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Abstract

High-dimensional time series are a core ingredient of the statistical modeling toolkit, for which numerous estima-
tion methods are known. But when observations are scarce or corrupted, the learning task becomes much harder. The
question is: how much harder?

In this paper, we study the properties of a partially-observed Vector AutoRegressive process, which is a state-
space model endowed with a stochastic observation mechanism. Our goal is to estimate its sparse transition matrix,
but we only have access to a small and noisy subsample of the state components. Interestingly, the sampling process
itself is random and can exhibit temporal correlations, a feature shared by many realistic data acquisition scenarios.

We start by describing an estimator based on the Yule-Walker equation and the Dantzig selector, and we give an
upper bound on its non-asymptotic error. Then, we provide a matching minimax lower bound, thus proving near-
optimality of our estimator. The convergence rate we obtain sheds light on the role of several key parameters such
as the sampling ratio, the amount of noise and the number of non-zero coefficients in the transition matrix. These
theoretical findings are commented and illustrated by numerical experiments on simulated data.

1 Introduction
Time series provide a natural representation for periodic measurements of a stochastic process. In particular, those
defined by linear Gaussian recursions may be the most widely used and the easiest to study. Well-known examples
include the AutoRegressive (AR) process and its multivariate counterpart, the Vector AutoRegressive (VAR) process.

Industrial applications of these models encounter two main challenges. First, they often involve signals in high
dimension, which means sparsity assumptions play an important role. Second, the variables of interest are rarely
measured exactly or entirely. Indeed, physical constraints such as the cost of sensors can make it impossible to
capture every component of the system’s state at all times. It is therefore natural to ask: how much harder does
high-dimensional learning become when one only observes a fraction of the relevant values?

1.1 Context of the Study
To answer this question, we study a state-space model where the state Xt ∈ RD follows a VAR process of order 1
over a period of length T . Since the dimension D of Xt is high, we assume that its transition matrix θ ∈ RD×D
is s-sparse (there are no more than s non-zero coefficients in each row). However, we do not observe the state
itself: our observations Yt only involve the subset of components Xt,d for which πt,d = 1, where πt is a vector of
Bernoulli variables. To make matters worse, this subset is corrupted with noise, which leads to the following generative
procedure:

Xt = θXt−1 +N (0, σ2I) πt,d ∼ B(p) Yt = diag(πt)Xt +N (0, ω2I). (1)
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When we write πt,d ∼ B(p), we mean that the marginals of the sampling variables are identical, which requires that
every state component be sampled with equal probability p. However, we reject the standard independence assumption
in favor of temporal dependencies between the Bernoulli variables πt,d (see Section 1.2 for a practical justification).

To shed light on the properties of our model, we start by constructing a sparse estimator for θ, whose non-
asymptotic error we upper bound. We complement this finding with a lower bound on the minimax error that does not
depend on the choice of estimator. Upper and lower bound match in most regards, which proves their optimality. A
rough summary of our analysis is that the best possible estimator θ̂ satisfies

‖θ̂ − θ‖∞ .

(
1 +

ω2

σ2

)
s

p
√
T

(2)

with high probability. We observe that the error does not depend on the state dimension D, but only on the sparsity s
of the transition matrix. As expected, it decreases linearly as p grows, since more information becomes available.
Lastly, it is a function of ω2/σ2, which means that precise recovery of θ is only possible when the noise is not too
much larger than the signal.

Novel features of our work include the first proof of a minimax lower bound in this setting (to the best of our
knowledge), the investigation of temporal correlations within the sampling process, the combination of discrete and
continuous concentration inequalities to obtain error estimates, as well as detailed numerical experiments on simulated
data.

1.2 Example of Application
Our study was inspired by concrete questions related to delay propagation on railway networks, which came up during
a collaboration with a leading railway company. When external factors (weather, passenger behavior, mechanical
failures) trigger a primary delay, resource conflicts between trains can amplify the initial incident and send ripple
effects through the whole network. Understanding and predicting this propagation phenomenon is a crucial task for
traffic management and robust scheduling.

To model it, we construct a network graph G = (V, E) linking the railway stations, and we assume the existence of
a hidden congestion variable Xt,d that lives on the edges d ∈ E . This congestion evolves according to a VAR process,
whose transition matrix θ represents pairwise interactions between edges. The sparsity structure of θ expresses the
local nature of delay propagation, which is why it is closely related to the adjacency structure of G. Indeed, between
times t and t+ 1, edges are expected to transmit congestion to their close neighbors, and not to regions of the network
that are very far away.

Unfortunately for us, Xt is never observed directly. The only information we have is collected by the trains
whenever they cross an edge of the network. The crossing time of a train is influenced by the congestion, but also
by other individual factors: in this sense, our observations Yt are a noisy version of the underlying process Xt.
Furthermore, the observations are limited in size: the dimension of Xt is the number of edges D = |E|, while the
dimension of Yt is linked to the number of trains on the timetable and the length of their respective journeys. We can
thus define a random variable πt,d equal to 1 if a train crosses edge d between t and t + 1, and 0 otherwise. A more
realistic model would account for the possibility of multiple trains crossing an edge in the same time step, especially
if the discretization interval is large. However, our binary assumption greatly simplifies exposition without betraying
the qualitative behavior of the system. Crucially, this sampling mechanism exhibits temporal correlations: periods of
dense traffic are likely to be followed by dense traffic, which means that the sequence of sampling variables πt,d is not
independently distributed.

We recognize the framework of Equation (1), and can therefore apply the theoretical result of Equation (2). This
error quantification provides useful insight on the estimation of θ, which is essential to help railway operatives dimen-
sion their data sets or evaluate prediction uncertainty.

1.3 Related Works
The theory of VAR processes has been known for a long time: the book of Lütkepohl [2005] provides a detailed
account. If we have full and noiseless observations of the process Xt, we can use conditional Least Squares to
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estimate θ by minimizing the quadratic error
∑
t‖Xt − θXt−1‖22. This is equivalent to solving the Yule-Walker equa-

tion Γh = θΓh−1, where we replace the autocovariance matrix Γh = Cov[Xt+h, Xt] with its empirical counterpart Γ̂h.
In the case of Gaussian innovations, both approaches coincide with the Maximum Likelihood Estimator (MLE).

Neither of these methods was initially designed for missing or noisy data. Luckily, statistical estimation with
imprecise measurements has been thoroughly studied [Buonaccorsi, 2010]. The same goes for incomplete data sets
; an extensive survey was recently published by Little and Rubin [2019]. According to their terminology, our work
deals with data that is missing completely at random (MCAR), which means that the projection πt is independent from
the underlying process Xt. We also assume to know the distribution of the missingness indicators 1 − πt,d, which is
not necessarily true for other applications (e.g. clinical trials).

A principled approach to deal with missing data would require extending the MLE to partially-observed time
series, also known as state-space models [Cappé et al., 2006]. Most of the time, exact or approximate inference is
achievable using some version of the Kalman filter [Kalman, 1960] or particle methods [Doucet et al., 2000], whereas
parameter estimation typically involves the Expectation-Maximization (EM) algorithm [Shumway and Stoffer, 1982].
Unfortunately, the EM algorithm is hard to analyze explicitly in terms of statistical error, which is why other methods
are sometimes preferred in theoretical studies. In particular, plug-in methods that use covariance estimates within the
Yule-Walker equation have been quite popular in the machine learning community.

In this line of work, the core challenge is the high dimension D of the VAR process Xt. To address it, many
authors use sparsity-inducing penalties as a way to reduce data requirements and computational workload. In the last
ten years, the LASSO [Tibshirani, 1996] has been increasingly applied to random designs exhibiting correlations or
missing data. This trend started with the seminal work of Loh and Wainwright [2012], and numerous other papers
followed [see for example Basu and Michailidis, 2015, Kock and Callot, 2015, Melnyk and Banerjee, 2016, Jalali and
Willett, 2018].

As an alternative to the LASSO, the Dantzig selector [Candes and Tao, 2007] enforces sparsity in the objective and
data fidelity in the constraints. While the LASSO requires solving a Quadratic Program (QP), for instance with prox-
imal methods, the Dantzig selector gives rise to a Linear Program (LP) which can be parallelized across dimensions.
Han et al. [2015] studied its application to VAR estimation, obtaining finite-sample error bounds with very natural
hypotheses. A little later, Rao et al. [2017a] extended these results to the more general scenario in which a hidden
VAR process is randomly sampled or projected, and then corrupted with noise. This last work is quite similar to ours,
but we think that the proof they present to control the non-asymptotic error is incomplete at best1.

Another salient feature of our paper is the search for a minimax lower bound, which allows us to prove the opti-
mality of our convergence rates. To the best of our knowledge, this was only attempted once for partially-observed
VAR processes. Rao et al. [2017b] presented a lower bound on the minimax error in a setting very similar to ours, but
their result is less generic in several regards. Indeed, we account for the possibility of temporal correlations within
sampling, as well as observation noise. Moreover, unlike the one proposed by Rao et al. [2017b], our proof focuses on
geometric properties and doesn’t make use of the admissible set of transition matrices until the very end. This makes
it easy to handle many different types of structured transitions without additional work: sparse, Toeplitz, banded, etc.

Finally, the error bounds we obtain are backed up by detailed numerical experiments on simulated data, which
allow us to visualize the influence of every parameter of interest.

1.4 Outline of the Paper
In Section 2, we define the generative procedure behind the partially-observed VAR process, and we present a sparse
estimator of the transition matrix. We then state both of our theoretical results in Section 3: an upper-bound on the error
of our specific estimator, complemented by a minimax lower bound on the error of any estimation algorithm. Section 4
contains numerical experiments demonstrating the impact of various parameters, which lead to the conclusion in
Section 5.

1Indeed, the combination of discrete and Gaussian concentration inequalities as performed on page 2 (middle of right column) of the sup-
plementary material for Rao et al. [2017a] glosses over the fact that LF is itself a random variable. As we will discover during our own
proof, this introduces an additional difficulty and forces us to use a more complex Gaussian concentration result (Lemma 37). See https:
//web.stanford.edu/~milind/papers/system_id_icassp_proof.pdf for the supplementary material in question.
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Appendix A is dedicated to proving the convergence rate of the sparse estimator, while Appendix B contains the
derivation of the minimax lower bound. A number of useful results from linear algebra and probability are presented
in Appendix C to make the paper as self-contained as possible. Most of them are well-known, some were obtained or
adapted specifically for our proof. Appendix D contains a summary of the main notations and symbols.

2 The Partially-Observed VAR Process and its Sparse Estimator
Before stating our theoretical results, we introduce our statistical model and the estimator we use.

2.1 Model Definition
The model we study was described approximately in the introduction. We now fill the gaps of the generative procedure
it relies on.

The underlying state X = (Xt)t∈[T ] follows a stationary VAR process of order 1. This process has dimension D
and the following recursive definition:

Xt = θXt−1 + εt with εt ∼ N (0,Σ). (3)

Here θ ∈ RD×D is the transition matrix and Σ ∈ RD×D is the covariance matrix of the innovations (in the introduc-
tion, we assumed Σ = σ2I).

To ensure stationarity of the VAR process, we must constrain the spectral radius of θ to satisfy ρ(θ) < 1. Through-
out the paper, we actually make the following (slightly stronger) assumption on the spectral norm of θ: there ex-
ists ϑ ∈ (0, 1) such that for all the values of θ we consider, ‖θ‖2 ≤ ϑ < 1. Furthermore, we only study row-sparse
transition matrices, having at most s nonzero coefficients in each row. In other words, we restrict our choice of
parameters to

θ ∈ Θs where Θs = {θ ∈ RD×D : ‖θ‖2 ≤ ϑ < 1 and ∀i, ‖θi,·‖0 ≤ s}. (4)

We denote by σ2
min = λmin(Σ) and σ2

max = λmax(Σ) the minimum and maximum eigenvalues of the covariance
matrix Σ.

The observation mechanism we chose implies that we do not have direct access to the latent process Xt. To
construct the observations Yt, we sample a subset of state components according to the binary vectors πt. Then,
independent Gaussian noise with variance ω2 is added to these selected components, and we observe the result. If we
denote by Πt = diag(πt) the diagonal projection matrix, we have

Yt = ΠtXt + ηt with ηt ∼ N (0, ω2I). (5)

An essential hypothesis we make is the mutual independence between our three sources of randomness: the innova-
tions εt, the projections πt and the observation noise ηt.

A major feature of the present work is the non-deterministic selection of observed state components, that is, the
fact that πt is a random sequence of Bernoulli vectors following a known distribution. In order to sum up the amount
of information available using one parameter p ∈ (0, 1), we want this distribution to satisfy the following condition:
each component Xt,d of the latent state must be sampled with the same marginal probability p = P(πt,d = 1).

On the other hand, we also want to introduce temporal dependencies between the projections. The simplest way
to achieve that is through a Markovian hypothesis: independently along each dimension d, time indices t are selected
for observation according to a binary-valued Markov chain with transition matrix T =

(
1−a a
b 1−b

)
. Its coefficients are

chosen to make the chain stationary with invariant measure ( b
a+b ,

a
a+b ) = (1− p, p). Note that when a = 1− b = p,

this reduces to independent sampling of each component with probability p. We also assume there exists a universal
constant χ such that 0 < χ ≤ a, b ≤ 1− χ < 1: this means that the chain does not transition too fast nor too slowly.

Our data set is built from N independent realizations of this process. For the sake of simplicity however, we will
prove all convergence theorems in the case N = 1: extending those results to the general case simply amounts to
replacing T with NT in the resulting error bounds.

4



2.2 Sparse Estimator for the Transition Matrix
We now introduce the estimation method chosen for this problem.

The transition estimator presented here is a straightforward generalization of the one used by Rao et al. [2017a].
The lag-h covariance matrix of the VAR process Xt is given by the Yule-Walker recursion (see Lemma 1):

Γh(θ) = Covθ[Xt+h, Xt] = θΓh−1(θ) = θhΓ0(θ) (6)

We can use it to define a simple two-step procedure:

1. For a given h0, build estimators Γ̂h0
and Γ̂h0+1 of the covariances Γh0

and Γh0+1.

2. Use them to approximate the transition matrix by inverting Equation (6).

A simple inversion technique uses the Moore-Penrose pseudoinverse (just in case Γ̂h0
is singular):

θ̂dense = Γ̂h0+1Γ̂†h0
. (7)

The problem with this procedure is that is does not guarantee sparsity of θ̂. To obtain a sparse result, we follow Han
et al. [2015] and cast Equation (6) as a soft constraint enforcing proximity between Γ̂h0+1 and θ̂Γ̂h0 . This amounts to
solving the following constrained optimization problem:

θ̂ ∈ argmin
M∈RD×D

‖vec(M)‖1 subject to ‖M Γ̂h0
− Γ̂h0+1‖max ≤ λ. (8)

Here ‖vec(·)‖1 denotes the sum of the absolute values of all the coefficients of a matrix, while ‖·‖max is the maximum
of these absolute values. Given that both of these norms are piecewise linear, the problem of Equation (8) can be
reformulated as an LP. It can even be decomposed along each dimension, which allows for an efficient and parallel
solution procedure. The only thing left to do is decide how to estimate the covariance matrices Γh.

The covariance estimator we use is a variant of the empirical covariance. Since Yt = ΠtXt + ηt where ηt is
zero-mean, a natural proxy for Xt is obtained by inverting the sampling operator: X̂t = Π†tYt. It would therefore
seem logical to build an estimator of Γh by plugging this proxy into the empirical covariance between Xt+h and Xt.
However, in order for this idea to work, we must make two small adjustments.

To account for the random sampling, the plug-in empirical covariance must be scaled elementwise by a ma-
trix S(h) = E[πt+hπ

′
t]. Intuitively, since X̂t+hX̂

′
t has a fraction p2 of nonzero coefficients, we need to divide it by

something close to p2 to get an unbiased covariance estimator. Furthermore, to account for the observation noise, we
must incorporate an additive correction −ω2I . This correction becomes unnecessary for h ≥ 1 since the observation
noise ηt is independent across time.

In conclusion, we obtain the following covariance estimator:

Γ̂h =
1

S(h)
� 1

T − h

T−h∑
t=1

(
Π†t+hYt+h

)(
Π†tYt

)′
− 1{h=0}ω

2I. (9)

The coefficients of the scaling matrix S(h) are computed in Lemma 4.

3 Lower and Upper Bound on the Estimation Error
We now have the necessary background to formulate our theoretical results. In all the following statements (and
their proofs), the letter c denotes a universal positive constant, which may change from one line to the next but never
depends on any varying problem parameters. More specifically, statements involving it should always be understood
as “there exists c > 0 such that”...
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3.1 Main Theorems
We start by bounding the non-asymptotic error of the estimator we just introduced.

Theorem 1 (Error upper bound). Consider the partially-observed VAR model defined in Section 2.1. We use the
estimator θ̂ of Section 2.2 with h0 = 0, and we suppose that T is “large enough”, as specified by Equations (20)
and (23). Let us define

γu(θ) =
‖θ‖∞ + 1

(1− ‖θ‖2)2

σ2
max + ω2

‖Γ0(θ)−1‖−1
1

and qu = min{p, 1− b} ≤ p. (10)

Then there is a value of λ such that the following upper bound holds with probability at least 1− δ:

‖θ̂ − θ‖∞ ≤ c
γu(θ)s√
Tpqu

√
log(D/δ). (11)

Proof. The argument combines discrete and continuous concentration inequalities, to account for both the Bernoulli
sampling and the Gaussian noise. More precisely, we exploit a recent Chernoff bound that applies to non-reversible
Markov chains, and we plug it into a conditional version of the Hanson-Wright inequality that we derived specifically
for our purposes. See Appendix A for more details.

We now move on to a minimax lower bound which is estimator-independent, and quantifies the intrinsic difficulty
of our statistical problem. The term minimax means that we study the probability of making an error of magnitude ζ,
when we pick the best possible estimator θ̂ and nature replies by choosing the worst possible parameter θ:

P(ζ) = inf
θ̂

sup
θ∈Θs

Pθ
[
‖θ̂ − θ‖∞ ≥ ζ

]
. (12)

More precisely, we want to find a threshold ζ such that the probability of exceeding it is non-negligible, for in-
stance P(ζ) ≥ 1

2 . The evolution of this threshold will tell us how the error behaves with respect to the various
problem parameters.

Theorem 2 (Error lower bound). Consider the partially-observed VAR model defined in Section 2.1. We suppose
that T is “large enough”, as specified by Equations (25) and (27). Let us define

γ` = (1− ϑ)3/2σ
2
min + ω2

σ2
max

and q` = max{1− b, 2p− (1− b)} ≥ p. (13)

Then the following minimax lower bound holds:

inf
θ̂

sup
θ∈Θs

Pθ
[
‖θ̂ − θ‖∞ ≥ c

γ`s√
Tpq`

]
≥ 1

2
. (14)

Proof. The argument is based on an information-theoretical result known as Fano’s inequality. To apply it, we need
to upper bound the Kullback-Leibler (KL) divergence between the distributions Pθ0(Π, Y ) and Pθ1(Π, Y ), where θ0

and θ1 are sufficiently far apart. See Appendix B for more details.

3.2 Influence of the Problem Parameters
Let us now compare the error bounds of Theorems 1 and 2. Our first remark is that s and T play exactly the same roles
in both bounds (up to a logarithmic factor), which shows that the dependency of the error in s/

√
T is optimal.

The sampling parameters appear as 1/
√
pqu in the upper bound, whereas the lower bound scales as 1/

√
pq` in-

stead. This means that we have not proven the optimality of either bound with respect to p or b. However, it is
reassuring to note that there is no conflict between them since q` ≥ p ≥ qu. Furthermore, when a = 1 − b = p (that
is, when Markov sampling boils down to independent sampling), both bounds simplify into the 1/p dependency we
would expect (since qu = q` = p). So in the case of independent sampling, 1/p is indeed the optimal rate.
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The `2 norm of the transition matrix plays opposite roles on each side. In the lower bound, 1 − ϑ = 1 −
maxθ∈Θs‖θ‖2 appears in the numerator, whereas in the upper bound, 1−‖θ‖2 appears in the denominator. It is likely
that these dependencies are suboptimal, but at least they are compatible with one another: as ‖θ‖2 → 1, that is, as the
VAR process becomes unstable, the lower bound tends to 0 and the upper bound to +∞. This is a reflection of the fact
that our proofs make heavy use of the distance between θ and the unit sphere, which means they become meaningless
when θ gets too large.

The variances Σ and ω2 are involved in γ` for the lower bound, and in γu(θ) for the upper bound. In both cases,
the ratio γ tells us whether the underlying process is large enough to be detected among the noise. Roughly speaking,
the magnitude of Xt is related to the spectrum of Σ, while the magnitude of Yt is related to the spectrum of Σ + ω2I .
If the latter is significantly larger than the former, recovering Xt (and thus θ) is a hopeless endeavor.

To simplify the comparison, let us assume in this discussion that Σ = σ2I , and that θ commutes with its transpose.
Then we have ‖Γ−1

0 (θ)‖−1
1 =

∥∥(σ2(I − θθ′)−1
)−1∥∥−1

1
= σ2‖I − θθ′‖−1

1 , and we can give a simpler expression of γ`
and γu(θ):

γu(θ) =
(‖θ′‖1 + 1)‖I − θθ′‖1

(1− ϑ)2

σ2 + ω2

σ2
γ` = (1− ϑ)3/2σ

2 + ω2

σ2
.

We recognize the same dependency in both bounds, namely γ ∝ 1+ σ2

ω2 . Lemma 38 gives a heuristic argument linking
this functional form to the asymptotic behavior of the MLE.

3.3 Extension to VAR Processes of Higher Order
Although our results only apply to state-space models based on an underlying VAR process of order 1, we could try
to extend them to the more general case of VAR(K) processes. Just for this Section, suppose Xt is no longer given by
Equation (3), but instead satisfies:

Xt = θ1Xt−1 + θ2Xt−2 + ...+ θKXt−K + εt.

Then we can represent this as a VAR(1) process using augmented variables [Lütkepohl, 2005]. Indeed, observe that
defining X̃t =

(
Xt Xt−1 · · · Xt−K+1

)′
and ε̃t =

(
εt 0 · · · 0

)′
yields

X̃t = θ̃X̃t−1 + ε̃t with θ̃ =


θ1 θ2 · · · θK−1 θK
ID 0 · · · 0 0
0 ID 0 0
...

. . .
...

...
0 0 · · · ID 0

 .

Unfortunately, by this reasoning, the Markov sampling mechanism that generates Πt gives rise to a new distribution
for Π̃t which is no longer part of the same family. Indeed, the augmented sampling process Π̃t is still Markovian but
with a memory of size K instead of 1. Therefore, the adaptation would require new arguments and we leave it for
future work.

4 Numerical Illustrations
We now illustrate our results on simulated data. All experiments were performed on a Dell Precision 5530 mobile
workstation with Intel Core i7-8850H CPU (2.60GHz × 12) and 31 GiB of RAM, running under Ubuntu 20.04. Our
code was written in Julia [Bezanson et al., 2017], linear optimization problems were modeled using JuMP [Dunning
et al., 2017] and solved with the COIN-OR Clp solver [Forrest et al., 2022]. The reproducible Pluto notebook used to
generate all the plots will be made available on GitHub as soon as the review procedure is complete and anonymity is
no longer required.
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4.1 Data Generation
Simulating a partially-observed VAR process with known transition matrix θ allows us to compute the estimation
error ‖θ̂ − θ‖∞ and study the influence of parameters such as T , D, s, p, ω, etc. Real values for θ were drawn
using independent standard Gaussian distributions for each coefficient, and then normalized to satisfy ‖θ‖2 = ϑ = 1

2 .
To simplify comparison with the theoretical bounds, we used a diagonal innovation covariance Σ = σ2I and set the
sampling parameters to a = 1−b = p, which amounts to independent sampling (except for the experiment that focuses
specifically on the influence of b). When not mentioned explicitly, all other parameters are equal to their default values
given below (we assume ω is known):

T = 10000 D = 5 σ = 1.0 ω = 0.1 p = 1.0.

Most of the simulations are run in a dense estimation scenario. For those that require the sparse procedure, selecting a
good regularization parameter λ is paramount: indeed, Theorem 1 is only valid for a specific value of λ (which is not
known in practice, but we can hope to approximate this near-optimal choice).

A standard way to tune λ would be cross-validation. However, evaluating a choice of λ (and the resulting esti-
mate θ̂) requires inferring the hidden state sequence Xt from the observations Yt. If the projection matrices Πt were
deterministic, the inference could be performed with Kalman filtering [Kalman, 1960], but since they are stochastic,
the distribution of (X,Y ) is no longer jointly Gaussian and the justification behind the Kalman filter breaks down.
Finding an appropriate inference method in our setting will be the topic of future studies.

In the meantime, to tune λ, we suppose that the sparsity level of the real transition matrix θ is known. We then use
this target sparsity ŝ to guide a dichotomy search on λ, until we find a transition matrix estimate θ̂ whose row sparsity
level is sufficiently close to ŝ.

4.2 Results
The main results are presented on Figure 1. With the exception of 1f, all plots have the estimation error ‖θ̂ − θ‖∞ on
their y-axis, and some parameter of interest on their x-axis. The axes are displayed with logarithmic scaling, in order
to highlight the exponent of the dependencies. Each point corresponds to one run of the algorithm, aimed at estimating
a single random value of θ. When a straight line is added to a scatter plot, it is the result of a Theil-Sen regression
[Sen, 1968] applied to the points of the same color: its slope is denoted by α in the legend.

Figure 1a confirms that the error decreases as 1/
√
T . This is only true because the sampling probability p remains

constant. If instead we had a limited observation budget but an increasing temporal precision, we would have p ∝ 1/T ,
in which case the error would increase as

√
T instead of decreasing.

Figure 1b exhibits three clearly identifiable regimes with respect to the noise variance. In the first one, correspond-
ing to ω/σ � 1, the error remains small and constant. Then, the error increases when ω/σ ' 1. In the third phase,
corresponding to ω/σ � 1, the error remains high and volatile. This is consistent with the theoretical dependency
in 1 + ω2/σ2.

Figure 1c compares the respective benefits of sparse and dense estimation by increasing the ambient dimension D
while keeping the true sparsity level s constant. The error for θ̂dense scales linearly with D, while its sparse counter-
part θ̂ achieves a much slower error growth. As a side note, the fact that the error grows with D is not surprising.
Indeed, we measure it with the `∞ operator norm, which scales with the dimension of the matrix.

Figure 1d takes the opposite perspective by increasing the number of nonzero coefficients in a space of fixed
dimension. In this case, the theory predicts that the error should scale linearly with s, but the slope we observe is
below 1. Our interpretation is that the function γu(θ) also depends on the sparsity level in complicated ways through θ,
especially since the real values are renormalized to satisfy ‖θ‖2 = 1

2 .
Figure 1e shows that the error evolves as 1/p, which is consistent with our upper bound. It is also informative w.r.t.

the choice of h0. Choosing h0 = 0 means we need to know ω to perform estimation. If this parameter is unknown, we
can choose h0 ≥ 1, which leads to a much higher variance of the estimator (this is not visible in our results since we
wrote the proof in the case where h0 = 0). An alternate solution would be to keep h0 = 0 and plug in a guess such
as ω = 0, effectively trading lower variance for a higher bias.
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Figure 1: Impact of model parameters on the estimation error
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Figure 1f takes a closer look at the role of the Markov sampling parameter b. The white region corresponds to
values of b for which there is no a such that p = a/(a + b). On this logarithmic heatmap, we see regularly-spaced
and nearly vertical contour lines, which is consistent with a convergence rate of 1/p that does not depend on b. We
conjecture that 1/p is the true order of magnitude for the optimal error, and that the dependencies 1/

√
pqu and 1/

√
pq`

from our Theorems could be refined and brought together with a more careful theoretical analysis.

5 Conclusion and Perspectives
In this paper, we studied a partially-observed VAR process, whose latent state components are randomly projected
and corrupted with noise before being observed. The temporal correlations within the sampling process are a novel
feature, and combining both sources of randomness (discrete and continuous) required the use of tailored probabilistic
methods. We provided upper and lower bounds for the optimal estimation error on the transition matrix, and found
that these bounds roughly match. Our analysis, supported by empirical results, sheds light on the intrinsic difficulty of
such statistical problems, which arise naturally when analyzing several types of network processes.

However, our study leaves many questions open for future work. On the theoretical side, bridging the gap between
our bounds will probably require more sophisticated tools to capture the precise behavior of Markov sampling. Going
from the uniform case, where the sampling probability equals p everywhere, to more realistic heterogeneous settings,
is also a worthy avenue to explore. On the practical side, this linear Gaussian model may not perform well when
applied to real prediction problems. Finding ways to enhance it will be necessary if we want to gather insights on
complex high-dimensional dynamics, especially for graph-structured data.
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A Proof of the Estimator’s Convergence Rate
Here we present the detailed proof of Theorem 1.

A.1 Overview
The main steps of the argument are the following:

1. Prove the Yule-Walker Equation (6) and deduce an expression for the covariance matrix ofX (Lemmas 1 and 2).

2. Justify the formula of Equation (9) for Γ̂h by showing that it defines an unbiased estimator of Γh (Lemmas 3
and 4).

3. Fixing two indices d1 and d2, rewrite (Γ̂h − Γh)d1,d2
using quadratic forms g′aΨ′aLΨbgb of standard Gaussian

vectors (Lemma 5).

4. Control the deviation of the matrix L using discrete concentration inequalities (Lemmas 6, 7, 8, 9 and 10).

5. Apply a conditional version of the Hanson-Wright inequality (Lemma 37) to the quadratic forms g′aΨ′aLΨbgb
(Lemma 11).

6. Obtain a high-probability control on ‖Γ̂h − Γh‖max with a union bound (Lemma 13).

7. Deduce the error of θ̂ from the error of Γ̂h0
and Γ̂h0+1 by drawing inspiration from Han et al. [2015] (Lemmas 14

and 15).

A.2 Covariance Matrices
The Yule-Walker equation is a direct consequence of the VAR recursion, as can be seen from this Lemma.

Lemma 1 (VAR covariance matrices). The autocovariance matrices of the stationary VAR process defined by Equa-
tion (3) have the following expressions:

Γ0(θ) = Covθ[Xt] =

∞∑
k=0

θkΣθ′k

Γh(θ) = Covθ[Xt+h, Xt] = θhΓ0(θ).

Proof. We start by noting that according to Equation (3), the stacked vectorX = (Xt)t∈[T ] follows a TD-dimensional
centered multivariate Gaussian distribution. The covariance matrix of Xt can be deduced from the recursion:

Γ0(θ) = Covθ[Xt] = Covθ[θXt−1 + εt] = θCovθ[Xt−1]θ′ + Σ = θΓ0(θ)θ′ + Σ.

There is a unique stationary solution:

Γ0(θ) =
∞∑
k=0

θkΣθ′k.

The covariance matrix between Xt+h and Xt is obtained similarly:

Γh(θ) = Covθ[Xt+h, Xt] = E[Xt+hX
′
t] = E[(θXt+h−1 + εt+h)X ′t]

= θCovθ[Xt+h−1, Xt] = θh Covθ[Xt, Xt] = θhΓ0(θ).

And Covθ[Xt, Xt+h] = Covθ[Xt+h, Xt]
′. In other words, we just proved that

Covθ[X] =


Γ0(θ) Γ0(θ)θ′1 Γ0(θ)θ′2 · · · Γ0(θ)θ′T−1

θ1Γ0(θ) Γ0(θ) Γ0(θ)θ′1

θ2Γ0(θ) θ1Γ0(θ) Γ0(θ)
...

. . .
θT−1Γ0(θ) Γ0(θ)
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The following result will come in handy later.

Lemma 2 (Norm of Γ0(θ)). The covariance matrix Γ0(θ) satisfies

‖Γ0(θ)‖2 ≤
σ2

max

1− ϑ2

Proof. By Lemma 1,

‖Γ0(θ)‖2 ≤
∞∑
k=0

‖θkΣθ′k‖2 ≤
∞∑
k=0

‖θ‖k2‖Σ‖2‖θ‖k2 =
‖Σ‖2

1− ‖θ‖22
≤ σ2

max

1− ϑ2
.

A.3 Construction of the Covariance Estimator
Now we justify the construction of our covariance estimator. Let h0 = 0: for most of the proof, we fix a lag value h ∈
{h0, h0 + 1} = {0, 1}.

Lemma 3 (Bias of the covariance estimator). The estimator Γ̂h given by Equation (9) for the covariance matrix Γh is
unbiased.

Proof. First, let us remember that since Πt = diag(πt) is diagonal and binary, we also have Π†t = Π′t = Πt. By
Equation (5),

(Π†t+hYt+h)(Π†tYt)
′ = Π†t+h(Πt+hXt+h + ηt+h)(X ′tΠ

′
t + η′t)Π

†
t
′

= diag(πt+h) (Xt+hX
′
t +Xt+hη

′
t + ηt+hX

′
t + ηt+hη

′
t) diag(πt).

(15)

Taking the conditional expectation and removing the cross-product terms (by independence of X and Π), we get:

E[(Π†t+hYt+h)(Π†tYt)
′|Π] = diag(πt+h) (E[Xt+hX

′
t] + E[ηt+hη

′
t]) diag(πt).

Since E [Xt+hX
′
t] = Γh and E[ηt+hηt] = 1{h=0}ω

2I , we are left with:

E[(Π†t+hYt+h)(Π†tYt)
′|Π] = (πt+hπ

′
t)� Γh + 1{h=0}ω

2 diag(πt).

where � is the elementwise Hadamard product. We now take the expectation w.r.t. Π:

E[(Π†t+hYt+h)(Π†tYt)
′] = E[πt+hπ

′
t]� Γh + 1{h=0}ω

2E[diag(πt)].

Dividing elementwise by the scaling matrix S(h) = E[πt+hπ
′
t], we get

E
[

1

E[πt+hπ′t]
� (Π†t+hYt+h)(Π†tYt)

′
]

= Γh + 1{h=0}ω
2E[diag(πt)]�

1

E[πtπ′t]

= Γh + 1{h=0}ω
2 diag

(
E[πt]

E[π2
t ]

)
= Γh + 1{h=0}ω

2I

which shows that our estimator

Γ̂h =
1

T − h

T−h∑
t=1

1

E[πt+hπ′t]
� (Π†t+hYt+h)(Π†tYt)

′ − 1{h=0}ω
2I

is unbiased.
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Note that since the process (Πt) is stationary, the coefficients of S(h) do not depend on t. They are computed in
the next Lemma.

Lemma 4. The second-order moments of π are given by

S(h)d1,d2
= E [πt+h,d1

πt,d2
] =


p2 if d1 6= d2

p if d1 = d2 and h = 0

p2 + p(1− p)(1− a− b)h if d1 = d2 and h ≥ 1

In particular, every coefficient of the scaling matrix S(h) is lower-bounded by

min
d1,d2,h

S(h)d1,d2
= min{p2, p(1− b)} = pqu where qu = min{p, 1− b}.

Proof. Let i = (t+h, d1) and j = (t, d2) be two indices in [T ]×[D]. We have E[πi] = E[π2
i ] = p. If d1 6= d2, then the

variables πi and πj belong to independent Markov chains, and thus E[πiπj ] = p2. Otherwise, we have i = (t+ h, d)
and j = (t, d), which means these two variables are part of the same Markov chain. Stationarity yields

E[πiπj ] = P(πt,d = 1)× P(πt+h,d = 1|πt,d = 1) = p(T h)11.

When diagonalizing the transition matrix T , we see that the bottom-right coefficient of T h is

(T h)11 =
a+ b(1− a− b)h

a+ b
= p+ (1− p)(1− a− b)h.

Plugging this in, we get
E[πiπj ] = p2 + p(1− p)(1− a− b)h.

Among all the possible values of S(h)d1,d2 , the smallest one is p2 if 1 − a − b ≥ 0, and p2 + p(1 − p)(1 − a − b)
otherwise. But since

p+ (1− p)(1− a− b) =
a

a+ b
+

b

a+ b
(1− a− b)

=
a+ b− ab− b2

a+ b
=
a(1− b) + b(1− b)

a+ b

= 1− b,

we conclude
min
d1,d2,h

S(h)d1,d2
= min{p2, p2 + p(1− p)(1− a− b)} = min{p2, p(1− b)}.

A.4 Gaussian Concentration, Episode 1

From now on, we will study the concentration of Γ̂h, coefficient by coefficient. Let us fix two indices d1 and d2: our
goal is to control the deviation of (Γ̂h)d1,d2

around its mean.

Lemma 5 (Deviation of (Γ̂h)d1,d2
). The deviation probability for (Γ̂h)d1,d2

can be decomposed as follows:

P(|(Γ̂h − Γh)d1,d2
| ≥ u) ≤ P (|g′εΨ′εLΨεgε − E [g′εΨ

′
εLΨεgε] | ≥ u/4)

+ P
(
|g′ηΨ′ηLΨεgε − E

[
g′ηΨ′ηLΨεgε

]
| ≥ u/4

)
+ P (|g′εΨ′εLΨηgη − E [g′εΨ

′
εLΨηgη] | ≥ u/4)

+ P
(
|g′ηΨ′ηLΨηgη − E

[
g′ηΨ′ηLΨηgη

]
| ≥ u/4

)
where the random matrix L is defined in Equation (16), Ψε and Ψη are defined in Equation (18), and gε and gη are
standard Gaussian vectors.
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Proof. We denote by ed the basis vector filled with zeros except for a 1 in position d. By Equation (9),

(Γ̂h + 1{h=0}ω
2I)d1,d2

=
1

T − h

T−h∑
t=1

(
1

S(h)
� (Π†t+hYt+h)(Π†tYt)

′
)
d1,d2

=
1

T − h

T−h∑
t=1

1

S(h)d1,d2

e′d1
(Π†t+hYt+h)(Π†tYt)

′ed2

=
1

T − h

T−h∑
t=1

Tr

[
ed2

e′d1

S(h)d1,d2

(Π†t+hYt+h)(Π†tYt)
′
]

Equation (15) allows us to rewrite (Π†t+hYt+h)(Π†tYt)
′:

(Γ̂h + 1{h=0}ω
2I)d1,d2

=
1

T − h

T−h∑
t=1

X ′t diag(πt)
ed2

e′d1

S(h)d1,d2

diag(πt+h)Xt+h

+
1

T − h

T−h∑
t=1

η′t diag(πt)
ed2

e′d1

S(h)d1,d2

diag(πt+h)Xt+h

+
1

T − h

T−h∑
t=1

X ′t diag(πt)
ed2

e′d1

S(h)d1,d2

diag(πt+h)ηt+h

+
1

T − h

T−h∑
t=1

η′t diag(πt)
ed2

e′d1

S(h)d1,d2

diag(πt+h)ηt+h

Let us denote by Pt the projection of RTD keeping only the components associated with time t, i.e. such that Xt =
PtX and ηt = Ptη. We recognize the following matrix L in all four lines of the expression above:

L =
1

T − h

T−h∑
t=1

P ′t diag(πt)
ed2

e′d1

S(h)d1,d2

diag(πt+h)Pt+h

=
1

T − h

T−h∑
t=1

P ′t
πt+h,d1

πt,d2
ed2

e′d1

S(h)d1,d2

Pt+h

(16)

This leads to:
(Γ̂h + 1{h=0}ω

2I)d1,d2 = X ′LX + η′LX +X ′Lη + η′Lη

Since X and η both follow centered multivariate Gaussian distributions, we can express them as linear combinations
of standard Gaussian vectors gε and gη of dimension TD (indexed by the source of randomness):

X = Ψεgε and η = Ψηgη (17)

where Ψε and Ψη are the square roots of the respective covariance matrices

Ψε = Cov[X]1/2 and Ψη = Cov[η]1/2 = ωI. (18)

We substitute X and η to get:

(Γ̂h + 1{h=0}ω
2I)d2,d1

= g′εΨ
′
εLΨεgε + g′ηΨ′ηLΨεgε + g′εΨ

′
εLΨηgη + g′ηΨ′ηLΨηgη,

which implies

(Γ̂h − Γh)d1,d2
= g′εΨ

′
εLΨεgε − E[g′εΨ

′
εLΨεgε]

+ g′ηΨ′ηLΨεgε − E[g′ηΨ′ηLΨεgε]

+ g′εΨ
′
εLΨηgη − E[g′εΨ

′
εLΨηgη]

+ g′ηΨ′ηLΨηgη − E[g′ηΨ′ηLΨηgη].

The union bound gives us the expected result.
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Now, our goal is to apply a Gaussian concentration inequality to these deviation probabilities. However, since L
is generated by the discrete sampling process π, it is random, and so are the products Ψ′aLΨb (where a, b ∈ {ε, η}).
We thus need a conditional version of the Hanson-Wright inequality (Lemma 37), in which the following random
variables will come into play:

• The spectral norm ‖Ψ′aLΨb‖2

• The Frobenius norm ‖Ψ′aLΨb‖2F
• The shifted trace Tr(Ψ′aLΨb − E[Ψ′aLΨb])

A.5 Interlude: Discrete Concentration
We exploit discrete concentration results to bound the deviations of the three quantities we just mentioned, starting
with the norms.

Lemma 6 (Norm reformulation for L). The spectral and Frobenius norms of L are given by

‖L‖2 =
maxt∈[T−h] πt+h,d1

πt,d2

(T − h)S(h)d1,d2

and ‖L‖2F =
1

(T − h)2S(h)d1,d2

T−h∑
t=1

πt+h,d1πt,d2 .

Proof. We first notice that L has a block-superdiagonal structure of rank h:

L =
1

T − h

T−h∑
t=1

P ′tL[t,t+h]Pt+h with L[t,t+h] =
πt+h,d1

πt,d2

S(h)d1,d2

ed2
e′d1
. (19)

The spectral and Frobenius norms of such a matrix can easily be deduced from those of its blocks. Since ‖ed2
e′d1
‖2 =

‖ed2
e′d1
‖F = 1 and the πt are binary-valued, this leads to the following formulas:

‖L‖2 =
1

T − h
max

t∈[T−h]
‖L[t,t+h]‖2 =

1

(T − h)S(h)d1,d2

max
t∈[T−h]

πt+h,d1
πt,d2

‖L‖2F =
1

(T − h)2

T−h∑
t=1

‖L[t,t+h]‖2F =
1

(T − h)2S(h)2
d1,d2

T−h∑
t=1

πt+h,d1
πt,d2

.

We can bound the spectral norm for free.

Lemma 7 (Spectral norm bound for L). With probability 1, the spectral norm ‖L‖2 satisfies

‖L‖2 ≤
c

Tpqu

Proof. Note that S(h)d1,d2
≥ pqu, and since h ∈ {0, 1}, we can state that T − h ≥ cT . By Lemma 6, we deduce

‖L‖2 =
maxt∈[T−h] πt+h,d1

πt,d2

(T − h)S(h)d1,d2

≤ 1

(T − h)S(h)d1,d2

≤ 1

(T − h)pqu
≤ 1

cTpqu
.

The Frobenius norm requires a little more work because of the sum it contains.

Lemma 8 (Concentration of the sampling Bernoullis). For all u ∈ [0, 1],

P

(∣∣∣∣∣ 1

T − h

T−h∑
t=1

πt+h,d1
πt,d2

− S(h)d1,d2

∣∣∣∣∣ ≥ uS(h)d1,d2

)
≤ c1 exp(−c2u2TS(h)d1,d2

).
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Proof. We distinguish three cases:

• When d1 = d2 and h = 0, we have πt+h,d1
= πt,d2

, which is a 2-state Markov chain with transition matrix T ⊗
I , depicted on Figure 2a.

• When d1 6= d2, the couple (πt,d2
, πt+h,d1

) is a 4-state Markov chain with transition matrix T ⊗ T since the
chains πt+h,d1

and πt,d2
evolve along independent dimensions. It is shown on Figure 2b.

• When d1 = d2 and h ≥ 1, we must study the (h + 1)-tuple (πt,d1
, πt+1,d1

, ..., πt+h,d1
). It is a 2h+1-state

Markov chain with transition matrix S(h), whose non-reversible transition diagram can be seen on Figure 2c.

(0, 0)

(1, 1)

(a) d1 = d2 & h = 0: transition T

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(b) d1 6= d2: transition T ⊗ T

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(c) d1 = d2 & h = 1: transition S(1).

Figure 2: State space and transitions for the Markov chains used in the discrete concentration result

In all of these cases, our variable of interest πt+h,d1πt,d2 is a function of the underlying Markov chain. The relevant
functions are:

f1 : x 7→ x f2 : (x, y) 7→ yx f3 : (x0, ..., xh) 7→ xhx0.

We note that since χ ≤ a, b ≤ 1 − χ, all the coefficients of T are greater than χ. Furthermore, all the coefficients
of T ⊗ T are greater than χ2. Finally, all the coefficients of S(h)h+1 are greater than χh+1, because all pairs of states
are connected after h+ 1 steps. Let us illustrate this with h = 1:

S(1) =


1− a a 0 0

0 0 b 1− b
1− a a 0 0

0 0 b 1− b

 S(1)2 =


(1− a)2 a(1− a) ab a(1− b)
(1− a)b ab (1− b)b (1− b)2

(1− a)2 a(1− a) ab a(1− b)
(1− a)b ab (1− b)b (1− b)2

 .

Subsequently, all the transition matricesRwe are interested in, namelyR ∈ {T , T ⊗T ,S(h)h+1}, satisfy the Doeblin
condition with r = h+ 1 and δ = χh+1:

Rh+1 ≥ χh+1

1 · · · 1
...

. . .
...

1 · · · 1

 .

Since we only consider h ∈ {0, 1} and since χ is fixed for our purposes, these chains fulfill the assumptions of
Lemma 34. We thus conclude:

P

(∣∣∣∣∣ 1

T − h

T−h∑
t=1

πt+h,d1
πt,d2

− S(h)d1,d2

∣∣∣∣∣ ≥ uS(h)d1,d2

)
≤ c1 exp

(
−c2u2(T − h)S(h)d1,d2

)
.

We finally replace T − h with cT in the exponential, leading to the result we announced.
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Based on this concentration property, we can now bound the norms of the random matrix L with high probability.

Lemma 9 (Frobenious norm bound for L). For any δ such that Equation (20) holds, with probability at least 1 − δ,
the Frobenius norm ‖L‖2F satisfies

‖L‖2F ≤
c

Tpqu
.

Proof. By Lemma 8: for all u ∈ [0, 1],

P

(
1

T − h

T−h∑
t=1

πt+h,d1
πt,d2

≥ (1 + u)S(h)d1,d2

)
≤ c1 exp(−c2u2TS(h)d1,d2

).

We remember the expression of Lemma 6 for ‖L‖2F and notice that:

P
(
‖L‖2F ≥

1 + u

(T − h)S(h)d1,d2

)
= P

(
1

(T − h)S(h)d1,d2

(
1

T − h

T−h∑
t=1

πt+h,d1
πt,d2

S(h)d1,d2

)
≥ 1

(T − h)S(h)d1,d2

(1 + u)

)
≤ c1 exp(−c2u2TS(h)d1,d2

)

We finally recall that S(h)d1,d2
≥ pqu and T − h ≥ cT , so that

P
(
‖L‖2F ≥

1 + u

cTpqu

)
≤ P

(
‖L‖2F ≥

1 + u

(T − h)pqu

)
≤ P

(
‖L‖2F ≥

1 + u

(T − h)S(h)d1,d2

)
≤ c1 exp

(
−c2u2TS(h)d1,d2

)
≤ c1 exp

(
−c2u2Tpqu

)
.

All we need to make sure that P
(
‖L‖2F ≥ 1+u

cTpqu

)
≤ δ is to choose u such that

c1 exp
(
−c2u2Tpqu

)
≤ δ ⇐⇒ u ≥

√
log(c1/δ)

c2Tpqu

Note that we can replace log(c1/δ) by a constant times log(1/δ) to simplify expressions: this is possible as long as δ
is chosen “small enough” (i.e. smaller than some universal constant). We will assume this fairly often in the rest of
the proof.

For Lemma 8 to apply, we must ensure that our choice of u is smaller than 1. With the previous discussion in
mind, u ≤ 1 is implied by √

log(1/δ)

Tpqu
≤ c. (20)

If this holds, then we have

P
(
‖L‖2F ≥

2

cTpqu

)
≤ P

(
‖L‖2F ≥

1 + u

cTpqu

)
≤ δ.

This yields the result we wanted.

We now move on to studying the shifted trace of Ψ′aLΨb, which is the last ingredient we need for our application
of Lemma 37.
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Lemma 10 (Trace bound for the L matrices). For all u ∈ [0, 1],

P(|Tr(Ψ′εLΨε − E[Ψ′εLΨε])| ≥ u) ≤ c1 exp

(
−c2u

2Tpqu
‖Γh‖22

)
P(|Tr(Ψ′ηLΨη − E[Ψ′ηLΨη])| ≥ u) ≤ c1 exp

(
−c2u

2Tpqu
ω4

)
.

Proof. We can compute an explicit formula thanks to Equation (19): if a ∈ {ε, η} then

Tr(Ψ′aLΨa) = Tr

(
1

T − h

T−h∑
t=1

Ψ′aP
′
t

πt+h,d1
πt,d2

S(h)d1,d2

ed2e′d1
Pt+hΨa

)

=
1

T − h

T−h∑
t=1

πt+h,d1
πt,d2

S(h)d1,d2

Tr
(
Ψ′aP

′
ted2

e′d1
Pt+hΨa

)
=

1

T − h

T−h∑
t=1

πt+h,d1
πt,d2

S(h)d1,d2

(
e′d1
Pt+hΨaΨ′aP

′
ted2

)
=

1

T − h

T−h∑
t=1

πt+h,d1
πt,d2

S(h)d1,d2

(
(ΨaΨ′a)[t+h,t]

)
d1,d2

where
(
(ΨaΨ′a)[t+h,t]

)
d1,d2

denotes the (d1, d2) coefficient of the (t + h, t) block of ΨaΨ′a. Now is the time to look
back on Equation (18), which tells us that both ΨεΨ

′
ε and ΨηΨ′η are constant along their superdiagonal of rank h. We

thus find that

Tr(Ψ′εLΨε − E[Ψ′εLΨε]) = (Γh)d1,d2

(
1

T − h

T−h∑
t=1

πt+h,d1πt,d2

S(h)d1,d2

− 1

)

Tr(Ψ′ηLΨη − E[Ψ′ηLΨη]) = (1{h=0}ω
2I)d1,d2

(
1

T − h

T−h∑
t=1

πt+h,d1
πt,d2

S(h)d1,d2

− 1

)

Like before, we can apply Lemma 8: for all u ∈ [0, 1],

P

(∣∣∣∣∣ 1

T − h

T−h∑
t=1

πt+h,d1πt,d2

S(h)d1,d2

− 1

∣∣∣∣∣ ≥ u
)
≤ c1 exp(−c2u2TS(h)d1,d2

) ≤ c1 exp(−c2u2Tpqu).

Since |(Γh)d1,d2 | ≤ ‖Γh‖2 and (1{h=0}ω
2I)d1,d2 ≤ ω2, we can deduce

P (|Tr(Ψ′εLΨε − E[Ψ′εLΨε])| ≥ u‖Γh‖2) ≤ c1 exp(−c2u2Tpqu)

P
(
|Tr(Ψ′ηLΨη − E[Ψ′ηLΨη])| ≥ uω2

)
≤ c1 exp(−c2u2Tpqu)

which, after rescaling, yields the result we announced.

A.6 Gaussian Concentration, Episode 2
We are now ready to apply our conditional concentration result.

Lemma 11 (Applying Hanson-Wright). Let δ > 0 and u ∈ [0, 1]. Assume that Equations (20) and (21) hold. Then
the deviation probability for (Γ̂h)d1,d2

satisfies

P(|(Γ̂h − Γh)d1,d2
| ≥ u) ≤ 4δ + c1 exp

(
− c2u

2Tpqu
max {(‖Ψε‖22 + ω2)2, ‖Γh‖22, ω4}

)
.
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Proof. The conclusion we had reached before our discrete interlude is given by Lemma 5, and we can rewrite it as

P(|(Γ̂h − Γh)d1,d2
| ≥ u) ≤ pεε + pηε + pεη + pηη,

where each pab represents a deviation probability for a specific quadratic form g′aΨ′aLΨbgb. Let us choose δ such that
Equation (20) holds. By Lemmas 7 and 9, with probability at least 1− δ, the following eight inequalities occur at the
same time (we use Lemma 25 to split the products):

‖Ψ′εLΨε‖2F ≤
c‖Ψε‖42
Tpqu

‖Ψ′εLΨε‖2 ≤
c‖Ψε‖22
Tpqu

‖Ψ′ηLΨε‖2F ≤
c‖Ψη‖22‖Ψε‖22

Tpqu
‖Ψ′ηLΨε‖2 ≤

c‖Ψη‖2‖Ψε‖2
Tpqu

‖Ψ′εLΨη‖2F ≤
c‖Ψε‖22‖Ψη‖22

Tpqu
‖Ψ′εLΨη‖2 ≤

c‖Ψε‖2‖Ψη‖2
Tpqu

‖Ψ′ηLΨη‖2F ≤
c‖Ψη‖42
Tpqu

‖Ψ′ηLΨη‖2 ≤
c‖Ψη‖22
Tpqu

.

The spectral norm of Ψη is easily seen to equal ‖Ψη‖2 = ‖ω2I‖1/22 = ω, which allows us to lighten these expressions.
From there, Lemma 37 (applied withX = ga, Y = gb andA = Ψ′aLΨb) provides the concentration bounds we need2:

pεε ≤ δ + 2 exp

(
−cTpqu min

{
(u/4)2

‖Ψε‖42
,

(u/4)

‖Ψε‖22

})
+ P

(
|Tr(Ψ′ηLΨε)− E[Ψ′εLΨε])| ≥ u/8

)
pηε ≤ δ + 2 exp

(
−cTpqu min

{
(u/4)2

ω2‖Ψε‖22
,

(u/4)

ω‖Ψε‖2

})
pεη ≤ δ + 2 exp

(
−cTpqu min

{
(u/4)2

‖Ψε‖22ω2
,

(u/4)

‖Ψε‖2ω

})
pηη ≤ δ + 2 exp

(
−cTpqu min

{
(u/4)2

ω4
,

(u/4)

ω2

})
+ P

(
|Tr(Ψ′ηLΨη)− E[Ψ′ηLΨη])| ≥ u/8

)
.

The denominators inside the minima can be unified: for the left column,

max
{
‖Ψε‖42, ‖Ψε‖22ω2, ω4

}
≤
(
‖Ψε‖22 + ω2

)2
,

and for the right column,

max
{
‖Ψε‖22, ‖Ψε‖2ω, ω2

}
≤ (‖Ψε‖2 + ω)

2 ≤ 2
(
‖Ψε‖22 + ω2

)
.

This means we can upper bound each of the four minima by

min

{(
u/4

‖Ψε‖22 + ω2

)2

,
u/8

‖Ψε‖22 + ω2

}
.

From now on, we additionally suppose that
u/4

‖Ψε‖22 + ω2
≤ 1

2
(21)

2The additional trace terms that appear when applying Lemma 37 (as opposed to the non-conditional version of Lemma 36) are absent from the
papers by Rao et al. [2017a,b], which is why we think their upper bound proofs are incomplete.
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This enables us to get rid of these minima by reducing them to the (smaller) quadratic term on the left. We end up with

pεε ≤ δ + 2 exp

(
− cu2Tpqu

(‖Ψε‖22 + ω2)
2

)
+ P (|Tr(Ψ′εLΨε)− E[Ψ′εLΨε])| ≥ u/8)

pηε ≤ δ + 2 exp

(
− cu2Tpqu

(‖Ψε‖22 + ω2)
2

)

pεη ≤ δ + 2 exp

(
− cu2Tpqu

(‖Ψε‖22 + ω2)
2

)

pηη ≤ δ + 2 exp

(
− cu2Tpqu

(‖Ψε‖22 + ω2)
2

)
+ P

(
|Tr(Ψ′ηLΨη)− E[Ψ′ηLΨη])| ≥ u/8

)
.

As for the trace terms, they are taken care of by Lemma 10:

P
(
|Tr(Ψ′ηLΨε)− E[Ψ′εLΨε])| ≥ u/8

)
≤ c3 exp

(
−c4

(u/8)2Tpqu
‖Γh‖22

)
P
(
|Tr(Ψ′ηLΨη)− E[Ψ′ηLΨη])| ≥ u/8

)
≤ c3 exp

(
−c4

(u/8)2Tpqu
ω4

)
We plug this in and rearrange to get:

pεε + pηε + pεη + pηη ≤ 4δ + c1 exp

(
− c2u

2Tpqu
max {(‖Ψε‖22 + ω2)2, ‖Γh‖22, ω4}

)
.

The following result will simplify the denominator inside the exponential.

Lemma 12 (Spectral norms of Ψε and Γh). The matrices Ψε and Γh satisfy:

‖Ψε‖22 ≤
σ2

max

(1− ϑ)2
and ‖Γh‖2 ≤

ϑhσ2
max

1− ϑ
.

As a consequence,

max
{

(‖Ψε‖22 + ω2)2, ‖Γh‖22, ω4
}
≤ (σ2

max + ω2)2

(1− ϑ)4

Proof. By Lemma 1, we can write Ψ2
ε as a sum of Kronecker products (one for each block). Let Jt he a matrix full of

zeros, except for the subdiagonal of rank t, which is full of ones. Then we have:

Ψ2
ε = Cov[X] = I ⊗ Γ0(θ) +

T−1∑
t=1

[
Jt ⊗ θtΓ0(θ) + J ′t ⊗ Γ0(θ)θ′t

]
This gives us control over its spectral norm thanks to Lemma 24:

‖Ψε‖22 = ‖Ψ2
ε‖2 ≤ ‖I‖2 × ‖Γ0(θ)‖2 +

T−1∑
t=1

[
‖Jt‖2 × ‖θtΓ0(θ)‖2 + ‖J ′t‖2 × ‖Γ0(θ)θ′t‖2

]
≤ ‖Γ0(θ)‖2

(
1 + 2

T−1∑
t=1

‖θ‖t2

)
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We now use Lemma 2:

‖Ψε‖22 ≤
σ2

max

1− ϑ2

(
1 + 2

ϑ

1− ϑ

)
=

σ2
max

(1− ϑ)2
.

We now turn to Γh with Lemmas 1 and 2:

‖Γh‖2 = ‖θhΓ0(θ)‖2 ≤
ϑhσ2

max

1− ϑ2
.

In particular, we have

max
{

(‖Ψε‖22 + ω2)2, ‖Γh‖22, ω4
}
≤ max

{(
σ2

max

(1− ϑ)2
+ ω2

)2

,

(
ϑhσ2

max

1− ϑ2

)2

, ω4

}

≤ (σ2
max + ω2)2

(1− ϑ)4

We can now control the error of the covariance estimator:

Lemma 13 (Max norm convergence rate of the covariance estimator). Let δ > 0 be small enough. Assume that
Equations (20) and (23) hold. Then the covariance estimator Γ̂h from Equation (9) satisfies

‖Γ̂h − Γh‖max ≤ c
σ2

max + ω2

(1− ϑ)2

√
log(D/δ)√
Tpqu

= err(δ)

with probability greater than 1− δ.

Proof. Let us plug Lemma 12 into Lemma 11

P(|(Γ̂h − Γh)d1,d2
| ≥ u) ≤ 4δ + c1 exp

(
−c2(1− ϑ)4u2Tpqu

(σ2
max + ω2)2

)
.

All that is left to do is choose u such that

P(|(Γ̂h − Γh)d1,d2 | ≥ u) ≤ 8δ,

which will be true if

c1 exp

(
−c2(1− ϑ)4Tpqu

(σ2
max + ω2)2

u2

)
≤ 4δ ⇐⇒ u ≥

√
log(c1/4δ)(σ2

max + ω2)2

c2(1− ϑ)4Tpqu
.

As long as δ is small enough, we can take

u = c

√
log(1/δ)(σ2

max + ω2)

(1− ϑ)2
√
Tpqu

. (22)

For Lemma 11 to apply, we must verify that u ∈ [0, 1] and that Equation (21) is satisfied. In other words, we have to
ensure that

c

√
log(1/δ)(σ2

max + ω2)

(1− ϑ)2
√
Tpqu

≤ min{1, 2(‖Ψε‖22 + ω2)}

Using Lemma 12, this is implied by the condition√
log(1/δ) max{1, (σ2

max + ω2)−1}
(1− ϑ)2

√
Tpqu

≤ c (23)
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This paper Han et al. [2015]
VAR def Xt = θXt−1 + εt Xt = A′1Xt−1 + Zt

Covariance Γh = Cov(Xh, X0) Σi = Cov(X0, Xi)
Yule-Walker Γh = θhΓ0 Σi = Σ0A

i
1

Covariance estimate Γ̂h Si
Covariance error err(δ) ζi

Optimization constraint ‖M Γ̂0 − Γ̂1‖max ≤ λ ‖S0M − S1‖max ≤ λ
Optimization objective ‖vec(M)‖1 ‖vec(M)‖1

Threshold in proof ν λ1

Table 1: Notation correspondence between this paper and Han et al. [2015]

Under these hypotheses, we just proved that with probability at least 1− 8δ,

|(Γ̂h − Γh)d1,d2
| ≤ cσ

2
max + ω2

(1− ϑ)2

√
log(1/δ)√
Tpqu

.

We finish with a union bound, applying the previous result to all pairs (d1, d2) ∈ [D]2. With probability greater
than 1− 8D2δ, we have:

max
d1,d2

|(Γ̂h − Γh)d1,d2 | = ‖Γ̂h − Γh‖max ≤ c
σ2

max + ω2

(1− ϑ)2

√
log(1/δ)√
Tpqu

.

Replacing δ with 8D2δ gives us the result we wanted: with probability greater than 1− δ,

‖Γ̂h − Γh‖max ≤ c
σ2

max + ω2

(1− ϑ)2

√
log(D/δ)√
Tpqu

.

A.7 Behavior of the Dantzig selector

We now walk the final steps from the error on Γ̂h to the error on θ̂. In order to recover Theorem 1, we adapt the
convergence proof from Han et al. [2015, Appendix A.1]. However, we use our own notations and our custom concen-
tration results for Γ̂h. To make comparison between both papers easier, we provide a dictionary of the main notations
in Table 1.

Our sparse transition estimator is defined as a solution to (8). The end goal is to control the error ‖θ̂ − θ‖1,
where θ = Γ1Γ−1

0 is the true transition matrix. We start by choosing a specific λ such that θ is feasible with high
probability.

Lemma 14 (Feasibility of the real θ). If we select the penalization level

λ = (‖θ‖∞ + 1) err(δ),

then with probability at least 1− δ, the real θ is a feasible solution to the optimization problem (8).

Proof.

‖θΓ̂0 − Γ̂1‖max = ‖Γ1Γ−1
0 Γ̂0 − Γ̂1‖max

= ‖Γ1Γ−1
0 Γ̂0 − Γ1 + Γ1 − Γ̂1‖max

≤ ‖Γ1Γ−1
0 Γ̂0 − Γ1Γ−1

0 Γ0‖max + ‖Γ1 − Γ̂1‖max

= ‖θ(Γ̂0 − Γ0)‖max + ‖Γ1 − Γ̂1‖max
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By Lemma 26,
‖θ(Γ̂0 − Γ0)‖max ≤ ‖θ‖∞‖Γ̂0 − Γ0‖max

By Lemma 13, with probability greater than 1− 2δ,

‖Γ̂0 − Γ0‖max ≤ err(δ) and ‖Γ̂1 − Γ1‖max ≤ err(δ)

which implies
‖θΓ̂0 − Γ̂1‖max ≤ (‖θ‖∞ + 1) err(δ).

This is exactly the feasibility criterion for (8) if λ = (‖θ‖∞ + 1) err(δ).

Lemma 15 (Error on θ̂ in max norm). If we select λ = (‖θ‖∞ + 1) err(δ), then with probability at least 1 − δ, the
max norm error of θ̂ satisfies

‖θ̂ − θ‖max ≤ 2λ‖Γ−1
0 ‖1.

Proof.

‖θ̂ − θ‖max = ‖θ̂ − Γ1Γ−1
0 ‖max

= ‖(θ̂Γ0 − Γ1)Γ−1
0 ‖max

= ‖(θ̂Γ0 − θ̂Γ̂0 + θ̂Γ̂0 − Γ̂1 + Γ̂1 − Γ1)Γ−1
0 ‖max

≤ ‖(θ̂Γ0 − θ̂Γ̂0)Γ−1
0 ‖max + ‖(θ̂Γ̂0 − Γ̂1)Γ−1

0 ‖max + ‖(Γ̂1 − Γ1)Γ−1
0 ‖max

By Lemma 26,

‖θ̂ − θ‖max ≤
(
‖θ̂(Γ0 − Γ̂0)‖max + ‖θ̂Γ̂0 − Γ̂1‖max + ‖Γ̂1 − Γ1‖max

)
‖Γ−1

0 ‖1

≤
(
‖θ̂‖∞‖Γ0 − Γ̂0‖max + ‖θ̂Γ̂0 − Γ̂1‖max + ‖Γ̂1 − Γ1‖max

)
‖Γ−1

0 ‖1

We want to control ‖θ̂‖∞ using ‖θ‖∞. Let us recall that the operator `∞ norm is equal to the maximum `1 norm of
the rows of a matrix. To control the rows of θ̂, we notice that the optimization problem defining θ̂, namely

min
M∈RD×D

‖vec(M)‖1 s.t. ‖M Γ̂0 − Γ̂1‖max ≤ λ

is equivalent to the row-wise minimization

∀i, min
Mi,·∈R1×D

‖Mi,·‖1 s.t. ‖Mi,·Γ̂0 − (Γ̂1)i,·‖max ≤ λ

From this, we deduce that each row of the optimum θ̂ satisfies ‖θ̂i,·‖1 ≤ ‖θi,·‖1, which implies ‖θ̂‖∞ ≤ ‖θ‖∞. Going
back to our error estimate, we get:

‖θ̂ − θ‖max ≤
(
‖θ‖∞‖Γ0 − Γ̂0‖max + ‖θ̂Γ̂0 − Γ̂1‖max + ‖Γ̂1 − Γ1‖max

)
‖Γ−1

0 ‖1

Note that the middle term is smaller than λ because the optimum θ̂ is a feasible solution. Meanwhile, the first and
third term are smaller than err(δ) with probability 1− δ:

‖θ̂ − θ‖max ≤ (‖θ‖∞ err(δ) + λ+ err(δ)) ‖Γ−1
0 ‖1 = 2λ‖Γ−1

0 ‖1

To complete the proof of Theorem 1, we simply need to go from the max norm to the `∞ operator norm.
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Proof. Let ν > 0 be a threshold (to be chosen later). We define

s1 = max
i

∑
j

min

{
|θi,j |
ν

, 1

}
and Ii = {j : |θi,j | ≥ ν}

With high probability, the following holds for any row i:

‖θ̂i,· − θi,·‖1 ≤ ‖θ̂i,Ici − θi,Ici ‖1 + ‖θ̂i,Ii − θi,Ii‖1
≤ ‖θ̂i,Ici ‖1 + ‖θi,Ici ‖1 + ‖θ̂i,Ii − θi,Ii‖1
= (‖θ̂i,·‖1 − ‖θ̂i,Ii‖1) + ‖θi,Ici ‖1 + ‖θ̂i,Ii − θi,Ii‖1
≤ ‖θi,·‖1 − ‖θ̂i,Ii‖1 + ‖θi,Ici ‖1 + ‖θ̂i,Ii − θi,Ii‖1
= (‖θi,Ii‖1 + ‖θi,Ici ‖1)− ‖θ̂i,Ii‖1 + ‖θi,Ici ‖1 + ‖θ̂i,Ii − θi,Ii‖1
= 2‖θi,Ici ‖1 + (‖θi,Ii‖1 − ‖θ̂i,Ii‖1) + ‖θ̂i,Ii − θi,Ii‖1
≤ 2‖θi,Ici ‖1 + 2‖θ̂i,Ii − θi,Ii‖1

By definition of Ii, for all j ∈ Ici , |θi,j | ≤ ν, hence

‖θi,Ici ‖1 =
∑
j∈Ici

|θi,j | =
∑
j∈Ici

min{|θi,j |, ν} ≤
∑
j

min{|θi,j |, ν} ≤ νs1

Meanwhile, the second term satisfies

‖θ̂i,Ii − θi,Ii‖1 ≤ |Ii| × ‖θ̂ − θ‖max

And by definition of Ii, for all j ∈ Ii, |θi,j | ≥ ν, hence

|Ii| =
∑
j∈Ii

1 =
∑
j∈Ii

min

{
|θi,j |
ν

, 1

}
≤
∑
j

min

{
|θi,j |
ν

, 1

}
≤ s1

Combining all of this, we get that with high probability,

‖θ̂i,· − θi,·‖1 ≤ 2(ν + 2λ‖Γ−1
0 ‖1)s1

Judging by the last Equation, it makes sense to choose ν = 2λ‖Γ−1
0 ‖1. Furthermore, our sparsity hypothesis on θ

implies that for all but s of the coefficients of any row i, min{|θi,j |, ν} = |θi,j | = 0. We deduce that for every i,∑
j

min {|θi,j |, ν} ≤ smax
j

min {|θi,j |, ν} ≤ νs

which directly implies
νs1 = max

i

∑
j

min {|θi,j |, ν} ≤ νs

We finally find that with high probability,

‖θ̂i,· − θi,·‖1 ≤ 4νs1 ≤ 4νs = 8λ‖Γ−1
0 ‖1s

With the help of a union bound, again with high probability,

‖θ̂ − θ‖∞ = max
i
‖θ̂i,· − θi,·‖1 ≤ 8λ‖Γ−1

0 ‖1s

We substitute the value of λ and obtain

‖θ̂ − θ‖∞ ≤ 8(‖θ‖∞ + 1) err(δ)‖Γ−1
0 ‖1s
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Once we plug in the value of err(δ), the resulting high-probability error bound reads

‖θ̂ − θ‖∞ ≤ c
‖θ‖∞ + 1

‖Γ−1
0 ‖
−1
1

σ2
max + ω2

(1− ϑ)2

s
√

log(D/δ)√
Tpqu

Since ϑ only acted as an upper bound on ‖θ‖2 in this proof, we can define

γu(θ) =
‖θ‖∞ + 1

(1− ‖θ‖2)2

σ2
max + ω2

‖Γ−1
0 ‖
−1
1

to obtain the compressed expression

‖θ̂ − θ‖∞ ≤ cγu(θ)
s
√

log(D/δ)√
Tpqu

.

B Proof of the Minimax Lower Bound
We now present the detailed proof of Theorem 2.

B.1 Overview
Our argument is based on Fano’s method, which we sum up in Lemma 27. For a detailed presentation, we refer the
reader to Tsybakov [2008, Chapter 2]. Note that Wainwright [2019, Chapter 15] and Duchi [2019, Chapter 7] also
offer good treatments of the subject.

Fano’s method relies on choosing a set of parameters θ0, θ1, ..., θM satisfying two seemingly contradictory con-
ditions: their induced distributions must be hard to distinguish, yet they must lie as fart apart from one another as
possible. In particular, the crucial requirement of Fano’s method is a tight upper bound on the KL divergence between
two distributions generated by different parameters θi and θ0. Taking the latter to be 0, we actually want to bound

1

M + 1

M∑
i=1

KL {Pθi(Π, Y ) ‖ P0(Π, Y )} ≤ max
i

KL {Pθi(Π, Y ) ‖ P0(Π, Y )}

By Lemma 28,

KL {Pθi(Π, Y ) ‖ P0(Π, Y )} = KL {Pθi(Π) ‖ P0(Π)}+ EΠ [KL {Pθi(Y |Π) ‖ P0(Y |Π)}]

Since θi does not affect the distribution of the sampling process Π, the first term of the right-hand side is zero, and we
will concentrate on the second term. First, we will upper-bound the random variable inside the expectation for a fixed
realization of Π, and then we will average said bound over all possible projections.

We now give the structure of the argument in a coherent order, along with the most important intermediate results:

1. Compute the conditional covariance Covθ[Y |Π] and decompose it into a constant term QΠ (corresponding to
the independent case θ = 0) plus a residual RΠ(θ) (Lemma 16).

2. Upper-bound the conditional KL divergence KL {Pθ(Y |Π) ‖ P0(Y |Π)} using the “deviations from the iden-
tity” ∆Π(θ) = Q

−1/2
Π RΠ(θ)Q

−1/2
Π (Lemma 17).

3. Control ∆Π(θ) using features of R(θ) scaled by sampling-related factors (Lemmas 18, 19 and 20).

4. Deduce an upper bound on the KL divergence EΠ[KL {Pθ(Y |Π) ‖ P0(Y |Π)}] (Lemma 21).

5. Apply Fano’s method to a set of parameters θi constructed from a pruned binary hypercube of well-chosen
radius.
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B.2 Change of Notations
For this part, we slightly modify the previous conventions: we now assume that all the rows of Πt that contain only
zeros are removed. In other words, Πt is no longer the diagonal matrix diag(πt) but instead becomes a wide rectangular
matrix with exactly one 1 per row and at most one 1 per column. We thus have ΠΠ′ = I unless all of the πt,d are
zero, in which case the matrix Π is empty, and so are the observations Y . Let us denote this very unlikely event by E,
and its complement by Ec. If Π is such that E happens, we obviously have KL {Pθi(Y |Π) ‖ P0(Y |Π)} = 0, which
means that

EΠ [KL {Pθi(Y |Π) ‖ P0(Y |Π)}] = EΠ [1Ec KL {Pθi(Y |Π) ‖ P0(Y |Π)}] (24)

For the beginning of the proof, we consider a fixed, non-empty realization of Π.

B.3 Covariance Decomposition
As we announced in the proof sketch, our reference parameter will be θ0 = 0, which is why it makes sense to express
the conditional covariance of Y as a deviation from the case without interactions. This is the aim of the following
result.

Lemma 16 (Conditional covariance decomposition). The covariance matrix of Y given Π decomposes as

Covθ[Y |Π] = QΠ +RΠ(θ),

where QΠ is a constant term and RΠ(θ) is a residual which vanishes as θ → 0. They are defined as follows: the
constant term is

QΠ = Π(bdiagT Σ)Π′ + ω2I

whereas the residual equals

RΠ(θ) = ΠR(θ)Π′ with R(θ) =


θΓ0(θ)θ′ Γ0(θ)θ′1 Γ0(θ)θ′2 · · ·
θ1Γ0(θ) θΓ0(θ)θ′ Γ0(θ)θ′1

θ2Γ0(θ) θ1Γ0(θ) θΓ0(θ)θ′

...
. . .

 .
Proof. We use Equation (5) to see that the conditional distribution Pθ(Y |Π) is a centered multivariate Gaussian with
covariance

Covθ[Y |Π] = ω2I + Π Covθ[X]Π′.

We then use Lemma 1 to get an expression of Covθ[X] and deduce that its constant term (w.r.t to θ) is a block-diagonal
matrix filled with copies of Σ:

Covθ[Y |Π] = ω2I + Π bdiagT (Σ)Π′ + Π (Covθ[X]− bdiagT (Σ)) Π′.

Finally, we define QΠ = ω2I + Π bdiagT (Σ)Π′, R(θ) = Covθ[X] − bdiagT (Σ) and RΠ(θ) = ΠR(θ)Π′ to obtain
the decomposition we announced. The diagonal blocks of R(θ) are easily computed by noticing that Γ0(θ) − Σ =
θΓ0(θ)θ′.

B.4 From the KL Divergence to ∆Π(θ)

Judging by Lemma 16, choosing a parameter θ close to 0 yields a conditional distribution for Y whose covariance is
close to QΠ. In the next result, we translate this into a bound on the KL divergence between Pθ(Y |Π) and P0(Y |Π).

Lemma 17. Let us define the deviation from the identity:

∆Π(θ) = Q
−1/2
Π RΠ(θ)Q

−1/2
Π .

Then the conditional KL divergence is upper-bounded by:

KL {Pθ(Y |Π) ‖ P0(Y |Π)} ≤ ‖∆Π(θ)‖2F
2(1 + λmin(∆Π(θ)))

.
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Proof. The conditional KL divergence KL {Pθ(Y |Π) ‖ P0(Y |Π)} can be bounded using Lemma 30. Indeed, both
conditional distributions are Gaussian and have the same expectation, and covariance matrices that are “close” in the
following sense: by Lemma 16,

Cov0(Y |Π) = QΠ = Q
1/2
Π (Q

1/2
Π )′

Covθ(Y |Π) = QΠ +RΠ(θ) = Q
1/2
Π

(
I +Q

−1/2
Π RΠ(θ)Q

−1/2
Π︸ ︷︷ ︸

∆Π(θ)

)
(Q

1/2
Π )′.

By Lemma 23, there exists a real number rmin ≥ smin

(
Q

1/2
Π

)2

= smin(QΠ) such that

λmin(Covθ(Y |Π)) = rminλmin(I + ∆Π(θ)).

SinceQΠ � ω2I � 0, its minimum singular value satisfies smin(QΠ) > 0, so that rmin > 0. In addition, Covθ(Y |Π) �
ω2I � 0, so that λmin(Covθ(Y |Π)) > 0. Therefore,

λmin(I + ∆Π(θ)) =
λmin(Covθ(Y |Π))

rmin
> 0 and λmin(∆Π(θ)) > −1,

which means we can apply Lemma 30 with P1 = Pθ(Y |Π) and P0 = P0(Y |Π).

B.5 From ∆Π(θ) to RΠ(θ)

Lemma 17 strongly suggests studying a certain fraction involving ∆Π(θ). In the following result, we boil it down to a
function of the residual term RΠ(θ).

Lemma 18. Assume ‖R(θ)‖2 ≤ (σ2
min + ω2)/2. We have the following upper bound:

‖∆Π(θ)‖2F
2(1 + λmin(∆Π(θ)))

≤ ‖RΠ(θ)‖2F
(σ2

min + ω2)
2 .

Proof. Since the quantity λmin(∆Π(θ)) in the denominator is hard to control, we will work with the spectral norm
instead. Indeed, whenever ‖∆Π(θ)‖2 < 1, we have the crude bound

1

1− λmin(∆Π(θ))
≤ 1

1− ‖∆Π(θ)‖2
.

Let us start by noticing that, thanks to Lemma 25,

‖∆Π(θ)‖2F = ‖Q−1/2
Π RΠ(θ)Q

−1/2
Π ‖2F ≤ ‖Q

−1/2
Π ‖42‖RΠ(θ)‖2F = ‖Q−1

Π ‖
2
2‖RΠ(θ)‖2F

‖∆Π(θ)‖2 = ‖Q−1/2
Π ΠR(θ)Π′Q

−1/2
Π ‖2 ≤ ‖Q−1/2

Π Π‖22‖R(θ)‖2.

We will later see how the spectral and Frobenius norms of the residual R(θ) can be controlled as a function of θ. For
now, we must work to upper bound ‖Q−1

Π ‖2 and ‖Q−1
Π Π‖22.

To simplify the following proof, we write Σd = bdiagT Σ. Since Σd is block-diagonal, its spectrum is the same
as the spectrum of Σ repeated T times, hence λmin(Σd) = σ2

min. And since we assumed Ec happens (non empty
projection), we have ΠΠ′ = I and Π′Π = diag(π), which has at least one entry equal to 1.

We start with ‖Q−1
Π ‖2. Since QΠ � ω2I � 0 is non-singular and symmetric,

‖Q−1
Π ‖2 = λmax(Q−1

Π ) =
1

λmin(QΠ)
=

1

λmin(ΠΣdΠ′ + ω2I)
.

Remembering that Σd � σ2
minI , we get

ΠΣdΠ′ + ω2I � σ2
minΠΠ′ + ω2I = (σ2

min + ω2)I
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and thus
‖Q−1

Π ‖2 ≤
1

σ2
min + ω2

.

We now continue with ‖Q−1/2
Π Π‖22. By definition of the spectral norm,

‖Q−1/2
Π Π‖22 = λmax

(
Π′Q−1

Π Π
)

= λmax

(
Π′(ΠΣdΠ′ + ω2I)−1Π

)
.

Because matrix inversion is decreasing w.r.t. the Loewner order on positive semi-definite matrices,

(ΠΣdΠ′ + ω2I)−1 � (σ2
min + ω2)−1I−1

Π′(ΠΣdΠ′ + ω2I)−1Π � 1

σ2
min + ω2

Π′Π.

It follows that
‖Q−1/2

Π Π‖22 ≤
1

σ2
min + ω2

λmax(Π′Π) =
1

σ2
min + ω2

.

The conclusion is within reach:

‖∆Π(θ)‖2F
1 + λmin(∆Π(θ))

≤ ‖∆Π(θ)‖2F
1− ‖∆Π(θ)‖2

≤
‖Q−1

Π ‖22‖RΠ(θ)‖2F
1− ‖Q−1/2

Π Π‖22‖R(θ)‖2

≤

(
1

σ2
min+ω2

)2

‖RΠ(θ)‖2F
1− 1

σ2
min+ω2 ‖R(θ)‖2

≤ 2‖RΠ(θ)‖2F
(σ2

min + ω2)2

The last inequality is justified by our assumption ‖R(θ)‖2 ≤ (σ2
min +ω2)/2. Another consequence of this assumption

is that

‖∆Π(θ)‖2 ≤ ‖Q−1/2
Π Π‖22‖R(θ)‖2 ≤

1

σ2
min + ω2

σ2
min + ω2

2
=

1

2
< 1

which is sufficient for the first inequality to hold.

B.6 From RΠ(θ) to R(θ)

As the previous Lemma underlines, the last step we need to get rid of the dependency in Π is to study the average
norm of RΠ(θ).

Lemma 19. Let q` = max{1− b, 2p− (1− b)}. Then

EΠ

[
1Ec‖RΠ(θ)‖2F

]
≤ pTr[R(θ)�R(θ)] + pq`‖R(θ)‖2F .

Proof. We first notice that for any matrix A,

EΠ

[
1Ec‖ΠAΠ′‖2F

]
= EΠ

[
1Ec Tr

[
ΠAΠ′ΠA′Π′

]]
= EΠ

[
Tr
[

diag(π)A diag(π)A′
]]

=
∑
i,j

EΠ[πiπj ]A
2
i,j .

We can apply this to RΠ(θ) = ΠR(θ)Π′:

EΠ

[
1Ec‖RΠ(θ)‖2F

]
=
∑
i,j

EΠ[πiπj ]R(θ)2
i,j .
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The rest of the proof consists in plugging in the moments EΠ[πiπj ] from Lemma 4:

EΠ

[
‖RΠ(θ)‖2F

]
=

∑
t1,t2,d1,d2

(t1,d1)=(t2,d2)

pR(θ)2
(t1,d1),(t2,d2)

+
∑

t1,t2,d1,d2
d1 6=d2

p2R(θ)2
(t1,d1),(t2,d2)

+
∑

t1,t2,d1,d2
d1=d2,t1 6=t2

(p2 + p(1− p)(1− a− b)|t1−t2|)R(θ)2
(t1,d1),(t2,d2).

The sum in the last term can be crudely controlled as follows:∑
t1,t2,d
t1 6=t2

(1− a− b)|t1−t2|R(θ)2
(t1,d),(t2,d) ≤ |1− a− b|

∑
t1,t2
t1 6=t2

∑
d

(R(θ)[t1,t2])
2
d,d

≤ |1− a− b|
∑
t1 6=t2

‖R(θ)[t1,t2]‖2F

≤ |1− a− b| · ‖R(θ)‖2F

This yields a short, but probably suboptimal bound:

EΠ

[
1Ec‖RΠ(θ)‖2F

]
≤ pTr[R(θ)�R(θ)] + (p2 + p(1− p)|1− a− b|)‖R(θ)‖2F .

In the previous part, we already saw that

p+ (1− p)(1− a− b) = 1− b.

Similarly, we obtain

p+ (1− p)(a+ b− 1) =
a

a+ b
+

b

a+ b
(a+ b− 1)

=
a+ ba+ b2 − b

a+ b
=
a(1 + b)− b(1− b)

a+ b

= p(1 + b)− (1− p)(1− b) = 2p− (1− b).

As a consequence,
p+ (1− p)|1− a− b| = max{1− b, 2p− (1− b)} = q`,

which yields the expected result.

B.7 Bounding R(θ)

Lemma 19 relates the bounds involving RΠ(θ) to features of the full residual R(θ), which we now study.

Lemma 20. The residual R(θ) satisfies the following inequalities:

‖R(θ)‖2 ≤
2σ2

max

(1− ϑ)2
‖θ‖2

‖R(θ)‖2F ≤
2Tσ4

max

(1− ϑ)3
‖θ‖2F

Tr[R(θ)�R(θ)] ≤ Tσ4
max

(1− ϑ)2
‖θ‖22‖θ‖2F .
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Proof. We start by giving a formula for the blocks of R(θ): by Lemma 16,

R(θ)[t,s] =


θt−sΓ0(θ) if s ∈ [1, t− 1]

θΓ0(θ)θ′ if s = t

Γ0(θ)θ′t−s if s ∈ [t+ 1, T ].

These individual blocks can be bounded using Lemmas 25 and 2: if r ≥ 1, then

‖θrΓ0(θ)‖2F ≤ ‖Γ0(θ)‖22‖θr‖2F ≤ ‖Γ0(θ)‖22‖θ‖2F ‖θr−1‖22 ≤
σ4

max

(1− ϑ)2
‖θ‖2F ‖θ‖

2(r−1)
2

‖Γ0(θ)θ′r‖2F ≤ ‖Γ0(θ)‖22‖θr‖2F ≤ ‖Γ0(θ)‖22‖θ‖2F ‖θr−1‖22 ≤
σ4

max

(1− ϑ)2
‖θ‖2F ‖θ‖

2(r−1)
2

‖θΓ0(θ)θ′‖2F ≤ ‖θ‖22‖Γ0(θ)‖22‖θ‖2F ≤
σ4

max

(1− ϑ)2
‖θ‖2F ‖θ‖22.

Since we control the norm of each block of R(θ), we control the norm of the whole matrix:

‖R(θ)‖2F =

T∑
t=1

(
t−1∑
s=1

‖θt−sΓ0(θ)‖2F + ‖θΓ0(θ)θ‖2F +

T∑
s=t+1

‖Γ0(θ)θs−t‖2F

)

≤ σ4
max‖θ‖2F

(1− ϑ2)2

T∑
t=1

(
t−1∑
s=1

‖θ‖2(t−s−1)
2 + ‖θ‖22 +

T∑
s=t+1

‖θ‖2(s−t−1)
2

)

≤ σ4
max‖θ‖2F

(1− ϑ2)2

T∑
t=1

(
t−1∑

s=−∞
‖θ‖2(t−1−s)

2 + ‖θ‖22 +

+∞∑
s=t+1

‖θ‖2(s−1−t)
2

)

=
σ4

max‖θ‖2F
(1− ϑ2)2

T

(
1

1− ‖θ‖22
+ ‖θ‖22 +

1

1− ‖θ‖22

)
We now remember our hypothesis ‖θ‖2 ≤ ϑ < 1:

‖R(θ)‖2F ≤
σ4

max‖θ‖2F
(1− ϑ2)2

T

(
1

1− ϑ2
+ ϑ2 +

1

1− ϑ2

)
=
σ4

max‖θ‖2F
(1− ϑ2)2

T

(
2 + ϑ2(1− ϑ2)

1− ϑ2

)
≤ σ4

max‖θ‖2F
(1− ϑ2)2

T

(
2 + 2ϑ

1− ϑ2

)
=
σ4

max‖θ‖2F
(1− ϑ2)2

T

(
2

1− ϑ

)
= 2T

σ4
max‖θ‖2F
(1− ϑ)3

.

Now that we have a handle on the Frobenius norm of R(θ), we move on to its spectral norm. Notice that R(θ) can be
written as a sum of Kronecker products with the subdiagonal matrices Jt:

R(θ) = I ⊗ θΓ0(θ)θ′ +

T−1∑
t=1

[
Jt ⊗ θtΓ0(θ) + J ′t ⊗ Γ0(θ)θ′t

]
.
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We can use Lemma 24 and write:

‖R(θ)‖2 ≤ ‖I‖2 × ‖θΓ0(θ)θ′‖2 +

T−1∑
t=1

[
‖Jt‖2 × ‖θtΓ0(θ)‖2 + ‖J ′t‖2 × ‖Γ0(θ)θ′t‖2

]
≤ ‖Γ0(θ)‖2

(
‖θ‖22 + 2

T−1∑
t=1

‖θ‖t2

)
≤ σ2

max

1− ϑ2

(
‖θ‖22 + 2

‖θ‖2
1− ‖θ‖2

)
≤ σ2

max‖θ‖2
1− ϑ2

(
ϑ+

2

1− ϑ

)
≤ σ2

max‖θ‖2
1− ϑ

(
2 + 2ϑ

1− ϑ2

)
= 2

σ2
max‖θ‖2

(1− ϑ)2
.

We finish with the trace of the Hadamard product R(θ)�R(θ).

Tr[R(θ)�R(θ)] = T Tr[(θΓ0(θ)θ′)� (θΓ0(θ)θ′)]

≤ T‖θΓ0(θ)θ′‖2F ≤ Tσ4
max

‖θ‖22‖θ‖2F
(1− ϑ)2

.

B.8 Upper Bound on the KL Divergence
We now have all the tools in hand to extract a KL divergence bound.

Lemma 21 (Final KL bound). Assume θ ∈ Θs satisfies

‖θ‖2 ≤
(1− ϑ)2(σ2

min + ω2)

4σ2
max

then the expected conditional KL divergence is upper-bounded as follows:

EΠ [KL {Pθ(Y |Π) ‖ P0(Y |Π)}] ≤ KLavg(‖θ‖2, ‖θ‖F )

where we defined

γ` = (1− ϑ)3/2σ
2
min + ω2

σ2
max

and KLavg(‖θ‖2, ‖θ‖F ) =
2Tp(‖θ‖22 + q`)‖θ‖2F

γ`
.

Proof. Let us start with Lemma 17 on the conditional KL divergence between Pθ(Y |Π) and P0(Y |Π): for any non-
empty Π,

KL {Pθ(Y |Π) ‖ P0(Y |Π)} ≤ ‖∆Π(θ)‖2F
2(1 + λmin(∆Π(θ)))

We continue with Lemma 18 linking ∆Π(θ) to RΠ(θ). As long as ‖R(θ)‖2 ≤ (σ2
min + ω2)/2 (we will see to that at

the end), we have

KL {Pθ(Y |Π) ‖ P0(Y |Π)} ≤ ‖RΠ(θ)‖2F
(σ2

min + ω2)2
.

Taking the expectation on the event Ec yields:

EΠ [1Ec KL {Pθ(Y |Π) ‖ P0(Y |Π)}] ≤
EΠ

[
1Ec‖RΠ(θ)‖2F

]
(σ2

min + ω2)2

We can now apply Lemma 19:

EΠ [1Ec KL {Pθ(Y |Π) ‖ P0(Y |Π)}] ≤ pTr[R(θ)�R(θ)] + pq`‖R(θ)‖2F
(σ2

min + ω2)2
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We substitute the residual bounds from Lemma 20:

EΠ [1Ec KL {Pθ(Y |Π) ‖ P0(Y |Π)}] ≤
p× Tσ4

max

(1−ϑ)2 ‖θ‖22‖θ‖2F + pq` × 2Tσ4
max

(1−ϑ)3 ‖θ‖2F
(σ2

min + ω2)2

≤
(

σ2
max

σ2
min + ω2

)2
2Tp(‖θ‖22 + q`)‖θ‖2F

(1− ϑ)3

=
2Tp(‖θ‖22 + q`)‖θ‖2F

γ`
.

By Equation (24), this is equivalent to bounding the expected KL divergence regardless of the event E, hence the
result. Note that our assumption on θ, combined with Lemma 20, implies

‖R(θ)‖2 ≤
2σ2

max

(1− ϑ)2
‖θ‖2 ≤

2σ2
max

(1− ϑ)2

(1− ϑ)2(σ2
min + ω2)

4σ2
max

≤ σ2
min + ω2

2

B.9 Application of Fano’s Method
Given the KL bound we just obtained, we are finally able to prove Theorem 2.

Proof. Fano’s method requires findingM+1 parameters θi such that θ0 = 0 and ‖θi−θj‖F ≥ 2τ for i 6= j (with τ to
be specified), while keeping control upon the average KL divergence between the probability distributions Pθi and P0.
Judging by Lemma 21, one way to achieve this control on the KL divergence is to bound the ‖θi‖F uniformly in i
(in other words, to choose them all inside a ball of fixed radius). We will then have to see how many 2τ -separated
matrices we can fit in such a ball.

Let us consider the setH(r) of all block-diagonal D×D matrices with coefficients in {0, r} such that each block
has size s × s (we assume s divides D). In particular, these matrices are all row- and column-sparse, with no more
than s non-zero coefficients per row or column. In terms of dimensionality, we are dealing with the (scaled) matrix
equivalent of a Ds-dimensional hypercube, hence the notation H(r). It has cardinality 2Ds and for every θ ∈ H, we
have the following norm bounds:

‖θ‖2 ≤ rs and ‖θ‖F ≤ r
√
Ds.

The spectral norm bound on θ is obtained as the maximum spectral norm of each block, which we in turn control using
the Frobenius norm of each block.

Unfortunately, in this hypercube, not all pairs of vertices are well-separated. That is why we need the Gilbert-
Varshamov bound of Lemma 35: according to this result, there exists a pruned subset K(r) ⊂ H(r) containing 0 and
such that

|K(r)| ≥ |H(r)|1/8 = 2Ds/8 and ‖vec(θi)− vec(θj)‖1≥
rDs

8

for all pairs of distinct vertices θi and θj in K(r). We choose our set of parameters θ0, θ1, ..., θM to be exactly this
pruned subset K(r), in particular M + 1 = |K(r)|.

The missing ingredient is an upper bound on the maximum average KL divergence between Pθi and P0: we can
obtain it using Lemma 21. We only need to assume

‖θi‖F ≤ r
√
Ds ≤ min

{
ϑ,

(1− ϑ)2(σ2
min + ω2)

4σ2
max

}
to get the upper bound

max
i

EΠ [KL {Pθi(Y |Π) ‖ Pθ0(Y |Π)}] ≤ max
i

KLavg(‖θi‖2, ‖θi‖F )

≤ KLavg(rs, r
√
Ds).
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Since we must satisfy the constraint from Equation (28) in Fano’s method, we will choose r so that:

KLavg(rs, r
√
Ds) ≤ α log(M) = α log

(
2Ds/8 − 1

)
withα = log 3−log 2

2 log 2 . We want to solve the previous inequality for r, and for that we start by replacing KLavg(rs, r
√
Ds)

with its value from Lemma 21, replacing γ` with γ` to lighten notations:

KLavg(rs, r
√
Ds) ≤ α log

(
2Ds/8 − 1

)
⇐⇒ 2

γ`
Tp
(
(rs)2 + q`

)
(r
√
Ds)2 ≤ cDs

⇐⇒ Ds3r4 + q`Dsr
2 − cγ

2
`Ds

Tq`
≤ 0.

If we consider this as a degree two polynomial in the variable r2, its determinant is

∆ = q2
`D

2s2 + 4Ds3c
γ2
`Ds

Tp
.

For β to be small enough, r2 must remain below the only positive root of the polynomial, namely

r2 ≤
−q`Ds+

√
q2
`D

2s2 + c
γ2
`D

2s4

Tp

2Ds3
=

q`
2s2

(√
1 + c

γ2
` s

2

Tpq2
`

− 1

)
.

If we assume the quantity c γ
2
` s

2

Tpq2
`

inside the square root is smaller than 1, i.e.

γ`s
√
pq`
√
T
≤ c, (25)

then we can lower-bound
√

1 + x by its chord (
√

2− 1)x. In other words, a sufficient condition for r2 to remain small
enough is given by

r2 ≤ q`
2s2
× (
√

2− 1)c
γ2
` s

2

Tpq2
`

= c
γ2
`

Tpq`
.

To sum up, we have three constraints on r:

rs ≤ ϑ rs ≤ (1− ϑ)2(σ2
min + ω2)

4σ2
max

=

√
1− ϑ
4

γ` r ≤

√
c
γ2
`

Tpq`
.

We can therefore choose r as the largest value satisfying all three of them:

r =
1

s
min

{
ϑ,
γ`
√

1− ϑ
4

, c
γ`s√
Tpq`

}
(26)

To reach our conclusion, we simply need to remark that the vectorized `1 distance between any two matrices in K(r)
gives us a lower bound on the operator `∞ distance that separates them:

‖θi − θj‖∞ = max
k∈[D]

∑
l∈[D]

|(θi − θj)|k,l ≥
1

D

∑
1≤k,l≤D

|(θi − θj)|k,l

=
1

D
‖vec(θi)− vec(θj)‖1 ≥

rDs

8D
=
rs

8

Subsequently, our parameters θi are 2τ -separated (in `∞ operator distance) with τ = rs/8. As soon as the minimum
in Equation (26) is reached by the third value, i.e. whenever

γ`s√
Tpq`

≤ cmin{ϑ, γ`
√

1− ϑ} (27)
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we can simplify the expression of τ :
τ = c

γ`s√
Tpq`

.

In this case, by Lemma 27, we can conclude:

inf
θ̂

sup
θ∈Θs

Pθ
[
‖θ̂ − θ‖∞ ≥ c

γ`s√
Tpq`

]
≥ log(M + 1)− log 2

logM
− α ≥ 1

2
.

C Useful Lemmas

C.1 Linear Algebra
The following set of results will sometimes be used in matrix calculations without explicit justifications.

Lemma 22 (Weyl’s inequality). Let A and B be two n× n symmetric matrices. Then for all i we have:

λi(A) + λn(B) ≤ λi(A+B) ≤ λi(A) + λ1(B).

In particular,
λmin(A) + λmin(B) ≤ λmin(A+B).

Proof. See Horn and Johnson [2012, Theorem 4.3.1].

Lemma 23 (Ostrowski). Let S and A be two n× n matrices with S symmetric. For all i, there is a real number ri ∈
[smin(A)2, smax(A)2] such that λi(ASA′) = riλi(S), where smin (resp. smax) denotes the minimum (resp. maximum)
singular value.

Proof. See Horn and Johnson [2012, Theorem 4.5.9 and Corollary 4.5.11]

Lemma 24 (Singular values of the Kronecker product). Let A and B be two matrices. Then

‖A⊗B‖2 ≤ ‖A‖2‖B‖2.

Proof. See Horn and Johnson [1994, Theorem 4.2.15].

Lemma 25. For any two matrices A and B, we have:

‖AB‖F ≤ min {‖A‖2‖B‖F , ‖A‖F ‖B‖2}

Proof. The Loewner order on symmetric matrices satisfies the following properties:

∀(P,Q) ∈ Sn(R),∀R, P � Q =⇒ R′PR � R′QR
∀(P,Q) ∈ Sn(R), P � Q =⇒ Tr(P ) ≤ Tr(Q).

The first inequality is true because if x is a vector, x′R′(Q − P )Rx = (Rx)′(Q − P )(Rx) ≥ 0 due to the Loewner
positivity of Q−P . The second inequality can be directly deduced from the relation between the spectra of P and Q.
Therefore, since A′A is symmetric,

B′A′AB ≤ λmax(A′A)B′B

which implies
‖AB‖2F = Tr(B′A′AB) ≤ λmax(AA′) Tr(B′B) = ‖A‖22‖B‖2F .

The proof for the other inequality is identical.
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Lemma 26. Let A and B be two matrices with compatible sizes: then

‖AB‖max ≤ min{‖A‖∞‖B‖max, ‖A‖max‖B‖1}.

Proof.

‖AB‖max = max
i,j
|(AB)i,j | = max

i,j

∣∣∣∣∣∑
k

Ai,kBk,j

∣∣∣∣∣
We easily deduce:

‖AB‖max ≤ max
i

∣∣∣∣∣∑
k

Ai,k

∣∣∣∣∣× ‖B‖max = ‖A‖∞‖B‖max

‖AB‖max ≤ ‖A‖max ×max
j

∣∣∣∣∣∑
k

Bk,j

∣∣∣∣∣ = ‖A‖max‖B‖1

C.2 Probability
Lemma 27 (Fano’s method). Let θ0, ..., θM be M + 1 parameters that are 2τ -separated w.r.t. a distance d

∀i 6= j, d(θi, θj) ≥ 2τ

and such that the average KL divergence between Pθi and Pθ0 is small enough

1

M + 1

M∑
i=1

KL {Pθi ‖ Pθ0} ≤ α logM with 0 < α < 1 (28)

Then the minimax probability of an error at threshold τ satisfies:

inf
θ̂

sup
θ∈Θs

Pθ
[
d
(
θ̂, θ
)
≥ τ

]
≥ log(M + 1)− log 2

logM
− α.

Proof. See Tsybakov [2008, Section 2.2 + Corollary 2.6]. In particular, since M 7→ log(M+1)−log 2
logM is increasing,

setting α = log(3)−log(2)
2 log(2) ≥ 1/2 is enough to obtain a minimax risk greater than α, as soon as M ≥ 3.

Lemma 28 (Chain rule for KL divergence). If P0 and P1 are probability densities on a product space X × Y with X
discrete, then:

KL {P0[X,Y ] ‖ P1[X,Y ]} = KL {P0[X] ‖ P1[X]}+ EX [KL {P0[Y |X] ‖ P1[Y |X]}] .

Proof. See Cover and Thomas [2012, Theorem 2.5.3].

Lemma 29 (KL divergence between Gaussians). The KL divergence between two multivariate Gaussian distribu-
tions P0 = N (µ0,Σ0) and P1 = N (µ1,Σ1) of dimension n is

KL {P0 ‖ P1} =
1

2

(
Tr(Σ0Σ−1

1 ) + (µ1 − µ0)′Σ−1
1 (µ1 − µ0)− n+ logdet(Σ1Σ−1

0 )
)
.

Proof. See Duchi [2007, page 13].
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Lemma 30 (KL divergence between close Gaussians). Let ∆ be a symmetric matrix of size n such that λmin(∆) > −1,
and let M be a rectangular matrix such that MM ′ � 0. Then the KL divergence between

P1 = N (µ,M(I + ∆)M ′) and P0 = N (µ,MM ′)

satisfies

KL {P1 ‖ P0} ≤
‖∆‖2F

2(1 + λmin(∆))
.

Proof. From Lemma 29 (beware of the switch between P0 and P1) we get:

KL {P1 ‖ P0} =
1

2

(
Tr(Σ1Σ−1

0 ) + (µ0 − µ1)′Σ−1
0 (µ0 − µ1)− n+ logdet(Σ0Σ−1

1 )
)

=
1

2

(
Tr(M(I + ∆)M−1)− n− logdet(M(I + ∆)M−1)

)
=

1

2
(Tr(∆)− logdet(I + ∆)) .

As it happens, for small deviations from the identity, the log-determinant is almost equal to the trace. Indeed, since

∀x > −1, log(1 + x) ≥ x

1 + x
,

we have

Tr(∆)− logdet(I + ∆) =

n∑
k=1

λk(∆)−
n∑
k=1

log(1 + λk(∆))

≤
n∑
k=1

λk(∆)−
n∑
k=1

λk(∆)

1 + λk(∆)

=

n∑
k=1

λk(∆)2

1 + λk(∆)
≤ 1

mink(1 + λk(∆))

n∑
k=1

λk(∆)2

=
‖∆‖2F

1 + λmin(∆)
.

Lemma 31 (Chernoff inequality for Bernoulli variables). Let (Xt) be sequence of independent B(p) variables. Their
average satisfies

∀u ∈ [0, 1], P

(∣∣∣∣∣ 1

T

T∑
t=1

Xt − p

∣∣∣∣∣ ≥ up
)
≤ c1 exp

(
−c2u2Tp

)
.

Proof. See Dubhashi and Panconesi [2009, Theorem 1.1].

Lemma 32 (Doeblin condition and mixing time). Let (Xt) be an irreducible aperiodic Markov chain with state
space X , transition matrix P and stationary distribution µ. Suppose that (Xt) satisfies the Doeblin condition:

∃r ∈ N,∃δ > 0,∀(x, y) ∈ X 2, P r(x, y) ≥ δµ(y).

Then the mixing time of Xt, defined as

tmix(ε) = min

{
t ∈ N : max

x∈X

∥∥P t(x, ·)− µ∥∥
TV
≤ ε
}
,

satisfies:

tmix(ε) ≥ r

(
1 +

log 1
ε

log 1
1−δ

)
.
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Proof. The proof of Levin and Peres [2017, Theorem 5.4] shows that with our assumptions,

∀x ∈ X ,
∥∥P t(x, ·)− µ∥∥

TV
≤ (1− δ)bt/rc.

From which we can deduce a sufficient condition for ε-mixing:

(1− δ)bt/rc ≤ ε ⇐⇒
⌊
t

r

⌋
≥ log(ε)

log(1− δ)
⇐=

t

r
− 1 ≥

log 1
ε

log 1
1−δ

.

The result follows easily.

Lemma 33 (Chernoff inequality for Markov chains). Let (Xt) be an ergodic stationary Markov chain with finite state
space X . We consider a function f : X → R such that E[f(Xt)] = µ. Then

∀u ∈ [0, 1], P

(∣∣∣∣∣ 1

T

T∑
t=1

Xt − µ

∣∣∣∣∣ ≥ uµ
)
≤ c1 exp

(
−c2

u2Tµ

tmix(1/8)

)
Proof. See Chung et al. [2012, Theorem 3]

Lemma 34 (Chernoff inequality for Markov chains under Doeblin condition). Under the hypotheses of the previous
two Lemmas (32 and 33), if the parameters r and δ in the Doeblin condition are constants, then we have:

∀u ∈ [0, 1], P

(∣∣∣∣∣ 1

T

T∑
t=1

Xt − µ

∣∣∣∣∣ ≥ uµ
)
≤ c1 exp

(
−c2u2Tµ

)
Proof. By Lemma 32, since r and δ are constants, the 1

8 -mixing time of (Xt) can be bounded by a constant

tmix(1/8) ≤ r

(
1 +

log(8)

log 1
1−δ

)
≤ c3,

which we merge with the c2 inside the exponential of Lemma 33.

Lemma 35 (Gilbert-Varshamov). Let H = {0, 1}d be the d-dimensional binary hypercube. If d ≥ 8, there exists a
pruned subset K ⊂ H such that

∀(x, y) ∈ K, ‖x− y‖1 ≥
d

8
and |K| ≥ 2d/8.

Proof. See Tsybakov [2008, Lemma 2.9]

Lemma 36 (Hanson-Wright inequality: Gaussian case). Let A be a square matrix. If X and Y are two independent
standard Gaussian vectors, we have:

P (|X ′AX − E[X ′AX]| ≥ u) ≤ 2 exp

(
−cmin

{
u2

‖A‖2F
,

u

‖A‖2

})
P (|X ′AY − E[X ′AY ]| ≥ u) ≤ 2 exp

(
−cmin

{
u2

‖A‖2F
,

u

‖A‖2

})
.

Proof. See Vershynin [2018, Theorem 6.2.1] for the first inequality. We will see that it implies the second one. Let us
define

Ã =

[
0 A
0 0

]
and X̃ =

[
X
Y

]
.

We note that ‖Ã‖F= ‖A‖F and ‖Ã‖2= ‖A‖2. Applying the first inequality to X̃ ′ÃX̃ = X ′AY yields the expected
result.
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Lemma 37 (Conditional Hanson-Wright inequality). LetA be a random square matrix such that with probability 1−δ,

‖A‖2 ≤M2 and ‖A‖2F ≤M2
F .

If X and Y are two independent standard Gaussian vectors independent of A, we have:

P (|X ′AX − E[X ′AX]| ≥ u) ≤ δ + 2 exp

(
−cmin

{
u2

M2
F

,
u

M2

})
+ P (|Tr(A− E[A])| ≥ u/2)

P (|X ′AY − E[X ′AY ]| ≥ u) ≤ δ + 2 exp

(
−cmin

{
u2

M2
F

,
u

M2

})
.

Proof. We start with the first case. Since A is a discrete random matrix with a finite set A of possible values,

P(|X ′AX − E[X ′AX]| ≥ u) =
∑
a∈A

P(|X ′AX − E[X ′AX]| ≥ u ∩A = a)

=
∑
a∈A

P(|X ′aX − E[X ′AX]| ≥ u ∩A = a).

Using independence between X and A gives us

P(|X ′AX − E[X ′AX]| ≥ u) =
∑
a∈A

P(|X ′aX − E[X ′AX]| ≥ u)P(A = a).

We now split the set of feasible values A into

A≤ = {a ∈ A : ‖a‖2F ≤M2
F } and A> = {a ∈ A : ‖a‖2F > M2

F }.

Since we assumed P(A ∈ A>) =
∑
a∈A>

P(A = a) ≤ δ, we get:

P(|X ′AX − E[X ′AX]| ≥ u) ≤ δ +
∑
a∈A≤

P(|X ′aX − E[X ′AX]| ≥ u)P(A = a).

Unfortunately, Lemma 36 only lets us bound

P(|X ′aX − E[X ′aX]| ≥ u) and not P(|X ′aX − E[X ′AX]| ≥ u)

(notice the change inside the expectation), which means we need an additional step. For a fixed a ∈ A≤, we use
independence and normality to obtain

E[X ′aX]− E[X ′AX] = E[Tr(X ′(a−A)X)] = Tr(E[XX ′(a−A)])

= Tr(E[XX ′]E[a−A]) = Tr(a− E[A]).

We are now ready to decompose, with the help of the union bound:

P(|X ′aX − E[X ′AX]| ≥ u) = P (|X ′aX − E[X ′aX] + E[X ′aX]− E[X ′AX]| ≥ u)

≤ P (|X ′aX − E[X ′aX]| ≥ u/2) + P (|E[X ′aX]− E[X ′AX]| ≥ u/2)

≤ 2 exp

(
−cmin

{
u2

‖a‖2F
,
u

‖a‖2

})
+ 1 {|Tr(a− E[A])| ≥ u/2} .

This implies:

P(|X ′AX − E[X ′AX]| ≥ u) ≤ δ +
∑
a∈A≤

P(A = a)P(|X ′aX − E[X ′AX]| ≥ u)

≤ δ +
∑
a∈A≤

P(A = a)× 2 exp

[
−cmin

{
u2

‖a‖2F
,
u

‖a‖2

}]
+
∑
a∈A≤

P(A = a)× 1 {|Tr(a− E[A])| ≥ u/2} .
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By definition of A≤,

P(|X ′AX − E[X ′AX]| ≥ u) ≤ δ +
∑
a∈A≤

P(A = a)× 2 exp

(
−cmin

{
u2

M2
F

,
u

M2

})
+ P (|Tr(A− E[A])| ≥ u/2)

≤ δ + 2 exp

(
−cmin

{
u2

M2
F

,
u

M2

})
+ P (|Tr(A− E[A])| ≥ u/2) .

The proof for X ′AY follows the same lines, except that we replace E[XX ′] = I by E[XY ′] = 0, which removes the
trace term in the final expression.

Lemma 38 (Heuristic optimality of the signal-to-noise ratio). In the one-dimensional setting with full observations,
the dependency of the error in 1 + σ2

ω2 is “coherent” with the asymptotic behavior of the MLE.

Proof. Let us consider the case whereD = 1 and p = 1, since we are mainly interested in the role of the parameters σ2

and ω2. In this case, Theorem 2 argues that the error of any estimator should grow at least like γ` = 1 + ω2

σ2 . We also
note that in this simple scenario, Theorem 1 states that γu ∝ γ`.

We will compare this to the asymptotic error of the Maximum Likelihood Estimator (MLE) θ̂, which (for well-
behaved models) is given by the inverse of the Fisher information matrix. To make this statement more precise, we
will invoke Douc et al. [2014, Proposition 2.14]. Let us verify the conditions:

• The process is stable, i.e. ρ(θ) < 1. We made sure of that by assuming ‖θ‖2 ≤ ϑ < 1.

• The sampling matrix Πt is constant across time. Although this assumption is not essential, it is true here
since p = 1 and D = 1 hence Πt = I1.

• The model has the smallest possible dimension.

• The true parameter θ is identifiable and does not lie on the boundary of Θs. Identifiability is easily deduced
from Lemma 1 by observing that θ = Γ1(θ)Γ0(θ)−1 can be entirely deduced from distribution moments.

Since all of these prerequisites hold here, Douc et al. [2014, Proposition 2.14] gives us a Central Limit Theorem for
the MLE of linear Gaussian models:

√
T (θ̂ − θ) L−−−−→

T→∞
N (0, I∞(θ)−1) where I∞(θ) = lim

T→∞

IT (θ)

T
.

We only have to compute the Fisher information matrix IT (θ). The covariance matrix of Y is given by Lemma 16,
but in our case the sampling matrix is constant, and we obtain the simpler (unconditional) result

Covθ[Y ] = (σ2 + ω2)IT +R(θ),

where the residual R(θ) is of order 1 in θ. Indeed, our simplifying assumptions imply Γ0(θ) = σ2

1−θ2 and therefore

R(θ) =
σ2

1− θ2


θ2 θ1 θ2 · · ·
θ1 θ2 θ1

θ2 θ1 θ2

...
. . .

 ∂θR(θ) = σ2


0 1 0 · · ·
1 0 1
0 1 0
...

. . .

+O(θ).

The Fisher information of Y with respect to θ has an explicit formula [Malagò and Pistone, 2015, Section 3.5]:

IT (θ) =
1

2
Tr
[
Covθ[Y ]−1∂θ Covθ[Y ] Covθ[Y ]−1∂θ Covθ[Y ]

]
=

1

2
Tr

[(
I +

R(θ)

σ2 + ω2

)−1
∂θR(θ)

σ2 + ω2

(
I +

R(θ)

σ2 + ω2

)−1
∂θR(θ)

σ2 + ω2

]
.
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If assume θ is small and perform a Taylor expansion, we get:

IT (θ) ≈ 1

2(σ2 + ω2)2
Tr
[
(∂θR(θ))2

]
.

Incidentally, we also note that at the lowest order in θ,

Tr[(∂θR(θ))2] = ‖∂θR(θ)‖2F ≈ 2σ4(T − 1).

Which gives us an approximate information matrix for T steps:

IT (θ) ≈ Tr[(∂θR(θ))2]

2(σ2 + ω2)2
≈ T

2

(
σ2

σ2 + ω2

)2

.

Taking the temporal limit yields:

I∞(θ) = lim
T→∞

IT (θ)

T
≈ 1

2

(
σ2

σ2 + ω2

)2

.

In conclusion, this informal analysis reveals an asymptotic error equivalent to

1√
T

√
I∞(θ)−1 ≈

√
2√
T

(
1 +

ω2

σ2

)
,

which is coherent with the dependency we identified in Theorem 2.

D Glossary

D.1 Notations
For any integer n, let [n] = {1, ..., n}. The symbol 1{...} stands for an indicator function. When dealing with
random variables, we write P(X = x) for a probability density, E[X] for an expectation, Var[X] for a variance (scalar
of vector) and Cov[X,Y ] for a covariance (scalar or matrix). The symbols B(p) and N (µ,Σ) denote a Bernoulli
distribution and a (possibly multivariate) Gaussian distribution. When we write log(x), we mean the natural (base-e)
logarithm.

Given a real number a, we denote by |a| its absolute value. Given a vector x, we denote by ‖x‖2 (resp. ‖x‖1, ‖x‖∞, ‖x‖0)
its Euclidean norm (resp. `1 norm, `∞ norm, number of nonzero entries). The notation ei stands for a vector with a
single non-zero coordinate at position i.

A matrix can be defined by its coefficients M = (Mi,j)i,j or by its blocks M = (M[b1,b2])b1,b2 . We write I for the
identity matrix, and Jr for the square matrix entirely filled with zeros, except for the subdiagonal of rank r which is
filled with ones. The notation diag(λ) stands for the diagonal matrix with coefficients λ1, ..., λn, while bdiagT (M)
stands for a block-diagonal matrix with T copies of M on the diagonal and zeros elsewhere. We write vec(M) for
the column-wise flattening of matrix M into a vector. When we want to apply a function elementwise, we often
use notation that is standard for real numbers but not for matrices: for instance,

√
M = (

√
Mi,j)i,j and 1/M =

(1/Mi,j)i,j . Given a real matrix M , we denote by

• M ′ its transposition, M† its Moore-Penrose pseudo-inverse and M−1 its inverse;

• Tr(M) its trace and det(M) its determinant;

• λmax(M) (resp. λmin(M), λi(M)) its maximum (resp. minimum, i-th largest) eigenvalue, so that

λmax(M) = λ1(M) ≥ λ2(M) · · · ≥ λn(M) = λmin(M)

42



• smax(M) (resp. smin(M), si(M)) its maximum (resp. minimum, i-th largest) singular value;

• ‖M‖1 = sup ‖Mx‖1
‖x‖1 = maxj

∑
i |Mi,j | its operator `1 norm, which is the maximum `1 norm of a column

of M ;

• ‖M‖2 = sup ‖Mx‖2
‖x‖2 = |smax(M)| =

√
λmax(M ′M) its operator `2 norm, also known as the spectral norm;

• ‖M‖∞ = sup ‖Mx‖∞
‖x‖∞ = maxi

∑
j |Mi,j | its operator `∞ norm, which is the maximum `1 norm of a row ofM ;

• ‖M‖F = ‖vec(M)‖2 = Tr(M ′M) its Frobenius norm;

• ‖M‖max = ‖vec(M)‖∞ = maxi,j |Mi,j | the maximum absolute value of its entries;

• ρ(M) its spectral radius.

See Petersen and Pedersen [2012] for a collection of inequalities relating all of these quantities. Given two real
matrices A and B, we denote by

• A⊗B their Kronecker product;

• A�B Hadamard (elementwise) product;

• A � B or A � B the (partial) Loewner order on symmetric matrices.

D.2 Frequent symbols
Here is a list of the most frequent symbols and their meaning.

Dimensions:

• t ∈ [T ]: time step

• d ∈ [D]: dimension

State process:

• Xt: state process

• θ: transition matrix

• εt: innovations

• Σ: covariance matrix of εt

• σ2
min, σ

2
max: extremal eigenvalues of Σ

• s: sparsity level of θ (number of non-zero coefficients in each row)

• ϑ: maximum `2 norm for θ

• Θs: set of feasible values for θ

• Γh(θ): covariance between Xt+h and Xt

Observations:

• πt: random sampling vector

• Πt: diagonal random sampling matrix

• p: fraction of state components activated by observations
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• T : transition matrix for Markov sampling

• a, b: transition probabilities for Markov sampling

• χ: minimum distance between a or b and {0, 1} (considered constant)

• Yt: observations

• ηt: noise

• ω2: variance of ηt

Estimation:

• h: covariance time lag

• h0: minimum covariance time lag for transition estimation

• S(h): scaling matrix for covariance estimation

• pqu: smallest coefficient of the scaling matrix

Other:

• g: standard Gaussian vector

• Ψε (resp. Ψη): link between X (resp. η) and a standard Gaussian vector

• L: random bilinear form

• u: threshold in concentration inequalities

• δ: small probability

• QΠ: constant term in the conditional variance of Y

• RΠ(θ): varying term in the conditional variance of Y

• ∆Π(θ): deviation from the identity

• γ` (resp. γu(θ)): signal-to-noise ratio in the lower bound (resp. the upper bound)
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