n (0) = 0, for all α ∈ R,

f n (α) ≥ (|α| -1) + .
Moreover, using the notation from Definition 5,

• If ∆ = ∆ d , then for any α 1 , α 2 ∈ [0; 1] such that α 1 ≤ α 2 , f n (α 2 ) - f n (α 1 ) ≤ α 2 -α 1 . • If ∆ = ∆ g , then for any α 1 , α 2 ∈ [-1; 0] such that α 1 ≤ α 2 , f n (α 1 ) - f n (α 2 ) ≤ α 2 -α 1 .
This lemma is proved in section 7.1.2. It guarantees that f n remains in a sense of "finite order" and "non zero" as n → +∞, which means that f n remains uniformly bounded on [-1; 0] or on [0; 1], and is lower-bounded on R by the non-zero function (|x| -1) + .

Hypotheses

The main hypothesis of this article is that the squared Fourier coefficients θ 2 j are non-increasing, which is admittedly strong, though a natural assumption in the context of this article, as discussed above. It seems likely that the desirable effects of this hypothesis can be retained under weaker conditions, as we will discuss later (section 6.2). In addition to this "shape constraint" on the θ 2 j , the main theorem of this article requires a number of more technical assumptions. First, approximating the process HO T (k), which is a sum over Fourier coefficients, inevitably involves bounding "tail sums" of the Fourier series, such as j=k+1 θ 2 j . To control these, we assume that the Fourier coefficients decay fast enough.

Hypothesis 1 There exists constants c 1 ≥ 0 and δ 1 ≥ 0 such that for all k ∈ N, +∞ j=k+1 θ 2 j ≤ c1 k 2+δ 1 . This upper bound is satisfied for some c 1 , δ 1 if and only if the smoothness assumption s ∈ H β holds for some β > 1, where H β denotes the Sobolev Hilbert space. This implies in particular that (k * (n t ) ≤ n t ) is satisfied for all sufficiently large n t (thus also for all large enough n).

Secondly, since we seek to approximate the discrete process HO T (k) by a continuous one, it is necessary to make sure that the number of "points" k ∈ [k * -α∆, k * + α∆] tends to infinity as n → +∞, for all α. Similarly, one must assume that f n ( j ∆ ) ∼ f n ( j-1 ∆ ), otherwise the continuous function f n is not sufficiently close to its discrete version j → f n ( j ∆ ). For technical reasons, we will assume a polynomial growth rate, using the following three hypotheses.

Hypothesis 2 There exists constants c 2 ≥ 0, δ 2 ≥ 0 such that for all k ∈ N,

+∞ j=k+1 θ 2 j ≥ c2 k δ 2
This hypothesis states that the Fourier coefficients θ 2 j cannot decay faster than polynomially, and excludes in particular analytic functions. This guarantees that k * (n t ) → +∞ at a polynomial rate. Hypothesis 1 holds for example if s or one of its derivatives has a point of discontinuity.

Hypothesis 3 There exists constants c 3 > 0, δ 3 > 0 such that for all k ≥ 1,

θ 2 k+k δ 3 ≥ c 3 θ 2 k-k δ 3 .
Hypothesis 3 means that the sequence θ 2 j cannot decrease too abruptly, excluding in particular a locally exponential decrease such as θ 2 kn+j = 2 -j w n , for j ∈ {1, . . . , ε log k n } and k n → +∞. Without this hypothesis, f n may have "asymptotically sharp" discontinuities at ±1, violating the condition f n ( j ∆ ) ∼ f n ( j-1 ∆ ), see claim 3.2 and example [START_REF] Chernozhukov | Gaussian approximation of suprema of empirical processes[END_REF] . Hypothesis 3 is satisfied by polynomially decreasing sequences, θ 2 j = κj -β , with δ 3 = 1, but also by sequences θ 2 j = κ exp(-j α ), as long as α < 1. Locally, θ 2 j can thus decrease much faster than the polynomial lower bound given by hypothesis 2.

Together, hypotheses 1, 2, 3 basically mean that the Fourier coefficients of s on the cosine basis decrease polynomially. For example, they are satisfied if there are two strictly positive constants µ, L and a constant β > 1, such that

∀k ∈ N, µk -2β ≤ +∞ j=k+1 θ 2 j ≤ Lk -2β .
The two remaining hypotheses 4 and 5 do not bear on s, but on the parameter n t which is chosen by the statistician. They serve to establish upper and lower bounds on ∆ using lemma 3.1.

Hypothesis 4 There exists a constant δ 4 > 0 such that nn t ≤ n 1-δ4 . By lemma 3.1, hypothesis 4 guarantees that ∆ grows at least at a polynomial rate n δ4 , as announced above. For technical reasons, it is also necessary to upper bound ∆, which is accomplished using hypothesis 5 below.

Hypothesis 5 There exists a constant δ 5 > 0 such that

n v = n -n t ≥ n 2 3 +δ5 .
The statistician can always choose n t such that hypotheses 4 and 5 hold. One should however check that this is compatible with good performance of the hold-out. The oracle inequalities of Arlot and Lerasle [START_REF] Arlot | Choice of V for V -fold cross-validation in least-squares density estimation[END_REF] show that the risk of the hold-out in model selection for L 2 density estimation is (at most) of order n nt or(n) + log(n-nt) n-nt . If or(n) decreases in n with rate 1 n α (α ∈ (0, 1)), which is the case under assumptions 1 and 2, nn t can be chosen within the interval [ 1 2 n 2+α 3 ; n 4+α 5 ] -so that assumptions 4 and 5 are satisfied-without changing the order of magnitude of the risk.

Main theorems

The purpose of this article is to find simple approximants Y n,V (u) to the rescaled CV estimators Rcv T (u) (including the hold-out when the number of splits V = 1).

Domain of approximation

Given that the process Rcv T is unbounded, it is unrealistic to expect a uniform approximation to hold on the whole real line. Rather, we consider uniform approximations on intervals containing the optimum α = 0 defined as sub-level sets of f n . More precisely, these intervals are defined as follows.

Definition 8 Let T ⊂ {1 . . . n} be a subset of cardinality n t and let k * = k * (n t ). For any x > 0, let

a x = min{ j ∆ : j ∈ {-k * (n t ), . . . , 0}, f n ( j ∆ ) ≤ x} b x = max{ j ∆ : j ∈ N, f n ( j ∆ ) ≤ x}. Up to the constraint that a x , b x ∈ 1 ∆ Z, the sets [a x , b x ] are just the sublevel sets of f n . Moreover, claim 7 implies that x -o(1) ≤ min(f n (a x ), f n (b x )) ≤ max(f n (a x ), f n (b x )) ≤ x. By lemma 3.2, for x ≥ 1, [a x , b x ] either contains [0, 1] (if ∆ = ∆ d ) or [-1, 0] (if ∆ = ∆ g ).
On the other hand, by lemma 7.1, b xa x ≤ 2(1 + x). This shows that the intervals [a x , b x ] are bounded and of non-vanishing size as n → +∞.

Not much is lost by restricting to such intervals, since we will show later that the process Rcv T (u) concentrates around its expectation for u / ∈ [a xn , b xn ] and x n → +∞.

Simple validation

The following theorem shows that the process Rho T (•) can be approximated on [a x , b x ] by the sum of f n and a time-changed Brownian motion.

Theorem 1 Assume that the hypotheses of section 4 hold. There exists an increasing continuous function g n : [-k * (nt) ∆ ; +∞[→ R and for any x > 0, there exists a two-sided Brownian motion (W t ) t∈[ax;bx] independent from D T n such that, for any y > 0, with probability greater than 1e -y ,

E sup u∈[ax;bx] Rho T (u) -(f n (u) -W gn(u) ) D T n ≤ κ 0 (1 + y) 2 (1 + x) 3 2 n -u1 , (13) 
where u 1 > 0 and κ 0 ≥ 0 are two constants which depend only on δ 1 , δ 3 , δ 5 , δ 2 and c 1 , c 2 , δ 1 , c 3 , respectively. Moreover, g n and W can be chosen so as to satisfy the following conditions.

1. g n (0) = 0, W 0 = 0, 2. ∀(α 1 , α 2 ) ∈ -k * ∆ ; +∞ 2 , α 2 < α 1 =⇒ g n (α 1 )-g n (α 2 ) ≥ 4 s 2 [α 1 -α 2 ]. 3. For all (α 1 , α 2 ) ∈ -k * ∆ ; +∞ 2 such that α 1 < α 2 < 0 or 0 < α 1 < α 2 , g n (α 2 )-g n (α 1 ) ≤ - 8 s ∞ (n -n t )e [f n (α 2 )-f n (α 1 )]+ 8 s ∞ + 4 s 2 [α 2 -α 1 ]. (14) 
-1

0 1 2 3 -4 -2 0 2 4 α f n α → α + ∞I α∉  0;1  α → (|α| -1) + g n α → 4||s|| 2 α Figure 1: A plot of f n , g n on [a 6 ; b 6
] with upper and lower bounds, for s

2 = 1.2.
This theorem is proved in section 7. It states that the rescaled hold-out process, Rho T , can be approximated uniformly in expectation on [a x , b x ] by a continuous process Y n,1 ,which is the sum of a convex non-negative function f n and a timechanged Brownian motion W gn . f n and g n depend on n t and n, but not on the data (they are deterministic functions), while W depends on the data only through the test sample D T c n . In particular, in this asymptotic setting, Rho T doesn't depend on D T n , the training data. The function g n increases on its domain and has a Lipschitz-continuous inverse. By lemma 3.2 and equation (3), f n , g n are Lipschitz continuous either on [-1, 0] or on [0, 1] (depending on whether ∆ = ∆ d or ∆ g = ∆), with Lipschitz constants that depends only on s 2 , s ∞ . In particular, f n , g n are both of constant order on [a x , b x ] for x > 1. Figure 1 illustrates the bounds that hold on f n , g n in a situation where ∆ = ∆ d .

On the one hand, by definition of a 

x , b x , 0 ≤ f n ≤ x on [a x , b x ] and by equation (3), sup α∈[ax,bx] |g n (α)| ≤ 8 s ∞ x+ 8 s ∞ + 4 s 2 max(|a x |, |b x |) ≤ 20 s ∞ (1+x)
I n = - k * (n t ) ∆ , M n -k * (n t ) ∆ .
There exists constants κ and δ > 0 (depending on

(c i , δ i ) i∈{1,...,5} ) such that, for all x ≥ e 2 , E sup u∈In\[ax,bx] Rho T (u) f n (u) -1 ≤ 2κ log log(κx) x + κ log 2 (nM n ) n δ .
In particular, for any sequence λ n → +∞ and any δ > 0,

sup u∈In:|u|>δ Rho T (λ n u) f n (λ n u) -1 → 0
in probability, as long as M n isn't too large (for example, M n = o(n r ) for some r > 0).

Because a union bound is used, proposition 5.1 applies only on a bounded interval I n corresponding to values of the dimension parameter k ≤ M n . M n can grow polynomially or even super-polynomially without invalidating the result. In practice, this assumption is mild since by definition 4, k * (n t ) ≤ s 2 n t ≤ n 2 for any n ≥ s 2 .

Proof Since Rho T and f n are piecewise linear, the supremum is reached on

1 ∆ Z. Let x n = n u 1 2 ∧u 2 4κ3 . Consider first x ∈ [e 2 , x n ] and u ∈ [a xn , b xn ]\[a x , b x ].
By the above Theorem, the sequence of random variables

V 1 n = sup u∈[ax n ,bx n ] n u1/4 Rho T (u) -f n (u) + W gn(u) satisfies E[V 1 n ] ≤ κ for some constant κ. By definition, Rho T (u) f n (u) -1 ≤ |W gn(u) | f n (u) + 1 e 2 V 1 n n -u1/4 .

Define the function

w : t → 2(t ∨ e 2 ) log log(t ∨ e 2 ).
w is clearly non-decreasing, and one can easily show that t → w(t) t is nonincreasing.

By the law of the iterated logarithm, the random variable

V 2 n = sup t∈R |W n t | w(t)
is almost surely bounded. Since the Gaussian process W n t w(t) is almost surely continuous and bounded, with variance bounded by 1 2 log 2 , the Gaussian isoperimetric theorem can be used together with the monotone convergence theorem to establish that

P V 2 n ≥ M (V 2 n ) + 2 y log 2 ≤ e -y where M (V 2 n ) is the median of V 2 n . In particular, E[V 2 n ] = κ is a finite constant. Moreover, by definition, Rho T (u) f n (u) -1 ≤ V 2 n w(g n (u)) f n (u) + 1 e 2 V 1 n n -u1/4 .
From equation ( 3) and lemma 3.2, it follows that g n (u) ≤ κf n (u), for some constant κ depending only on s ∞ , s . Moreover, since u /

∈ [a x , b x ], by claim 7, f n (u) ≥ min(f n (a x ), f n (b x )) ≥ x-κ 3 (1+x) 2 n -u2 ≥ x-2κ 3 x 2 n -u2 = 1 -2κ 3 xn -u2 x ≥ x 2 
Hence,

Rho T (u) f n (u) -1 ≤ V 2 n w(κf n (u)) f n (u) + 1 e 2 V 1 n n -u1/4 ≤ V 2 n 2w(κx/2) x + 1 e 2 V 1 n n -u1/4 = V 2 n 4κ log log(κx) x + 1 e 2 V 1 n n -u1/4 ,
which yields

E sup u∈In:x<fn(u)≤xn Rho T (u) f n (u) -1 ≤ 2 κ log log(κx) x + κn -u 1 4 . (16) 
Assume now that u

∈ I n \[a xn , b xn ]. By Claim 7, f n (u) ≥ min (f n (a xn ), f n (b xn )) ≥ x n -κ 3 (1 + x n ) 2 n -u2 ≥ 4κ 3 n u 1 2 ∧u2 . Let j = u∆. Then ŝT k * +j -s 2 -ŝT k * -s 2 = sign(j) k * +(j)+ i=k * -(j)-+1 θT i -θ i 2 -θ 2 i = sign(j) k * +(j)+ i=k * -(j)-+1 1 n t -θ 2 i + sign(j)   k * +(j)+ i=k * -(j)-+1 θT i -θ i 2 - |j| n t   .
By definition of k * and of f n , sign(j) 4 . By proposition 8.3, on an event Ω n,y with probability greater than 1e -y ,

k * +(j)+ i=k * -(j)-+1 1 n t -θ 2 i = k * +(j)+ i=k * -(j)-+1 1 n t -θ 2 i = ef n (u). Let w n (y) = κ 1 [log(nM n ) + y] 2 n -1 12 ∧ δ 1 
ŝT k * +j -s 2 -ŝT k * -s 2 -ef n (u) ≤ uw n (y)e (17) 
for all u ∈ -k * ∆ , Mn-k * ∆ ∩ 1 ∆ Z. Consider now the term

P T c n -P ŝT k * +j -ŝT k * .
On Ω n,y ,

Var ŝT k * +j -ŝT k * ≤ s ∞ ŝT k * +j -ŝT k * 2 = s ∞ k * +(j)+ i=k * -(j)-+1 θT i 2 ≤ 2 s ∞   k * +(j)+ i=k * -(j)-+1 θ 2 i + k * +(j)+ i=k * -(j)-+1 θT i -θ i 2   ≤ 2 s ∞   k * +(j)+ i=k * -(j)-+1 θ 2 i - 1 n t + 2 |j| n t + k * +(j)+ i=k * -(j)-+1 θT i -θ i 2 - |j| n t   ≤ 2 s ∞ (ef n (u) + 2|u|E + |u|w n (y)e) .
Since |u| ≤ 2f n (u) by lemma 3.2 and e ≤ E by lemma 3.1,

Var ŝT k * +j -ŝT k * ≤ s ∞ ŝT k * +j -ŝT k * 2 ≤ 2 s ∞ (3 + 2w n (y)) Ef n (u).
Moreover, by the Cauchy-Schwarz inequality, on Ω n,y ,

ŝT k * +j -ŝT k * ∞ = k * +(j)+ i=k * -(j)-+1 θi T ψ i ∞ ≤ 2|j| k * +(j)+ i=k * -(j)-+1 θT i 2 ≤ 2|u|∆ 2|u|E + uw n (y)e ≤ 4 1 + w n (y)f n (u) √ ∆E.
It follows by Bernstein's inequality that on Ω n,y , with probability greater than 1e -y conditionally on D T n , for all u ∈ I n \ a xn , b xn ,

P T c n -P ŝT k * +u∆ -ŝT k * ≤ κ[log 3/2 (nM n )+y 3/2 ] s ∞ e f n (u)+κ[log 2 (nM n )+y 2 ]f n (u) ∆ n v e (18)
for some constant κ. By lemma 3.1,

∆ n v ≤ 2n t or(n t ) + nt nv n v ≤ 2n t or(n t ) n v + √ n t n v ≤ 2n t or(n t ) n 2 3 + 1 n 1 6 by hypothesis5. Moreover, choosing k = c 1 n t 1 3+δ 1 yields, by hypothesis 1, or(n t ) ≤ 2 c 1 3+δ 1 1 n 2+δ 1 3+δ 1 t + 1 n t .
It follows that

∆ n v ≤ 4 c 1 3+δ 1 1 n 1 3 + 1 n 2 3 + 1 n 1 6 ≤ κ n 1 6 (19) 
for some constant κ. Hence, by equations ( 17), [START_REF] Mccarthy | [END_REF], with probability greater than

(1 -e -y ) 2 , for all u ∈ I n \ a xn , b xn , Rho T (u) f n (u) -1 ≤ κ[log 2 (nM n ) + y 2 ]n -1 12 ∧ δ 1 4 + κ[log 3/2 (nM n ) + y 3/2 ] s ∞ f n (u)
.

It follows that E   sup u∈In\ ax n ,bx n Rho T (u) f n (u) -1   ≤ κ s ∞ log 2 (nM n )n -1 12 ∧ δ 1 4 ∧ u 1 4 ∧ u 2 2 .
Together with equation ( 16), this yields the proposition.

Figure 2 gives an illustration of the situation for x = 25 and

f n : α → e -α -1 if α ≤ 0 8 10 α + 8 30 α 3 if α ≥ 0 g n : α → 7.8α if α ≥ 0 7.8α -3f n (α) if α ≤ 0
(which satisfy the properties of lemma 3.2 and Theorem 1 when s 2 ≤ 1.2 and s ∞ ≤ 1.5).

Figure 2 shows how for large x, √ g n and hence W gn become negligible compared to f n outside the interval [a x , b x ], as stated by proposition 5.1 . Hence, for sufficiently large x, the random term W gn becomes negligible relative to the deterministic f n outside the interval [a x ; b x ].

Incomplete V -fold cross-validation

Since the cross-validation risk estimator CV T (k) can be written as an average of hold-out risk estimators HO Ti (k), Theorem 1 has direct implications for CV.

Corollary 2 Assume that the hypotheses of section 4 hold. Let f n , g n be as in definition 7 and theorem 1. For any x > 0,

E sup u∈[ax;bx] Rcv T (u) -(f n (u) -W gn (u) V ) ≤ 5κ 0 (1 + x) 3 2 n -u1 ,
with the same constants κ 0 , u 1 as in Theorem 1. 

α f n α → (|α| -1) + ± g n W gn x = 25 a x ,b x Figure 2: A plot of f n , W gn on [a x ; b x ], for x = 25, g n : α → 7.8α -3f n (α)I α<0 .
Proof By integrating the bound of Theorem 1,

E sup u∈[ax;bx] Rho Ti (u) -(f n (u) -W i gn (u) V ) ≤ 5κ 0 (1 + x) 3 2 n -u1
for each i ∈ {1, . . . , V }, where the W i are symmetrical BMs that are independent of D Ti n . We can construct W i such that W i = H(D

T c i n , U i ),
where H is a measurable function and U i is an auxiliary uniform random variable. Taking independent U i yields i.i.d W i , since the sets

T c i = I i are disjoint. Let W = 1 V V i=1 W i . By Jensen's inequality, E sup u∈[ax;bx] Rcv T (u) -(f n (u) -Wgn(u) ) ≤ 5κ 0 (1 + x) 3 2 n -u1 .
Conclude by noting that ( Wt ) t∈R is equal in distribution to (W t/V ) t∈R , as a continuous random process.

Corollary 2 proves that cross-validation is effective at reducing the variance of risk estimation, compared to simple validation (the hold-out). The process approximating Rcv

T is of the same form as that approximating Rho T , but with its variance reduced by a factor V , as would be the case if the hold-out estimators HO Ti (•) were independant. Importantly, this reduction in variance occurs for the rescaled process Rcv T , and so can be expected to reflect the model selection performance. Corollary 2 is sharp when V is fixed as n → +∞, since in that case, the approximating process f n -W gn/V remains nontrivial (random and of bounded size) as n → +∞. When V = V n → +∞, corollary 2 implies that Rcv 

Discussion

In this section, we interpret the results of the article and discuss how they could be extended.

Implications of our results

Theorem 1 provides an approximation to the rescaled hold-out process, with scale factor ∆ given by Definition 5. The approximating process is asymptotically random, tight along a sequence of intervals of length greater than 1 and trends away from zero at ±∞ (as discussed in section 5.2). In the case of "incomplete" cross-validation for fixed V , the process is of identical type, but with the variance reduced by a factor V . This means that CV performs significantly better than the hold-out when comparing ŝT k and ŝT k * for k close to k * (n t ). If V → +∞, then rescaled cross-validation concentrates around the deterministic function f n , which by the argument of section 3.3 means that CV has asymptotically better performance than the hold-out. This supports the belief that cross-validation improves when V is increased. Though k * (n t ) is not the oracle based on the full sample (k * (n)) , the greater concentration of CV around k * (n t ) makes it possible to choose n t closer to n than would be reasonable for the hold-out, resulting in improved overall performance.

Hypotheses

Theorem 1 relies on the assumptions of section 4, most importantly on the assumption that the sequence of squared Fourier coefficients θ 2 j is non-increasing. This could be weakened in various ways. First, given the local nature of our analysis, what is really required is that the coefficients θ 2 j be non-increasing in a neighbourhood

[k * -r n , k * + r n ] of k * of radius r n which dominates ∆ (∆ = o(r n )).
The only difference in that case is that there may be other local minima outside [k *r n , k * + r n ], which diminishes the usefulness of Theorem 1 for studying the whole process.

Moreover, since the process Rcv T (α) consists of sums

k * +α∆ j=1
, it is probably sufficient to replace the hypotheses on the individual coefficients θ 2 j with hypotheses bearing on local averages θ2 j = 1 2mn j+mn r=j-mn θ 2 r , at some scale m n = o(∆). Depending on the scale m n , the hypothesis that a smoothed sequence θ2 j is non-decreasing may be quite plausible, considering the fact that the Fourier coefficients tend to 0 at a prescribed rate for sufficiently smooth functions s. For example, it suffices to assume that +∞ j=k+1 θ 2 j ∼ L(k)k -2α (for some α > 0 and a slowly varying function L) in order for the local averages to be non-increasing at some scale m n = o(k * (n t )). Note that ∆ may be of order k * (n t ) for small enough n v . of this final estimator, and how it depends on the CV method used (at least when CV is used with a goal of estimation, as opposed to identification of the best model). There are several ways our results can contribute to answering these questions. First, it follows from proposition 5.1 and Markov's inequality that

Perspectives

kcv T ∆ ∈ [a x , b x ]
with high probability for x large enough. Since Rcv T (u) can be uniformly approximated by

f n (u) -W gn(u)/V on [a x , b x ], it is natural to approximate kcv T -k * ∆
(the minimizer of Rcv T (u)) by the minimizer αn,V of f n -W gn/V ). The minima of f n -W gn/V can be studied using the theory of Wiener processes. Together with our results about f n and g n (in lemma 3.2 and Theorem 1), this makes the analysis of αn,V much easier than that of kcv T . Moreover, claim 3 of this article proves that the (excess) risk

ŝT k -s 2 -ŝT k * -s 2 concentrates around ef n k-k * ∆
for k "close enough" to k * . This removes the dependency on the training sample D T n and reduces the analysis of ŝT ks 2 -ŝT k *s 2 to that of the deterministic function

f n k-k * ∆ .
Other cross-validation methods In this article, we only considered a particular type of cross-validation. Corollary 2 relies on decomposing "incomplete" V -fold CV as a finite average of asymptotically independent hold-out estimators, which can be analysed more easily than general cross-validation because conditionally on their training data, they are empirical processes.

In general, for projection estimators in L 2 density estimation, the crossvalidation risk estimator is not a (conditional) empirical process but a (weighted) U-statistic of order 2 (more precisely, a weighted sum of the terms ψ k (X i )ψ k (X j )). Thus, new methods are required to approximate general CV estimators by gaussian processes. We conjecture that more general cross-validation methods also behave locally like the sum of the (rescaled) excess risk and a time-changed Wiener process, though we expect the scaling and the time-change g n to be different for different versions of CV.

Theorem 1 can also shed light on the behaviour of other methods which use simple validation as a key ingredient, such as Aggregated hold-out [START_REF] Maillard | Aggregated Hold-Out[END_REF].

Proofs

In this section, the term constant means a function of s ∞ , s

2 and the constants c 1 , c 2 , c 3 , δ 1 , δ 2 , δ 3 , δ 4 , δ 5 . which appear in the hypotheses of Theorem 1. Note that by hypothesis (1), θ ℓ 1 , s ∞ , s 2 are finite and can be bounded by functions of c 1 , δ 1 . The letter u will denote strictly positive constants that only depend on (δ i ) 1≤i≤5 (they will generally appear as exponents of 1 n ). The letter κ denotes a non-negative constant. The notation n v = nn t will also be used frequently.

Preliminary results

The results of this section are independent from the rest. They will be used in the rest of the proof of Theorem 1, as well as in the Appendix. Let's start by proving some basic properties of a x , b x and f n that will be used repeatedly in the main proofs. • By definition and non-negativity of θ 2 j ,

nt n-nt 1 √ ∆ d ≤ 1, therefore ∆ ≥ ∆ d ≥ nt n-nt . • E = ∆ nt ≥ 1 n-nt . • e = E n-nt ≥ 1 (n-nt) 2 = 1 n-nt . • E e = E n-nt E = (n -n t )E ≥ 1.
• By definition, ∆ g ≤ k * . Thus ∆g nt ≤ k * nt ≤ or(n t ). Moreover,

∆ d 1 - n t n -n t 1 √ ∆ d 1 n t ≤ k * +∆ d j=k * +1 θ 2 j ≤ +∞ j=k * +1 θ 2 j ≤ or(n t ).
Thus

n t or(n t ) ≥ ∆ d - n t n -n t ∆ d ≥ ∆ d - 1 2 n t n -n t - 1 2 ∆ d ≥ 1 2 ∆ d - 1 2 n t n -n t .
It follows that

∆ d ≤ 2n t or(n t ) + n t n -n t , so since nt n-nt 1 nt = 1 n-nt , ∆ d n t ≤ 2or(n t ) + 1 n -n t ,
which proves the result.

Proof of lemma 3.2

f n is continuous and piecewise linear by definition 7. f n is convex because the sequence θ 2 j is non-increasing by assumption. Let j ∈ Z and α ∈ j ∆ ; j+1 ∆ be two numbers. By definition, f n is linear on the interval j ∆ ; j+1 ∆ , in particular f n is differentiable on this interval and

f ′ n (α) = ∆ f n j+1 ∆ -f n j ∆ = ∆ e 1 n t -θ 2 k * +j+1 . ( 20 
)
Because the sequence θ 2 j is non-increasing, it follows from the definition of k * (n t ) that f n is increasing on j ∆ ; j+1 ∆ if j ≥ 0 and non-increasing if j < 0. This implies that f n reaches its minimum at k * (n t ).

If α ≥ 1, then j = ⌊α∆⌋ ≥ ∆, therefore by definition of ∆ d ≤ ∆, f ′ n (α) ≥ ∆ e 1 n t -θ 2 k * +∆+1 ≥ ∆ e n t n -n t 1 √ ∆ 1 n t = ∆ (n -n t )n t ∆ n t n -n t 1 √ ∆ 1 n t = 1.
In the same way, if α < -1, then j + 1 = ⌈α∆⌉ ≤ -∆ ≤ -∆ g , so

f ′ n (α) ≤ ∆ e 1 n t -θ 2 k * -∆ ≤ - ∆ e n t n -n t 1 √ ∆ 1 n t ≤ -1. Furthermore, • If ∆ = ∆ d , then for all α ∈ [0; 1], j + 1 = ⌈α∆⌉ ≤ ∆ = ∆ d , therefore by definition of ∆ d , f ′ n (α) ≤ ∆ e 1 n t -θ 2 k * +∆ ≤ ∆ e n t n -n t 1 √ ∆ 1 n t ≤ 1. • If ∆ = ∆ g , then for all α ∈ [-1; 0], j = ⌊α∆⌋ ≥ -∆ = -∆ g , therefore by
definition of ∆ g and since the sequence (θ 2 j ) j∈N is non-increasing,

f ′ n (α) ≥ ∆ e 1 n t -θ 2 k * -∆+1 ≥ - ∆ e n t n -n t 1 √ ∆ 1 n t ≥ -1.
By continuity of f n , this proves the lemma. 

x -a x ] ≤ 2(1 + x) k * +bx∆ k * +ax∆ θ 2 j ≤ 4(1 + x)E. Proof Either b x ≤ 1, or b x > 1 and by lemma 3.2, f n (b x ) ≥ b x -1 which implies that b x ≤ f n (b x ) + 1 ≤ x + 1. In all cases, b x ≤ x + 1.
In the same way,

a x > -1 -x. Thus b x -a x ≤ 2(1 + x). Moreover, k * +bx∆ k * +ax∆ θ 2 j ≤ k * +bx∆ k * +ax∆ θ 2 j - 1 n t + (b x -a x )∆ n t ≤ e[f n (a x ) + f n (b x )] + [b x -a x ]E ≤ 2xe + 2 [1 + x] E.
Since e ≤ E by lemma 3.1,

k * +bx∆ k * +ax∆ θ 2 j ≤ (4x + 2)E.
This proves lemma 7.1.

We now introduce some notation which will be used in the remainder of this chapter.

Definition 9 Let an i.i.d sample D n be given, with distribution P and pdf s on [0; 1]. For all j ∈ N and any T ⊂ {1, . . . , n}, let θ j = P ψ j = s, ψ j θT j = P T n (ψ j ). This notation will be used very often in the remainder of the chapter.

The hold-out risk estimator can be expressed as the sum of two terms. Definition 10 below gives a name to each of these terms.

Definition 10 For all j ∈ [-k * (n t ); +∞[∩Z, let L( j ∆ ) = 1 e ŝT k * +j -s 2 -ŝT k * -s 2 .
The function L is extended to the interval [-k * (nt) ∆ ; +∞[ by linear interpolation. Let Z be the random function defined for all j ∈ [-k * (nt) ∆ ; +∞[∩Z by

Z j ∆ = 2 e P T c n -P ŝT k * +j -ŝT k *
and extended by linear interpolation to the interval [-k * (nt) ∆ ; +∞[, so that for all α, Rho

T (α) = L(α) -Z α .
Thus, L is the rescaled excess risk, and Z is a centered empirical process. These two terms will be approximated separately.

Approximation of the excess risk

Let x > 0 be fixed for the entirety of this section. We now prove the following claim.

Claim 3 Let L be the function introduced in definition 10, and f n be given by definition 7. There exists a constant κ 1 such that, for any y > 0, with probability greater than 1e -y ,

sup α∈[ax;bx] |L(α) -f n (α)| ≤ κ 1 (1 + x)[log(2 + x) + y + log n] 2 n -min( 1 12 , δ 4 
2 ) .

Proof Let j ∈ {a x ∆, . . . , b x ∆}. Since ŝT k = k j=1 P T n (ψ j )ψ j = k j=1 θT j ψ j , ŝT k * +j -s 2 -ŝT k * -s 2 = sgn(j) k * +(j)+ i=k * +(j)-+1 θT i -θ i 2 -θ 2 i .
It is known [4, Lemma 14] [16, Proposition 6.3] that the process

k * +(j)+ i=k * +(j)-+1 θT i -θ i 2 = k * +(j)+ i=k * +(j)-+1 (P T -P )(ψ j ) 2
concentrates around its expectation, so that

k * +(j)+ i=k * +(j)-+1 θT i -θ i 2 ∼ k * +(j)+ i=k * +(j)-+1
Var(ψ j ) n t .

Furthermore, by lemma 8.1 in the appendix, Var(ψ j ) ∼ 1, therefore

k * +(j)+ i=k * +(j)-+1 θT i -θ i 2 ∼ |j| n t .
More precisely, proposition 8.3 in the appendix and a union bound show that, with probability greater than 1e -y , for any

j ∈ Z ∩ [a x ∆; b x ∆[, k * +(j)+ i=k * +(j)-+1 θT i -θ i 2 - |j| n t ≤ κ 1 (y+log n+log((b x -a x )∆)) 2 n -min( 1 12 , δ 4 
2 ) j ∆ e.

Let

r n = κ 1 (y + log n + log((b x -a x )∆)) 2 n -min( 1 12 , δ 4 
2 ) . Then for any j ≥ 1,

ŝT k * +j -s 2 -ŝT k * -s 2 = - k * +j i=k * +1 θ 2 i + k * +j i=k * +1 θT i -θ i 2 = - k * +j i=k * +1 θ 2 i + j n t ± j ∆ r n e = k * +j i=k * +1 1 n t -θ 2 i ± j ∆ r n e = ef n j ∆ ± j ∆ r n e.
On this same event, for any j ∈ {-k * (n t ), . . . , -1},

ŝT k * +j -s 2 -ŝT k * -s 2 = k * i=k * +j+1 θ 2 i - k * i=k * +j+1 θT i -θ i 2 = k * i=k * +j+1 θ 2 i - |j| n t ± |j| ∆ r n e = k * i=k * +j+1 θ 2 j - 1 n t ± j ∆ r n e = ef n j ∆ ± j ∆ r n e.
Thus, since f n and Rho T are linear between the points of 1 ∆ Z,

sup α∈[ax;bx] |L(α) -f n (α)| = 1 e max ax∆≤j≤bx∆ ŝT k * +j -s 2 -ŝT k * -s 2 -ef n j ∆ ≤ max(|a x |, |b x |)r n . By lemma 7.1, max(|a x |, |b x |) ≤ b x -a x ≤ 2(1 + x) so max(|a x |, |b x |)r n ≤ 2(1 + x)κ 1 (y + log n + log(2(1 + x)) + log(∆)) 2 n -min( 1 12 , δ 4 
2

) ≤ κ(1 + x)[log(2 + x) + log n + y] 2 n -min( 1 12 , δ 4 
2

)
for some constant κ, since by lemma 3.1 and hypothesis (5) of Theorem 1,

∆ = n t E ≤ 2n t or(n t ) + n t n -n t ≤ 2( s 2 -1)n t + n 1 3
t .

This proves claim 3.

We will now seek to approximate the process Z given by definition 10.

Strong approximation of the hold-out process

Let us start by showing that the empirical process Z (definition 10) can be approximated by a gaussian process, uniformly on [a x ; b x ]. This is the purpose of the following result, which will be proven in this section.

Claim 4 Let Z be the process given by definition 10. There exists a gaussian process (Z 1 α ) α∈[ax;bx] with the same variance-covariance function as Z: for any

(α 1 , α 2 ) ∈ [a x ; b x ] 2 , Cov(Z 1 α1 , Z 1 α2 ) = Cov(Z α1 , Z α2
) and such that for all n ≥ 1, for all x > 0, with probability greater than 1e -y ,

E sup α∈[ax;bx] |Z α -Z 1 α | D T n ≤ κ 5 (c 1 , δ 5 )(1 + y)(1 + x) 3 2 n -δ 5 3 .
Furthermore, Z 1 can be expressed as Z 1 = H(D T c n , ν), with ν a uniform random variable independent from D n and H a measurable function on C([0; 1], R).

Let n v = |T c | = n-|T | = n-n t . Let F : x → x 0 s(t)dt be the cumulative dis- tribution function of the given X i . Let F T c : x → 1 nv i /
∈T I Xi≤x be the empirical cumulative distribution function of the sample D T c n . By the Komlós-Major-Tusnády approximation theorem [15, Theorem 3], there exist a universal constant C and a standard Brownian bridge process B T c such that for all y > 0, with probability greater than 1e -y ,

B T c • F - √ n v (F T c -F ) ∞ ≤ C(log nv +y) √ nv (remark that since F is continuous, F (X i ) ∼ U([0; 1]
), which means that the result for general F follows from the result for the uniform distribution). Furthermore, B T c can always be realized as a measurable function of D T c n and an auxiliary, uniformly distributed random variable ν: B T c = H(D T c n , ν), with ν independant from D n . Let B T c be obtained in this way. From B T c • F , one can define an operator on the Sobolev space W 1 (R):

Definition 11 For any function f such that f ′ ∈ L 1 ([0; 1]), let G T c (f ) = - 1 0 f ′ (x)B T c (F (x))dx.
G T c "approximates" the empirical process √ n v (P T c n -P ) on the space W 1 . Lemma 7.2 below gives a bound on the error made with this approximation.

Lemme 7.2 For any function

f such that f ′ ∈ L 1 ([0; 1]), G T c (f ) - √ n v (P T c n -P )(f ) ≤ B T c - √ n v (F T c -F ) ∞ f ′ L 1 .
Furthermore, for all functions f, g

such that f ′ , g ′ ∈ L 1 ([0; 1]), Cov(G T c (f ), G T c (g)) = P [f g]-P [f ]P [g] = Cov √ n v (P T c n -P )(f ), √ n v (P T c n -P )(g) .
Proof Let f be a function such that f ′ ∈ L 1 ([0; 1]). Then

(P T c n -P )(f ) = f d(P T c n -P ) = [f -f (0)]d(P T c n -P ) = 1 0 1 0 I t<x f ′ (t)dt d(F T c -F )(x) = 1 0 f ′ (t)(P T c n -P )((t, +∞)) = - 1 0 f ′ (t)(F T c -F )(t)dt. (21) 
Il follows that for all functions f such that

f ′ ∈ L 1 ([0; 1]), G T c (f ) - √ n v (P T c n -P )(f ) = 1 0 f ′ (t) √ n v (F T c -F ) -B T c • F (t)dt ≤ f ′ L 1 ([0;1]) B T c • F - √ n v (F T c -F ) ∞ . By definition, it is clear that E[G T c (f )] = 0. Thus, Cov (G T c (f ), G T c (g)) = E [G T c (f )G T c (g)] = E 1 0 1 0 f ′ (u)g ′ (v)B T c (F (u))B T c (F (v)) = 1 0 1 0 f ′ (u)g ′ (v)[F (u) ∧ F (v)][1 -F (u) ∨ F (v)]dudv = 1 0 1 0 f ′ (u)g ′ (v) (E[I X≤u I X≤v ] -E[I X≤u ]E[I X≤v ]) = n v 1 0 1 0 f ′ (u)g ′ (v)E [(F T c -F )(u)(F T c -F )(v)] = Cov √ n v (P T c n -P )(f ), √ n v (P T c n -P )(g) by equation (21)
Let the process Z 1 be defined for all j ∈ {a x ∆, . . . , b x ∆} by

Z 1 j ∆ = 2 √ n v e G T c ŝT k * +j -ŝT k * .
Z 1 is extended to the interval [a x ; b x ] by linear interpolation, as for Z. By lemma 7.2, the variance-covariance function of Z 1 conïncides with that of Z at the points j ∆ , j ∈ Z ∩ [a x ∆; b x ∆], and this property extends by bilinearity to the whole interval [a x ; b x ]. Furthermore,

sup ax≤α≤bx |Z 1 α -Z α | ≤ max j∈Z∩[ax∆;bx∆] Z 1 j ∆ -Z j ∆ ≤ 4 √ 2π e √ n v B T c • F - √ n v (F nv -F ) ∞ × max ax∆≤j≤bx∆ k * +j i=k * +1 i θT i sin(2iπ•) 1 ≤ 4π e √ n v B T c • F - √ n v (F nv -F ) ∞ × k * +bx∆ i=k * +ax∆+1 i 2 ( θT i ) 2
By construction, the process

B T c • F - √ n v (F nv -F ) is independent from D T n . As a result, E sup ax≤α≤bx |Z 1 α -Z α ||D T n ≤ 4π e √ n v E B T c • F - √ n v (F nv -F ) ∞ × (k * + b x ∆) k * +bx∆ i=k * +ax∆+1 θT j 2 ≤ 4πC log n v en v × (k * + b x ∆) k * +bx∆ j=k * +ax∆+1 2θ 2 j + 2 θT j -θ j 2 . (22) 
By proposition 8.3, there exists an event E 1 (y) of probability greater than 1-e -y such that, for all D T n ∈ E 1 (y),

k * +bx∆ j=k * +ax∆+1 θT j -θ j 2 ≤ [b x -a x ] ∆ n t + κ 1 (b x -a x )[log n + y] 2 n -min( 1 12 , δ 4 
2 ) e(n), therefore by lemma 7.1 and equation ( 22), for all D T n ∈ E 1 (y),

E sup ax≤α≤bx |Z 1 α -Z α | D T n ≤ 4πC log n v en v ×(k * +b x ∆)2 √ 1 + x 2 √ E + √ 2κ 1 (log n + y)n -min( 1 24 , δ 4 
4 ) √ e .

Since e ≤ E and n -min( 1 24 , δ

4 ) log n → 0, there exists therefore a constant κ such that for all D T n ∈ E 1 (y) :

E sup ax≤α≤bn |Z 1 α -Z α | D T n ≤ κ log n v √ n v √ E e √ n v × (k * + b x ∆)(1 + y) √ 1 + x ≤ κ log n v √ n v × (k * + b x ∆)(1 + y) √ 1 + x. (23) 
By lemma 3.1, E ≤ 2or(n t ) + 1 nv therefore ∆ ≤ 2n t or(n t ) + nt nv and by definition of or, k * (n t ) = n t k * nt ≤ n t or(n t ) therefore k * +bx∆ √ nv ≤ (2b x + 1) ntor(nt) √ nv + bxnt nv √ nv . By hypothesis 5 of section 4, n v ≥ n 2 3 +δ5 , so

k * + b x ∆ √ n v ≤ (2b x + 1) n t or(n t ) n 1 3 + δ 5 2 + b x n 3δ 5 2 
.
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Moreover, by hypothesis 1 of Theorem 1, +∞ j=k+1 θ 2 j ≤ c1 k 2+δ 1 , therefore

or(n t ) ≤ min k∈N * c 1 k 2+δ1 + k n t ≤ 2 inf x≥1 c 1 x 2+δ1 + x n t ≤ 3 c 1 3+δ 1 1 n 2+δ 1 3+δ 1 t , whence (since c 1 ≥ 1) n t or(n t ) ≤ 3(c 1 n t ) 1 3+δ 1 . It follows that: log n k * + b x ∆ √ n v ≤ 3(2b x + 1)c 1 3+δ 1 1 log nn -δ 5 2 + b x log n n 3δ 5 2 t . ( 24 
) Since log n n δ 5 2 = o n -δ 5 3
, by equations ( 23), ( 24) and lemma 7.1, there exists a constant κ(c 1 , δ 5 ) such that for any n, with probability greater than 1e -y ,

E sup ax≤α≤bn |Z 1 α -Z α | D T n ≤ κ(1 + y)(1 + x) 3 2 n -δ 5 3 .

Approximation of the covariance function

We will now seek to approximate the process Z 1 given by claim 4 by a timechanged Wiener process. To this end, we first approximate the variance-covariance function of Z 1 (which is the same as that of Z).

Claim 5 There exists a function g n satisfying the hypotheses of Theorem 1 and a constant u 5 > 0 such that, for all x, y > 0, with probability greater than 1e -y ,

max (j1,j2)∈{0,...,bx∆} 2 Cov Z j1 ∆ , Z j2 ∆ |D T n -min g n j1 ∆ , g n j2 ∆ ≤ κ 6 (1 + x) 2 [y + log n] 2 n -u5 max (j1,j2)∈{ax∆,...,0} 2 Cov Z j1 ∆ , Z j2 ∆ |D T n -max g n j1 ∆ , g n j2 ∆ ≤ κ 6 (1 + x) 2 [y + log n] 2 n -u5 max (j1,j2)∈{ax∆,...,0}×{0,...,bx∆} Cov Z j1 ∆ , Z j2 ∆ |D T n ≤ κ 6 (1 + x) 2 [y + log n] 2 n -u5 .
We introduce the following definition.

Definition 12 Let (W t ) t∈R be a two-sided Wiener process such that W 0 = 0. For any function g : I → R, where I is an interval containing 0, let K(g) : I 2 → R be defined for any (s, t) ∈ I 2 by

K(g)(s, t) =      g(s ∧ t) if (s, t) ∈ (I ∩ R + ) 2 -g(s ∨ t) if (s, t) ∈ (I ∩ R -) 2 0 else . (25) 
For all j ∈ Z ∩ [a x ∆; b x ∆], by definition 10 of Z:

Z j ∆ = 2 e P T c n -P ŝT k * +j -ŝT k * =      0 if j = 0, 2 e P T c n -P k * +j i=k * +1 θT i ψ i if j > 0, 2 e P T c n -P k * i=k * +j+1 θT i ψ i if j < 0 (26) 
In other words, for all j ∈ Z ∩ [a x ∆; b x ∆],

Z j ∆ = sgn(j) 2 e k * +(j)+ i=k * -(j)-+1 θT i P T c n -P (ψ i ).
Let n v = |T c | = nn t . Thus, for any (j 1 , j 2 ) ∈ {a x ∆, . . . , b x ∆} 2 and any variable X with distribution s(x)dx,

Cov Z j1 ∆ , Z j2 ∆ |D T n = sgn(j 1 )sgn(j 2 ) 4 n v e 2 k * +(j1)+ i1=k * -(j1)-+1 k * +(j2)+ i2=k * -(j2)-+1 θT i1 θT i2 Cov(ψ i1 (X), ψ i2 (X)).
Let us now introduce the following definition.

Definition 13 Let (m 1 , m 2 , m 3 ) ∈ N 3 be three integers. Let m (1) ≤ m (2) ≤ m (3) be their non-decreasing rearrangement. Define E m1,m2,m3 = 0 if m (1) = m (2) or m (2) = m (3) and E m1,m2,m3 = m (2) j1=m (1) +1 m (3) j2=m (2) +1 θT j1 θT j2 Cov(ψ j1 (X), Cov(ψ j2 (X)) (27) if m (1) < m (2) < m (3) .
Let n v = nn t . The covariance can be broken down as follows:

If 0 < j 1 ≤ j 2 , conditionally on D T n . Cov Z j 1 ∆ , Z j 2 ∆ |D T n = Var Z j 1 ∆ + 4 n v e 2 k * +j1 i1=k * +1 k * +j2 i2=k * +j1+1 θT i1 θT i2 Cov(ψ i1 (X), ψ i2 (X)).
If j 1 ≤ j 2 < 0, symetrically,

Cov Z j 1 ∆ , Z j 2 ∆ |D T n = Var Z j 2 ∆ + 4 n v e 2 k * i2=k * +j2+1 k * +j2 i1=k * +j1+1 θT i1 θT i2 Cov(ψ i1 (X), ψ i2 (X)). Finally, if j 1 < 0 < j 2 , Cov Z j 1 ∆ , Z j 2 ∆ |D T n = -4 n v e 2 k * i1=k * +j1+1 k * +j2 i2=k * +1 θT i1 θT i2 Cov(ψ i1 (X), ψ i2 (X)).
It follows from the previous equations that for any

(k 1 , k 2 ) ∈ N 2 , Cov Z k 1 -k * ∆ , Z k 2 -k * ∆ =      Var(Z k1-k * ∆ ) + 4 E k * ,k 1 ,k 2 nve 2 if k * < k 1 ≤ k 2 4 E k * ,k 1 ,k 2 nv e 2 if k 1 < k * < k 2 Var(Z k2-k * ∆ ) + 4 E k * ,k 1 ,k 2 nve 2 if k 1 ≤ k 2 < k * . ( 28 
)
Let I, J ⊂ {a x ∆, . . . , b x ∆}. Assuming concentration around the expectation yields

i∈I j∈J θT i θT j Cov(ψ i (X), ψ j (X)) ∼ i∈I j∈J θ i θ j Cov(ψ i (X), ψ j (X)) + 1 n t i∈I j∈J Cov(ψ i (X), ψ j (X)) 2 .
Moreover, for any

(i 1 , i 2 ) ∈ N 2 , ψ i1 (X)ψ i2 (X) = 2 cos(2i 1 πX) cos(2i 2 πX) = cos (2(i 1 + i 2 )πX)+cos(2(i 1 -i 2 )πX)
and by definition, for all i ∈ N * ,

ψ i = √ 2 cos(2iπX), while ψ 0 = 1 = cos(0πx). As a result, ψ i1 (X)ψ i2 (X) = ψi 1 +i 2 (X)+ψ |i 1 -i 2 | (X) √ 2 if i 1 = i 2 and Cov(ψ i1 (X), ψ i2 (X)) = θ i1+i2 √ 2 + 1 -δ i1,i2 √ 2 + δ i1,i2 θ |i2-i1| -θ i1 θ i2 .
By assumption, the sequence |θ k | tends to 0 with a polynomial rate of convergence, hence for sequences i 1 ∼ i 2 tending to +∞, θ |i1-i2| dominates θ i1 θ i2 and θ i1+i2 . Heuristically, it can thus be expected that

i∈I j∈J θT i θT j Cov(ψ i (X), ψ j (X)) ∼ i∈I j∈J θ i θ j 1 -δ i,j √ 2 + δ i,j θ |j-i| + i∈I j∈J 1 -δ i,j √ 2 + δ i,j 2 θ 2 |j-i| .
This leads to the following proposition, the rigourous proof of which can be found in the appendix (proposition 8.6).

Proposition 7.3 Let P be the probability measure with pdf s on [0; 1], let θ j = s, ψ j = P (ψ j ) and assume that the coefficients θ j satisfy the hypotheses of section 4. Let θT j = P T (ψ j ). Let I 1 k , I 2 k ⊂ {k * + a x ∆, . . . , k * + b x ∆} be two intervals. Then the statistics

U I 1 k ,I 2 k = i∈I 1 k j∈I 2 k θT i θT j [P (ψ i ψ j ) -P ψ i P ψ j ]
can be approximated in the following way: there exists two constants κ 4 and u 3 > 0 such that, with probability greater than 1e -y ,

U I 1 k ,I 2 k = 1 2 |I 1 k ∩ I 2 k | n t + 1 - 1 √ 2 i∈I 1 k ∩I 2 k θ 2 i + 1 √ 2 i∈I 1 k j∈I 2 k θ i θ j θ |i-j| + 1 2n t i∈I 1 k j∈I 2 k θ 2 |i-j| ± κ 4 (y + log n) 2 (1 + x)n -u3 E.
It is now possible to show that the terms E k * ,k1,k2 which appear in equation ( 28) are negligible compared to E. That is the point of the following claim.

Claim 6 Under the assumptions of Theorem 1, there exists constants κ 7 ≥ 0 and u 4 > 0 such that for all n ∈ N, x > 0 and

(m 1 , m 2 , m 3 ) ∈ {a x ∆, . . . , b x ∆} 3 such that m 1 < m 2 < m 3 , m2 j1=m1+1 m3 j2=m2+1 θ j1 θ j2 θ |j1-j2| ≤ κ 7 (1 + x) 2 n -u4 E (29) 1 n t m2 j1=m1+1 m3 j2=m2+1 θ 2 |j1-j2| ≤ κ 7 (1 + x) 2 n -u4 E. ( 30 
)
and moreover, for all x > 0, with probability greater than 1e -y , for any integers

(m 1 , m 2 , m 3 ) ∈ {a x ∆, . . . , b x ∆} 3 , |E m1,m2,m3 | ≤ κ 7 (1 + x) 2 (y + log n) 2 n -u4 E. ( 31 
)
Proof Assume without loss of generality that m 1 < m 2 < m 3 . We start by proving equation (29). First, changing variables from j 1 , j

2 to i = j 1 , r = j 2 -j 1 yields m2 j1=m1+1 m3 j2=m2+1 θ j1 θ j2 θ |j1-j2| = r∈N θ r m2 i=m2+1-r I i≥m1+1 I i+r≤m3 θ i θ i+r ≤ 1 2 r≤r0 |θ r | m2∧(m3-r) i=(m2+1-r)∨(m1+1) θ 2 i + θ 2 i+r + 1 2 r>r0 |θ r |   m2 j1=m1+1 θ 2 j1 + m3 j2=m2+1 θ 2 j2   ≤ θ ℓ 1 2 max 1≤r≤r0 m2∧(m3-r) i=(m2+1-r)∨(m1+1) θ 2 i + θ 2 i+r + 1 2 r>r0 |θ r | bx∆ i=ax∆+1 θ 2 k * +i .

By claim 7 in appendix, for any

k ∈ {m 1 + 1, . . . , m 3 } ⊂ {a x ∆ + 1, . . . , b x ∆}, θ 2 k ≤ κ 3 (1 + x) 2 n -u2 e, therefore m2 j1=m1+1 m3 j2=m2+1 θ j1 θ j2 θ |j1-j2| ≤ r 0 θ ℓ 1 2 κ 3 (1+x) 2 n -u2 e+ 1 2 r>r0 |θ r | bx∆ i=ax∆+1 θ 2 k * +i .
By hypothesis 1 of section 4,

j≥r0+1 |θ j | ≤ +∞ j=r0+1 +∞ i=j θ 2 i ≤ +∞ j=r0+1 c 1 (j -1) 1+ δ 1 2 ≤ 2c 1 δ 1 r -δ 1 2 0 .
Thus, by lemma 7.1,

m2 j1=m1+1 m3 j2=m2+1 θ j1 θ j2 θ |j1-j2| ≤ r 0 θ ℓ 1 2 κ 3 (1 + x) 2 n -u2 E + 2c 1 δ 1 r - δ 1 2 0 4(1 + x)E. ( 32 
) Let r 0 = ⌈n 2u 2 2+δ 1 ⌉ ≤ 2n 2u 2 2+δ 1 and u = δ1(u2) 2+δ1 > 0. For all n ≥ 2, m2 j1=m1+1 m3 j2=m2+1 θ j1 θ j2 θ |j1-j2| ≤ θ ℓ 1 κ 3 + 8 c 1 δ 1 (1 + x) 2 n -u E, (33) 
which proves equation (29). Moreover,

m2 j1=m1+1 m3 j2=m2+1 θ 2 |j1-j2| = r∈N θ 2 r |{j 1 : (m 1 + 1 ≤ j 1 ≤ m 2 ) ∧ (m 2 + 1 ≤ j 1 + r ≤ m 3 )}| ≤ r∈N θ 2 r [(m 3 -m 1 ) ∧ r] ≤ r 0 r0 r=0 θ 2 r + (m 3 -m 1 ) r>r0 θ 2 r ≤ r 0 s 2 + (b x -a x )∆ r>r0 θ 2 r ≤ r 0 s 2 + 2(1 + x)∆ c 1 r 2+δ1 0 ,
by hypothesis 1 of Theorem 1 and lemma 7.1. Let now r 0 = ∆ 1 3 . Since ∆ ≥ 1, it follows that:

1 n t m2 j1=m1+1 m3 j2=m2+1 θ 2 |j1-j2| ≤ ∆ 1 3 + 1 n t s 2 + 2c 1 (1 + x) ∆ n t (∆) -2 3 ≤ 2 s 2
(∆)

2 3 E + 2c 1 (1 + x)E(∆) -2 3 ≤ 2 s 2 + 2c 1 (1 + x) E (∆) 2 3 
.

On the other hand, ∆ ≥ nt n-nt ≥ n δ4 by hypothesis 4 of Theorem 1. There exists therefore κ(c 1 , s

2 ) such that, for any n,

1 n t m2 j1=m1+1 m3 j2=m2+1 θ 2 |j1-j2| ≤ κ(1 + x)n -2δ 4 3 E, (34) 
which proves equation (30). Since for all x > 0,

(b x -a x )∆ ≤ 2(1+x)∆ ≤ κ(1+x) 2n t or(n t ) + n t n -n t ≤ κ(1+x) 2 s 2 n t + n 1 3
t , by proposition 7.3 and a union bound, there exists an event A of probability greater than 1e -y and a constant κ such that, if

a x ≤ m 1 < m 2 < m 3 ≤ b x , then |E m1,m2,m3 | ≤ 1 √ 2 m2 j1=m1+1 m3 j2=m2+1 θ j1 θ j2 θ |j1-j2| + 1 2n t m2 j1=m1+1 m3 j2=m2+1 θ 2 |j1-j2| + κ(y + log(2 + x) + log n) 2 (1 + x)n -u3 E. ( 35 
)
From equations ( 35), ( 33) and (34), equation (31) follows with u 4 = min u 3 , 2δ4 3 , δ1u2 2+δ1 .

Let then g 0 n : -k * ∆ ; +∞ → R be defined first for all α ∈ j ∆ :

j ∈ N -k * by ∀α ∈ j ∆ : (j + k * ) ∈ N , g 0 n (α) = sgn(α) Var(Z α ), (36) 
then for all α ∈ -k * ∆ ; +∞ by linear interpolation (hence in general, g 0 n (α) = Var(Z α )). Let K(g 0 n ) be given by definition 12, then by equation ( 28) and claim 6, with probability greater than 1e -y , for any x > 0,

max (j1,j2)∈{ax∆,...,bx∆} 2 Cov Z j 1 ∆ , Z j 2 ∆ -K g 0 n , j 1 ∆ , j 2 ∆ ≤ 4κ 7 (1 + x) 2 (y + log n) 2 n -u4 E n v e 2 ≤ 4κ 7 (1 + x) 2 (y + log n) 2 n -u4 . (37) Moreover, for any j ∈ Z ∩ [a x ∆; b x ∆], by definition of Z, sgn(j)g 0 n j ∆ = Var Z j ∆ = 4 n v e 2 k * +(j)+ i1=k * -(j)-+1 k * +(j)+ i2=k * -(j)-+1 θT i1 θT i2 θ i1+i2 √ 2 + 1 -δ i1,i2 √ 2 + δ i1,i2 θ |i1-i2| -θ i1 θ i2 . (38) 
Moreover, since e 2 = E nv ,

4 n v e 2 1 2 j n t = 4 n v e 2 1 2 j ∆ ∆ n t = E n v e 2 2 j ∆ = 2 j ∆ .
Thus, by proposition 7.3, with probability greater than 1e -y , sgn(j)g 0

n j ∆ = 2 |j| ∆ + 4 n v e 2 1 - 1 √ 2 k * +(j)+ i=k * -(j)-+1 θ 2 i + 4 n v e 2 k * +(j)+ i1=k * -(j)-+1 k * +(j)+ i2=k * -(j)-+1 θ i1 θ i2 θ |i1-i2| √ 2 + 4 n v e 2 1 2n t k * +(j)+ i1=k * -(j)-+1 k * +(j)+ i2=k * -(j)-+1 θ 2 |i1-i2| ± 4κ 4 (y + log n) 2 (1 + x)n -u3 . ( 39 
)
Let g 1 n be defined for all α = j ∆ , j ∈ Z ∩ [-k * (n t ); +∞) by sgn(j)g

1 n j ∆ = 4 n v e 2 k * +(j)+ i1=k * -(j)-+1 k * +(j)+ i2=k * -(j)-+1 θ i1 θ i2 θ |i1-i2| √ 2 + 4 n v e 2 1 - 1 √ 2 k * +(j)+ i=k * -(j)-+1 θ 2 i = 4 n v e 2 k * +(j)+ i1=k * -(j)-+1 k * +(j)+ i2=k * -(j)-+1 θ i1 θ i2 1 -δ i1,i2 √ 2 + δ i1,i2 θ |i1-i2| , (40) 
and for all α ∈ -k * ∆ ; +∞ by linear interpolation. We will now apply lemma 8.8 to

g 1 n . Let x > 0 and (k 1 , k 2 ) ∈ {k * + a x ∆, . . . , k * + b x ∆} 2 be such that k 1 < k 2 . Thus: • If k * ≤ k 1 , g 1 n k 2 -k * ∆ -g 1 n k 1 -k * ∆ = 4 n v e 2 k2 i=k * +1 k2 j=k * +1 θ i θ j 1 -δ i,j √ 2 + δ i,j θ |i-j| - k1 i=k * +1 k1 j=k * +1 θ i θ j 1 -δ i,j √ 2 + δ i,j θ |i-j| = 4 n v e 2 k2 i=k1+1 k2 j=k1+1 θ i θ j 1 -δ i,j √ 2 + δ i,j θ |i-j| + 2 k2 i=k1+1 k1 j=k * +1 θ i θ j θ |i-j| √ 2 .
By lemma 8.7 in appendix,

0 ≤ k2 i=k1+1 k2 j=k1+1 θ i θ j 1 -δ i,j √ 2 + δ i,j θ |i-j| ≤ s ∞ k2 i=k1+1 θ 2 i .
Thus by equation ( 29) from claim 6,

-κ 7 (1+x) 2 n -u3 4 √ 2 n v e 2 E ≤ g 1 n k2-k * ∆ -g 1 n k1-k * ∆ ≤ 4 s ∞ n v e 2 k2 i=k1+1 θ 2 i +κ 7 (1+x) 2 n -u4 4 √ 2 n v e 2 E. • If k 2 ≤ k * , g 1 n k 2 -k * ∆ -g 1 n k 1 -k * ∆ = 4 n v e 2 k * i=k1+1 k * j=k1+1 θ i θ j 1 -δ i,j √ 2 + δ i,j θ |i-j| - k * i=k2+1 k * j=k2+1 θ i θ j 1 -δ i,j √ 2 + δ i,j θ |i-j| = 4 n v e 2 k2 i=k1+1 k2 j=k1+1 θ i θ j 1 -δ i,j √ 2 + δ i,j θ |i-j| + 2 k2 i=k1+1 k * j=k2+1 θ i θ j θ |i-j| √ 2 .
In the same way, by lemma 8.7 and equation ( 29) from claim 6,

g 1 n k2-k * ∆ -g 1 n k1-k * ∆ ≥ -κ 7 (1 + x) 2 n -u3 4 √ 2 n v e 2 E, g 1 n k2-k * ∆ -g 1 n k1-k * ∆ ≤ 4 s ∞ n v e 2 k2 i=k1+1 θ 2 i + κ 7 (1 + x) 2 n -u4 4 √ 2 n v e 2 E. • If k 1 ≤ k 2 ≤ k 2 , g 1 n k2-k * ∆ -g 1 n k1-k * ∆ = g 1 n k2-k * ∆ -g n (0) + g n (0) -g 1 n k1-k * ∆
, therefore by the two previous cases,

0 ≤ g 1 n k2-k * ∆ -g 1 n k1-k * ∆ ≤ 4 s ∞ n v e 2 k2 i=k1+1 θ 2 i + κ 7 (1 + x) 2 n -u4 8 √ 2 n v e 2 E.
By definition e 2 = E nv therefore for any x > 0 and (j

1 , j 2 ) ∈ [a x ∆; b x ∆] 2 such that j 1 ≤ j 2 , -4 √ 2κ 7 (1+x) 2 n -u4 ≤ g 1 n j2 ∆ -g 1 n j1 ∆ ≤ 4 s ∞ n v e 2 j2 i=j1+1 θ 2 k * +i +8 √ 2κ 7 (1+x) 2 n -u4 .
(41) Moreover, for any j 1 , j 2 such that 0

< j 1 < j 2 , θ 2 k * +ji ≤ 1 nt hence s ∞ j2 i=j1+1 θ 2 k * +i ≤ s ∞ k * +j2 j=k * +j1+1 [θ 2 j - 1 n t ] + j 2 -j 1 ∆ s ∞ ∆ n t = -s ∞ e[f n j 2 ∆ -f n j 1 ∆ ] + j 2 -j 1 ∆ s ∞ E. (42) For j 1 , j 2 such that j 1 < j 2 ≤ 0, θ 2 k * +ji ≥ 1 nt hence s ∞ j2 i=j1+1 θ 2 k * +i ≤ s ∞ k * +j2 j=k * +j1+1 [θ 2 j - 1 n t ] + j 2 -j 1 ∆ s ∞ ∆ n t = e s ∞ [f n j 1 ∆ -f n j 2 ∆ ] + j 2 -j 1 ∆ s ∞ E. ( 43 
)
By equations ( 41), ( 42) and ( 42), it follows that, for any

(j 1 , j 2 ) ∈ [a x ∆; b x ∆] ∩ Z 2 , g 1 n j 2 ∆ -g 1 n j 1 ∆ ≤ -4 s ∞ n v e f n j 2 ∆ -f n j 1 ∆ + 4 s ∞ j 2 -j 1 ∆ + 8 √ 2κ 7 (1 + x) 2 n -u4 ≤ -4 s ∞ n v e f n j 2 ∆ -f n j 1 ∆ + 4 s ∞ j 2 -j 1 ∆ + 8 √ 2κ 7 (1 + x) 2 n -u4 . ( 44 
)
To extend the lower bound given by equation ( 41), notice that for any

(α 1 , α 2 ) ∈ [a x ; b x ] 2 such that α 1 < α 2 , • if ⌊α 1 ∆⌋ = ⌊α 2 ∆⌋ ≤ α 1 ∆ < α 2 ∆ ≤ ⌊α 1 ∆⌋ + 1, by linearity of g 1 n on [⌊α 1 ∆⌋; ⌊α 1 ∆⌋ + 1], g 1 n (α 2 ) -g 1 n (α 1 ) ≥ -g 1 n ⌊α 1 ∆⌋ + 1 ∆ -g 1 n ⌊α 1 ∆⌋ ∆ - , • otherwise, ⌊α 1 ∆⌋ + 1 ≤ ⌊α 2 ∆⌋, therefore by linearity of (u, v) → g 1 n (u) - g 1 n (v) on 1 ∆ [⌊α 1 ∆⌋; ⌊α 1 ∆⌋ + 1] × 1 ∆ [⌊α 2 ∆⌋; ⌊α 2 ∆⌋ + 1], g 1 n (α 2 ) -g 1 n (α 1 ) ≥ min g 1 n (u) -g 1 n (v) : (u, v) ∈ ⌊α 2 ∆⌋ ∆ ; ⌊α 2 ∆⌋ + 1 ∆ × ⌊α 1 ∆⌋ ∆ ; ⌊α 1 ∆⌋ + 1 ∆ .
In all cases,

g 1 n (α 2 )-g 1 n (α 1 ) ≥ -max g 1 n j 2 ∆ -g 1 n j 1 ∆ - : j 1 ≤ j 2 , (j 1 , j 2 ) ∈ {a x ∆, . . . , b x ∆} 2 .
(45) Thus by equation (41), for any x > 0:

∀(α 1 , α 2 ) ∈ [a x ; b x ] 2 , α 1 < α 2 =⇒ g 1 n (α 2 ) -g 1 n (α 1 ) ≥ -4 √ 2κ 7 (1 + x) 2 n -u4 .
(46) By the same argument applied to the function

α → g 1 n (α) + 4 s ∞ n v e f n (α) -4 s ∞ α,
which is piecewise linear on the partition j ∆ ; j+1 ∆ : j ∈ {a x ∆, . . . , b x ∆} , equation (44) extends to [a x ; b x ] for any x > 0:

∀(α 1 , α 2 ) ∈ [a x ; b x ] 2 , g 1 n (α 2 ) -g 1 n (α 1 ) ≤ 4 s ∞ n v e [f n (α 1 ) -f n (α 2 )] + 4 s ∞ [α 2 -α 1 ] + 8 √ 2κ 7 (1 + x) 2 n -u4 . ( 47 
) Let ε d : α → inf x∈R+:bx≥α 8 √ 2κ 7 (1+x) 2 n -u4
. The function ε d is non-decreasing by definition, and ε d (0) ≥ 8κ 7 n -u4 > 0. Furthermore, by equations ( 46) and (47),

∀(α 1 , α 2 ) ∈ R 2 + , α 1 ≤ α 2 =⇒ -ε d (α 2 ) ≤ g 1 n (α 2 ) -g 1 n (α 1 ) ≤ 4 s ∞ n v e [f n (α 1 ) -f n (α 2 )] + 4 s ∞ [α 2 -α 1 ] + ε d (α 2 ).
In this situation, lemma 8.8 applies with g = g 1 n , h + = -

8 s ∞ nve f n + 8 s ∞ Id and ε = 2ε d . Note that h + is indeed non-decreasing since by equation (20), f ′ n ≤ ∆ nte on R + which leads to f ′ n nv e ≤ ∆ nv nte 2 = 1.
This guarantees existence of a non-decreasing function g 2 n,+ : R

+ → R + such that g 2 n,+ (0) = 0, sup α∈R+ |g 1 n (α) -g 2 n,+ (α)| 2ε d (α) ≤ 6 
and for all α 1 , α 2 such that α 1 ≤ α 2 ,

g 2 n,+ (α 2 ) -g 2 n,+ (α 1 ) ≤ 8 s ∞ n v e [f n (α 1 ) -f n (α 2 )] + 8 s ∞ [α 2 -α 1 ] Symetrically, let ε g : α → inf x∈R+:-ax≥α 8 √ 2κ 7 (1+x) 2 n -u4 , defined on 0; k * (nt)
∆ . ε g is non-decreasing by definition. Furthermore, ε g (0) ≥ 8κ 7 n -u4 > 0. By equations ( 46) and (47),

∀(α 1 , α 2 ) ∈ R 2 + , α 1 ≤ α 2 =⇒ -ε g (α 2 ) ≤ g 1 n (-α 1 ) -g 1 n (-α 2 ) ≤ 4 s ∞ n v e [f n (-α 2 ) -f n (-α 1 )] + 4 s ∞ [α 2 -α 1 ] + ε g (α 2 ).
In this situation, lemma 8.8 applies with g = -g

1 n (-•), h + = 8 s ∞ nve f n (-•) + 8 s ∞ Id, ε = 2ε g . It guarantees existence of a function g 2 n,-: 0; k * (nt) ∆ → R + such that g 2 n,-(0) = 0, sup α∈ 0; k * (nt) ∆ | -g 1 n (-α) -g 2 n,-(α)| 2ε g (α) ≤ 6 
and for any α 1 , α 2 such that α 1 ≤ α 2 ,

g 2 n,-(α 2 ) -g 2 n,-(α 1 ) ≤ 8 s ∞ n v e [f n (-α 2 ) -f n (-α 1 )] + 8 s ∞ [α 2 -α 1 ]. Let then g 2 n : α → g 2 n,+ (α)I α≥0 -g 2 n,-(-α)I α<0 and ε(α) = ε d (α)I α≥0 + ε g (-α)I x<0 , which yields g 2 n -g 1 n 2ε ∞ ≤ 6 (48) 
and

∀(α 1 , α 2 ) ∈ R 2 , g 2 n (α 2 ) -g 2 n (α 1 ) ≤ 8 s ∞ n v e [f n (α 1 ) -f n (α 2 )] + 8 s ∞ [α 2 -α 1 ]. (49) 
By definition of ε, for any x > 0 and any α ∈

[a x , b x ], ε(α) ≤ 8 √ 2κ 7 (1+x) 2 n -u4 , hence ∀x > 0, ∀α ∈ [a x ; b x ], |g 2 n (α) -g 1 n (α)| ≤ 96 √ 2κ 7 (1 + x) 2 n -u4 . ( 50 
)
Let then:

g n : α → g 2 n (α) + 4 s 2 α. (51) 
Since

g 2 n is non-decreasing, g n (α 2 ) -g n (α 1 ) ≥ 4 s 2 [α 2 -α 1 ]
, which proves equation 2 of Theorem 1. Moreover, equation (49) yields equation ( 14) of Theorem 1.

Let now x > 0 be fixed until the end of this section. By definition of g 1 n (equation ( 40)), equations (39), (50) and since the functions g 0 n and α → 4 s 2 α are piecewise linear on the partition j ∆ , j+1 ∆ ax∆≤j≤bx∆-1 , with probability greater than 1e -y ,

g 0 n -g n ∞ ≤ g 1 n -g 2 n ∞ + κ 4 (y + log n) 2 (1 + x)n -u3 + max ax∆≤j≤bx∆ sgn(j) n v e 2 4 2n t k * +(j)+ i1=k * +(j)-+1 k * +(j)+ i2=k * +(j)-+1 θ 2 |i1-i2| - (4 s 2 -2)j ∆ ≤ max ax∆≤j≤bx∆ 4 n v e 2 1 2n t k * +(j)+ i1=k * +(j)-+1 k * +(j)+ i2=k * +(j)-+1 θ 2 |i1-i2| -4 s 2 -1 2 |j| ∆ + 96 √ 2κ 7 (1 + x) 2 n -u4 + κ 4 (y + log n) 2 (1 + x)n -u3 . (52) 
It remains to bound the max. By parity in j of the sum, one can assume

0 ≤ j ≤ max(|a x |, |b x |)∆ instead of a x ∆ ≤ j ≤ b x ∆|]. Let therefore j ∈ {0, . . . , max(|a x |, |b x |)∆}, then 1 2n t k * +j i1=k * +1 k * +j i2=k * +1 θ 2 |i1-i2| = |j| 2n t + 1 2n t r∈N * 2 |{i : k * ≤ i ≤ i + r ≤ k * + j}| θ 2 r = |j| 2n t + 1 n t +∞ r=1 (j -r) + θ 2 r . (53) 
Furthermore, for all r 0 ∈ N * ,

1 n t +∞ r=1 (j -r) + θ 2 r - j n t ( s 2 -1) ≤ 1 n t +∞ r=1 θ 2 r |(j -r) + -j| ≤ r 0 n t r0 r=1 θ 2 r + j n t +∞ r=r0+1 θ 2 r ≤ s 2 r 0 n t + max(|a x |, |b x |) ∆ n t × c 1 r 2 0
, by hypothesis 1 of section 4. By setting r 0 = ⌈(∆)

1 3 ⌉ ≤ 2(∆) 1 3 (since ∆ ≥ 1), it follows that 1 n t +∞ r=1 (j -r) + θ 2 r - j n t ( s 2 -1) ≤ 2 s 2 + c 1 max(|a x |, |b x |) (∆) 1 3 n t ≤ 2 s 2 + 2c 1 (1 + x) (∆) -2 3 E by lemma 7.1. Let κ = κ(c 1 , s ). Since by hypothesis 4 of Theorem 1, ∆ ≥ nt n-nt ≥ n δ4 , 1 n t +∞ r=1 (j -r) + θ 2 r - j n t ( s 2 -1) ≤ κ(1 + x)n -2δ 4 3 E.
By equation ( 53) and since j nt = j ∆ E, for any j

∈ [0; max(|a x |, |b x |)∆]. 1 2n t k * +j i1=k * +1 k * +j i2=k * +1 θ 2 |i1-i2| - j ∆ s 2 - 1 2 E ≤ κ(1 + x)n -δ4 E.
By equation ( 52) and since E nv e 2 = 1, it follows that, with probability greater than 1e -y ,

g 0 n -g n ∞ ≤ 96 √ 2κ 7 (1 + x) 2 n -u4 + κ 4 (y + log n) 2 (1 + x)n -u3 + 4κ(1 + x)n -δ4 .
(54) Let κ = 96 √ 2κ 7 +κ 4 +4κ and u 5 = min(u 4 , u 3 , δ 4 ), it then follows from definition 12 of K that with probability greater than 1e -y ,

K(g 0 n ) -K(g n ) ∞ ≤ g 0 n -g n ∞ ≤ κ(1 + x) 2 (y + log n) 2 n -u5
. By equation (37), it follows that that, with probability greater than 1e -y , for any

(j 1 , j 2 ) ∈ {a x ∆, . . . , b x ∆} 2 , Cov Z j 1 ∆ , Z j 2 ∆ -K(g n ) j 1 ∆ , j 2 ∆ ≤ 4κ 7 (1 + x) 2 (y + log n) 2 n -u3 + κ(1 + x) 2 (y + log n) 2 n -u5 ≤ κ(1 + x) 2 (y + log n) 2 n -u5 (55) 
by setting κ = κ + 4κ 7 and since u 5 ≤ u 3 . Claim 5 follows. It remains to upper bound g n on [a x ; b x ] in order to check equation 15 of Theorem 1. This is the subject of the following lemma.

Lemme 7.4 For any α ∈ R,

|g n (α)| ≤ 20 s ∞ f n (α) + 12 s ∞ ≤ max (40 s ∞ f n (α), 24 s ∞ ) .
In particular, for all x > 0, max(|g

n (a x )|, |g n (b x )|) ≤ 20 s ∞ (1 + x).
Proof Since s ∞ ≥ s 2 ≥ 1 and n v e ≤ 1 by lemma 3.1, point 3 of Theorem 1 which we already proved implies that for any α ∈ R,

|g n (α))| ≤ 8 s ∞ f n (α) + 12 s ∞ |α|. If |α| < 1, then |g n (α))| ≤ 8 s ∞ |f n (α)| + 12 s ∞ ≤ max (16 s ∞ f n (α), 24 s ∞ ) , else |f n (α) -f n (1)| ≥ |α| -1, therefore |α| ≤ f n (α) + 1, which yields |g n (α))| ≤ 20 s ∞ f n (α) + 12 s ∞ ≤ max (40 s ∞ f n (α), 24 s ∞ ) .
7.5 Construction of a Wiener process W such that W • g n approximates Z

Let E y be the event of probability greater than 1e -y on which the equations of claim 5 are satisfied. Let x > 0. Given D T n ∈ E y , Z 1 is a piecewise linear gaussian process on the partition ([ j ∆ ; j+1 ∆ )) ax∆≤j≤bx∆ , such that for any j ∈ {a

x ∆, . . . , b x ∆}, max (j1,j2)∈{0,...,bx∆} 2 Cov Z j1 ∆ , Z j2 ∆ -K(g n ) j1 ∆ , j2 ∆ ≤ κ 6 (1+x) 2 [y+log n] 2 n -u5 , (56) 
where K(g n ) is given by definition 12. Since g n is non-decreasing, K(g n )(s, t) = Cov(W gn(s) , W gn(t) ) for any two-sided Wiener process W on R such that W 0 = 0. In particular, K(g n ) is a positive-definite function. Furthermore, by definition, 51) and ( 49)

∀(α 1 , α 2 ) ∈ [a x ; b x ] 2 , K(g n )(α 1 , α 1 ) + K(g n )(α 2 , α 2 ) -2K(g n )(α 1 , α 2 ) = |g n (α 2 ) -g n (α 1 )|. Moreover, for all j ∈ {a x ∆, . . . , b x ∆ -1}, since n v e ≤ 1, |g n ( j+1 ∆ ) -g n ( j ∆ )| ≤ 8 s ∞ |f n ( j+1 ∆ ) -f n ( j ∆ )| + 12 s ∞ ∆ by equations (
≤ 8κ 3 s ∞ (1 + x) 2 n -u2 + 12 s ∞ n -n t n t by claim 7 ≤ 8κ 3 s ∞ (1 + x) 2 n -u2 + 12 s ∞ n -δ4 by hypothesis 4.
Finally, by lemma 7.4 and since g n is non-decreasing,

sup α∈[ax;bx] K(g n )(α, α) ≤ max(|g n (a x )|, |g n (b x )|) ≤ 20 s ∞ (1 + x).
In this situation, proposition 8.9 in the appendix (applied to Y = Z 1 , K X = K(g n ) with h = g n ) guarantees the existence of a continuous gaussian process Z 2 (D T n ), with variance-covariance function K(g n ) and such that for some constant κ and for u = min(u 5 , u 2 , δ 4 ),

∀y > 0, ∀D T n ∈ E y , E sup ax≤t≤bx |Z 1 (t) -Z 2 (t)||D T n ≤ κ(1+x) 7 6 [y+log n] 2 3 ×n -u 12 .
(57) Since the conditional distribution of Z 2 (D T n ) given D T n is entirely determined by the function g n which does not depend on

D T n , Z 2 is independent from D T n . Moreover, since g n increases, W = Z 2 • g -1
n is a continuous, centered gaussian process with covariance function

Cov(Z s , Z t ) = K(g n )(g -1 n (s), g -1 n (t)) =      s ∧ t if 0 ≤ s, t -(s ∨ t) if s, t ≤ 0 0 else , (58) 
it is therefore a two-sided Wiener process on [g n (a x ); g n (b x )] taking value 0 at 0. W can be extended to R by placing independent Wiener processes W g , W d on its left and on its right, by the equations

W (u) = W (g n (a x )) + W g (u) -W g (g n (a x )) for u < a x , W (u) = W (g n (b x )) + W d (u) -W d (g n (b x )) for u > b x .
Thus, by claim 4 and equation (57), with probability greater than 1 -2e -y ,

E sup ax≤t≤bx |Z(t) -W gn(t) ||D T n = E sup ax≤t≤bx |Z(t) -Z 2 (t)||D T n ≤ E sup ax≤t≤bx |Z 1 (t) -Z(t)||D T n + E sup ax≤t≤bx |Z 1 (t) -W gn(t) ||D T n ≤ κ(1 + x) 7 6 [y + log n] 2 3 n -u 2 12 + κ 5 (c 1 )(1 + y)(1 + x) 3 2 n -δ 5 3 ≤ κ(1 + y)(1 + x) 3 2 n -u ,
for all u < min u5 12 , u2 12 , δ4 12 , δ5 3 and a constant κ(u). Finally, by claim 3, with probability greater than 1 -3e -y ,

sup α∈[ax;bx] Rho T (α) -[f n (α) -W gn(α) ] ≤ sup α∈[ax;bx] |L(α) -f n (α)| + sup α∈[ax;bx] |Z(α) -W gn(α) | ≤ κ 1 (1 + x)[log(n) + log(2 + x) + y] 2 n -min( 1 12 , δ 4 
2

) + κ(1 + y)(1 + x) 3 2 n -u ≤ κ(1 + y) 2 (1 + x) 3 2 n -u1 , for all u 1 < min u5 12 , u2 12 , δ4 12 , δ5 3 
and a constant κ. This proves Theorem 1.

Appendix

Lemme 8.1 Let X be a random variable belonging to [-1; 1], with pdf s. For all j ∈ N, let θ j = s, ψ j . Then

Var (ψ j (X)) -→ j→+∞ 1 ∀k 0 ≤ k, k j=k0 |Var(ψ j ) -1| ≤ θ ℓ 1 = +∞ j=0 | s, ψ j |. Proof E[ψ j (X)] = 1 0 ψ j (x)s(x)dx = θ j . Moreover, ψ j (X) 2 = 2 cos 2 (2πjX) = 1+cos(2πjX), therefore Var(cos(πjX)) = 1+ θj √ 2 -θ 2 j , therefore since |θ j | ≤ √ 2, | Var(cos(jX)) -1| ≤ √ 2 -1 √ 2 |θ j | ≤ |θ j |.
Lemme 8.2 Let f : R + → R + be a function, g, h : R + → R be two nonincreasing functions. Then

inf x∈R+ {f (x) + g(x) + h(x)} ≤ inf x∈R+ {f (x) + g(x)} + inf x∈R+ {f (x) + h(x)} . Proof Let δ > 0. Let x g be such that f (x g )+g(x g ) ≤ δ+inf x∈R+ {f (x) + g(x)}. Let x h be such that f (x h )+h(x h ) ≤ inf x∈R+ {f (x) + h(x)}. Let x * = max(x g , x h ). If x * = x g , then f (x * ) + g(x * ) + h(x * ) ≤ inf x∈R+ {f (x) + g(x)} + δ + h(x * ) ≤ inf x∈R+ {f (x) + g(x)} + δ + h(x h ) since h is non-increasing ≤ inf x∈R+ {f (x) + g(x)} + δ + f (x h ) + h(x h ) ≤ inf x∈R+ {f (x) + g(x)} + inf x∈R+ {f (x) + h(x)} + 2δ Symetrically, if x * = x h , then f (x * ) + g(x * ) + h(x * ) ≤ inf x∈R+ {f (x) + g(x)} + inf x∈R+ {f (x) + h(x)} + 2δ. As a result, inf x∈R+ {f (x) + g(x) + h(x)} ≤ f (x * ) + g(x * ) + h(x * ) ≤ inf x∈R+ {f (x) + g(x)} + inf x∈R+ {f (x) + h(x)} + 2δ.
Since no assumptions were made about δ > 0, lemma 8.2 is proved.

Proposition 8.3 For any integers k 0 ≤ k, with probability greater than 1-e -y :

k j=k0+1 ( θT j -θ j ) 2 - |k -k 0 | n t ≤ 3 θ ℓ 1 n t + (1 + κ) s ∞ (y + log n) × |k -k 0 | n t + (y + log n) |k -k 0 | n 5 4 t . (59) 
In particular, there exists a constant κ 1 = κ 1 ( s ∞ , c 1 , θ ℓ 1 ) such that for any α 1 , α 2 such that (α 1 ∆, α 2 ∆) ∈ N 2 and α 1 < α 2 , with probability greater than 1e -y ,

k * +α2∆ j=k * +α1∆ ( θT j -θ j ) 2 -[α 2 -α 1 ]E ≤ κ 1 (α 2 -α 1 )[log n + y] 2 × n -min( 1 12 , δ 4 
2 ) e(n).

(60)

Proof Let (k 0 , k) ∈ N 2 be such that k 0 < k. The proof rests on lemma 14 of Arlot and Lerasle [START_REF] Arlot | Choice of V for V -fold cross-validation in least-squares density estimation[END_REF] 

applied to S m = ψ k0+1 , . . . , ψ k . Let us compute b m = sup u∈R |k-k 0 | : u ≤1 k j=k0 u j ψ j (x) ≤ sup x k j=k0 ψ 2 j (x) ≤ |k -k 0 | and D k = k j=k0+1 Var (ψ j (X)) = |k -k 0 | ± θ ℓ 1 n t (by lemma 8.1). Furthermore, D k ≤ √ 2|k -k 0 | since ψ j = √ 2 cos(2πj•) : [0; 1] → [- √ 2; √ 2]
. By [4, lemma 14], with probability greater than 1e -y , for any ε > 0,

k j=k0+1 ( θT j -θ j ) 2 - D k n t ≤ ε D k n t + κ s ∞ [log n + y] (ε ∧ 1)n t + |k -k 0 |[log n + y] 2 (ε ∧ 1) 3 n 2 t . Let ε 1 = s ∞ (log n+y) |k-k0| ∧1 . If ε 1 = 1, then |k -k 0 | ≤ s ∞ (y +log n) therefore ε 1 |k-k0| nt + κ s ∞ [log n+y] (ε1∧1)nt ≤ (1 + κ) s ∞ (y+log n) nt . If ε 1 < 1, then ε 1 |k-k0| nt + κ s ∞ [log n+y] (ε1∧1)nt = (1 + κ) s ∞ (y + log n) √ |k-k0| nt
. In all cases, if k > k 0 ,

ε 1 |k -k 0 | n t + κ s ∞ [log n + y] (ε 1 ∧ 1)n t ≤ (1 + κ) s ∞ (y + log n) |k -k 0 | n t . (61) 
Let

ε 2 = √ log n+y n 1 4 t ∧1. If √ y+log n n 1 4 t ≥ 1 = ε 2 , then ε 2 |k-k0| nt +κ |k-k0|[log n+y] 2 (ε2∧1) 3 n 2 t ≤ √ y + log n |k-k0| n 5 4 t +κ |k-k0|(y+log n) 2 n 2 t ≤ (1+κ)(y+log n) 2 |k-k0| n 5 4 t . If ε 2 = √ y+log n n 1 4 t < 1, then ε 2 |k -k 0 | n t + κ |k -k 0 |[log n + y] 2 (ε 2 ∧ 1) 3 n 2 t = y + log n |k -k 0 | n 5 4 t + κ(y + log n) 2 |k -k 0 | n 2 t n 3 4 t (y + log n) 3 2 ≤ (1 + κ) y + log n |k -k 0 | n 5 4 t .
In all cases,

ε 2 |k -k 0 | n t + κ |k -k 0 |[log n + y] 2 (ε 2 ∧ 1) 3 n 2 t ≤ (1 + κ)(y + log n) 2 |k -k 0 | n 5 4 t . (62) 
By lemma 8.2,

k j=k0+1 ( θT j -θ j ) 2 - D k n t ≤ inf ε≥0 ε D k n t + κ s ∞ [log n + y] (ε ∧ 1)n t + inf ε≥0 ε D k n t + κ |k -k 0 |[log n + y] 2 (ε ∧ 1) 3 n 2 t ≤ ε 1 |k -k 0 | n t + κ s ∞ [log n + y] (ε 1 ∧ 1)n t + ε 2 |k -k 0 | n t + κ |k -k 0 |[log n + y] 2 (ε 2 ∧ 1) 3 n 2 t + (ε 1 + ε 2 ) θ ℓ 1 n t ≤ (1 + κ) s ∞ (y + log n) |k -k 0 | n t + (1 + κ)(y + log n) 2 |k -k 0 | n 5 4 t + 2 θ ℓ 1 n t ,
by equations ( 61), (62). In conclusion, on an event E y of probability greater than 1e -y ,

k j=k0+1 ( θT j -θ j ) 2 - |k -k 0 | n t ≤ k j=k0+1 ( θT j -θ j ) 2 - D k n t + θ ℓ 1 n t ≤ 3 θ ℓ 1 n t + (1 + κ) s ∞ (y + log n) × |k -k 0 | n t + (y + log n) |k -k 0 | n 5 4 t .
This proves equation (59).

If k 0 = k * + α 1 ∆ and k = k * + α 2 ∆, then by hypothesis 4 of Theorem 1,

|k -k 0 | n t = √ α 2 -α 1 ∆ n v n t n v n t = √ α 2 -α 1 n -n t n t e ≤ √ α 2 -α 1 n -δ 4 2 e.
(63) Furthermore,

|k -k 0 | n 5 4 t = (α 2 -α 1 ) E n 1 4 t = (α 2 -α 1 ) E n v √ n v E n 1 4 t ≤ (α 2 -α 1 )e 2n v or(n t ) + 1 n 1 4 t . Let k 1 = ⌈n 1 3+δ 1 t ⌉, so that n 1 3+δ 1 t ≤ k 1 ≤ 2n 1 3+δ 1 t . By hypothesis 1 of Theorem 1, +∞ j=k+1 θ 2 j ≤ c1 k 2+δ 1 therefore or(n t ) ≤ inf k∈N * c 1 k 2+δ1 + k n t ≤ c 1 k 2+δ1 1 + k 1 n t ≤ c 1 n 2 3+δ 1 t + 2n 1 3+δ 1 t n t ≤ 2 + c 1 n 2 3+δ 1 t . Thus 1 + 2n v or(n t ) ≤ 1 + 2n t or(n t ) ≤ (5 + 2c 1 )n 1+δ 1 3+δ 1 t , hence |k -k 0 | n 5 4 t ≤ (α 2 -α 1 )e √ 5 + 2c 1 n 1+δ 1 6+2δ 1 t n 1 4 t ≤ (α 2 -α 1 ) √ 5 + 2c 1 n -1 12 t e ≤ (α 2 -α 1 ) √ 5 + 2c 1 2 1 12 n 1 12 e. (64) 
Finally,

θ ℓ 1 nt = nv nt θ ℓ 1 nv ≤ θ ℓ 1 n-nt
nt e ≤ θ ℓ 1 n -δ4 e. Equation (60) follows from equations (59), ( 63) and (64). Lemme 8.4 Let (c i,j ) (i,j)∈N 2 be real coefficients. Let I 1 , I 2 ⊂ N be two finite sets. Let (θ j ) j∈N be a sequence.

Let C = max sup i∈I1 j∈I2 |c i,j |, sup i∈I2 j∈I1 |c i,j | . Then i∈I1   j∈I2 c i,j θ j   2 ≤ C 2 j∈I2 θ 2 j and i∈I1 j∈I2 θ i θ j c i,j ≤ C max    i∈I1 θ 2 i , j∈I2 θ 2 j    . Proof Let C i = j∈I2 |c i,j |. Then i∈I1   j∈I2 c i,j θ j   2 = i∈I1 C 2 i   1 C i j∈I2 sgn(c i,j )|c i,j |θ j   2 ≤ i∈I1 C 2 i C i j∈I2 |c i,j |θ 2 j by the Jensen inequality ≤ max i∈I1 C i j∈I2 θ 2 j i∈I1 |c i,j | ≤ C 2 j∈I2 θ 2 j .
This proves the first equation. Furthermore,

i∈I1 j∈I2 θ i θ j c i,j ≤ i∈I1 j∈I2 θ 2 i + θ 2 j 2 |c i,j | = 1 2 i∈I1 θ 2 i j∈I2 |c i,j | + 1 2 j∈I2 θ 2 j i∈I1 |c i,j | ≤ C max    i∈I1 θ 2 i , j∈I2 θ 2 j    ,
which proves the second equation.

Lemme 8.5 Under the assumptions of Theorem 1, there exists a constant κ(c 1 , c 2 ) > 0 such that for any x ≥ 0,

k * + a x ∆ ≥ κ (1 + x) 1 δ 2 n 2 3δ 2 t .
Proof By hypothesis 2 of Theorem 1,

c 2 (k * + a x ∆) -δ2 ≤ +∞ j=k * +ax∆+1 θ 2 j ≤ k * j=k * +ax∆+1 θ 2 j - 1 n t + |a x |E + +∞ j=k * +1 θ 2 j ≤ ef n (a x ) + |a x |E + or(n t ). (65) 
By definition, f n (a x ) ≤ x and by lemma 7. .

On the other hand, by hypothesis 1 of Theorem 1,

or(n t ) ≤ min k∈N c 1 k 2 + k 2n t ≤ 3c 1 3 1 n 2 3 t .
It follows finally that, for some constant κ(c 1 , c 2 ),

k * + a x ∆ ≥ κ (1 + x) 1 δ 2 n 2 3δ 2 t .
Claim 7 Let u 2 = min 2δ3 3δ2 , δ 4 . Let x be a non-negative real number. Let a x , b x be such that a x ≤ 0 ≤ b x and max(f n (a x ), f n (b x )) ≤ x. Assume also that a x ∆ -1 ≥ -k * ∆ . There exists a constant κ 3 ≥ 0 such that for all j ∈ [a x ∆; b x ∆ + 1],

f n j ∆ -f n j-1 ∆ ≤ κ 3 (1 + x) 2 n -u2
(66)

θ 2 k * +j ≤ κ 3 (1 + x) 2 n -u2 e. ( 67 
)
Proof By hypothesis 3 of Theorem 1, for all k ≥ 1,

θ 2 k+k δ 3 ≥ c 3 θ 2 k-k δ 3 . Thus, for all k ≥ 1 and any j ∈ [k -k δ3 ; k + k δ3 ], max θ 2 k , 1 n t ≤ max c 3 θ 2 j , 1 n t ≤ 1 + c 3 n t + c 3 θ 2 j - 1 n t . ( 68 
) Let k ∈ [k * + a x ∆; k * + b x ∆ + 1]
. Assume without loss of generality (up to a change in the constant κ 9 ) that x ≥ 1. Thus by lemma 3.2, max(-a x , b x ) ≥ 1.

• If |b x | ≥ 1, then two cases can be distinguished.

-

If k ≤ k * + ∆ 2 , then k + k δ3 ∧ ∆ 2 ≤ k * + ∆ ≤ k * + b x ∆, therefore by definition of a x , b x , 2xe ≥ e[f n (a x )+f n (b x )] = k * +bx∆ j=k * +ax∆+1 θ 2 j - 1 n t ≥ k+k δ 3 ∧ ∆ 2 j=k+1 θ 2 j - 1 n t . -If k * + ∆ 2 < k ≤ k * + b x ∆ + 1, then k -k δ3 ∧ ∆ 2 ≥ k * , therefore 2xe ≥ k * +bx∆ j=k * +ax∆+1 θ 2 j - 1 n t ≥ k-1 j=k-k δ 3 ∧ ∆ 2 θ 2 j - 1 n t .
• If |a x | ≥ 1, then we likewise consider two possibilities.

-

If k > k * -∆ 2 , then k -k δ3 ∧ ∆ 2 > k * -∆ ≥ k * + a x ∆, therefore by definition of a x , b x , 2xe ≥ k * +bx∆ j=k * +ax∆+1 θ 2 j - 1 n t ≥ k-1 j=k-k δ 3 ∧ ∆ 2 θ 2 j - 1 n t . -If k ≤ k * -∆ 2 , then k + k δ3 ∧ ∆ 2 ≤ k * , therefore 2xe ≥ k * +bx∆ j=k * +ax∆+1 θ 2 j - 1 n t ≥ k+k δ 3 ∧ ∆ 2 j=k+1 θ 2 j - 1 n t .
In all cases, by equation (68),

k δ3 ∧ ∆ 2 max θ 2 k , 1 n t ≤ k δ3 ∧ ∆ 2 1 + c 3 n t + 2xe, in other words max θ 2 k , 1 n t ≤ 1 + c 3 n t + 2xe k δ3 ∧ ∆ 2 .
Furthermore, by hypothesis 4 of Theorem 1, ∆ ≥ nt n-nt ≥ n δ4 , and by lemma 8.5,

k δ3 ≥ (k * + a x ∆) δ3 ≥ κ (1 + x) δ 3 δ 2 n 2δ 3 3δ 2 t .
Let u 2 = min 2δ3 3δ2 , δ 4 Since δ 3 ≤ δ 2 , there exists therefore a constant κ such that

max θ 2 k , 1 n t ≤ κ(1 + x) 2 n -u2 e.
In conclusion, for all j ∈ {a x ∆, . . . , b x ∆ + 1},

θ 2 k * +j ≤ max θ 2 k * +j , 1 n t ≤ κ(1 + x) 2 n -u2 e f n j ∆ -f n j-1 ∆ = 1 e |θ 2 j+k * - 1 n t | ≤ 1 e max θ 2 k * +j , 1 n t ≤ κ(1 + x) 2 n -u2 .
This proves claim 7.

Proposition 8.6 Let P be the probability measure with pdf s on [0; 1]. Let θ j = s, ψ j = P (ψ j ) and θ 2 j = θ 2 j , and assume that they satisfy the hypotheses of Theorem 1. Let θT j = P T ψ j . Let I 1 k , I 2 k ⊂ {k * + a x ∆ + 1, . . . , k * + b x ∆} be two intervals. Then the statistics

U I 1 k ,I 2 k = i∈I 1 k j∈I 2 k θT i θT j [P (ψ i ψ j ) -P ψ i P ψ j ]
can be approximated in the following way. There exists two constants κ 4 and u 3 > 0 such that, with probability greater than 1e -y ,

U I 1 k ,I 2 k = 1 2 |I 1 k ∩ I 2 k | n t + 1 - 1 √ 2 i∈I 1 k ∩I 2 k θ 2 i + 1 √ 2 i∈I 1 k j∈I 2 k θ i θ j θ |i-j| + 1 2n t i∈I 1 k j∈I 2 k θ 2 |i-j| ± κ 4 (y + log n) 2 (1 + x)n -u3 E.
Proof First, by lemma 7.1,

max   i∈I 1 k θ 2 i , j∈I 2 k θ 2 j   ≤ k * +bx∆ j=k * +ax∆+1 θ 2 j ≤ 4(1 + x)E. ( 69 
) Let c i,j = θi+j √ 2 + 1-δi,j √ 2 + δ i,j θ |i-j| -θ i θ j . U I 1 k ,I 2 
k can be expressed as the sum of 6 terms:

U I 1 k ,I 2 k = V 1 + V 2 + V 3 + V 4 + V 5 + V 6 , where V 1 = i∈I 1 k j∈I 2 k θ i θ j θ i+j √ 2 + 1 -δ i,j √ 2 + δ i,j θ |i-j| -θ i θ j V 2 = (P T -P ) i∈I 1 k ψ i j∈I 2 k θ j c i,j V 3 = (P T -P ) j∈I 2 k ψ j i∈I 1 k θ i c i,j V 4 = 1 √ 2 i∈I 1 k j∈I 2 k (P T -P )ψ i (P T -P )ψ j θ |i-j| V 5 = 1 - 1 √ 2 j∈I 1 k ∩I 2 k θT j -θ j 2 V 6 = i∈I 1 k j∈I 2 k (P T -P )ψ i (P T -P )ψ j θ i+j √ 2 -θ i θ j
The first term is

V 1 = 1 - 1 √ 2 i∈I 1 k ∩I 2 k θ 2 i + 1 √ 2 i∈I 1 k j∈I 2 k θ i θ j θ |i-j| + i∈I 1 k j∈I 2 k θ i θ j θ i+j √ 2 -θ i θ j .
For all i ∈ I 1 k ,

j∈I 2 k |θ i+j | √ 2 + |θ i ||θ j | ≤ 2 j≥k * +ax∆+1 |θ j |.
Furthermore, for all k ≥ 2, by hypothesis 1 of Theorem 1,

j≥k |θ j | ≤ +∞ j=k +∞ i=j θ 2 i ≤ +∞ j=k c 1 (j -1) 1+ δ 1 2 ≤ 2c 1 δ 1 (k -1) -δ 1 2 . ( 70 
) Since k * + a x ∆ ≥ κ (1+x) 1 δ 2 n 2 3δ 2 t by lemma 8.5, there is a constant κ(c 1 , c 2 ) such that j∈I 2 k |θ i+j | √ 2 + |θ i ||θ j | ≤ κ (1 + x) δ 1 2δ 2 n δ 1 3δ 2 t . (71) 
The same argument applies to i∈I 1 k |θi+j| √ 2 + |θ i ||θ j |. Thus, by lemma 8.4,

i∈I 1 k j∈I 2 k θ i θ j [θ i+j -θ i θ j ] ≤ 2κ (1 + x) δ 1 2δ 2 n δ 1 3δ 2 t   i∈I 1 k θ 2 i + j∈I 2 k θ 2 j   .
By equation (69), it follows that for a certain constant κ(c 1 , c 2 ),

i∈I 1 k j∈I 2 k θ i θ j θ i+j √ 2 -θ i θ j ≤ κ (1 + x) 1+ δ 1 2δ 2 n δ 1 3δ 2 t E. Thus V 1 = 1 - 1 √ 2 i∈I 1 k ∩I 2 k θ 2 i + 1 √ 2 i∈I 1 k j∈I 2 k θ i θ j θ |i-j| ± κ (1 + x) 1+ δ 1 2δ 2 n δ 1 3δ 2 t E (72) 
Bernstein's inequality applies to V 2 and V 3 . By symmetry, let us only consider V 2 . Its variance satisfies the following inequality.

Var   i∈I 1 k ψ i j∈I 2 k θ j c i,j   ≤ s ∞ i∈I 1 k ψ i j∈I 2 k θ j c i,j 2 ≤ s ∞ i∈I 1 k   j∈I 2 k θ j c i,j   2 .
Let us now apply lemma 8.4. For all i ∈ I 1 k ,

j∈I 2 k |c i,j | ≤ 1 √ 2 j∈I 2 k |θ i+j | + 1 √ 2 j∈I 2 k |θ |i-j| | + |θ i | j∈I 2 k |θ j | ≤ √ 2 + sup i∈N |θ i | r∈N |θ r | ≤ 3 θ ℓ 1
In the same way, for all j ∈ I 2 k , i∈I 1 k |c i,j | ≤ 3 θ ℓ 1 , hence by lemma 8.4,

Var   i∈I 1 k ψ i j∈I 2 k θ j c i,j   ≤ 3 θ ℓ 1 s ∞ j∈I 2 k θ 2 j ≤ 12 θ ℓ 1 s ∞ (1 + x)E by equation (69). (73) 
As for the upper bound on the uniform norm, it follows from lemma 8.4 and the elementary upper bound

ψ i ∞ ≤ √ 2 that sup x∈R i∈I 1 k ψ i (x) j∈I 2 k θ j c i,j ≤ i∈I 1 k   j∈I 2 k θ j c i,j   2 sup x∈R i∈I 1 k ψ i (x) 2 ≤ 3 θ ℓ 1 2|I 1 k | j∈I 2 k θ 2 j ≤ 3 θ ℓ 1 2(b x -a x )∆ 4(1 + x)E ≤ κ(1 + x) √ ∆E by lemma 7.1, (74) 
for some constant κ = κ( θ ℓ 1 ). By Bernstein's inequality, there exists an event E 2 (y) ⊂ R nt with probability P(D T n ∈ E 2 (y)) ≥ 1e -y such that, for any

D T n ∈ E 2 (y), |V 2 | ≤ 2y n t Var   i∈I 1 k ψ i j∈I 2 k θ j c i,j   + y 3n t sup x∈R i∈I 1 k ψ i (x) j∈I 2 k θ j c i,j ≤ 24 θ ℓ 1 s ∞ y(1 + x)E n t + κy 3n t (1 + x) √ ∆E by (73), (74). 
Setting κ = max 24 θ ℓ 1 s ∞ , κ 3 , it follows that on E 2 (y),

|V 2 | ≤ κ y(1 + x) n v n t e + κy(1 + x) n v n t e √ E. By lemma 3.1, E is uniformly bounded: E ≤ 2 nt j=1 θ 2 j + 1 n-nt ≤ 1 + 2 s 2 ≤ 1+2 s ∞ . Furthermore, by hypothesis 4 of Theorem 1, nv nt = n-nt nt ≤ n -δ 4 2 . Thus, there exists a constant κ( θ ℓ 1 , s ∞ ) such that, on E 2 (y), |V 2 | ≤ κy(1 + x)n -δ 4 2 e. (75) 
Symmetrically, there exists an event E 3 (y) of probability greater than 1e -y , such that for any D T n ∈ E 3 (y),

|V 3 | ≤ κy(1 + x)n -δ 4 2 e. (76) 
Now consider V 4 . This term can be expressed as a finite sum of sums of squares:

V 4 = 1 √ 2 r∈Z i∈I 1 k ∩(I 2 k -r) (P T -P )ψ i (P T -P )ψ i+r θ |r| = 1 4 √ 2 r∈Z θ |r| i∈I 1 k ∩(I 2 k -r) (P T -P )(ψ i + ψ i+r ) 2 -(P T -P )(ψ i -ψ i+r ) 2 . Let J 0 = {j ∈ N : ⌊ j r ⌋ is even} and J 1 = {j ∈ N : ⌊ j r ⌋ is odd}. Thus V 4 = 1 4 √ 2 r∈Z θ |r| (z,ε)∈{0;1}×{-1;1} j∈Jz ε(P T -P )(ψ i + εψ i+r ) 2 I I 1 k (i)I I 2 k (i + r).
For any fixed r = 0, (z, ε) ∈ {0; 1} × {-1; 1}, 1 √ 2 ψ i + εψ i+r i∈Jz is an orthonormal collection of functions, since for any (i, j) ∈ J 2 z , < ψ i + εψ i+r , ψ j + εψ j+r > =< ψ i , ψ j > +ε < ψ i+r , ψ j > +ε < ψ i , ψ j+r > + < ψ i+r , ψ j+r > = 2δ i,j + ε < ψ i+r , ψ j > +ε < ψ i , ψ j+r > = 2δ i,j since i, j ∈ J z and i + r, j + r ∈ J 1-z .

[4, Lemma 14] applied to S m = (ψ i + εψ i+r ) i∈Jz ∩I 1 k ∩I 2 k for all (z, ε) ∈ {0; 1} × {-1; 1} , r ∈ {-n t , . . . , n t } and a union bound yield an event E 4 (y) of probability P(D T n ∈ E 4 (y)) ≥ 1e -y such that, for some absolute constant κ and for all D T n ∈ E 4 (y), (z, ε) ∈ {0; 1} × {-1; 1} and r ∈ Z, 

i∈Jz∩I 1 k ∩(I 2 k -r) ε(P T -P )(ψ i + εψ i+r ) 2 = (1 ± δ) ε n t i∈Jz∩I 1 k ∩(I 2 k -r) Var(ψ i ) + Var(ψ i+r ) + 2ε Cov(ψ i , ψ i+r ) + κ s ∞ [log(1 + r) + log n t + y] (δ ∧ 1)n t + κ |I 1 k |[log(1 + r) + log n t + y] 2 (δ ∧ 1) 3 n 2 t . By summing on (r, z, ε) ∈ Z × {0; 1} × {-1; 1} and since ψ i ∞ ≤ √ 2, it follows that for all D T n ∈ E 4 (y), V 4 - 1 n t r∈Z θ |r| √ 2 i∈I 1 k ∩(I 2 k -r) c i,i+r = V 4 - 1 n t nt r=-nt θ |r| √ 2 i∈I 1 k ∩(I 2 k -r) c i,i+r ≤ δ n t √ 2 r∈Z |θ |r| | i∈I 1 k ∩(I 2 k -r) [Var(ψ i ) + Var(ψ i+r )] + κ r∈Z |θ |r| | √ 2 × s ∞ [log n t log(1 + r) + y] (δ ∧ 1)n t + κ r∈Z |θ |r| | √ 2 × |I 1 k |[log n t + log(1 + r) + y] 2 (δ ∧ 1)
| ≤ (b x -a x )∆ ≤ 2(1 + x)∆, hence V 4 - 1 n t r∈Z θ |r| √ 2 i∈I 1 k ∩(I 2 k -r) c i,i+r ≤ 6 θ ℓ 1 (1 + x) δ n t ∆ + 2κ θ 1,log 2 s ∞ [1 + y] (δ ∧ 1)n t + 8κ(1 + x) θ 1,log 2 ∆[1 + y] 2 (δ ∧ 1) 3 n 2 t .
There exists therefore a constant κ( θ 1,log 2 ) such that, for all D T n ∈ E 4 (y),

V 4 - 1 n t r∈Z θ |r| √ 2 i∈I 1 k ∩(I 2 k -r) c i,i+r ≤ κδ(1+x)E+ [log n t + y] (δ ∧ 1)n t +κ(1+x) [log n t + y] 2 (δ ∧ 1) 3 n t E. Let now δ = max n-nt nt , n -1 3 3 4 . By hypothesis 4 of section 4, n-nt nt ≤ n -δ4 , therefore δE ≤ n -min( 1 4 , 3δ 4 
4 ) E. Moreover, E ≥ 1 nv therefore 1 δnt ≤ n-nt nt 1 4 1 nv ≤ θ |i-j| √ 2 c i,j -1 - 1 √ 2 |I 1 k ∩ I 2 k | n t √ 2 - 1 n t i∈I 1 k j∈I 2 k θ 2 |i-j| 2 ≤ 2 n t r∈N |θ r | 2 ≤ 2 n -n t n t 1 n v θ 2 ℓ 1 ≤ 2 θ 2 ℓ 1 n -δ4 E (78) 
since E ≥ 1 nv and n-nt nt ≥ n -δ4 , by hypothesis 4 of Theorem 1. From equations (77) and (78), it follows that, for some constant κ( θ 1,log 2 ),

V 4 -1 -1 √ 2 |I 1 k ∩ I 2 k | n t √ 2 - 1 2n t i∈I 1 k j∈I 2 k θ 2 |i-j| ≤ κ(1 + x)[log n t + y] 2 n -δ 4 4 E.
(79) V 5 can be expressed as

V 5 = 1 - 1 √ 2 j∈I 1 k ∩I 2 k θT j -θ j 2 ,
therefore by proposition 8.3, there exists an event E 5 (y) of probability greater than 1e -y such that for all D T n ∈ E 5 (y),

V 5 = 1 - 1 √ 2 i∈I 1 k ∩I 2 k 1 n t ± 1 - 1 √ 2 κ 1 (b x -a x )[log n + y] 2 n -min( 1 12 , δ 4 
2 ) e(n)

It follows by lemma 7.1 that on E 5 (y),

V 5 -1 - 1 √ 2 |I 1 k ∩ I 2 k | n t ≤ 4κ 1 (1 + x)[log n + y] 2 n -min( 1 12 , δ 4 
2 ) e(n). (80)
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Finally, V 6 can be bounde in the following manner.

V 6 ≤ 1 2 i∈I 1 k j∈I 2 k (P T -P ) 2 ψ i + (P T -P ) 2 ψ j |θ i+j | √ 2 + |θ i ||θ j | = 1 2 i∈I 1 k (P T -P ) 2 ψ i j∈I 2 k |θ i+j | √ 2 + |θ i ||θ j | + 1 2 j∈I 2 k (P T -P ) 2 ψ j i∈I 1 k |θ i+j | √ 2 + |θ i ||θ j | .
Thus, by equation (71),

V 6 ≤ κ (1 + x) δ 1 2δ 2 n δ 1 3δ 2 t ×   1 2 i∈I 1 k (P T -P ) 2 ψ i + 1 2 j∈I 2 k (P T -P ) 2 ψ j   ≤ κ (1 + x) δ 1 2δ 2 n δ 1 3δ 2 t × k * +bx∆ j=k * +ax∆+1 θT j -θ j 2 . (81) 
By proposition 8.3, there exists an event E 6 (y) of probability greater than 1e -y , such that for any D

T n ∈ E 6 (y), k * +bx∆ j=k * +ax∆+1 θT j -θ j 2 ≤ (b x -a x )E + κ 1 (b x -a x )(y + log n) 2 n -min( 1 12 , δ 4 
2 ) e

≤ 2 max(κ 1 , 1)(b x -a x )(y + log n) 2 E ≤ 8 max(κ 1 , 1)(1 + x)(y + log n) 2 E by lemma 7.1.
It follows by equation ( 81) that on E 6 (y), for a certain constant κ(κ 1 , δ 1 , c 1 , κ 6 ),

V 6 ≤ κ[y + log n] 2 (1 + x) δ 1 2δ 2 n δ 1 3δ 2 t E. (82) 
Combining equations (72), (75), (76), (79), ( 80), (82) on the event ∩ 6 i=2 E i (log 6+ y) yields the result. Lemme 8.7 Let s ∈ L ∞ ([0; 1]) be a probability density function. For all j ∈ N, let θ j = s, ψ i , where ψ 0 (x) = 1 and ψ j (x) = √ 2 cos(2jπx) for all j ∈ N * . Thus for any finite set I ⊂ N and for all functions u ∈ R I ,

0 ≤ i∈I j∈I u(i)u(j) 1 -δ i,j √ 2 + δ i,j θ |i-j| ≤ s ∞ i∈I u(i) 2 .
Proof Let X ∼ s be a random variable with distribution s(x)dx on [0; 1]. For any x ∈ R, and any i = j,

ψ i (x)ψ j (x) = 2 cos(2iπx) cos(2jπx) = cos(2(i+j)πx)+cos(2(i-j)πx) = ψ i+j + ψ |i-j| √ 2 . If i = j, then Cov(ψ i (X), ψ j (X)) = θi+j+θ |i-j| √ 2 -θ i θ j . If i = j, Var(ψ i (X)) = 1 + θ2i √ 2 -θ 2 i . Let u ∈ R I , k ∈ N and t k = i∈I u(i)ψ i+k , then Var(t k (X)) = i∈I j∈I u(i)u(j) 1 -δ i,j √ 2 + δ i,j θ |i-j| + θ i+j+2k √ 2 -θ i+k θ j+k Furthermore, lim n→+∞ θ n = 0, hence lim k→+∞ Var(t k (X)) = i∈I j∈I u(i)u(j) 1 -δ i,j √ 2 + δ i,j θ |i-j| .
It immediately follows that i∈I j∈I u(i)u(j)

1-δi,j √ 2 + δ i,j θ |i-j| ≥ 0. More- over, for all k ∈ N, Var(t k (X)) ≤ E t k (X) 2 = 1 0 t k (x) 2 s(x)dx ≤ s ∞ t k 2 ≤ s ∞ i∈I u(i) 2 . Thus i∈I j∈I u(i)u(j) 1 -δ i,j √ 2 + δ i,j θ |i-j| ≤ s ∞ i∈I u(i) 2 .
Lemme 8.8 Let ε : R + → R + be a non-decreasing function such that ε(0) > 0 and h + : R + → R + be a continuous, non-decreasing function. Let g 0 : R + → R be a continuous function such that, for any s < t, -ε(max(s, t)) ≤ g 0 (t)g 0 (s) ≤ max{h + (t)h + (s), ε(max(s, t))}.

Assume that ε(0) > 0. Then there exists a continuous, non-decreasing function g : R + → R + such that g 0 (0) = g(0), Proof Assume to begin with that ε is right-continuous. Let r > 0, δ > 0. We define by induction a sequence (x i ) i∈N and a function g on [x i ; x i+1 ]. Let x 0 = 0 and g(x 0 ) = g 0 (x 0 ). For any i ∈ N, assuming x i and g(x i ) have been defined, let

g 0 -g ε ∞ ≤ 6 
x i+1 = inf x ≥ x i : g 0 (x) ≥ g 0 (x i ) + 2ε(x i ) or ε(x) ≥ 3 2 ε(x i ) ∀x ∈ (x i , x i+1 ], g(x) = g(x i ) if ε(x i+1 ) ≥ 3 2 ε(x i ) g(x i ) + g0(xi+1)-g0(xi) h+(xi+1)-h+(xi) [h + (x) -h + (x i )] else. (83) 
If x i+1 = +∞, the above definitions still make sense and the induction stops. Notice first that for any x ∈ [x i ; x i+1 ), g 0 (x)-g 0 (x i ) ≤ [h + (x)-h + (x i )]∨ε(x) ≤ [h + (x)h + (x i )] ∨ 3 2 ε(x i ). Thus,by continuity of g 0 ,

g 0 (x i+1 ) -g 0 (x i ) ≤ [h + (x i+1 ) -h + (x i )] ∨ 3 2 ε(x i ).
By assumption, ε is right-continuous, therefore if ε(x i+1 ) < 3 2 ε(x i ), it must be that inf{x ≥ x i : ε(x) ≥ 3 2 ε(x i )} > x i+1 . Then by definition of x i+1 and continuity of g 0 , g 0 (x i+1 ) = g 0 (x i ) + 2ε(x i ), therefore

2ε(x i ) = g 0 (x i+1 ) -g 0 (x i ) ≤ [h + (x i+1 ) -h + (x i )] ∨ 3 2 ε(x i ),
which implies that

0 < 2ε(x i ) = g 0 (x i+1 ) -g 0 (x i ) ≤ [h + (x i+1 ) -h + (x i )]. (84) 
This proves that g is well defined. g is non-decreasing and continuous since h + has these properties. If ε(x i+1 ) < 3 2 ε(x i ), then the previous equation implies that ∀i ∈ N, ∀(x, y) ∈ (x i , x i+1 ], x ≤ y =⇒ g(y)g(x) ≤ h + (y)h + (x), else g is constant on ]x i ; x i+1 ] and the above equation is trivially true. Hence, since g, h + are non-decreasing and continuous, ∀(x, y) ∈ R, x ≤ y =⇒ g(y)g(x) ≤ h + (y)h + (x).

We will now prove by induction that for all i ∈ N * , 0 ≤ g 0 (x i )g(x i ) ≤ 4ε(x i ).

(85)

Base case: This equation is true for i = 1 since x 0 = 0 and g(0) = g 0 (0) = 0, therefore by definition of g, x 1 , 0 ≤ g(x 1 ) ≤ g 0 (x 1 ) ≤ 2ε(x 0 ). Inductive step: Assume that equation (85) is true for some i ∈ N. Then by definition of x i+1 and g,

• If ε(x i+1 ) ≥ 3 2 ε(x i ), then g(x i+1 ) = g(x i ) therefore g 0 (x i+1 )g(x i+1 ) = g 0 (x i+1 )g 0 (x i ) + g 0 (x i )g(x i ). By the induction hypothesis and the definition of x i+1 , 0 ≤ g 0 (x i+1 )g(x i+1 ) ≤ 2ε(x i ) + 4ε(x i ) ≤ 6ε(x i ) ≤ 4ε(x i+1 ), which proves equation (85) for i + 1.

• Otherwise, by definition of g, g(x i+1 ) = g(x i )+[g 0 (x i+1 )-g 0 (x i )] therefore by the induction hypothesis and since ε is non-decreasing, 0 ≤ g 0 (x i+1 )g(x i+1 ) = g 0 (x i )g(x i ) ≤ 4ε(x i ) ≤ 4ε(x i+1 ).

This proves equation (85) for i + 1.

By induction, equation ( 85) is therefore true for all i ∈ N (such that x i < +∞).

Let now i ∈ N and x ∈ (x i , x i+1 ]. By definition of g, g(x i ) ≤ g(x) ≤ g(x i ) + (g 0 (x i+1 )g 0 (x i )) + .

By equation (85) and definition of x i+1 , g(x)g 0 (x) ≤ g(x)g 0 (x i ) ≤ g(x i )g 0 (x i ) + (g 0 (x i+1 )g 0 (x i )) + ≤ 2ε(x i ) ≤ 2ε(x).

Moreover, by equation ( 85) and definition of the x i , g(x)g 0 (x) ≥ g(x i )g 0 (x i+1 ) ≥ g(x i )g 0 (x i ) -[g 0 (x i+1 )g 0 (x i )] ≥ -4ε(x i ) -2ε(x i ) ≥ -6ε(x i ) ≥ -6ε(x).

It has been proved that for all i ∈ N such that x i is finite, ∀x ∈ (x i ; x i+1 ], |g(x)g 0 (x)| ≤ 6ε(x).

It must now be proved that lim n→+∞ x n = +∞. Since ε is non-decreasing and right-continuous, by definition of x n , g 0 (x n+1 ) ≥ g 0 (x n ) + 2ε(x n ) ≥ g 0 (x n ) + ε(0) or ε(x n+1 ) ≥ 3 2 ε(x n ). Since ε(0) > 0 by assumption, this implies that max(g 0 , ε)(x n ) → +∞. The function max(g 0 , ε) is non-decreasing, thus it is bounded on every interval of the form [0; x], which implies that x n → +∞. This proves the proposition under the assumption that ε is right-continuous.

In the general case, let ε + : x → inf y>x ε(y), which is non-decreasing and right-continuous. Since ε is non-decreasing, ε + ≥ ε, therefore the assumptions of the proposition hold with ε + instead of ε. By the right-continuous case of the proposition, which we already proved, there exists a non-decreasing function g such that g-g0 This proves the proposition in the general case. Assume that there exists constants L > 0 and ε ∈ [0; 1] such that:

• sup t∈[a;b] K X (t, t) ≤ L

• For any i ∈ {1, . . . , M -1}, h(x i+1 )h(x i ) ≤ ε

• max (i,j)∈{1,...,M} 2 |K X (x i , x j ) -K Y (x i , x j )| ≤ ε.

There exists a universal constant κ and a measurable function Proof We assume without loss of generality that h(b)h(a) ≥ 1. We shall moreover use the following notation. For A, B two symmetric matrices, A ≺ B means that B -A is positive definite. A op denotes the matrix operator norm corresponding to the euclidean norm, i.e A op = sup x: x 2 ≤1 Ax 2 . We will need the following lemmas: 

The C([a; b], R)-valued process X 1 induces a probability distribution Q on the Borel space C([a; b], R). Furthermore, (X 1 (t j )) 1≤j≤m ∼ Xm ∼ f 1 (Y m , ν 1 ). By (Kallenberg, Theorem 5.10), there exists a measurable function f 2 such that for all uniform random variables ν 3 independent from Y m , ν 1 , (X 1 , (X 1 (t j )) 1≤j≤m ) ∼ (f 2 (f 1 (Y m , ν 1 ), ν 3 ), f 1 (Y m , ν 1 )). Let X = f 2 (f 1 (Y m , ν 1 ), ν 3 ) and X m = (X(t j )) 1≤j≤m . Almost surely, Claim 8 1. X m = (X(t j )) 1≤j≤m = f 1 (Y m , ν 1 ) p.s, so 2. (X m , Y m ) ∼ ( X m , Y m ), in particular by equation (87), (89)

E X m -Y m 2 ≤ 2m √ ε L 2 + ε.
By abuse of notation, denote X m , Y m the random processes obtained by linear interpolation between the points (t j , X m j ) and (t j , Y m j ), respectively. For all t ∈ [a; b], there exists j ∈ {1, . . . , m} such that t j ≤ t ≤ t j+1 , therefore |h(t)h(t j )| ≤ h(t j+1 )-h(t j ), since h is non-decreasing. By definition of t j+1 (equation (86)), h(t j+1 ) ≤ h(a) + j m-1 (h(b)h(a)) and furthermore, there exists i ∈ {1, . . . , M } such that x i = t j . By equation (86) which defines t j , h(x i+1 ) > h(a) + j-1 m-1 (h(b)h(a)), which yields

|h(t) -h(t j )| ≤ h(a) + j m -1 (h(b) -h(a)) -h(x i+1 ) + h(x i+1 ) -h(x i ) ≤ h(b) -h(a) m -1 + h(x i+1 ) -h(x i ).
By 
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for an absolute constant κ.

Definition 6

 6 For all j ∈ [-k * ; +∞[∩Z, let Rho T (k * + j) -HO T (k * )) , in other words (by definition 2)

( 15 )

 15 On the other hand, |g n (α)| ≥ 4 s 2 |α| by equation (2) and f n (b x ) ≥ xo(1) by claim 7 . Thus, the mean and standard deviation of Y n,1 are both of constant order on [a x , b x ], as n → +∞. This leaves the question of what happens outside the window [a x , b x ] and/or at larger scales. The following proposition answers this question: as x → +∞, the hold-out process concentrates around f n . Proposition 5.1 Let (M n ) n∈N be an integer sequence and

T 1 √

 1 concentrates around the deterministic function f n . If the seauence V n grows slowly enough, such that V n = o(n u1 ), corollary 2 also provides the rate of this convergence (which is Vn ). An analog to Proposition 5.1 for cross-validation follows likewise from Jensen's inequality. Hence, at scales asymptotically larger than ∆ or outside intervals [a xn , b xn ], x n → +∞, cross-validation also concentrates around the excess risk function f n .

  Model selectionThe CV risk estimator is usually used to select a model, kcvT , which minimizes it. The final result of CV is then the estimator ŝkcv T , or ŝT kT in the case of simple validation. Thus, what we are most interested in practice is the risk ŝkcv T s 2

7. 1 . 1

 11 Proof of lemma 3.1

7. 1 . 3

 13 Properties of the interval [a x ; b x ] Lemme 7.1 Let a x , b x be as defined in Theorem1. Then for all x > 0, [b

  , and moreover ∀x, y, |g(y)g(x)| ≤ |h + (y)h + (x)|.

ε+ ∞ ≤ 6

 6 and ∀x, y, x ≤ y =⇒ g(y)g(x) ≤ h + (y)h + (x). Let x ∈ R + . For all y < x, |g(y)g 0 (y)| ≤ 6ε + (y), therefore by continuity of g, g 0 , |g(x)g 0 (x)| ≤ 6 sup y<x ε + (y) = 6 sup y<x inf y ′ >y ε(y ′ ) ≤ 6ε(x).

Proposition 8 . 9

 89 Let ([x i , x i+1 )) 1≤i≤M-1 be a partition of the interval [a, b). Let Y : {x 1 , . . . , x M } → R be such that (Y (x j )) 1≤j≤M is a zero-mean gaussian vector. Abusing notation, we also denote by Y the extension of Y to [a; b] by linear interpolation. Let K Y : [a; b] 2 → R be the variance-covariance function of Y . Let h : [a; b] → R be a continuous, increasing function and let K X : [a; b] 2 → R be a positive semi-definite function such that:∀(s, t) ∈ [a; b] 2 , |K X (s, s) + K X (t, t) -2K X (s, t)| ≤ |h(s)h(t)|.

  f : C([a; b], R) → C([a; b], R) such that for all random variables ν ∼ U([0; 1]) independent from Y , X = f (Y, ν) is a zero-mean gaussian process with variance-covariance function K X and moreover,E sup a≤t≤b |X t -Y t | ≤ κ (1 + L) log M [(h(b)h(a)) ∨ 1]ε 1 12 .

Lemme 8 . 10 v 2 i = 1 .≤

 81021 For all A ∈ R m×m , A op ≤ m max 1≤i,j≤m |A i,j |. Proof Let v ∈ R m be such that m i=1 By the Cauchy-Schwartz inequality, This is true for any v, which proves lemma 8.10. Lemma 8.11 below is a special case of Mc-Carthy's trace inequality [18, Lemma 2.6]. Lemme 8.11 Let A, B be two symmetric, positive semi-definite matrices, then Tr( √ A + B) ≤ Tr( √ A) + Tr( √ B). The hypotheses imply that h is bijective from [a; b] to [h(a); h(b)]. Let m ∈ N. For all j ∈ {1, . . . , m}, lett j = max x i |i ∈ {1, . . . , M }, h(x i ) ≤ h(a) + j -1 m -1 [h(b)h(a)] .(86)whereB(θ, r) is a universal constant. Let X 1 = W 1 • h,which is still a gaussian process, with variance-covariance function K X . Then, since by assumption h(b)h(a) ≥ 1, for all r ≥ 2, E sup s =t |X 1 (t) -X 1 (s)| |h(t)h(s)| θ( [h(b)h(a)] r 2 B(θ, r) < +∞.

3 .

 3 X ∼ X 1 as a random continuous function, in particular by equation (88) with θ = 3 4 and r = 6, ∀δ > 0, E sup (s,t)∈[a;b]:|h(t)-h(s)|≤δ |X(t) -X(s)| 6

1 6 4 + 2

 142 any (i, j) ∈ [1; M ] 2 , E[(Y (x i ) -Y (x j )) 2 ] = K Y (x i , x i ) + K Y (x j , x j ) -2K Y (x i , x j ) ≤ K X (x i , x i ) + K X (x j , x j ) -2K X (x i , x j ) + 4 max (r,s)∈[1;M] 2 |K X (x r , x s ) -K Y (x r , x s )| ≤ |h(x i )h(x j )| + 4ε. Setting κ = B( 3 4 ,[START_REF] Bayle | Cross-validation confidence intervals for test error[END_REF] , it follows by equation (91) and the non-decreasing nature of h thatE sup a≤t≤b |X t -Y t | ≤ h(b)h(a)B( log M h(t j+1 )h(t j ) + 4ε ≤ κ h(b)h(a)ε 1 4 + κ [h(b)h(a)]

3 .

 3 Since by assumption ε ≤ 1, h(b)h(a) ≥ 1 it follows finally, by keeping only the largest powers of [h(b)h(a)], ε, L and log M , that E sup a≤t≤b |X t -Y t | ≤ κ h(b)h(a) 2(L + 1) log M ε 1 12 .

  assumption, h(x i+1 )h(x i ) ≤ ε, which yields ∀t ∈ [a; b], ∃j(t) ∈ {1, . . . , m}, t j ≤ t ≤ t j+1 and |h(t)-h(t j(t) )| ≤ Since Y is piecewise linear on the partition ([x i , x i+1 )) 1≤i≤M-1 , {|Y (x i ) -Y (t j )| : i ∈ {1, . . . , M } ∩ [t j ; t j+1 ]} .

	sup a≤t≤b	|X(t) -Y (t)| ≤ sup t∈[a;b]	|X(t) -X(t j(t) )| + max j∈{1,...,m}	|X(t j ) -Y (t j )|
					+ sup t∈[a;b]	|Y (t) -Y (t j(t) )|
								m
				≤	sup (s,t):|h(s)-h(t)|≤ε+ h(b)-h(a) m	|X(s) -X(t)| +	j=1	|X(t j ) -Y (t j )| 2
					+ max j∈{1,...,m}
	Thus, by claim 8,			
	E sup a≤t≤b	|X(t) -Y (t)|		
								m	1
	≤ E		sup			i=1	(X m i -Y m i ) 2	2
	+ E	max			
					1 6		ε +	h(b) -h(a) m	1 4	+ 2m	√ ε L 2 + ε	1 2
	+ 2 log M max		
								h(b) -h(a) m (90) +ε.

max (s,t):|h(s)-h(t)|≤ε+ h(b)-h(a) m |X(s) -X(t)| + E j∈{1,...,m} max {|Y (x i ) -Y (t j )| : i ∈ {1, . . . , M } ∩ [t j ; t j+1 ]} ≤ h(b)h(a)B( 3 4 , 6) j∈{1,...,m} max E[|Y (x i ) -Y (t j )| 2 ] : i ∈ {1, . . . , M } ∩ [t j ; t j+1 ] .

L 2 density estimation Let s ∈ L 2 ([0; 1]) be a probability density function. Given a sample X 1 , . . . , X n drawn according to the density s, the L 2 density estimation problem consists in
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Let K X,m = K X (t i , t j ) 1≤i,j≤m and K Y,m = K Y (t i , t j ) 1≤i,j≤m . The Wasserstein distance between two gaussian vectors is known [START_REF] Olkin | The distance between two random vectors with given dispersion matrices[END_REF]: there exists a coupling Xm , Ỹ m of the distributions N (0, K X,m ) and N (0, K Y,m ) such that:

.

By the same argument (exchangeing X and Y ),

By the transfer principle (Kallenberg, Theorem 5.10), there exists f 1 such that for all uniform random variables variables

Let X 0 be a gaussian process with variance-covariance function

is a centred gaussian random variable, hence for all r > 0, there exists a universal constant C(r) such that