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Abstract
In this article, we develop an extension of the Fourier transform solution
method in order to solve conduction equation with nonperiodic boundary condi-
tions (BC). The periodic Lippmann–Schwinger equation for porous materials is
extended to the case of non-periodicity with relevant source terms on the bound-
ary. The method is formulated in Fourier space based on the temperature as
unknown, using the exact periodic Green function and form factors to describe
the boundaries. Different types of BC: flux, temperature, mixed and combined
with periodicity can be treated by the method. Numerical simulations show that
the method does not encounter convergence issues due to the infinite contrast
and yields accurate results for both local fields and effective conductivity.
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1 INTRODUCTION

In the determination of effective properties like in micromechanics, Fourier transform is a robust numerical method to
solve the local periodic problems and computes the effective properties of the heterogeneous materials from the con-
stituents. Based on the Green tensors, the Lippmann–Schwinger (LS) type equations1,2 can be formulated and iterative
schemes can be used to obtain solutions. The periodicity of the problem is also compatible with fast Fourier transform
(FFT) algorithm which proves to be very efficient in this case.

Since the first papers,3,4 advances have been made in this field. In addition to linear elasticity and conduction problems,
the method was extended to a large range of engineering applications like fluid flows,5 nonlinear behavior,6,7 finite strain,8
and so forth. Investigating the properties of the LS equations and improving the convergence of the iteration schemes are
the focuses of numerous works. Accelerated scheme can be derived from polarization basis,9,10 leading to reduced spectral
radius and increasing significantly the convergence rate. From the variational principle, the linear equation of polarization
can be obtained at stationary state and solved using the conjugate gradient techniques.11 The original Moulinec–Suquet
setting corresponds to Galerkin discretization in trigonometric polynomials space12,13 and the resolution schemes can
be implemented in couple with Newton–Krylov solvers, including conjugate gradient method.14-17 Willot et al.18 used a
modified discrete Green tensor and obtained convergence with the method, even in the case of infinite contrast limits.
Moulinec and Silva19 discussed the paper in comparison with earlier works on the FFT method and emphasized the
importance of the convergence criteria to terminate the iteration scheme. They also showed that the most demanding
criteria, expressing energy conservation and compatibility, cannot be achieved at the same time at the infinite contrast by
mostly used schemes. Schneider et al.20 argued that using flux divergence criteria could result in a very slow convergence
and proposed a less severe criteria to stop the iterations.
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The special cases where the local conductivity can be zero (pore) or infinite (superconductive) are called infinite con-
trast. In those cases, there exists an eigenvalue of the iteration operator equal to 1 which is responsible for the convergence
issues of the iterative schemes. Some numerical schemes seem to provide convergence in the case of infinite contrast, but
the theoretical estimation of the eigenvalues related to these schemes cannot achieve to prove the convergence. To and
Bonnet21 realized that the unit eigenvalue is associated to the nonuniqueness of the solution within the pores and pro-
vided a solution excluding the fields in the pore in the formulation. In the context of porous conductive materials, a LS
equation was derived with the temperature in the skeleton phase as unknown. The associated iterative scheme converges
fast and yields accurate local fields.

The FFT method is mainly used in order to provide the effective properties of periodic heterogeneous media. However,
considering the benefits of FFT method, one can question if the method can be used also to solve classical boundary value
problems with Dirichlet or Neumann boundary conditions (BC) at the boundary of a closed domain. These problems have
been addressed recently22,23 using modified discrete Green tensors. Different from the classical Green tensor obtained by
the Fourier transform of the Laplace equation, the discrete counterpart is issued from the finite difference approximation
and achieved the convergence even for the infinite contrast limits.18 It was shown recently that the problem of porous
media can be solved using the original Green function21 and the form factor of boundaries in Fourier space. It is suggested
that the same method can be extended to general boundary values problems.

Therefore, in the present article, we consider nonperiodic problems in the determination of effective conduction of
porous media. By investigating the periodic conduction equation with source term, we show that the LS equation based
on the continuous Green function for periodic porous media equations can tackle nonperiodic BC: flux, temperature,
and mixed BC, with or without periodicity in one or two directions. This article is organized as follows. After the “Intro-
duction” section, Section 2 is devoted to theoretical formulation. We revisit the periodic conduction equation with source
term and the associated LS equations. The extension to problems with flux and temperature BC in homogenization is also
presented. We present numerical tests of the new iterative schemes in Section 3 and discuss the results before concluding
in Section 4.

2 PROBLEM FORMULATION

2.1 Fourier transform and notations

In what follows, we shall use bold characters to represent tensors and vectors u and normal characters for scalars u. By
writing two quantities next to each other, we imply simple product 𝜑u (between a scalar and a tensor) or contracted prod-
uct uv (between a tensor and another tensor). The notation ∗ is used for convolution product, which will be explained later.

For a V periodic function u(x) of real variable x(x1, x2, x3), its Fourier transform is denoted as u(𝝃), function of wave
vector 𝝃(𝜉1, 𝜉2, 𝜉3)

u(𝝃) = 1
V ∫V

u(x)e−i𝝃.xdx, i =
√
−1 (1)

and

𝜉k = 2𝜋nk∕Lk, nk = 0,±1,±2, … ,±∞, k = 1, 2, 3 (2)

Here L1,L2,L3 are dimensions of V in the cartesian coordinate system. The convolution products u(x) ∗ v(x) in the
real space and u(𝝃) ∗ v(𝝃) in the Fourier space are defined as

(u ∗ v)(x) =
∑
𝝃

u(𝝃)v(𝝃)ei𝝃x, (u ∗ v)(𝝃) =
∑
𝝃′

u(𝝃 − 𝝃′)v(𝝃′) (3)

In this article, we use a set of operators P, Q, H, R, and S whose expressions in the Fourier space P(𝝃), Q(𝝃), H(𝝃),
R(𝝃), and S(𝝃) are explicit functions of wavevector 𝝃, given for 𝝃 ≠ 0 by

P(𝝃) = 𝝃 ⊗ 𝝃, Q(𝝃) = I − P(𝝃), H(𝝃) = Q(𝝃) − P(𝝃)

S(𝝃) = 1∕𝜉2, R(𝝃) =
i𝝃
𝜉2 , ∀𝝃 ≠ 0 (4)
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and null for 𝝃 = 0

P(0) = Q(0) = H(0) = 0, R(0) = 0, S(0) = 0 (5)

Here, I is the identity tensor and 𝝃 the wave vector direction 𝝃 = 𝝃∕𝜉, 𝜉 = |𝝃|. We also note the following property of
operator R

−R ∗ ∇𝜑 = 𝜑 − ⟨𝜑⟩ (6)

for any function 𝜑 with ⟨𝜑⟩ being the average of 𝜑. This can be proved by taking the Fourier transform of both sides of
(6) and considering the expression of R in (4).

2.2 Periodic LS equations with source term

Let us consider a heterogeneous material where the local conductivity k(x) is a periodic function of the coordinate x with
period V of dimensions V = L1 × L2 × L3 in the Cartesian coordinate system. The governing equations of the problem are
the following

e(x) = E + ∇𝜃(x), div j(x) + s(x) = 0, j(x) = k(x)e(x) (7)

where 𝜃, e, j, and s are the V periodic temperature, (minus) temperature gradient, heat flux, and source term with volume
averages Θ, E, J, and 0

⟨𝜃(x)⟩ = Θ, ⟨e(x)⟩ = E, ⟨j(x)⟩ = J, ⟨s(x)⟩ = 0 (8)

The last condition ⟨s(x)⟩ = 0 is necessary for the existence of a periodic flux j. The temperature function 𝜃 is the
periodic part of the real temperature T which is not necessarily periodic. The relation between T and 𝜃 is

T(x) = −𝜃 − Ex (9)

and only in the case where E = 0, T is periodic and identical to 𝜃.
Due to the periodicity, the problem can be solved using Fourier series. Writing the first two equations of (7) in Fourier

space yields

i𝝃 × e(𝝃) = 0, i𝝃.[j(𝝃) − R(𝝃)s(𝝃)] = 0 (10)

where e is rotation free and j − R ∗ s is divergence free.
Taking an arbitrary reference conductivity k0, the heterogeneity effects (k(x) − k0)e and the source term −R ∗ s can

be viewed as polarization terms. As a result, one can write

e(x) = E − 1
k0

P ∗ (𝛿ke − R ∗ s) , 𝛿k(x) = k(x) − k0 (11)

or equivalently, due to the properties of R and P

e(x) = E + 1
k0

R ∗ s − P ∗
[
(𝛿k∕k0)e

]
(12)

which is an equation with e as unknown to be solved.
In analogous manner, we can also establish an integral equation for j in real space as follows

j(x) = J + R ∗ s + Q ∗
[
(𝛿k∕k)j

]
(13)
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Finally, by posing the polarization quantities 𝝉

𝝉(x) = (k(x) + k0)e(x), ⟨𝝉(x)⟩ = T = J + k0E (14)

we can derive a corresponding equation for 𝝉

𝝉(x) = T + 2R ∗ s + H ∗
[

k − k0

k + k0
𝝉

]
(15)

To solve problem (7) with known source term s and three average quantities E or J or T, we can make use of the
linearity by solving two separate problems and then superposing the solutions. The first is a traditional homogenization
problem with s = 0 and E ≠ 0 (and J ≠ 0, T ≠ 0) and the second only involves the source term s ≠ 0 and E = J = T = 0.
We can choose either of the three governing equations (12), (13), and (15) using standard iteration schemes: e (gradient),
j (flux), 𝝉 (polarization or accelerated) schemes. The common points of those equations are that they have the form

u(x) = A + B ∗ (𝜖u) (16)

where A and 𝜖 are known functions, B ∗ is an operator with an explicit expression in Fourier space, and u (which can be
either e or j or 𝝉) represents the unknown to be obtained (see Table 1). The equation can be solved by iteration described
in Algorithm 1 where u(n),u(n+1) are values of two consecutive steps n,n + 1, leading to the final Neumann series solution

lim
n→∞

u(n)(x) =
∞∑

n=0
(B ∗ 𝜖)nA (17)

At each step n, the gradient e(n) and the heat flux j(n) will be computed from u(n) using the constitutive equations. The
convergence criteria based on (10) will be used to stop the iterations, specifically the e criteria

||i𝝃 × e(n)(𝝃)||F < 𝜀 (18)

and the j criteria

||i𝝃.[j(n)(𝝃) − R(𝝃)s(𝝃)]||F < 𝜀 (19)

Here, ||||F represents Frobenius norm and 𝜀 the smallness factor. Due to the properties of the series as explained in
Appendix A, we only need to check j criteria for e scheme, e criteria for j scheme and both j and e criteria for 𝝉 scheme.

Name u(x) A(x) B(𝝃) 𝝐(x)

e scheme e(x) E + 1
k0

R ∗ s(x) −P(𝝃) k(x)−k0
k0

j scheme j(x) J + R ∗ s(x) Q(𝝃) k(x)−k0
k(x)

𝝉 scheme 𝝉(x) T + 2R ∗ s(x) H(𝝃) k(x)−k0
k(x)+k0

T A B L E 1 Different iteration schemes with unknown and
operators associated to Lippmann–Schwinger equations with
source term

Algorithm 1. Schemes for periodic heat transfer problem with source term

Choose a reference conductivity k0
u(0)(𝝃) = A(𝝃), ∀𝝃
Repeat
u(n)(𝝃) = A(𝝃) + B(𝝃)[𝜖(𝝃) ∗ u(n−1)(𝝃)], ∀𝝃
Compute e(n) and j(n) from u(n) using constitutive equations
n ← n + 1
Until convergence criteria based on e(n) and j(n) satisfied
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The convergence of the Neumann series and their corresponding iterative schemes depends on the spectral radii of
operators B ∗ 𝜖, which are the same as for the normal homogenization problem (i.e., without source term s). They are
expected to have the same convergence properties. The three iterative schemes work well when the conductivity k(x)
is bounded by finite positive values kmin, kmax or 0 < kmin < k(x) < kmax < ∞. To achieve the optimal convergence, the
reference conductivity should be chosen as k0 = (kmin + kmax)∕2 for e scheme, k0 = 2kminkmax∕(kmin + kmax) for j scheme
and k0 =

√
kminkmax for 𝝉 scheme. For infinite contrast cases, that is, kmin = 0 or kmax = ∞, they cannot guarantee the

convergence due to the solution uniqueness issue. In literature, to overcome convergence issues at infinite contrast limits,
several researchers18,23 used the modified Green tensor, which is obtained from finite difference technique, instead of
the tensor P. However, the theoretical derivation described thereafter will result in a special method for porous material
(kmin = 0) without changing the nature of the original Green tensor P.

2.3 Temperature scheme for periodic porous materials with source term

Starting from (12) and the relation between 𝜃 and e, we can derive the following periodic integral equation for 𝜃 in V

𝜃 = Θ + 1
k0

S ∗ s + R ∗
[
(𝛿k∕k0)(∇𝜃 + E)

]
(20)

Now let us consider a porous material where the skeleton is homogeneous with regular conductivity kr, volume Ωr
(characterized by the indicator function 𝜒r), and the void occupies volume Ωv (with the indicator function 𝜒v), as illus-
trated in (Figure 1a). Due to the vanishing flux in the pore, the source term s can only be present in the skeleton phase.
The conductivity distribution of the whole material reads

k(x) = kr𝜒r(x), 𝜒r(x) + 𝜒v(x) = 1 (21)

The indicator (or characteristic) function 𝜒𝛼 for the phase 𝛼 (𝛼 = r for regular skeleton and 𝛼 = v for the void phase),
behaving like the Heaviside function in 1D, can be defined as

𝜒𝛼 = 1 in phase 𝛼, 𝜒𝛼 = 0 in the other phase (22)

We also denote e𝛼 and 𝜃𝛼 the gradient and the temperature restricted to the phase 𝛼

e𝛼 = 𝜒𝛼e, 𝜃𝛼 = 𝜒𝛼𝜃, 𝛼 = r, v (23)

We assume that 𝜃r exists uniquely in the skeleton phase and 𝜃v is any continuation of 𝜃r into the void. The strategy is
to eliminate 𝜃v in Equation (20) to derive an equation of 𝜃r only. By examining the term e𝛼 = 𝜒𝛼(∇𝜃 + E) in Fourier space,
we can show that

e𝛼(𝝃) = E𝜒𝛼(𝝃) +
1
V ∫Γ𝛼

𝜃(x)n(x)e−i𝝃.xds + i𝝃𝜃𝛼(𝝃)

= E𝜒𝛼(𝝃) + [(n𝛿)Γ𝛼
𝜃](𝝃) + i𝝃𝜃𝛼(𝝃) (24)

with n being the outward normal vector of the boundary Γ𝛼 of Ω𝛼 and

[(n𝛿)Γ𝛼
𝜃](𝝃) = 1

V ∫Γ𝛼

𝜃(x)n(x)e−i𝝃.xds, (25)

In this relation, the distribution (n𝛿)Γ𝛼
(x) associated with interface Γ𝛼 is the surface delta distribution 𝛿Γ𝛼

multiplied
with the local normal vector n. Its Fourier transform expression is

(n𝛿)Γ𝛼
(𝝃) = 1

V ∫Γ𝛼

n(x)e−i𝝃.xds (26)
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The determination of (n𝛿)Γ𝛼
(x) for different geometries is presented in Section 2.6.

On the other hand, examining e𝛼 in real space, for example,

e𝛼(x) = E𝜒𝛼(x) + ∇𝜃𝛼(x) − 𝜃(x)∇𝜒𝛼(x) (27)

we find that the (n𝛿)Γ𝛼
distribution is in fact derived from the gradient of the characteristic function 𝜒𝛼

(n𝛿)Γ𝛼
= −∇𝜒𝛼(x) (28)

Due to the property of the characteristic function𝜒𝛼 ,21 we can show that for any continuous function 𝜃 (see References
24 and 25 for details on mathematical background of generalized functions)

(∇𝜒𝛼)(𝜃) = 2(∇𝜒𝛼)(𝜒𝛼𝜃) or (n𝛿)Γ𝛼
𝜃 = 2(n𝛿)Γ𝛼

𝜃r (29)

Following the procedure in Reference 21, we can derive the equation for 𝜃r only

𝜃r = Θr − R ∗ ∇𝜃r +
1
k0

S ∗ s + kr

k0
R ∗ er (30)

with

er = E𝜒r + 2(n𝛿)Γr𝜃r + ∇𝜃r (31)

and Θr being the average of 𝜃r. The numerical schemes associated to (30) with known source term is presented in
Algorithm 2. Note that we made use in Reference 21 of the relation

𝜃r = Θr − R ∗ ∇𝜃r (32)

to derive the recurrence relation between 𝜃
(n+1)
r (𝝃) and 𝜃

(n)
r (𝝃) and showed that the energy conservation condition is also

satisfied at convergence.

2.4 Pure flux BC

Now let us consider a porous material occupying the domain Ω subject to Neumann boundary condition on its boundary.
On the external boundary 𝜕Ω and internal boundary Γr, we apply the flux j.n = j∗n with n being the outward vector and
j∗n being the known prescribed normal flux. We shall show that this nonperiodic problem can be treated as a particular
case of the periodic problem presented in the previous section with suitable continuous extension. In literature, such
techniques using the solution of an immersed problem to solve boundary value problems in a domain of arbitrary shape
have been employed extensively.26-29 First, we use a rectangular box V that is large enough to include the domain Ω and
consider the solution in Ω as the partial solution of the V periodic problem with a suitable continuation (see Figure 1b).

Algorithm 2. Temperature 𝜃 iteration scheme for periodic porous material with source term

Choose a reference conductivity k0
𝜃
(0)
r (𝝃) = 1

k0
S(𝝃)s(𝝃) + kr

k0
R(𝝃)[E𝜒r(𝝃)], ∀𝝃

Repeat
e(n)r (𝝃) = E𝜒r(𝝃) + i𝝃𝜃(n−1)

r (𝝃) + 2(n𝛿)Γr (𝝃) ∗ 𝜃
(n−1)
r (𝝃), ∀𝝃

j(n)(𝝃) = kre(n)r (𝝃), ∀𝝃
𝜃
(n)
r (𝝃) = 𝜃

(n−1)
r (𝝃) + 1

k0
R(𝝃)j(n)(𝝃) + 1

k0
S(𝝃)s(𝝃), ∀𝝃

n ← n + 1
Until convergence criteria based on j(n) satisfied
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In this case, the void filled between V and Ω and the internal void of Ω are treated in the same way. We can choose any
continuous temperature field T within the void. The temperature T is also chosen to be periodic so that E = 0 and T = −𝜃.
We note that there is no source term in our initial problem. However, as we extend the solution domain to the whole
domain V , the source term appears due to the discontinuity of the normal heat flux at the boundary 𝜕Ω and Γr. Outside
the domain, jn = 0 and inside it, jn is equal to the prescribed normal heat flux jn = j∗n. As a result, those discontinuities
are source terms localized on 𝜕Ω and Γr admitting the Fourier transform

s(𝝃) = 1
V ∫𝜕Ω∪Γr

j∗n(x)e−i𝝃.xds, s(0) = 1
V ∫𝜕Ω∪Γr

j∗n(x)ds = 0 (33)

In this case, the source term s is known and (30) can be solved by the iteration process described in Algorithm 3. We
note that, for the Neumann type problem, the temperature solution can be defined up to a constant. For convenience, we
can set the average temperature of the skeleton field Θr = ⟨𝜃r⟩ = 0. We note that due to the void between Ω and V , the
distribution n𝛿 must be associated to both Γr and 𝜕Ω.

In the case where 𝜕Ω is a closed surface on which a homogeneous boundary flux is prescribed,

j∗n(x) = Gn(x), on 𝜕Ω (34)

with G being a constant vector. This type of BC is frequently used to determine the effective properties of heterogeneous
materials and applicable to domains Ω of arbitrary shape. We can write

s(𝝃) = G
V ∫𝜕Ω

n(x)e−i𝝃.xdx = G(n𝛿)𝜕Ω(𝝃) (35)

The explicit expression of (n𝛿)𝜕Ω(𝝃) for different geometries like circles and polylines are given in Section 2.6.

F I G U R E 1 Sketch of the
periodic (left) and nonperiodic
(right) problem

Algorithm 3. Temperature 𝜃 iteration scheme for arbitrary porous domain with flux boundary conditions

Choose a reference conductivity k0
𝜃
(0)
r (𝝃) = 1

k0
S(𝝃)s(𝝃), ∀𝝃

Repeat
e(n)r (𝝃) = i𝝃𝜃(n−1)

r (𝝃) + 2(n𝛿)Γr∪𝜕Ω(𝝃) ∗ 𝜃
(n−1)
r (𝝃), ∀𝝃

j(n)(𝝃) = kre(n)r (𝝃), ∀𝝃
𝜃
(n)
r (𝝃) = 𝜃

(n−1)
r (𝝃) + 1

k0
R(𝝃)j(n)(𝝃) + 1

k0
S(𝝃)s(𝝃), ∀𝝃

n ← n + 1
Until convergence criteria based on j(n) satisfied
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To compute the average gradient of the effective porous material, denoted as D, we use the distribution of 𝜃 on the
surface and the average formula

D = 1
Ω ∫

𝜕Ω
𝜃ndx (36)

or equivalently

D = V
Ω

2[(n𝛿)𝜕Ω𝜃r](𝝃 = 0) (37)

2.5 Temperature or mixed temperature-flux BC

On part of the boundary, let us say 𝜕Ωj ∪ Γj
r, we apply the normal flux as before jn = j∗n and on the remaining part 𝜕Ωt ∪ Γt

r
we prescribe the temperature 𝜃 = 𝜃∗. However, instead of imposing the temperature 𝜃 on 𝜕Ωt ∪ Γt

r, we choose to impose
its perturbation 𝜃 around its volume average 𝜃

𝜃(x) = 𝜃
∗(x) on 𝜕Ωt ∪ Γt

r (38)

with the definitions

𝜃(x) = 𝜃(x) − 𝜃, 𝜃
∗(x) = 𝜃∗(x) − 𝜃

∗
, 𝜃 =

∫
𝜕Ωt∪Γt

r
𝜃(x)dx

∫
𝜕Ωt∪Γt

r
dx

, 𝜃
∗
=

∫
𝜕Ωt∪Γt

r
𝜃∗(x)dx

∫
𝜕Ωt∪Γt

r
dx

(39)

As a result, the temperature solution of the above problem is not unique and defined up to a constant which does
not affect the gradient and flux fields. To recover the real temperature solution, it is sufficient to take any solution 𝜃 of
the perturbation prescribed problem and add a constant skeleton field, which is the difference between 𝜃

∗
and 𝜃. The

perturbation temperature constraint can be written using the distribution notation

t∗ − (𝛿𝜕Ωt∪Γt
r
𝜃 − 𝜃𝛿𝜕Ωt∪Γt

r
) = 0, 𝜃 =

(𝛿𝜕Ωt∪Γt
r
𝜃)(𝝃 = 0)

(𝛿𝜕Ωt∪Γt
r
)(𝝃 = 0)

(40)

where t∗ is a known distribution

t∗(𝝃) = 1
V ∫𝜕Ωt∪Γt

r

𝜃
∗(x)e−i𝝃.xds (41)

Like for relation (29), due to the continuity of 𝜃 and discontinuity of 𝜃r on the boundary, we can link the distribution
associated to 𝜃 with the one associated to 𝜃r

𝛿𝜕Ωt∪Γt
r
𝜃 = 2𝛿𝜕Ωt∪Γt

r
𝜃r (42)

and the constraint (40) can be expressed in term of 𝜃r only.
Regarding the source term s associated to the boundary normal flux jn, it is known on 𝜕Ωj ∪ Γj

r and unknown on
𝜕Ωt ∪ Γt

r. Let us decompose the flux jn on 𝜕Ωt ∪ Γt
r as sum of the mean value jn and its perturbation j̃n

j̃n(x) = jn(x) − jn, jn =
∫
𝜕Ωt∪Γt

r
jn(x)dx

∫
𝜕Ωt∪Γt

r
dx

= −
∫
𝜕Ωt∪Γj

r
j∗n(x)dx

∫
𝜕Ωt∪Γt

r
dx

(43)

The last equation of (43) shows that the mean value jn on 𝜕Ωt ∪ Γt
r is known due to the energy conservation, that is,

the source distribution s must have zero sum over the periodic cell. We can now write the source term as

s(𝝃) = 1
V ∫𝜕Ω∪Γr

jn(x)e−i𝝃.xds = s∗(𝝃) + 1
V ∫𝜕Ωt∪Γt

r

j̃n(x)e−i𝝃.xds (44)
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with the known source term s∗

s∗(𝝃) = 1
V ∫

𝜕Ωj∪Γj
r

j∗n(x)e−i𝝃.xds +
jn

V ∫
𝜕Ωt∪Γt

r

e−i𝝃.xds (45)

To impose the perturbation temperature constraint 𝜃(x) = 𝜃
∗(x) in relation to the unknown perturbation normal flux

j̃n(x), a simple method is to use a large interface conductivity coefficient like in the penalty technique. In this case, the
normal flux j̃n is proportional to the temperature difference 𝜃

∗ − 𝜃 on 𝜕Ωt ∪ Γt
r

j̃n = kpen(𝜃
∗ − 𝜃) (46)

with kpen being a sufficiently large penalty coefficient. Including this condition into the source term yield

s(𝝃) = kpen[t∗ − (2𝛿𝜕Ωt∪Γt
r
𝜃r − 𝜃𝛿𝜕Ωt∪Γt

r
)](𝝃) + s∗(𝝃) (47)

The integral equation for 𝜃r can be recast into a new abstract form

𝜃r = 𝜃r +
1
k0

S ∗
{

kpen[t∗ − (2𝛿𝜕Ωt∪Γt
r
𝜃r − 𝜃𝛿𝜕Ωt∪Γt

r
)] + s∗

}
+ kr

k0
R ∗ er (48)

In an alternative way, the constraint can be dealt with the augmented Lagrange method. The multiplier 𝜆 is introduced
as the unknown source term

s = 𝜆 + s∗ (49)

to be used in conjunction with the constraint on the temperature

𝜆 = 𝜆 + kL[t∗ − (2𝛿𝜕Ωt∪Γt
r
𝜃r − 𝜃𝛿𝜕Ωt∪Γt

r
)] (50)

where the penalty coefficient kL can be of the same order as the reference conductivity k0. Numerical experiences have
shown that choosing k0 = kpen∕2 in the penalty method and k0 = 1.2 and kL = k0 in the augmented Lagrange method
guarantee the best convergence results in terms of number of iterations. After the convergence based on j, we also check
if the scheme reproduces efficiently the temperature boundary condition by the criteria

||t∗ − (2𝛿𝜕Ωt∪Γt
r
𝜃r − 𝜃𝛿𝜕Ωt∪Γt

r
)||F||𝛿𝜕Ωt∪Γt

r
||F < 𝜀 (51)

Since the solution of the prescribed temperature perturbation problem is defined up to a constant, we set the average
temperature in the numerical schemes equal to zero Θr = ⟨𝜃r⟩ = 0.

Algorithm 4. Temperature 𝜃 iteration scheme for arbitrary porous domain with temperature boundary conditions and
penalty method

Choose kpen and 𝛼 and the reference conductivity k0
𝜃
(0)
r (𝝃) = 0, ∀𝝃

Repeat
e(n)r (𝝃) = i𝝃𝜃(n−1)

r (𝝃) + 2(n𝛿)𝜕Ω∪Γr (𝝃) ∗ 𝜃
(n−1)
r (𝝃), ∀𝝃

j(n)(𝝃) = kre(n)r (𝝃), ∀𝝃
s(n)(𝝃) = s∗(𝝃) + kpen[t∗ − (2𝛿𝜕Ωt∪Γt

r
𝜃r − 𝜃̄𝛿𝜕Ωt∪Γt

r
)](𝝃)

𝜃
(n)
r (𝝃) = 𝜃

(n−1)
r (𝝃) + 1

k0
R(𝝃)j(n)(𝝃) + 1

k0
S(𝝃)s(n)(𝝃), ∀𝝃

n ← n + 1
Until convergence criteria based on j(n) satisfied
Check the boundary conditions on temperature
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Algorithm 5. Temperature 𝜃 iteration scheme for arbitrary porous domain with temperature boundary conditions and
augmented Lagrange method

Choose a reference conductivity k0, kL, and 𝛼

𝜃
(0)
r (𝝃) = 0, 𝜆(0)(𝝃) = 0, ∀𝝃

Repeat
e(n)r (𝝃) = i𝝃𝜃(n−1)

r (𝝃) + 2(n𝛿)𝜕Ω∪Γr (𝝃) ∗ 𝜃
(n−1)
r (𝝃), ∀𝝃

j(n)(𝝃) = kre(n)r (𝝃), ∀𝝃
𝜆(n)(𝝃) = 𝜆(n−1)(𝝃) + kL[t∗ − (2𝛿𝜕Ωt∪Γt

r
𝜃r − 𝜃̄𝛿𝜕Ωt∪Γt

r
)](𝝃)

s(n)(𝝃) = s∗(𝝃) + 𝜆(n)(𝝃)
𝜃
(n)
r (𝝃) = 𝜃

(n−1)
r (𝝃) + 1

k0
R(𝝃)j(n)(𝝃) + 1

k0
S(𝝃)s(n)(𝝃), ∀𝝃

n ← n + 1
Until convergence criteria based on j(n) satisfied
Check the boundary conditions on temperature

Regarding the homogenization problem in porous material, the following temperature BC are used

𝜃∗(x) = Dx, on 𝜕Ω (52)

with D being a constant. Using the Gauss theorem, we can show that

t∗(𝝃) = ∫
𝜕Ω
(Dx)e−i𝝃xds = D[x𝛿]𝜕Ω(𝝃) (53)

The explicit expression of (𝛿)𝜕Ω(𝝃) for circles and polylines are given in Section 2.6.
To compute the average flux G of the porous material over the domain Ω, we use the average formula

G = 1
Ω ∫Ω

krerdx = V
Ω

krer(𝝃 = 0) (54)

2.6 Fourier transform of curve based functions

The resolution of the method requires the knowledge of Fourier transform of the boundary functions associated to
prescribed flux (33), prescribed temperature (41), and to the computation of er from 𝜃r. They are given in the general
form

(f𝛿)(𝝃) = 1
V ∫

e−i𝝃x f(x)ds (55)

where f(x) is a function of coordinate x on the curve/surface . Given the geometry  and function f, it is not always
possible to derive an analytical formula for (f𝛿)(𝝃), except for a limited number of special cases. However, as a numer-
ical method, we can always discretize  into smaller line/planar segments where f is linear or constant, depending on
approximation degree. The problem is thus reduced to the calculation of the following functions with properties

For f (x) = 1 (𝛿)(𝝃) = 𝜒(𝝃), For f (x) = x (x𝛿)(𝝃) = −i d
d𝝃

𝜒(𝝃) (56)

and any linear combination of the two above elementary cases.
The analytical expression for line segments is relatively simple. Let us consider a line segment of length 2l connecting

the two points v1 and v2 where f varies linearly from f(v1) to f(v2). By denoting the quantities l, c as

l = 1
2
(v2 − v1), c = 1

2
(v1 + v2) (57)
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we can derive (f𝛿)(𝝃) as follows

For f (x) = 1, (𝛿)(𝝃) = 1
V ∫

v2

v1

e−i𝝃xds = 2l
V

e−i𝝃csinc(𝝃l)

For f(x) = x, (x𝛿)(𝝃) = 1
V ∫

v2

v1

xe−i𝝃xds = 2l
V

e−i𝝃c
[

il
(𝝃l)

[cos(𝝃l) − sinc(𝝃l)] + csinc(𝝃l)
]

(58)

When  is a close circle and f is a local normal vector f = n, it is possible to derive the exact expressions for (n𝛿)(𝝃).
Using the Gauss theorem, we can show the relations

(n𝛿)(𝝃) = 1
V ∫

n(x)e−i𝝃.xds = −i𝝃𝜒(𝝃) (59)

where 𝜒 is the indicator function of domain inside , that is, 𝜒(x) = 1 inside , otherwise 𝜒(x) = 0 and 𝜒(𝝃) is the form
factor. For a circle of radius R centered at c, we have

𝜒(𝝃) = 2𝜋R2

V
J1(𝜂)
𝜂

e−i𝝃c, 𝜂 = R
√

𝜉2
1 + 𝜉2

2 (60)

where J1 is the Bessel function of the first kind and first order. In the case where  is a planar (2D) shape in 3D space,
analytical expression for form factors𝜒(𝝃) of plane polygons are well documented in the literature of scattering physics.30

Denoting the normal vector to the plane of a given polygon as n and its J vertex as v1, v2, … , vJ in counterclockwise
direction with respect to n, 𝜒(𝝃) admits the simple form

𝜒(𝝃) = 1
V

2i(n × 𝝃)
(|𝝃|2 − (𝝃n)2)

J∑
j=1

ljsinc
(
𝝃lj

)
e−i𝝃cj (61)

with

cj =
1
2
(vj + vj−1), lj =

1
2
(vj − vj−1), v0 ≡ vJ (62)

The analytical calculation for (x𝛿)(𝝃) as derivative of (𝛿)(𝝃) by (56) is not difficult but more cumbersome.
A detailed consideration of 3D simulations based on the above formulation will be addressed in future works. To
examine the performance of the method, we shall focus on 2D configurations where curve based functions are
used.

2.7 Reconstruction of physical fields from solutions in Fourier space

After solving the LS equation by the iteration method presented in this work, we obtain the solution in wavevector space
𝜃r(𝝃). Due to the finite resolution, the inverse DFT will yield the values 𝜃r(x) in physical space

𝜃r(x) = DFT−1[𝜃r(𝝃)] (63)

at the grid points only. In practice, we are also interested in values at locations which can be arbitrary. To this end, we use
the property of the delta function. The delta function at x0 has the Fourier transform expression

𝛿x0(𝝃) = e−i𝝃x0 (64)

The real value 𝜃r(x0) at an interior point x0 where 𝜃r is continuous is given by the expression

𝜃(x0) = 𝜃r(x0) =
1
V ∫V

𝛿x0(x)𝜃r(x)dx =
∑
𝝃

𝛿x0(𝝃)𝜃r(−𝝃) (65)
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As mentioned, the above relation is valid when 𝜃r is continuous in x0. There are cases when the points of interest lie
on the smooth discontinuity surface 𝜕Ω or Γ. For example, if we want to determine the temperature 𝜃 on the boundary
from the skeleton solution 𝜃r which vanishes in the void, we can write

𝜃(x0) = 2𝜃r(x0) =
2
V ∫V

𝛿x0(x)𝜃r(x)dx, x0 ∈ Γ, 𝜕Ω (66)

In another special case where the point x0 belongs to the non-smooth 2D corner of a discontinuity surface, for example,
corner with angle 𝛾 of a 2D polygon, the factor 2𝜋∕𝛾 must be used in the formula (Figure 2)

𝜃(x0) =
2𝜋
𝛾
𝜃r(x0) =

2𝜋
𝛾V ∫V

𝛿x0(x)𝜃r(x)dx, x0 ∈ corner (67)

This relation is due to the symmetry of the delta function at the point of interest x0. In 2D, it can be considered as the
limit of a spike function with circle base shrinking to x0. Compared to the full 𝛿x0𝜃 involving the full circle, that is, angle
2𝜋, the integral 𝛿x0𝜃r only involves a fraction of the circle, corresponding to the corner angle 𝛾 . It is also interesting to note
that the treatment of the factor 2𝜋∕𝛾 at the corner of the present method is similar to the one used in boundary integral
equation (BIE). The two previous cases can be included in the last formula as 𝛾 = 2𝜋 (interior point) and 𝛾 = 𝜋 (smooth
boundary).

2.8 Relation to the BIE

At this stage, we have seen that the present method shares numerous common points with the method of BIE. Now, we
shall show, starting from the governing equation, that our method is fundamentally related to BIE. Indeed, taking (30)
with E = 0 and k0 = kr as a special case, we find that

𝜃r = Θr +
1
k0

S ∗ s + 2R ∗ (n𝛿)Γr𝜃r (68)

As mentioned above, 𝜃r at any point on the boundary is connected to 𝜃 via the relation 𝜃 = 2𝜋∕𝛾𝜃r and 𝜃 = 2𝜃r for the
most part of the boundary Γr. The difference at some non-smooth corners where 𝛾 ≠ 𝜋 on Γr, does not affect the whole
integral with R on the right-hand side of (68). Thus, it is safe to write

𝛾

2𝜋
𝜃 = Θr +

1
k0

S ∗ s + R ∗ (n𝛿)Γr𝜃 (69)

By construction of S and R in (4) and their roles in (20), we conclude that S∕k0 is the periodic Green function acting
on the source term s and R = ∇S. Substituting s with flux on the boundary and writing the above expression in real space
yield the equation

𝛾(x)
2𝜋

𝜃(x) = Θr −
1
k0 ∫

𝜕Ω∪Γr

S(x − y)jn(y)dy + ∫
𝜕Ω∪Γr

𝜕S
𝜕n

(x − y)𝜃(y)dy (70)

It is now clear that after some manipulation, we found an interesting form that is similar to the classical BIE
formulation. However, in the classical BIE, the Green function for infinite media appears in the governing equation. In

F I G U R E 2 Illustration of angle 𝛾 for x0 at the non-smooth
corner, on a smooth boundary, and inside the skeleton domain
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our case, the V -periodic Green function is used and the boundary equation contains the additional constant Θr. The ori-
gin of the latter constant is due to the periodicity condition and to the fact that the Green function S is defined for a
zero average temperature field generated by a unit heat source. Letting the domain become infinitely large V → ∞, S will
become the Green function of the infinite media, Θr → 0 and we will recover the original BIE. The present method also
relies on the reference conductivity k0 and it is only when k0 = kr that we recover an equation that looks like the usual
BIE. Finally, the iterative scheme coupled with FFT, makes the present method rather different from BIE.

2.9 General BC and pixel/voxel images

As shown previously, the formulation can be used to deal with general boundary value problems in porous material:
Neumann (Section 2.4), mixed Dirichlet–Neumann (Section 2.5) BC, including the homogeneous boundary flux and
gradient as particular cases. The periodicity BC can be naturally combined by not adding extra void space along the
periodic direction. The boundary geometry and the variation of prescribed temperature and normal flux on the boundary
can be arbitrary, being described by using a piecewise linear approximation (Section 2.6).

The present method can be applied to any microstructure obtained from pixel/voxel images. Digital image processing
algorithms31 are used to detect the boundary cells which are then linked to construct boundary lines/faces.21 Depending
on how we define the cell connectivity, from 4 to 8-connectivity, the final results may vary. For 4-connectivity, the adja-
cent cells must share an edge and the line elements are parallel to the plane x1, x2, x3 (see Figure 3). For 8-connectivity, the
adjacent cells are only required to have a common corner and consequently horizontal, vertical, and diagonal lines are
available. In our experiences, the latter option results in a reduced number of cell points, corners and yields better approx-
imations of the smooth geometries. However, it still introduces artifacts at corners with limited number of angle values,
which generates singularities and fluctuations of fluxes near these locations (see the example in Section 3). Hence, only
flux results sufficiently far from the boundary are reliable. Further improvements to minimize the corner effects can be
proposed, for example, by averaging coordinates of neighboring cells or spline approximations, and so forth, which will
be under consideration.

3 NUMERICAL EXAMPLES

3.1 Conduction in a periodic structure with heat sources

We shall examine first the performance of the method when dealing with periodic problems with a source term. As an
example, we consider an array of solid cylinders surrounded by a fluid and the 2D conduction problem in the plane normal
to the cylinders. Such a problem can be used for applications in heat exchanger systems. The conductivity of fluid and
solid are respectively kf = 1 and ks > kf . We vary the value of ks for the parametric study. It is worthwhile noticing that in
this first application, the inclusions are solid and the exterior medium is fluid, contrarily to the case of porous medium
studied thereafter.

For simplicity, no macroscopic temperature gradient and heat flux are present E = 0 and J = 0. The unit cell is a square
domain of dimension L1 = L2 = 1 and the radius of the cylinder is R = 0.2. The cylinders act as heat sources and the fluid

F I G U R E 3 Left: Tracing boundary
from pixel images using 4 and
8-connectivity. Right: Boundary pixel of
circles
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as heat sink with homogeneous source terms in each domain

s(x) = sf = 1∕(1 − f ) in the fluid domain,
s(x) = ss = −1∕f in the solid domain (71)

with f being the volume fraction of the cylinder f = 𝜋R2∕(L1L2). These two values ensure the average ⟨s(x)⟩ = 0. The
energy exchange rate between the cylinder and the fluid is thus equal to unity

q = |sf |(1 − f )V = |ss|fV = 1, V = L1L2 = 1 (72)

We define the heat transfer coefficient as

h =
q|𝜃f − 𝜃s| = 1|𝜃f − 𝜃s| (73)

where 𝜃f and 𝜃s is the average temperature of the fluid and solid phase.
We use the FFT based schemes presented in Section 2.2 to solve our problem in a sufficiently large domain of wave

vectors. In this case, the number of wavevectors 𝝃 defined by (2) is bounded by the inequality −N ≤ ni ≤ N with i = 1, 2
and N = 128. The solution from the FFT based method will be compared with the finite element method (FEM). We
use the transient heat transfer module in COMSOL, a standard FEM code, for this purpose. Due to the symmetry, the
boundary of the FEM model is of insulation type (zero heat flux). Starting from the initial homogeneous zero temperature,
the system temperature evolves to a stable temperature, where we stop to record the result.

Figure 4 shows the result for the case ks = 10. The gradient value along direction 1 and on axis x1 issued from the FFT
based method is in good agreement with the FEM solution. The FFT based scheme converges after a moderate number
of iterations (8, 17, and 50 iterations for j, 𝜏, and e schemes) for the accuracy of 𝜀 = 10−3. The difference between the
minimal and the maximal temperatures is found identical for both cases 𝜃max − 𝜃min = 0.1369. The difference between the
temperatures of the fluid and of the cylinder is also identical and equal to |𝜃f − 𝜃s| = 0.091547. The effective heat transfer
coefficient is heff = 10.923 for both methods.

We remark that all the schemes, e, j, and 𝝉 , yield the same results. These schemes differ only by the convergence rate.
The latter depends on the contrast ratio ks∕kf , the microstructure, the driving force s and E (or J or T). To study this, we
vary the contrast ratio by varying the conductivity ks. Figure 5 shows the convergence rate of the three schemes. We find
that with the source term, the e and 𝝉 schemes show the same behavior for both high and small contrast. In the log-log plot,
they both exhibit symmetry with respect to the origin | log ks∕kf | = 0 and are linear starting from the ratio | log ks∕kf | ≥ 1.
The slope of 𝝉 scheme is about two times smaller than the one of e scheme, meaning that 𝝉 scheme is faster. This behavior
is also observed in the homogenization problem without source term, that is, E, J,T ≠ 0 and s = 0. The main difference
comes from the j scheme. While the convergence rate of j scheme is similar to the one of e scheme at small contrast
ratio ks∕kf < 1, it is superior to the two other schemes at high contrast ratio ks∕kf > 1. Investigation into very high contrast
range, up to ks∕kf = 106 shows (right part of Figure 5) that the number of iterations to reach convergence appears to be
stable at 36 iterations for the j scheme. This interesting issue related to the superconductive limit ks = ∞ suggests that

F I G U R E 4 Sketch of the
periodic heat transfer problem
and the obtained results (FEM
and FFT methods) for gradient
component e1 on axe x1
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F I G U R E 5 Influence of the contrast ratio ks∕kf on the convergence of iteration schemes

only j scheme can work in this case. Considering the other extreme limit ks = 0 which is the focus of this article, we find
that all schemes fail to converge in this extreme situation. From a physical point of view, this can be explained by the
fact that the flux induced by heat sources can be transmitted to the fluid by the superconducting medium, but not by an
insulating medium. We will see thereafter that the problem with boundary sources at the boundary of a voided inclusion
can be used accurately by the scheme devoted to porous materials described in the previous section.

3.2 Hollow cylinder subject to flux and temperature BC

In this part, we shall apply the FT method developed in the previous sections to 2D homogenization problems. The same
resolution parameter N = 128 and tolerance 𝜀 = 10−3 as in the previous periodic examples are used. The skeleton of
the porous material has a conductivity kr and the reference conductivity is chosen as k0 = 1.2kr to achieve the optimal
convergence. It should be also noted that to guarantee the accuracy, the delta terms associated to the boundary (n𝛿)Γr

and (n𝛿)𝜕Ω∪Γr standing before the convolution ∗ in Algorithms 3–5 need to use a higher resolution 𝛼dN than the base
resolution N of the unknown 𝜃r. As suggested in Reference 21, we take 𝛼d = 2 in the examples.

We consider first the case of a circular hollow cylinder limited by two circles of radius R1 = 0.2 and R2 = 0.4. The
internal boundary is free of flux and the external boundary is subject to homogeneous heat flux along direction 1 with
unit intensity G = i1. Since the analytical solution exists for this problem (see Appendix B), it is interesting to compare it
with the present method. With the procedure described in Section 2.3, the iteration scheme is stopped after 59 iterations.
The effective analytical value of conductivity ke = 0.6 compares well with ke = 0.6028 (FFT). Qualitatively, we find that
the temperature 𝜃r and gradient er1 fields in Figure 6 vanish in the void space and change gradually along direction 1 of
the prescribed flux G. To study the accuracy of the local solution, we need to examine the distribution of temperature
more quantitatively. Considering the variation of those quantities on the axis x1 (see Figure 7), we find that the tempera-
ture profile is antisymmetric and that er1 is symmetric while vanishing in the pore. Near the interface, we observe strong
oscillations due to the Gibbs phenomenon as expected. In the polar coordinate system, we fix the radius r = 0.2 (inter-
nal boundary), r = 0.4 (external boundary), and r = 0.3 (middle layer) while the polar angle 𝜙 is varied. To recover the
temperature value 𝜃 from 𝜃r at those points, we need to use the results in Section 2.6 and the corresponding factors 2𝜋∕𝛾 :
2 (𝛾 = 𝜋) for the two boundaries r = 0.4 and r = 0.2 and 1 (𝛾 = 2𝜋) for interior layer r = 0.3. In the numerical solution,
the temperature varies as a cosinus function of the angular coordinate 𝜙, is maximal at 𝜙 = 0, and vanishes at 𝜙 = 𝜋∕2,
which matches perfectly with the analytical solution, for r = 0.2, 0.3 and 0.4.

Next, we consider the case of a square hollow cylinder limited by two squares of sides 0.4 and 0.8 subject to homo-
geneous gradient D = i1 condition along direction 1, that is, 𝜃 = Dx = x1 on the external squared boundary. As expected
in Figure 8, the temperature increases from the minimal value −0.4 in the left to the maximal value 0.4 in the right.
The effective conductivity 0.5800 (FFT) compares well with ke = 0.5815 (FEM). Like for the case of the hollow cylinder,
we extract the temperature from the two boundaries and the middle layer to compare with the FEM solutions. Those
points lie on the squares of side 2a and a = 0.2, 0.3, 0.4. The corresponding factors 2𝜋∕𝛾 described in Section 2.6 are the
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F I G U R E 6 Temperature 𝜃r

and gradients er1 field produced by
FFT method

F I G U R E 7 Left: Temperature 𝜃r and gradient er1 along the axis x1. Right: Temperature 𝜃r along the circumferential direction in
comparison with the analytical solution in Appendix B

F I G U R E 8 Temperature
field produced by FFT method and
comparison with FEM solution on
polylines parallel to the boundary

following: 2 (𝛾 = 𝜋) for the two boundaries a = 0.4 and a = 0.2 except at corners and 1 (𝛾 = 2𝜋) for interior layer r = 0.2.
Regarding corners, the factors 2𝜋∕𝛾 take the following values: 4 (𝛾 = 𝜋∕2) for the interior corner of the boundary a = 0.4
and 4∕3 (𝛾 = 3𝜋∕2) for the interior corner of the boundary a = 0.2. From Figure 8, we find that the temperature values are
well imposed on the external boundary a = 0.4, constant and equal to 0.4 on the face x1 = 0.4 and vary linearly on the face
x2 = 0.4. The FFT and FEM results are also in excellent agreement for the layers a = 0.2 and a = 0.3 as well. Combined
with the example of circular ring, this confirms at the same time the accuracy of the newly developed FFT algorithm for
porous media and the techniques of reconstructing temperature values at arbitrary points using delta function.
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The iteration schemes established in Section 2.5 are considerably slower than the one for a pure flux BC. The required
number of iterations in both schemes is of order 105 iterations. It can also be seen that the augmented Lagrange scheme
performs better than the penalty scheme (with kpen = 104) in terms of imposing temperature constraint. From Figure 9,
we can observe how the flux divergence and temperature BC errors decrease with the number of iterations. The two errors
have a similar trend in the augmented Lagrangian method. They both decrease fast at the beginning and slower at the
end. In contrast, the convergence on the flux divergence of the penalty method is slow at the beginning and fast near the
end. Because the penalty coefficient is equivalent to interface conductivity in imperfect interface model, the temperature
is stabilized and ceases to evolve after the value obtained at convergence, which is slightly different from the prescribed
temperature. In principle, we can increase the penalty coefficient to improve the accuracy of the scheme at convergence.
However, this action is comparable to an increasing of contrast ratio in the original FFT schemes and will penalize further
the performance of the method.

3.3 Periodic porous plate subject to mixed BC

We have shown that the FT method can be applied to nonperiodic boundary value problems. Given the performance of
the FT method with both periodic and nonperiodic BC, we shall study a porous wall with mixed BC. The wall can be
modeled as a domain with finite thickness 0.8 along direction 2 and being periodic along direction 1 with period 1. The
random sequential adsorption method is used to generate randomly 15 circular pores of radius 0.06 and a porosity 0.212
in the domain. To avoid percolation issues, that is, circles touching each other and the boundaries, we control a minimal
gap of 0.02.

First, we apply a homogeneous flux of intensity 1 along direction 2 on the two surfaces. After 67 iterations, the scheme
converges and yields the effective conductivity ke2 = 0.6432, which compares well with the Maxwell estimate for an
isotropic material giving 0.6502. From the field of j2 in Figure 10, we can observe the interaction between neighboring
pores by the strong flux intensity flowing through the gap between them. Looking at the surface temperature 𝜃, we find
that the distribution is not homogeneous with peaks and troughs. It is interesting to note the three peaks in the absolute
temperature profiles |𝜃| corresponding to three circle locations near the boundary. Peaks are more pronounced for holes
which are nearer to the wall.

Next, we study the problem using the temperature BC. The uniform temperature distribution 𝜃 is prescribed on the
two surfaces with value 0.4 and −0.4 and the temperature field shown in Figure 11 shows the gradual change for two
locations. The augmented Lagrange scheme converges after 3430 iterations and yields the effective conductivity ke2 =
0.6436, which is close to the value obtained by the previous example. Regarding the surface flux profile, we find that it
is not uniform. The locations of maxima appear to be at the gap between the pore and the minimum at the center of the
pore near the surfaces. We conclude that the physical aspects of the heat transfer phenomena are also well recovered in
this case.

F I G U R E 9 Evolution of errors in penalty scheme (kpen = 104)
and augmented Lagrange scheme
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F I G U R E 10 Flux field j2

obtained by FFT method and
variation of temperature 𝜃 on
the surface

F I G U R E 11 Temperature
field 𝜃r obtained by FFT method
and variation of normal flux j2 on
the surface

Up to now, the description of phases has been effected by using form factors. However, the FFT method is particu-
larly interesting for images obtained from a pixelized description. So, in the last example, we compare both methods of
description. We consider a periodic plate with a sinusoidal boundary and interior holes with heterogeneous BCs. The two
boundaries are defined by the equations x2 = 0.4 + 0.02 cos(2𝜋x1) and x2 = −0.4 − 0.02 cos(2𝜋x1). The hole is located at
the origin with radius R = 0.2. The upper plate boundary is subject to Neumann BCs jn = 1 + 0.2 cos(2𝜋x1) and the lower
boundary subject to Dirichlet BCs 𝜃 = 0.1 cos 2𝜋x1. The hole boundary is subject to Neumann BCs jn = 1. To solve this
problem, the plate upper and lower boundaries are discretized into 20 line elements. Regarding the hole boundary, we use
two types of discretization for comparison purpose. In the first model, the circle is discretized with 20 line elements and
in the second model the 8 connectivity pixel based boundary of the circle is used (see Section 2.9). Results in Figure 12
(two top subfigures) show that both models yield similar temperature fields. The main differences can be found in the
flux field j2 (see two bottom subfigures of Figure 12). While the two models yield globally the same results, the local val-
ues near the pixel based boundary contain strong fluctuations. The maximal absolute flux in the pixel model is 5–6 times
higher than the linearized boundary model. These “singularities” can be explained by the artificial corners generated by
the pixel images. In contrast, the use of linearized boundary makes the boundary almost smooth and thus avoids those
corner effects.

3.4 Influence of the choice of volume V

From the setting of the method, we only require that the domain under consideration Ω is embedded in a larger volume V
without specifying its size. This is based on the fact that any function defined on a finite interval can be expressed by using
Fourier series with larger periods. Although the solution of the problem is independent from the period V , the accuracy of
the Fourier series, the convergence rate of the numerical schemes may be sensitive to this choice. For example, choosing
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F I G U R E 12 Top:
Temperature fields 𝜃r obtained
by FFT methods using linearized
boundary (left) and pixel based
boundary (right). Bottom: Flux
components j2 obtained by FFT
methods using linearized
boundary (left) and pixel based
boundary (right)

F I G U R E 13 Left: Influence of the period V on the number of iterations. Right: Influence of the period V on the result j2 at resolution
N = 64

V too large may lead to need a higher resolution N and therefore a higher computation cost. Choosing V which fits tightly
to Ω, also requires a finer resolution due to the space between V and Ω and more iterations because we are approaching
the extreme case where V touches Ω, violating the periodicity condition imposed on 𝜃r.

To demonstrate the above arguments, we take the example of a hollow cylinder in Section 3.2. The ratio R2∕R1 = 2
is kept fixed while the resolution N is varied from 64 to 256 and the relative size of the volume R2∕L from 0.1 to 0.48
(here V touches Ω at R2∕L = 0.5). From Figure 13, we find that the number of iterations is less sensitive to the resolution
parameters N and more sensitive to the period parameters R2∕L. After reaching the optimal number of iterations at R2∕L =
0.3 (around 40 iterations), it increases rapidly with R2∕L, especially the smallest period case R2∕L = 0.48. To examine the
accuracy of the results, let us take the lowest resolution N = 64. When we look at the flux j2 on the axis of symmetry
x2 = 0, we find that the results are rather stable between R2∕L = 0.2 and R2∕L = 0.4. Stronger deviations from the stable
profiles are observed at larger and smaller period L. For a large period R2∕L = 0.1, a large deviation is observed in the void
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space and for small period R2∕L = 0.48, the deviation is in the skeleton phase, especially at locations near the boundary
of V . However, what is interesting is that despite these local fields, the effective conductivities ke for all cases are all
situated around the exact value 0.6, except for the extreme case R2∕L = 0.48 and lowest resolution N = 64 which yields
the effective value ke = 0.58. The relative errors of all the remaining cases are less than 0.2%. This confirms that the FFT
method is a satisfying numerical homogenization method.

4 CONCLUSIONS

In this article, we have presented an extension of the FFT based method, used mainly up to now for solving problems with 
periodic BC, in order to solve boundary value problems involving conductive porous media. All types of BC including 
Neumann, Dirichlet, periodicity (and combination of these conditions) which are frequently used in homogenization 
procedure can be treated by the method. The ingredient of the method is the integral equation of LS type for periodic 
porous materials and the associated iteration scheme. Unlike the conventional LS equations for heterogeneous materials 
which solve the whole field and encounter convergence issues at the pore limit, that is, infinite contrast case, the new LS 
integral equation solves fields in the skeleton phase only and converges fast.

We find that the nonperiodic problems can be solved using periodic LS equations for porous materials with a source 
term at the boundary and an extension into the outer space along the lines of immersed boundary methods.27-29 Specif-
ically, the latter can be treated in the same way as the pores and the fluxes on the boundary by using localized source 
terms. Different examples are considered, demonstrating at the same time the accuracy of the local fields and effective 
properties and the convergence performance.

DATA  AVAILABILITY  STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
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APPENDIX A. PROPERTIES OF THE SERIES AT CONVERGENCE

Now taking the e scheme based on Equation (12), we can show that e(n) satisfy (10)1 at each step n, that is,

Q(𝝃)e(n)(𝝃) = 0, or 𝝃 × e(n) = 0 (A1)

The two equations above are equivalent because in Fourier space, Q(𝝃)e(n)(𝝃) is the projection of e(n)(𝝃) on the plane
normal to the wave vector direction 𝝃 and thus e(n)(𝝃) is colinear with 𝝃. At convergence, the difference between two
consecutive steps in Fourier space

i𝝃(e(n+1)(𝝃) − e(n)(𝝃)) = 1
k0

i𝝃[R(𝝃)s(𝝃) − j(n)(𝝃)] (A2)

with j(n)(x) = k(x)e(n)(x), vanishes and thus also guarantees conditions (10)2 on j(n).
Regarding the j scheme based on Equation (13), we can show that at all steps (10)2 verifies

P(𝝃)[j(n)(𝝃) − R(𝝃)s(𝝃)] = 0, or i𝝃[R(𝝃)s(𝝃) − j(n)(𝝃)] = 0 (A3)
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Again P(𝝃)[j(n)(𝝃) − R(𝝃)s(𝝃)] is the projection of j(n)(𝝃) − R(𝝃)s(𝝃) on the wave vector direction 𝝃 and thus j(n)(𝝃)
− R(𝝃)s(𝝃) is perpendicular to 𝝃. At convergence, the difference between consecutive steps in Fourier space

j(n+1)(𝝃) − j(n)(𝝃) = k0Q(𝝃)e(n)(𝝃) (A4)

with e(n)(x) = j(n)(x)∕k(x), vanishes meaning that (10)1 is also satisfied.
Finally, for the 𝝉 scheme based on Equation (15), the difference between consecutive steps in Fourier space can be

simplified as

𝝉 (n+1)(𝝃) − 𝝉 (n)(𝝃) = 2k0Q(𝝃)e(n)(𝝃) − 2[P(𝝃)j(n)(𝝃) − R(𝝃)s(𝝃)] (A5)

with e(n)(x) = 𝝉 (n)(x)∕(k0 + k(x)) and j(n)(x) = 𝝉 (n)(x)k(x)∕(k0 + k(x)). As a result, due to the orthogonality of the two
operators P(𝝃) and Q(𝝃), (10)1,2 are both satisfied at convergence.

APPENDIX B. ANALYTICAL SOLUTION FOR A HOLLOW CYLINDER

In polar coordinate system (r, 𝜙), the flux BC corresponding to G = G1i1 can be written as follows

jr(R2) = G1 cos𝜙, jr(R1) = 0 (B1)

The solution for temperature admits the simple form

𝜃(r, 𝜙) = G1

kr
(Ar + Br−1) cos𝜙 (B2)

where A,B are constants

A =
R2

2

(R2
2 − R2

1)
, B =

R2
2R2

1

(R2
2 − R2

1)
(B3)

Computing the average gradient D1 yield the expression

D1 = 1
Ω ∫

𝜕Ω
n1𝜃ds = G1

kr

R2
1 + R2

2

R2
2 − R2

1
(B4)

and the effective conductivity

ke =
R2

2 − R2
1

R2
1 + R2

2
kr (B5)

The numerical application with R1 = 0.2, R2 = 0.4, G1 = 1, kr = 1 shows that

A = 4
3
, B = 0.16

3
, ke = 0.6 (B6)

The temperature values at r = 0.2, 0.3, and 0.4 have the form

𝜃(0.2, 𝜙) = 1.6
3

cos𝜙, 𝜃(0.3, 𝜙) = 5.2
9

cos𝜙, 𝜃(0.4, 𝜙) = 2
3

cos𝜙




