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Severe Perkinsea infection is an emerging disease of amphibians, specifically
tadpoles. Disease presentation correlates with liver infections of a subclade
of Perkinsea (Alveolata) protists, named Pathogenic Perkinsea Clade
(PPC). Tadpole mortality events associated with PPC infections have been
reported across North America, from Alaska to Florida. Here, we investigate
the geographic and host range of PPC associations in seemingly healthy tad-
poles sampled from Panama, a biogeographic provenance critically affected
by amphibian decline. To complement this work, we also investigate a mor-
tality event among Hyla arborea tadpoles in captive-bred UK specimens. PPC
SSU rDNA was detected in 10 of 81 Panama tadpoles tested, and H. arborea
tadpoles from the UK. Phylogenies of the Perkinsea SSU rDNA sequences
demonstrate they are highly similar to PPC sequences sampled from mor-
tality events in the USA, and phylogenetic analysis of tadpole
mitochondrial SSU rDNA demonstrates, for the first time, PPC associations
in diverse hylids. These data provide further understanding of the biogeo-
graphy and host range of this putative pathogenic group, factors likely to
be important for conservation planning.
1. Introduction
Severe Perkinsea infection (SPI) has been associated with tadpole mass mortality
events (MMEs) in the USA [1] and likely represents the third most common infec-
tious disease of amphibians inNorthAmerica [1]. The disease pathology has been
associated with a specific group of Perkinsea protists (syn. Perkinsids, Perkin-
sozoa) called Pathogenic Perkinsea Clade (PPC) based on small-subunit
ribosomal DNA (SSU rDNA) sequencing [1,2]. This group is part of a wider
clade of the freshwater Perkinsea named Novel-Alveolate-Group-01 (NAG01)
[3]. Tadpole associations with specific clades of NAG01-Perkinsea have been
detected across multiple continents [3], yet the PPC clade associated with SPI
has only been detected in the USA, and mainly from SPI-diseased tadpoles
[1,2]. Formal identification of the disease relationship satisfying Koch’s postulates
is absent [4]. Yet, in localities with SPI outbreaks, one study demonstrated that
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100% of tadpoles exhibiting SPI were PPC-positive, whereas a
cohort of asymptomatic tadpoles sampled nearby demon-
strated only 2.5% (2/81) PPC prevalence [1]. This pattern
provides circumstantial evidence for a relationship between
the disease (SPI) and the protist infection (PPC) [5,6].

The first documented MMEs associated with SPI were
recorded in New Hampshire in 1999 [7] and, since then,
SPI-associated mortality events have been reported in seven
other states across a broad geographic range [1,2,7,8]. Most
of these SPI-associated MMEs have occurred in Lithobates
spp. tadpoles [1,2,8,9], but have also been detected in larval
hylids (Hylidae), including Pseudacris crucifer (spring
peeper) and Acris gryllus (southern cricket frog) [1]. Here,
we investigate the wider geographic and host range of PPC
by screening tadpoles from Panama and a candidate SPI out-
break in UK captive-bred specimens. Using SSU rDNA
sequencing, we demonstrate a hitherto unsampled biogeo-
graphic and host-associated taxonomic provenance of this
putative pathogen, suggesting that PPC may be more biogeo-
graphically widespread than previously assumed, a finding
that is crucial in managing animal trade and directing
future conservation efforts.
2. Material and methods
(a) Sample collection and preparation
Fieldwork was conducted in Panama (November 2018). Eighty-
one tadpoles, without apparent pathologies and with unknown
species identification, were collected from seven sites (electronic
supplementary material, tables S1 and S2). New dissection con-
sumables were used for processing each distinct sample set
and flame-sterilized between processing each individual tadpole;
each tadpole was individually washed in H2O, euthanized using
MS-222 and washed in physiological saline before dissection.
Liver tissues were stored in LifeGuard™ (Qiagen) at −20°C for
1–2 weeks and then at −80°C. All livers appeared normal upon
gross visual inspection. Due to permit regulations, all DNA
samples were extracted in Panama.

Captive-bred Hyla arborea tadpoles were collected from a
single-aquarium MME (AME1) in Surrey, UK, in July 2019 (elec-
tronic supplementary material, table S1) and stored in
LifeGuard™ at −80°C. All the livers from tadpoles collected in
the UK showed signs of SPI, specifically enlargement and yellow
discoloration (identified using a dissecting microscope at 10×
magnification). Subsamples of UK tadpoles were preserved for
histopathological microscopy (electronic supplementary material,
figure S1). Due to the small size of these tadpoles, two groups
of five dissected livers from the same MME were pooled for
DNA analysis.

DNA was extracted using the DNeasy Blood and Tissue Kit
(Qiagen) with an overnight lysis at 37°C and disruption with
425–600 µm acid-washed glass beads (Sigma-Aldrich) on a
FastPrep-24™ tissue homogenizer (MP Biomedicals). Each
batch of DNA extractions included a ‘blank’ replicate, processed
in the same manner as the tissue samples, but without tissue
samples. New sterile tools, collection tubes and gloves were
used between each sample recovery and individual sample prep-
aration. However, we cannot exclude the possibility that positive
PPC detection may be due to contamination from the surface
of the tadpole and not directly from the liver tissue, specifically
in the case of the tadpoles sampled in Panama. Indeed, such
errors can arise in PCR screens [10]. Nonetheless, such a result
would still infer that a putative parasite within the SPI-associated
PPC-group was in close environmental association with the
tadpoles recovered.
(b) NAG01 screening
Two hundred and ninety base pairs of SSU rDNA sequence was
amplified using 300F-B [3] and NAG01R_1 primers (electronic
supplementary material, table S3). Each 25 µl reaction comprised
1× PCR Master Mix (Promega, containing Taq DNA polymerase),
500 nM of each primer and 5 µl DNA. Each assay included a nega-
tive (no-template) and positive control (1 µl of DNA from PPC-
infected L. sylvaticus tadpole liver (KNA_DNA [11])). Extraction
blanks (5 µl) were screened alongside liver DNA samples; these
extraction controls were all negative. Cycling conditions were
2 min at 95°C, followed by 35 cycles of 30 s at 95°C, 30 s at 56°C
and 60 s at 72°C, with an additional 10 min 72°C extension. PCR
products were checked on a 2% agarose gel and purified using
the GeneJET PCR Purification Kit (Thermo Fisher).

PCR products were cloned using the StrataClone PCR
Cloning Kit (Agilent Technologies) following the manufacturer’s
protocol. Plasmid DNA was extracted from transformants using
the GeneJET Plasmid Miniprep Kit (Thermo Fisher) and Sanger
sequenced externally using standard T3- and T7-primers (Euro-
fins Genomics). Contigs were assembled using Sequencher
(v. 5.4.6). To determine if the DNA samples contained additional
NAG01 diversity, we triplicated the PCR, cloning and sequen-
cing (electronic supplementary material, table S4). One of these
samples (UK_HA01-5) was subjected to a second triplicate PCR
with a lower annealing temperature (54°C) to further test for
clade diversity by decreasing primer specificity.

(c) PPC SSU rDNA phylogeny
The sequences (electronic supplementary material, table S4) were
assembled with representative sequences from the NCBI ‘nr’ data-
base (August 2019) and automatically aligned in SeaView (v. 4.6.2)
[12] (alignment: [13]). The alignment was adjusted manually to
maximize accuracy and masked to remove gap-rich and poorly
aligned sites. Maximum-likelihood (ML) and Log-Det distance
[14] neighbour joining [15] (a partial correction for compositional
bias [16]) were performed using IQ-TREE (v. 1.6.5) [17].
For ML analysis, a TIM3e +G4 model was used (identified by
ModelFinder [18]). For both analyses, 1000 bootstrap replicates
were performed.

(d) Host identification
A long-term goal of this research is to develop protocols for large-
scale screening technologies to facilitate amphibian conservation,
preferably using at-bench and/or in-the-field technologies (e.g.
Nanopore sequencing). As such, we adapted and tested a frog
rDNA taxonomic barcode sequencing protocol for parallel-
MinION™ amplicon sequencing: see electronic supplementary
material, table S1 legend formethodological details. This approach
allowed rapid identification of tadpole taxonomy, allowing tad-
pole collections to remain within permit limits, and without the
need to export biological materials, or for complex/cumbersome
laboratory-based instrumentation [19].

(e) Host species phylogeny
The amphibian mitochondrial rDNA sequences were searched
against the NCBI ‘nr’ database using BLASTn (June-2019), allow-
ing preliminary taxonomic identification. The sequences were
aligned using the methodology described above (alignment:
[13]). For the ML analysis, a GTR + F + I + G4 model was selected.
3. Results
Liver tissues from 91 tadpoles (81 from Panama and 10 from
the UK) were screened for NAG01-Perkinsea (electronic sup-
plementary material, table S1). NAG01-Perkinsea SSU rDNA
was detected in 10 Panama samples (all single tadpole
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0.04 ≥50% ≥90%

Figure 1. ML phylogeny of PPC SSU rDNA calculated from an alignment of 188 sequences and 288 sites. Bootstrap values are summarized: black circles = node
support ≥90%; white circles = node support ≥50%. Asterisks (*) indicates node consistent with the Log-Det neighbour-joining bootstrap analysis at greater than or
equal to 50%. Slashes (\) indicate branch lengths reduced by half. Newly generated PPC sequences are labelled with location (PA or UK) and sample ID. The Panama
specific subgroup is highlighted by a dark grey box. Reference PPC sequences are labelled with geographic location and GenBank accession number or sample ID
(this study). The triangle represents a subset of reference USA-PPC sequences; number of sequences is listed in parentheses. All other parenthesized numbers
correspond to the number of sequences represented by each phylotype. Accession numbers for the newly generated sequences are provided in electronic supplemen-
tary material, table S4. For Mase format alignment see [13].
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Figure 2. ML phylogeny of host mitochondrial rDNA sequences from the Panama tadpoles calculated from an alignment of 85 sequences and 410 sites. Bootstrap
and node and Log-Det node support values are summarized as in figure 1. Samples with evidence for PPC associations are coloured red. Please note taxonomic
names are derived from GenBank and are likely to be amended under recent taxonomic revisions, see electronic supplementary material, table S1 for contempora-
neous updates. The tree includes H. arborea shown to be subject to repeat MMEs in UK aquaculture. Photographs depict Rhinella marina currently named Rhinella
horribilis (Bufonidae) for Panamanian specimens, Allobates talamancae (Aromobatidae) (Credit: P. Kirillov License: https://creativecommons.org/licenses/by-sa/2.0/
deed.en), and Boana rosenbergi (Hylidae). For Mase format alignment see [13].
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specimens), and one pooled sample of five ‘tiny’ tadpoles from
the same UK aquarium source. We recovered 1–10 clones for
each sample (electronic supplementary material, table S4)
and replicated the PCR and cloning steps for three samples
for additional sampling (two from Panama: PA_T135,
PA_T139, and one from the UK: UK_HA01-5), resulting in 72
sequences (electronic supplementary material, table S4).
The 72 NAG01-Perkinsea SSU rDNA sequences generated
from both the Panama and the UK samples were highly simi-
lar to PPC sequences from the USA [1,2]. Two sequences from
PA_T135 grouped with a subset of USA-derived sequences
(figure 1). To exclude the possibility that the UK-Panama
similarities were the product of contamination, we replicated
a subset of the PCR and cloning steps, confirming this shared
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rDNA-diversity. On all occasions we conducted PCR, numer-
ous subsets of tadpole samples, the negative PCR controls
(molecular-grade H2O), and the DNA extraction controls
were amplicon negative.

A subset of the UK samples preserved in LifeGuard™
solution was sectioned for histopathology. The subsequent
micrographs demonstrated evidence of candidate Perkinsea
cells (electronic supplementary material, figure S1) similar
to other histopathological observations of SPI [2].

Phylogenetic analysis revealed that the 55 newly generated
Panama tadpole mitochondrial rDNA sequences represented
six anuran families: Bufonidae, Phyllomedusidae, Aromobati-
dae, Hylidae, Leptodactylidae and Dendrobatidae (figure 2).
The 10 PPC-positive Panama samples were grouped in
strongly supported clades and so were shown to be present
in Bufonidae (n = 2), Aromobatidae (n = 4), and Hylidae
(n = 4) (figure 2).
:20210166
4. Discussion
The aim of this study was to investigate if PPC–tadpole associ-
ations had a biogeographic range beyond North America. We
surveyed tadpoles from natural populations in Panama, a geo-
graphic region subject to extensive amphibian decline [20], and
investigated a disease outbreak in a UK captive population.
These results revealed evidence for PPC–tadpole associations
in both regions, and generated PPC sequences identical, or
nearly identical, to published PPC sequences from USA
MMEs. These data demonstrate that PPC host range is broader
than previously indicated [1,2], as the PPC-positive samples
include Hyloidea species, including two from the Bufonidae
family (PA_T128 and PA_T169 - figure 2), one of themostwide-
spread and speciose anuran families [21]. Given the association
between PPC and MMEs [1], the identification of PPC in
additional locales, and diverse hosts, this result has potentially
important implications for global frog conservation.

Phylogenetic analysis identified additional diversitywithin
the PPC clade which could be a product of DNA polymerase
errors, strain variation or intranuclear variation (figure 1, align-
ment available at [13]), with the latter known to be a factor in
many alveolates [22]. However, the sequences show little geo-
graphical variation, suggesting: (i) the rDNA sequence region
sampled is not subject to sufficiently high rates of mutation
to allow identification of biogeographical structure, and/or
(ii) the PPC clade has rapidly spread between the USA, UK
and Panama. The latter possibility would have significant con-
servation implications, discussed below. However, at this
point, we note that the results presented in figure 1 do not
allow us to identify either strain/species or biogeographical
phylogenetic structure and, as such, the phylogeny serves
only to confirm that all sequences detected are part of a closely
related clade within the SPI/PPC radiation. Further biogeo-
graphic and strain phylogenetic structure could potentially
be resolved by sequencing additional, rapidly evolving mar-
kers, allowing further insights into the spread of PPC and
host/microbe coevolution, as has been investigated for
marine Perkinsea parasites [23,24].

Previously published North American PCR surveys found
cryptic PPC associationswithout evidence of disease to be rare;
indeed, only two out of 81 tadpoles that appeared asympto-
matic (L. sphenocephalus) were PCR-positive for PPC [1]. Our
results show that cryptic PPC associations without evidence
for the disease are more prevalent than previously indicated,
as all 10 of the PPC-positive Panama specimens appeared
normal upon gross examination, demonstrating that PPC is
present in Panama, but with no evidence of a disease-causing
association. Interestingly, most of the SPI-associated tadpole
MMEs in North America have been documented in ranids,
i.e. superfamily Ranoidea [1–3,7–9], whereas the PPC-positive
samples from this study were all Hyloidea. This disparity
suggests that Hyloidea spp. may be more tolerant of infection.
However, we note that the PPC-positive DNA samples from
the UK were derived from symptomatic tissue from H. arborea
(Hyloidea), and the SPI disease phenotype has been reported
in two North American hylid species,Acris gryllus and Pseuda-
cris crucifer [1]. Alternatively, the disparity observed might
simply reflect the larger ratio of hylids-to-ranids in Central
America compared to North America [25], or could be a
product of differing time frames of coevolutionary interaction
in different geographic areas, an important factor when
considering recent candidate parasite introductions.

The discovery of PPC in UK captive populations raises con-
cerns regarding PPC transmission. It is not possible to track the
origin of the infection; the H. arborea frogs are bred separately
from other amphibians, and the disease-causing agent could
have been introduced from adult H. arborea frogs from a UK
outlet in 2018, or by unidentified tankwater or equipment con-
tamination. Aquaculture disease outbreaks pose a threat
to native species [26], as captive-bred/farmed animals (and
their pathogens) often spread from aquaculture to natural
environments [27]. Currently, we are not aware of any other
PPC-linked MMEs in wild amphibian populations in the UK
or elsewhere in Europe, but further research is necessary.
Pathogens can be unintentionally spread across a large geo-
graphical range when captive-bred amphibians are
translocated for trade, food and other commercial purposes;
a phenomenon known as ‘pathogen pollution’ [28,29]. This
has alarming implications for conservation, as many amphi-
bian species are currently suffering catastrophic population
decline [30]. Central America is home to a large diversity of
amphibian species, many of which are in decline [31] and
some now persist in local captive assurance colonies [32].
Our survey for NAG01-Perkinsea associations in Panama
tadpoles did not yield evidence of SPI-associated disease.
However, our detection of PPC DNA associated with a diverse
group of amphibian hosts in Central America is a cause for
concern. In the light of the current imperilled state of Panama
amphibians, and the threat that infectious disease outbreaks
pose to captive assurance colonies [33], our findings encourage
management strategies, including routine monitoring for PPC.

Ethics. Sampling in Panama was carried out under IACUC permit
number SC/A-17-18, proposal 2018-0922-2021. All tadpoles were
euthanized using an overdose of MS-222 prior to dissection.
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