Lipase-catalysed polycondensation of levulinic acid derived diol-diamide monomers: access to new poly(ester-*co*-amide)s

Julie Meimoun,^a Yann Bernhard,^a Lydie Pelinski,^a Till Bousquet,^a Sylvain Pellegrini,^a Jean-Marie Raquez,^b Julien De Winter,^c Pascal Gerbaux,^c Frédéric Cazaux,^d Jean-François Tahon,^d Valérie Gaucher,^d Thomas Chenal,^a Audrey Favrelle-Huret,^a Philippe Zinck^{*a}

^a Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59650 Villeneuve d'Ascq, France.

^b Univ. Mons - UMONS, Matériaux Polymères & Composites, 23 Place du Parc, B-7000 Mons, Belgium

^c Univ. Mons - UMONS, Organic Synthesis & Mass Spectrometry Laboratory, 23 Place du Parc, B-7000 Mons, Belgium

^d Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France

*philippe.zinck@univ-lille.fr

Supporting Information

Table of contents

- 1. Characterization data of monomers
- 2. MALDI-ToF, NMR spectra, SEC chromatograms
- 3. Influence of the medium concentration on polycondensation reactions
- 4. DSC Curves
- 5. TGA Curves

1. Characterization data of monomers

N,N'-(ethane-1,2-diyl)-bis-(4-oxopentanamide) (1a).

White solid (Yield= 77 %).

¹H NMR (300 MHz, DMSO- d_6 , 300 K): δ (ppm)= 2.08 (s, 6H, -C H_3), 2.26 (t, ³J= 6.9 Hz, 4H, -C H_2 -CO-NH-), 2.62 (t, ³J= 6.9 Hz, 4H, -C H_2 -CO-CH₃), 3.01-3.10 (m, 4H, -C H_2 -NH-), 7.84 (s, 2H, -NH-). ¹³C NMR (75 MHz, DMSO- d_6 , 300 K): δ (ppm)= 29.1 (2C, -CH₂-CO-NH-), 29.7 (2C, -CH₃), 38.0 (2C, -CH₂-NH-), 38.4 (2C, -CH₂-CO-CH₃), 171.4 (2C, -NH-C=O-), 207.6 (2C, -C=O-).

N,N'-(ethane-1,2-diyl)-bis-(4-hydroxypentanamide) (2a).

White solid (Yield= 67 %).

¹H NMR (300 MHz, DMSO-*d*₆, 300 K): δ (ppm)= 1.02 (d, ³J= 6.2 Hz, 6H, -C*H*₃), 1.43-1.62 (m, 4H, -C*H*₂-CH(OH)-), 2.00-2.19 (m, 4H, -C*H*₂-CO-NH-), 2.94-3.13 (m, 4H, -C*H*₂-NH-), 3.48-3.60 (m, 2H, -C*H*(OH)-), 4.45 (d, ³J= 4.5 Hz, 2H, -O*H*), 7.79 (s, 2H, -N*H*-). ¹³C NMR (75 MHz, DMSO-*d*₆, 300 K): δ (ppm)= 22.5 (2C, -*C*H₃), 31.1 (2C, -*C*H₂-CO-NH-), 33.8 (2C, -CH(OH)-*C*H₂-), 37.4 (2C, -*C*H₂-NH-), 64.5 (2C, -*C*H(OH)-), 171.8 (2C, -NH-*C*=O-). HRMS m/z calcd. for C₁₂H₂₄N₂O₄Na: 283.1635 [M+Na]⁺; found: 283.1634. N,N'-(propane-1,3-diyl)-bis-(4-oxopentanamide) (1b).

White solid (Yield= 69 %).

¹H NMR (300 MHz, DMSO-*d*₆, 300 K): δ (ppm)= 1.43-1.54 (m, 2H, -C*H*₂-CH₂-NH-), 2.08 (s, 6H, -CH₃), 2.26 (t, ³*J*= 6.9 Hz, 4H, -C*H*₂-CO-NH-), 2.62 (t, ³*J*= 6.9 Hz, 2H, -C*H*₂-CO-CH₃), 3.01 (m, 4H, -C*H*₂-NH-), 7.76 (s, 2H, -N*H*-). ¹³C NMR (75 MHz, DMSO-*d*₆, 300 K): δ (ppm)= 29.1 (-*C*H₂-CH₂-NH-), 29.2 (2C, -*C*H₂-CO-NH-), 29.6 (2C, -*C*H₃), 36.3 (2C, -*C*H₂-NH-), 38.0 (2C, -*C*H₂-CO-CH₃), 171.0 (2C, -NH-*C*=O-), 207.4 (2C, -*C*=O-).

N,N'-(propane-1,3-diyl)-bis-(4-hydroxypentanamide) (2b).

White solid (Yield= 79 %).

¹H NMR (300 MHz, DMSO-*d*₆, 300 K): δ (ppm)= 1.02 (d, ³*J*= 6.2 Hz, 6H, -C*H*₃), 1.38-1.61 (m, 6H, -C*H*₂-CH(OH)- and -C*H*₂-CH₂-NH-), 2.01-2.18 (m, 4H, -C*H*₂-CO-NH-), 2.97-3.04 (m, 4H, -C*H*₂-NH-), 3.50-3.60 (m, 2H, -C*H*(OH)-), 4.45 (d, ³*J*= 4.7 Hz, 2H, -O*H*), 7.75 (s, 2H, -N*H*-). ¹³C NMR (75 MHz, DMSO-*d*₆, 300 K): δ (ppm)= 23.5 (2C, -*C*H₃), 29.3 (-*C*H₂-CH₂-NH-), 32.1 (2C, -*C*H₂-CO-NH-), 34.9, (2C, -CH(OH)-*C*H₂-), 36.3 (2C, -*C*H₂-NH-), 65.4 (2C, -*C*H(OH)-), 172.3 (2C, -NH-*C*=O-). HRMS m/z calcd. for C₁₃H₂₆N₂O₄Na: 297.1790 [M+Na]⁺; found: 297.1790.

N,N'-(butane-1,4-diyl)-bis-(4-oxopentanamide) (1c).

White solid (Yield= 95 %).

¹H NMR (300 MHz, DMSO- d_6 , 300 K): δ (ppm)= 1.34-1.38 (m, 4H, -C H_2 -CH₂-NH-), 2.09 (s, 6H, -C H_3), 2.27 (t, ³J= 6.9 Hz, 4H, -C H_2 -CO-NH-), 2.63 (t, ³J= 6.9 Hz, 4H, -C H_2 -CO-CH₃), 2.98-3.05 (m, 4H, -C H_2 -NH-), 7.83 (s, 2H, -NH-). ¹³C NMR (75 MHz, DMSO- d_6 , 300 K): δ (ppm)= 26.6 (2C, -CH₂-CH₂-NH-), 29.1 (2C, -CH₂-CO-NH-), 29.7 (2C, -CH₃), 38.1 (2C, -CH₂-NH-), 38.3 (2C, -CH₂-CO-CH₃), 171.1 (2C, -NH-C=O-), 207.6 (2C, -C=O-).

N,N'-(butane-1,4-diyl)-bis-(4-hydroxypentanamide) (2c).

White solid (Yield= 81 %).

¹H NMR (300 MHz, DMSO- d_6 , 300 K): δ (ppm)= 1.03 (d, ³J= 6.2 Hz, 6H, -CH₃), 1.33-1.37 (m, 4H, -CH₂-CH₂-NH-), 1.44-1.62 (m, 4H, -CH₂-CH(OH)-), 1.98-2.19 (m, 4H, -CH₂-CO-NH-), 2.97-3.03 (m, 4H, -CH₂-NH-), 3.49-3.60 (m, 2H, -CH(OH)-), 4.42 (d, ³J= 4.7Hz, 2H, -OH), 7.72 (t, ³J= 5.4 Hz, 2H, -NH-). ¹³C NMR (75 MHz, DMSO- d_6 , 300 K): δ (ppm)= 23.4 (2C, -CH₃), 26.7 (2C, -CH₂-CH₂-NH-), 32.0 (2C, -CH₂-CO-NH-), 34.9, (2C, -CH(OH)-CH₂-), 38.1 (2C, -CH₂-NH-), 65.5 (2C, -CH(OH)-), 172.2 (2C, -NH-C=O-). HRMS m/z calcd. for C₁₄H₂₈N₂O₄Na 311.1947: [M+Na]⁺; found: 311.1944.

N,N'-(pentane-1,5-diyl)-bis-(4-oxopentanamide) (1d).

White solid (Yield= 82 %).

¹H NMR (300 MHz, DMSO-*d*₆, 300 K): δ (ppm)= 1.21-1.27 (m, 2H, -C*H*₂-CH₂-CH₂-NH-), 1.31-1.39 (m, 4H, -C*H*₂-CH₂-NH-), 2.08 (s, 6H, -C*H*₃), 2.26 (t, ³*J*= 6.9 Hz, 4H, -C*H*₂-CO-NH-), 2.61 (t, ³*J*= 6.9 Hz, 4H, -C*H*₂-CO-CH₃), 2.93-3.02 (m, 4H, -C*H*₂-NH-), 7.75 (s,

2H, -N*H*-). ¹³C NMR (75 MHz, DMSO-*d*₆, 300 K): δ (ppm)= 23.7 (-*C*H₂-CH₂-CH₂-NH-), 28.8 (2C, -*C*H₂-CH₂-NH-), 29.1 (2C, -*C*H₂-CO-NH-), 29.6 (2C, -*C*H₃), 38.0 (2C, -*C*H₂-NH-), 39.5 (2C, -*C*H₂-CO-CH₃), 170.9 (2C, -NH-*C*=O-), 207.4 (2C, -*C*=O-).

N,N'-(pentane-1,5-diyl)-bis-(4-hydroxypentanamide) (2d).

White solid (Yield= 69 %).

¹H NMR (300 MHz, DMSO- d_6 , 300 K): δ (ppm)= 1.03 (d, ³*J*= 6.2 Hz, 6H, -CH₃), 1.17-1.27 (m, 2H, -CH₂-CH₂-CH₂-NH-), 1.31-1.42 (m, 4H, -CH₂-CH₂-NH-), 1.45-1.60 (m, 4H, -CH₂-CH(OH)-), 2.00-2.18 (m, 4H, -CH₂-CO-NH-), 2.96-3.03 (m, 4H, -CH₂-NH-), 3.48-3.61 (m, 2H, -CH(OH)-), 4.42 (d, ³*J*= 4.7 Hz, 2H, -OH), 7.70 (t, ³*J*= 5.4 Hz, 2H, -NH-). ¹³C NMR (75 MHz, DMSO- d_6 , 300 K): δ (ppm)= 23.4 (2C, -CH₃), 23.8 (-CH₂-CH₂-CH₂-NH-), 28.8 (2C, -CH₂-CH₂-NH-), 32.0 (2C, -CH₂-CO-NH-), 34.9, (2C, -CH(OH)-CH₂-), 38.3 (2C, -CH₂-NH-), 65.4 (2C, -CH(OH)-), 172.1 (2C, -NH-*C*=O-). HRMS m/z calcd. for C₁₅H₃₀N₂O₄Na: 325.2103 [M+Na]⁺; found: 325.2101.

N,N'-(hexane-1,6-diyl)-bis-(4-oxopentanamide) (1e).

White solid (Yield= 93%).

¹H NMR (300 MHz, DMSO-*d*₆, 300 K): δ (ppm)= 1.19-1.26 (m, 4H, -C*H*₂-CH₂-CH₂-RH-), 1.30-1.39 (m, 4H, -C*H*₂-CH₂-RH-), 2.08 (s, 6H, -C*H*₃), 2.26 (t, ³*J*= 6.9 Hz, 4H, -C*H*₂-CO-NH-), 2.61 (t, ³*J*= 6.9 Hz, 4H, -C*H*₂-CO-CH₃), 2.96-3.02 (m, 4H, -C*H*₂-RH-), 7.75 (s, 2H, -N*H*-). ¹³C NMR (75 MHz, DMSO-*d*₆, 300 K): δ (ppm)= 26.1 (2C, -*C*H₂-CH₂-CH₂-RH-), 29.1 (4C, -C*H*₂-CO-NH- and -*C*H₂-CH₂-RH-), 29.7 (2C, -*C*H₃), 38.1 (2C, -*C*H₂-NH-), 38.5 (2C, -*C*H₂-CO-CH₃), 171.0 (2C, -NH-*C*=O-), 207.6 (2C, -*C*=O-).

N,N'-(hexane-1,6-diyl)-bis-(4-hydroxypentanamide) (2e).

White solid (Yield= 81 %).

¹H NMR (300 MHz, DMSO- d_{6} , 300 K): δ (ppm)= 1.03 (d, ³*J*= 6.2 Hz, 6H, -C*H*₃), 1.18-1.28 (m, 4H, -C*H*₂-CH₂-CH₂-NH-), 1.30-1.41 (m, 4H, -C*H*₂-CH₂-NH-), 1.46-1.58 (m, 4H, -C*H*₂-CH(OH)-), 2.00-2.18 (m, 4H, -C*H*₂-CO-NH-), 2.96-3.02 (m, 4H, -C*H*₂-NH-), 3.48-3.61 (m, 2H, -C*H*(OH)-), 4.42 (d, ³*J*= 4.7 Hz, 2H, -O*H*), 7.70 (t, ³*J*= 5.4 Hz, 2H, -N*H*-). ¹³C NMR (75 MHz, DMSO- d_{6} , 300 K): δ (ppm)= 23.5 (2C, -CH₃), 26.1 (2C, -CH₂-CH₂-CH₂-NH-), 29.1 (2C, -CH₂-CH₂-NH-), 32.1 (2C, -CH₂-CO-NH-), 34.9, (2C, -CH(OH)-CH₂-), 38.3 (2C-CH₂-NH-), 65.5 (2C, -CH(OH)-), 172.2 (2C, -NH-C=O-). HRMS m/z calcd. for C₁₆H₃₂N₂O₄Na: 339.2264 [M+Na]⁺; found: 339.2260.

N,N'-(octane-1,8-diyl)-bis-(4-oxopentanamide) (1f).

White solid (Yield= 87 %).

¹H NMR (300 MHz, DMSO- d_6 , 300 K): δ (ppm)= 1.19-1.26 (m, 8H, -C H_2 -C H_2 -C H_2 -C H_2 -NH-), 1.29-1.40 (m, 4H, -C H_2 -C H_2 -NH-), 2.07 (s, 6H, -C H_3), 2.25 (t, ${}^{3}J$ = 6.9 Hz, 4H, -C H_2 -CO-NH-), 2.61 (t, ${}^{3}J$ = 6.9 Hz, 4H, -C H_2 -CO-CH₃), 2.94-3.03 (m, 4H, -C H_2 -NH-), 7.78 (s, 2H, -NH-). ¹³C NMR (75 MHz, DMSO- d_6 , 300 K): δ (ppm)= 26.4 (2C, -CH₂-CH₂-CH₂-NH-), 28.8 (2C, -CH₂-CH₂-CH₂-NH-), 29.1 (2C, -CH₂-CO-NH-), 29.2 (2C, -CH₂-CH₂-NH-), 29.7 (2C, -CH₃), 38.1 (2C, -CH₂-NH-), 38.5 (2C, -CH₂-CO-CH₃), 171.0 (2C, -NH-C=O-), 207.6 (2C, -C=O-).

N,N'-(octane-1,8-diyl)-bis-(4-hydroxypentanamide) (2f).

White solid (Yield= 72 %).

¹H NMR (300 MHz, DMSO- d_6 , 300 K): δ (ppm)= 1.03 (d, ³J= 6.2 Hz, 6H, -CH₃), 1.18-1.28 (m, 4H, -CH₂-CH₂-CH₂-NH-), 1.30-1.41 (m, 4H, -CH₂-CH₂-NH-), 1.46-1.58 (m, 4H, -CH₂-CH(OH)-), 2.00-2.18 (m, 4H, -CH₂-CO-NH-), 2.96-3.02 (m, 4H, -CH₂-NH-), 3.48-3.61 (m, 2H, -CH(OH)-), 4.42 (d, ³J= 4.7 Hz, 2H, -OH), 7.70 (t, ³J= 5.4 Hz, 2H, -NH-). ¹³C NMR (75 MHz, DMSO- d_6 , 300 K): δ (ppm)= 23.5 (2C, -CH₃), 26.4 (2C, -CH₂-), 28.7 (2C, -CH₂-), 29.2 (2C, -CH₂-), 32.1 (2C, -CH₂-CO-NH-), 34.9, (2C, -CH(OH)-CH₂-), 38.4 (2C, -CH₂-NH-), 65.5 (2C, -CH(OH)-), 172.1 (2C, -NH-C=O-). HRMS m/z calcd. for C₁₈H₃₆N₂O₄Na: 367.2566 [M+Na]⁺; found: 367.2573.

N,N'-(decane-1,10-diyl)-bis-(4-oxopentanamide) (1g).

White solid (Yield= 78 %).

¹H NMR (300 MHz, DMSO-*d*₆, 300 K): δ (ppm)= 1.19-1.26 (m, 16H, -C*H*₂-), 1.35 (m, 4H, -C*H*₂-CH₂-RH-), 2.08 (s, 6H, -C*H*₃), 2.25 (t, ³*J*= 6.9 Hz, 4H, -C*H*₂-CO-NH-), 2.61 (t, ³*J*= 6.9 Hz, 4H, -C*H*₂-CO-CH₃), 2.99 (m, 4H, -C*H*₂-RH-), 7.75 (s, 2H, -N*H*-).

¹³C NMR (75 MHz, CDCl₃, 300 K): δ (ppm) = 26.9 (2C, -CH₂-), 29.3 (2C, -CH₂-), 29.4 (2C, -CH₂-), 29.7 (2C, -CH₂-), 30.1 (2C, -CH₃), 30.2 (2C, -CH₂-), 38.8 (2C, -**C**H₂-NH-), 39.7 (2C, -**C**H₂-CO-CH₃), 171.9 (2C, -NH-C=O), 207.9 (2C, -C=O).

N,N'-(decane-1,10-diyl)-bis-(4-hydroxypentanamide) (2g).

White solid (Yield= 88 %).

¹H NMR (300 MHz, DMSO- d_6 , 300 K): δ (ppm)= 1.02 (d, ³J= 6.2 Hz, 6H, -CH₃), 1.19-1.27 (m, 12H, -CH₂-), 1.29-1.43 (m, 4H, -CH₂-CH₂-NH-), 1.43-1.65 (m, 4H, -CH₂-CH(OH)-), 2.00-2.17 (m, 4H, -CH₂-CO-NH-), 2.96-3.02 (m, 4H, -CH₂-NH-), 3.45-3.62 (m, 2H, -CH(OH)-), 4.41 (d, ³J= 4.7 Hz, 2H, -OH), 7.69 (t, ³J= 5.4 Hz 2H, -NH-). ¹³C NMR (75 MHz, DMSO- d_6 , 300 K): δ (ppm)= 23.4 (2C, -CH₃), 26.4 (2C, -CH₂-), 28.7 (2C, -CH₂-), 28.9 (2C, -CH₂-), 29.1 (2C, -CH₂-), 32.0 (2C, -CH₂-), 34.9 (2C, -CH(OH)-CH₂-), 38.4 (2C, -CH₂-NH-), 65.4 (2C, -CH(OH)-), 172.1 (2C, -NH-C=O-). HRMS m/z calcd. for C₂₀H₄₀N₂O₄Na: 395.2886 [M+Na]⁺; found: 395.2884.

Fig. S1 ¹H (top) and DEPT ¹³C (bottom) NMR spectra of 1a (DMSO-d₆, 300 MHz and 75 MHz, 300 K)

Fig. S2 ¹H (top) and DEPT ¹³C (bottom) NMR spectra of 2a (DMSO-d₆, 300 MHz and 75 MHz, 300 K)

Fig. S3 ¹H (top) and DEPT ¹³C (bottom) NMR spectra of 1b (DMSO-d₆, 300 MHz and 75 MHz, 300 K)

Fig. S4 ¹H (top) and DEPT ¹³C (bottom) NMR spectra of 2b (DMSO-d₆, 300 MHz and 75 MHz, 300 K)

Fig. S5 ¹H (top) and DEPT ¹³C (bottom) NMR spectra of **1c** (DMSO-*d*₆, 300 MHz and 75 MHz, 300 K)

Fig. S6 ¹H (top) and DEPT ¹³C (bottom) NMR spectra of 2c (DMSO-d₆, 300 MHz and 75 MHz, 300 K)

Fig. S7 ¹H (top) and DEPT ¹³C (bottom) NMR spectra of 1d (DMSO-d₆, 300 MHz and 75 MHz, 300 K)

Fig. S8 ¹H (top) and DEPT ¹³C (bottom) NMR spectra of 2d (DMSO-d₆, 300 MHz and 75 MHz, 300 K)

Fig. S10 ¹H (top) and DEPT ¹³C (bottom) NMR spectra of 2e (DMSO-d₆, 300 MHz and 75 MHz, 300 K)

Fig. S11 ¹H (top) and DEPT ¹³C (bottom) NMR spectra of 1f (DMSO-*d₆*, 300 MHz and 75 MHz, 300 K)

Fig. S12 ¹H (top) and DEPT ¹³C (bottom) NMR spectra of 2f (DMSO-d₆, 300 MHz and 75 MHz, 300 K)

Fig. S13 ¹H (top) and DEPT ¹³C (bottom) NMR spectra of 1g (CDCl₃, 300 MHz and 75 MHz, 300 K)

Fig. S14 ¹H (top) and DEPT ¹³C (bottom) NMR spectra of 2g (DMSO-d₆, 300MHz and 75MHz, 300 K)

2. MALDI-ToF and NMR spectra

Fig. S15 COSY NMR spectrum of poly(ester-co-amide) from diol-diamide x=6 (entry 2) by polycondensation in solution (DMSO-d₆, 300 MHz, 300 K)

Fig. S16 MALDI-ToF analysis of poly(ester-co-amide) from diol-diamide x=6 and diethyl adipate (entry 3)

Fig. S17 Polymerisation with Dean Stark apparatus

Fig. S18 Comparison of the ¹H NMR spectra (DMSO-d₆, 300 MHz) of the isolated product of polymerisation from dioldiamide 2c (x=4) and adipic acid and of the γ -valerolactone

Fig. S19 MALDI-ToF analyse of poly(ester-co-amide) from diol-diamide x=6 and sebacic acid (entry 7)

Fig. S22 ¹H NMR spectrum of poly(ester-co-amide) from diol-diamide x=4 (DMSO-d₆, 300 MHz, 300 K)

Fig. S23 ¹H NMR spectrum of poly(ester-co-amide) from diol-diamide x=5 (DMSO-d₆, 300 MHz, 300 K)

Fig. S25 ¹H NMR spectrum of poly(ester-*co*-amide) from diol-diamide **x=8** (DMSO-*d*₆, 300 MHz, 300 K)

Fig. S26 ¹H NMR spectrum of poly(ester-co-amide) from diol-diamide x=10 (DMSO-d₆, 300 MHz, 300 K)

Fig. S27 SEC chromatograms of the reaction product obtained from diol-diamide and diethyl adipate (CHCl₃, 25°C, standard PS)

3. Influence of the medium concentration on polycondensation reactions

Entry	Diol diamide Number of carbons x	Concentration (mol/L) vs diol	Yield (%)	M _{n SEC} (g/mol) ^b	Ð _M b	Main peak ^{b,c} wt (%)	Corrected Yield (%) ^d	T _g (°C) ^e	T _c (°C) ^e	Т _т (°С) ^е	T _{deg 1} (°C) ^f	T _{deg 2} (°C) ^g
11'	2	0.033	92	2,100	1.6	86	79	-10	/	/	187	355
11	2	0.10	81	1,500	1.4	88	71	-5	/	/		
12′	3	0.033	91	2,700	1.4	75	68	-10	/	/	198	360
12	3	0.10	92	2,300	1.4	91	84	-9	/	/		
13′	4	0.033	79	2,000	1.5	71	56	-2	/	/	201	365
13	4	0.10	65	2,300	1.6	86	56	0	/	/		
14'	5	0.033	94	1,300	1.6	79	75	-19	/	/	202	373
14	5	0.10	88	1,800	1.5	91	80	-10	/	/		
3	6	0.033	86	1,800	1.5	91	78	-13	/	/	205	375
10	6	0.10	90	3,300	1.5	92	83	-12	/	/		
15′	8	0.033	71	4,400	1.8	94	67	-22	71	89	180	376
15	8	0.10	85	4,200	1.8	91	78	-23	72	90		
16′	10	0.033	80	6,700	1.8	86	69	-15	20 and 55	97	203	378
16	10	0.10	71	7,200	1.6	91	65	-14	28 and 49	97		

Table SI.1 Influence of the medium concentration on polycondensation reactions^a

^a reaction at 81°C for 7 days in 20 mL or 60 mL of cyclohexane (respectively 0.1 and 0.033 mol/L vs diol), diol-diamide/diester (2 mmol/2 mmol), Novozyme 435 (10 % weight vs. monomers), Dean Stark apparatus with molecular sieves (replaced every 48h)

^b SEC in chloroform at 25°C (polystyrene standards), M_n and D_M for main peak

^c main peak and secondary peaks distributions represent high M_n oligomers and small oligomers (M_n = 300-800 g/mol, D_M = 1-1.3), respectively.

% by weight main peak = [area of main peak / (area of main peak + area of secondary peaks)] *100

^d corrected yield = yield x main peak wt(%) / 100

 e Tg, $\,$ Tc (crystallization) and Tm (melting) determined by DSC on the second heating step.

^f TGA temperatures at which 3 % of the mass was lost

^g TGA temperatures for start of second degradation (inflection point of weight = f(T))

The polycondensation reaction gave higher corrected yield and higher M_n in lower volumes of solvent except for x=2 (entries 11-11')

4. DSC curves of polymers

Fig. S31 DSC curve of poly(ester-co-amide)s from diol-diamide x=5

Fig. S32 DSC curve of poly(ester-co-amide)s from diol-diamide x=6

Fig. S33 DSC curve of poly(ester-co-amide)s from diol-diamide x=8

Fig. S34 DSC curve of poly(ester-co-amide)s (containing oligomers) from diol-diamide x=10

Fig. S36 TGA curve of poly(ester-co-amide)s from diol-diamide x=3

Fig. S37 TGA curve of poly(ester-co-amide)s from diol-diamide x=4

Fig. S38 TGA curve of poly(ester-co-amide)s from diol-diamide x=5

Fig. S39 TGA curve of poly(ester-co-amide)s from diol-diamide x=6

Fig. S40 TGA curve of poly(ester-co-amide)s from diol-diamide x=8

Fig. S41 TGA curve of poly(ester-co-amide)s from diol-diamide x=10