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Abstract
To understand the behavior of large dynamical systems like transportation networks, one
must often rely on measurements transmitted by a set of sensors, for instance individual
vehicles. Such measurements are likely to be incomplete and imprecise, which makes it hard
to recover the underlying signal of interest.

Hoping to quantify this phenomenon, we study the properties of a partially-observed
state-space model. In our setting, the latent state X follows a high-dimensional Vector
AutoRegressive process Xt = θXt−1 + εt. Meanwhile, the observations Y are given by a
noise-corrupted random sample from the state Yt = ΠtXt + ηt. Several random sampling
mechanisms are studied, allowing us to investigate the effect of spatial and temporal
correlations in the distribution of the sampling matrices Πt.

We first prove a lower bound on the minimax estimation error for the transition matrix θ.
We then describe a sparse estimator based on the Dantzig selector and upper bound its
non-asymptotic error, showing that it achieves the optimal convergence rate for most of
our sampling mechanisms. Numerical experiments on simulated time series validate our
theoretical findings, while an application to open railway data highlights the relevance of
this model for public transport traffic analysis.
Keywords: vector autoregression, partial observation, sparsity, minimax lower bound,
railway modeling.

1. Introduction

In this paper, we focus on the estimation of a partially-observed Vector AutoRegression,
which is a kind of state-space model endowed with a randomized observation mechanism.

1.1 Context of the Study

Because they provide a natural representation for periodic measurements of a stochastic
process, time series have long been a major focus of the statistics community (Douc et al.,
2014). Among the many possible models, those defined by linear Gaussian recursions may
be the most widely used and the easiest to study. This is the case for the well-known
AutoRegressive (AR) process and its numerous extensions, such as the multivariate Vector
AutoRegressive (VAR) process (Lütkepohl, 2005).
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To model complex dynamic systems, time series can be generalized to encompass hidden
data, giving rise to so-called state-space models. The general form of these models is

Xt+1 = ft(Xt, εt) and Yt = gt(Xt, ηt),

where Xt is an unknown vector representing the latent state of the system, Yt is a vector
of observations derived from Xt, εt is often called the innovation process in the linear
case, and ηt is the noise process. State-space models have found numerous applications in
engineering, control, maintenance, climatology, finance and many more fields (Douc et al.,
2014).

Unfortunately, in the real world, data acquisition is not only noisy, but limited in size.
Whether this limitation is due to costly sensors, physical constraints or random sampling
phenomena, it is often impossible to measure every component of a multivariate stochastic
process at all times. Learning a system’s dynamics based on this kind of partial information
certainly seems more difficult. It is therefore natural to ask: how much harder does parameter
estimation become when one only observes a fraction p of the process values?

This question is the topic of the present paper. Here we study a simple state-space
model where the state X follows a high-dimensional VAR process of order 1, while the
observations Y are generated by applying a random sampling matrix Π (following a known
distribution D) to X, and then corrupting the result with noise:

Xt = θXt−1 + εt and
{

Π ∼ D
Y = ΠX + η.

As we will explain in Section 1.2, this model approximates a variety of relevant real-life
situations. Our running example will be transportation network congestion, which is often
estimated indirectly by monitoring some of the network’s users as they make their way
through the edges of a graph. We will justify the relevance of our model in this case by
applying it to historical data from the Zürich tramway network in Switzerland.

Analyzing the properties of this partially-observed VAR process will provide two comple-
mentary answers to our main question. On the one hand, we will obtain a lower bound for
the minimax estimation error on the transition matrix θ of the VAR process. On the other
hand, we will construct an estimator that provably achieves this optimal rate of convergence
for most of the sampling mechanisms we consider, at least up to noise-related constants. A
rough summary of our results is that an optimal estimator θ̂ satisfies

‖θ̂ − θ‖∞ ∝
(

1 + ω2

σ2

)
s

p
√
T

(1)

with high probability. In Equation (1), ‖·‖∞ denotes the operator `∞ norm, σ is the standard
deviation of the innovations εt, ω is the standard deviation of the noise ηt, T is the duration
of the observation period, s is the number of non-zero coefficients in each row of θ, and p is
the fraction of observed state components.

Novel features of our work include the first proof of a minimax lower bound in this
setting (to the best of our knowledge), the investigation of random sampling mechanisms
displaying temporal or spatial correlations, as well as detailed numerical experiments on
both simulated and real data.
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1.2 Partially-Observed VAR Processes for Railway Modeling

The partially-observed VAR model can be relevant in situations where the components of
an underlying process are sampled and observed in a non-deterministic manner. Since the
present work originated from a collaboration with the French railway operator SNCF, we
describe the initial use case of this formulation: a simple model for railway delay propagation.

1.2.1 Hidden Congestion and Observed Arrival Times

Let us consider a train network represented as a directed graph G = (V, E), where V denotes
the set of vertices and E is the set of edges. We, as a railway operator, want to study the
network congestion X = (Xt,e)t∈N,e∈E , which measures how hard it is to cross edge e at
time t due to the presence of other trains on the tracks. This information can be used to
regulate traffic or adjust the timetable.

We make the assumption that the congestion evolves according to a linear Gaussian
recursion of the form Xt = θXt−1 + εt. This is a way to account for delay propagation
between neighboring regions of the network. Indeed, if many trains are gathered on edge e
at time t, it may create a traffic jam that forces trains on upstream edges (e− 1, e− 2, ...) at
future times (t+ 1, t+ 2, ...) to slow down (here we used imprecise notations by assuming
some kind of topological order on the edges). In this regard, the transition matrix θ will be
closely related to the adjacency structure of the network graph G.

Our problem is that the congestion process is hidden from us: indeed, the notion of
congestion itself is more of an abstract quantity than a measurable metric. The only
things we can observe are the arrival times of each train, which may also depend on factors
unrelated to network congestion: driver decisions, passenger behavior, mechanical failures,
etc. Therefore, the travel time of some train crossing edge e at time t is affected by the
underlying congestion value Xt,e, but not only: in some sense, the observations are a noisy
version of the congestion.

To make this more formal, let us denote by Ak,v (resp Āk,v) the actual (resp. planned)
arrival time of train k at station v. For an edge e = (u, v), we are interested in the additional
delay Yk,e suffered along this edge by train k:

Yk,e = (Ak,v − Āk,v)︸ ︷︷ ︸
delay at v

− (Ak,u − Āk,u)︸ ︷︷ ︸
delay at u

= (Ak,v −Ak,u)︸ ︷︷ ︸
actual crossing time

− (Āk,v − Āk,u)︸ ︷︷ ︸
planned crossing time

(2)

Equation (2) tells us how to deduce Y from arrival times, but now we want to relate it
to the latent process X. As announced, the additional delay Yk,e is caused partly by the
congestion of edge e when train k reaches it, and partly by other individual factors which
we will regroup under a noise term ηk,e:

Yk,e = Xt,e + ηk,e where t =
⌊
Ak,u
∆t

⌋
(3)

Here ∆t is the duration of the discretization interval, i.e. the actual time elapsed between Xt

and Xt+1. For dense suburban networks, it should be no more than a few minutes (because
of how quick the congestion evolves).
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1.2.2 The Random Sampling Complication

It is critical to notice that the congestion term in Equation (3) is not individual (relative to
a single train) but collective (it applies on the network level). Indeed, it does not depend on
a specific train number k, but only on the time t at which train k reaches the first vertex u
of edge e. This has two main consequences.

The first consequence is that our observations are limited in size. Indeed, the only
congestion values Xt,e that give rise to observations Yk,e are those for which one train (or
more) reaches edge e at time t. Subsequently, the number of “activated” couples (t, e) is
directly related to the number of trains circulating on the network, and will represent only a
fraction p of the complete set [T ]× E of possible couples.

This activation pattern can be represented as a sampling matrix Π ∼ D with random
binary entries such that Y = ΠX + η. The sampling matrix contains one row per edge
crossing, and if row number o (for “observation”) corresponds to train k on edge e, only
the coefficient in column (t, e) will equal 1, while all others are 0. Note that the model is
written Y = ΠX + η and not Y = Π(X + η) because a single entry of X can be activated
multiple times by different trains, hence with different individual noise values.

The second consequence is that the selection of these activated couples (t, e), that is, the
generation of the sampling matrix Π, can be considered random. First, railway timetables
are often large and complex, potentially varying from day to day and subject to last-minute
modifications. Therefore, it may be simpler to assume that the spatio-temporal locations of
selected couples (t, e) are randomly sampled.

But more importantly, travel times themselves are not deterministic. If train number
1234 reaches edge e slightly later than usual one day, it may face a different congestion value,
say Xt+1,e instead of Xt,e. And because of this, the distribution of Π is even influenced by
the values of X itself, since train 1234’s unusual delay at edge e may have been caused by a
traffic jam on edge e− 1. This dependence structure implies that the sampling matrix Π
can exhibit spatial and temporal correlations, which will be a crucial aspect of our work.

1.2.3 Estimating the Transition Matrix

In order to predict the future values of the congestion, it is necessary to learn the parameters
governing its evolution. The most important parameter here is the transition matrix θ,
which quantifies spatial interactions between all edges of the network. Estimating it provides
valuable insight into the dynamics of delays. Unfortunately, railway networks are often large
and complex, while the available data is limited in size. Suppose we study a network of
dimension |E| = D, and we have access to N days of observations, each day being split
into T time steps (so that 24h = T ×∆t). Can we recover the transition matrix θ with
sufficient accuracy in the general case?

In high dimension, without additional assumptions, the answer will often be no. Fortu-
nately, we expect θ to have a very specific structure because it describes local interactions
on our network graph G. Therefore, a sparsity hypothesis on this transition matrix seems
natural, and will help us recover its coefficients with much higher precision: the number of
nonzero coefficients s in every row of θ is expected to play a critical role.
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Beyond the sparsity level, we will see that the precision of estimation also depends on
other critical parameters. The first one is the fraction of observations p, which compares
the total information provided by passing trains to the overall size of the network. The
second one is a kind of signal-to-noise ratio γ ∝ 1 + ω2

σ2 , which in our case quantifies the
relative importance of network congestion compared to all other sources of delay. These
insights are critical to evaluate the reliability of our estimate θ̂, and thus provide trustworthy
information to passengers and traffic managers alike.

1.2.4 Beyond Railway Applications

Of course, railway traffic analysis is not the only application of partially-observed state-space
models. Here are a few other situations that could lend themselves to a similar approach:

• Road traffic analysis based on information transmitted by drivers, as is done by some
popular smartphone apps;

• Patient load prediction in interlinked hospital services based on the individual lengths
of stay;

• Interaction modeling within a social network based on a small sample of its contents
or users.

In many cases, the underlying process of interest might not behave as a VAR process, but
studying the linear Gaussian case hopefully gives interesting intuitions which extend to more
general situations.

1.3 Related Works

The theory of VAR processes has been well-known for a long time: the book of Lütkepohl
(2005) provides an extensive account. In particular, Chapter 3 describes three standard
estimators for the VAR transition matrix:

• The Maximum Likelihood Estimator (MLE), based on maximizing the log-likelihood
of the parameters;

• The Conditional Least Squares estimator, based on minimizing ∑t‖Xt − θXt−1‖22;

• The Method of Moments estimator, based on the Yule-Walker equation recursively
defining the covariance matrices (which is similar to the one we present in Section 2.2.1);

In the fully-observed Gaussian case, these three estimators are asymptotically equivalent.
However, the equivalence no longer holds when observations become noisy or when some
data goes missing. On the one hand, autoregressions with noisy or faulty measurements
have been studied extensively for decades (Buonaccorsi, 2010, Section 12.3). On the other
hand, much less research effort has been devoted to the situation we consider, namely the
case of a vector-valued autoregression whose components are partially sampled in a random
way.
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1.3.1 Literature Review

In theory, the MLE is easily extended from fully-observed time series to partially- or noisily-
observed time series, a.k.a. state-space models (Cappé et al., 2006). Most of the time, exact or
approximate inference is achievable using some version of the Kalman filter (Kalman, 1960) or
particle filter methods (Doucet et al., 2000), whereas parameter estimation typically involves
the Expectation-Maximization (EM) algorithm (Shumway and Stoffer, 1982). Unfortunately,
the EM algorithm is hard to analyze explicitly in terms of statistical error, which is why other
methods are sometimes preferred in theoretical studies. In particular, plug-in methods using
covariance estimates have been quite popular recently in the machine learning community.
Our work is a direct continuation of this part of the literature, which we summarize below.

Since our model is designed to tackle real-world problems such as train delay prediction,
a core challenge lies in the dimension D of the VAR process Xt. On large networks, the
transition matrix θ ∈ RD×D may be impossible to estimate precisely without additional
structural assumptions. This is why the latest approaches to high-dimensional VAR process
estimation use sparsity penalties as a way to reduce data requirements and computational
workload (see the book of Hastie et al., 2015).

In the literature on sparse learning, two closely related methods stand out. We describe
them in the case of standard linear regression:

Y = Xβ + Z.

When β is known to be sparse, the most popular estimation procedure is the LASSO
(Tibshirani, 1996), which requires solving the optimization problem

min
β

‖Y − Xβ‖22 s.t. ‖β‖1 ≤ λ,

where the `1 norm acts as a convex substitute to the `0 “norm”. During the last ten years,
statisticians have begun extending this theory to random designs exhibiting correlations or
missing data, starting with the seminal work of Loh and Wainwright (2012), who showed
how to obtain statistical guarantees in spite of non-convexity. Other studies followed with a
more precise focus on VAR processes, each one deriving slightly different non-asymptotic
error bounds on the LASSO estimator (see for example Basu and Michailidis, 2015; Kock
and Callot, 2015; Melnyk and Banerjee, 2016). Among the most recent works in this line of
research, Jalali and Willett (2018) investigated a componentwise independent missing data
scenario by using measure concentration for sub-Gaussian processes.

A few years after the LASSO emerged, another method for sparse estimation was
introduced by Candes and Tao (2007): the Dantzig selector, which is the solution to

min
β

‖β‖1 s.t. ‖X ′(Y − Xβ)‖∞ ≤ λ.

This time, the sparsity penalization is the objective, while data fidelity is enforced in the
constraints. Although the LASSO and the Dantzig selector can be shown to exhibit similar
behaviors (Bickel et al., 2009), the latter has some computational advantages. Not only is it
the solution to a Linear Program, or LP (instead of a Quadratic Program for the LASSO),
but this LP can even be parallelized across dimensions to speed up computations.
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The most prominent application of the Dantzig selector to VAR estimation was proposed
by Han et al. (2015). The error bounds they provided are much simpler than the ones
obtained with LASSO-related methods, and they require less intricate assumptions. In
the same line of research, Rao et al. (2017b) studied the more general scenario in which
a hidden VAR process is randomly sampled or projected, and then corrupted with noise.
They adapted the Dantzig selector method of Han et al. (2015) using custom concentration
inequalities and obtained results that are quite similar to ours, although less generic in
several aspects. In addition, it is our opinion that their proof is incomplete.1

A salient feature of our work is that we not only provide upper bounds on the error of a
particular estimator, but we also investigate minimax lower bounds to prove optimality. To
the best of our knowledge, this was only done in one previous study for (partially-observed)
VAR processes. Rao et al. (2017b) presented a minimax lower bound on estimation error in
a scenario very similar to ours, but we think that the proof of this result is incorrect as well.2

1.3.2 Contributions

When we compare it to the previously-surveyed state-of-the-art, our work brings the following
novelties:

• We study random sampling mechanisms which are not independent across time or
space, such as fixed-size sampling or Markov sampling. As we have seen in Section 1.2,
such dependencies are sometimes necessary to approximate realistic situations.

• These assumptions force us to use slightly involved probabilistic results (combination
of discrete and continuous concentration inequalities, recent results on Markov chain
convergence) to provide upper bounds on the estimation error.

• We give a general minimax lower bound, which matches our upper bounds for non-
Markov sampling mechanisms, proving the optimality of the sparse estimator for this
task.

• Until the very end, our minimax proof is largely independent of the subset of admissible
transition matrices, which makes it easy to handle many types of structured transitions:
sparse, Toeplitz, banded, etc.

• We present extensive numerical experiments that empirically support our rates of
convergence on simulated data, and we justify our model by applying it on real data.

1. Indeed, the combination of discrete and Gaussian concentration inequalities as performed on page
2 (middle of right column) of the supplementary material for Rao et al. (2017a) glosses over the
fact that LF is itself a random variable. As we will discover during our own proof (Lemma 7), this
introduces an additional difficulty and forces us to use a more complex discrete concentration inequality.
See https://web.stanford.edu/~milind/papers/system_id_icassp_proof.pdf for the supplementary
material in question.

2. In particular, the covariance matrix ΦA presented on page 5 (top of right column) of the supplementary
material for Rao et al. (2017b) does not seem suited to a VAR process initialized at x0 = 0: its
variance should increase with time as it converges to the stationary value we called Γ0(A). See https:
//web.stanford.edu/~milind/papers/system_id_isit_proof.pdf for the supplementary material in
question.
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1.4 Outline of the Paper

In Section 2, we define the generative procedure behind the partially-observed VAR process,
and we present a sparse estimator θ̂ of the transition matrix θ. We then state both of our
theoretical results in Section 3: a minimax lower bound on the error of any estimation
procedure, and then an upper-bound on the error of our specific estimator. Section 4 contains
numerical experiments demonstrating the influence of various parameters, as well as an
application to a real-life railway data set. We conclude in Section 5.

Our statistical analysis heavily relies on preliminary groundwork laid out in Appendix A.
Appendix B gives a detailed proof of the minimax lower bound, highlighting the role of
Fano’s method and Kullback-Leibler (KL) divergences. Appendix C on the other hand is
dedicated to proving the convergence rate of the sparse estimator, by combining discrete
and continuous concentration inequalities before analyzing the behavior of the Dantzig
selector. A number of well-known results from linear algebra and probability are presented
in Appendix D to make the present paper as self-contained as possible. Appendix E contains
a glossary.

1.5 Notations

Assigning meaning to a symbol is done with :=. For any integer n, let [n] := {1, ..., n}. The
symbol 1{...} stands for an indicator function. When dealing with random variables, we
write P(X = x) for a probability density, E[X] for an expectation, Var[X] for a variance
(scalar of vector) and Cov[X,Y ] for a covariance (scalar or matrix). The symbols B(p), B(n, p)
and N (µ,Σ) denote a Bernoulli distribution, a binomial distribution and a (possibly mul-
tivariate) Gaussian distribution respectively. When we write log(x), we mean the natural
(base-e) logarithm.

Given a real number a, we denote by |a| its absolute value. Given a vector x, we denote
by ‖x‖2 (resp. ‖x‖1, ‖x‖∞, ‖x‖0) its Euclidean norm (resp. `1 norm, `∞ norm, number of
nonzero entries). The notation 1i stands for a vector with a single non-zero coordinate at
position i, while 1 := ∑

1i.
A matrix can be defined by its coefficients M = (Mi,j)i,j or by its blocks M =

(M[b1,b2])b1,b2 . We write I for the identity matrix, and Jr for the square matrix entirely
filled with zeroes, except for the subdiagonal of rank r which is filled with ones. The
notation diag(λ) stands for the diagonal matrix with coefficients λ1, ..., λn, while bdiagT (M)
stands for a block-diagonal matrix with T copies of M on the diagonal and zeroes elsewhere.
We write vec(M) for the column-wise flattening of matrix M into a vector. When we want
to apply a function elementwise, we often use notation that is standard for real numbers
but not for matrices: for instance,

√
M := (

√
Mi,j)i,j and 1/M := (1/Mi,j)i,j . Given a real

matrix M , we denote by

• M ′ its transposition, M+ its Moore-Penrose pseudo-inverse and M−1 its inverse;

• Tr(M) its trace and det(M) its determinant;

• λmax(M) (resp. λmin(M), λi(M)) its maximum (resp. minimum, i-th largest) eigen-
value, so that

λmax(M) = λ1(M) ≥ λ2(M) · · · ≥ λn(M) = λmin(M)
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• ςmax(M) (resp. ςmin(M), ςi(M)) its maximum (resp. minimum, i-th largest) singular
value;

• ‖M‖1 = sup ‖Mx‖1
‖x‖1 = maxj

∑
i |Mi,j | its operator `1 norm, which is the maximum `1

norm of a column of M ;

• ‖M‖2 = sup ‖Mx‖2
‖x‖2 = |ςmax(M)| =

√
λmax(M ′M) its operator `2 norm, also known as

the spectral norm;

• ‖M‖∞ = sup ‖Mx‖∞
‖x‖∞ = maxi

∑
j |Mi,j | its operator `∞ norm, which is the maximum `1

norm of a row of M ;

• ‖M‖F = ‖vec(M)‖2 = Tr(M ′M) its Frobenius norm;

• ‖M‖max = ‖vec(M)‖∞ = maxi,j |Mi,j | the maximum absolute value of its entries;

• ρ(M) its spectral radius.

See Petersen and Pedersen (2012) for a collection of inequalities relating all of these matrix
quantities. Given two real matrices A and B, we denote by

• A⊗B their Kronecker product;

• A�B Hadamard (elementwise) product;

• A � B or A � B the (partial) Loewner order on symmetric matrices.

In all our derivations, the letter c (or c1, c2, etc.) will denote a universal positive constant,
which may change from one line to the next but never depends on any varying problem
parameters. More specifically, statements involving it should always be understood as “there
exists c > 0 such that”... As for other letters used throughout the paper, the most frequent
ones are listed in Appendix E with their usual meanings.

2. The Partially-Observed VAR Process and its Sparse Estimator

Before stating our theoretical results, we first introduce our statistical model and the
estimator we use.

2.1 Model Definition

The model we study can be described by the following generative procedure.

2.1.1 Underlying State Process

We start by drawing X = (Xt,d)t∈[T ],d∈[D] ∈ RTD according to a stationary VAR process of
order 1. This process has dimension D and the following recursive definition:

Xt = θXt−1 + εt. (4)

Here θ ∈ RD×D is the transition matrix, taken from a row-sparse parameter set

Θs = {θ ∈ RD×D : ‖θ‖2 ≤ ϑ < 1 and ∀i, ‖θi,·‖0 ≤ s}. (5)
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The innovations εt ∼ N (0,Σ) are Gaussian vectors of size D, independent across time. To
ensure stationarity of the VAR process, we must impose ρ(θ) < 1. Throughout the paper,
we actually make the following (stronger) assumption, reflected in the definition of Θs: there
exists ϑ ∈ [0, 1[ such that for all the values of θ we consider, ‖θ‖2 ≤ ϑ < 1. Furthermore, we
denote by σ2

min := λmin(Σ) and σ2
max := λmax(Σ) the minimum and maximum eigenvalues

of Σ.

2.1.2 Generating the Observations

As announced, we do not have access to the latent process X itself. To construct the
observations Y , we first apply a sampling operation X 7→ ΠX, where Π is a random binary
matrix with one 1 per row. This constraint accounts for the fact that in our railway model,
each observation depends on a single component of the hidden congestion process. Then,
a vector η of i.i.d. Gaussians with variance ω2 is added, and we observe the result. The
formula reads

Y = ΠX + η or Yt = ΠtXt + ηt (6)

Note that the number of observations at t, which is equal to the number of rows of Πt, is
stochastic. In this sense, the generation of Πt also determines the number of components
in ηt.

An essential hypothesis we make is the mutual independence between our three sources
of randomness: the innovations ε, the sampling matrix Π and the observation noise η (at
least once its dimension is known). Although this independence property is not satisfied
in our initial use case (for the railway model, Π can be influenced by X), it simplifies the
analysis while retaining qualitative features of the model’s behavior.

Our data set is built from N independent realizations of this process, indexed by n.
We denote by X1:N the collection (Xn)n∈[N ], and the same goes for Π1:N and Y 1:N . The
observed data at our disposal is the couple (Π1:N , Y 1:N ), while X1:N remains hidden. Note
that the sampling matrix Πn may differ for every n.

For the sake of simplicity however, we will prove all convergence theorems in the
case N = 1: extending those results to the general case will generally amount to replacing T
with NT in the resulting error bounds.

2.1.3 Sampling Mechanisms

As stated in the beginning, the major feature of the present work is the nondeterministic
selection of observed state components, that is, the fact that Π is not a constant but a
random variable following a known distribution D. In order to sum up the amount of
information available using only one parameter p ∈]0, 1[, we want D to satisfy the following
condition: each component Xt,d of the latent state must be activated (i.e. involved in an
observation) on average p times.

We now present three examples of sampling mechanisms satisfying this condition, which
we will study in the rest of this paper:

1. Independent sampling Dindep: each index (t, d) is selected with probability p, indepen-
dently of all others.
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2. Fixed-size sampling Dfixed: at each time step t, a number pD of indices are drawn
from [D] with replacement (assuming pD is an integer).

3. Markov sampling DMarkov: independently along each dimension d, time indices t are
selected according to a binary Markov chain with transition matrix Q =

(
1−a a
b 1−b

)
such that the chain is stationary with invariant measure ( b

a+b ,
a
a+b) = (1− p, p). We

also assume there exists a universal constant χ such that 0 < χ ≤ a, b ≤ 1− χ ≤ 1.

Although they may seem arbitrary, these three sampling mechanisms are each interesting
for different reasons. Independent sampling is the simplest and most intuitive approach.
Markov sampling provides a framework to study the effect of temporal dependencies, and
it reduces to independent sampling when a = 1− b = p. Finally, fixed-size sampling with
replacement exhibits spatial dependency at each time step, and it is the only mechanism for
which a single state component can be activated by multiple observations, which is crucial in
practice when studying traffic data generated by dense transportation networks. In railway
applications, the fixed size of the sample would be equal to the cumulated journey lengths
of all trains during the observation period.

2.2 Sparse Transition Estimator

We now present the specific estimator we study.

2.2.1 Estimator Construction

Our construction is a straightforward generalization of the one used by Rao et al. (2017a).
As we will see in Lemma 11, the lag-h covariance matrices of the VAR process X are given
by a simple recursion (see Lemma 11):

Γh(θ) = Covθ[Xt+h, Xt] = θhΓ0(θ) (7)

Equation (7) is often called the Yule-Walker equation (for h = 0), and we can use it to
define a simple estimation procedure:

1. For a given h0, build estimators Γ̂h0 and Γ̂h0+1 of the covariances Γh0 and Γh0+1.

2. Use them to approximate the transition matrix, for example with θ̂ = Γ̂h0+1Γ̂+
h0
.

The problem with this procedure is that is does not guarantee sparsity of θ̂. To obtain
a sparse result, Han et al. (2015) suggest casting the Yule-Walker Equation (7) as a soft
constraint enforcing proximity between Γ̂h0+1 and θ̂Γ̂h0 . The algorithm they propose is
a variant of the Dantzig selector (Candes and Tao, 2007) designed specifically for VAR
processes. It requires solving the following constrained optimization problem:

θ̂ ∈ argmin
M∈RD×D

‖vec(M)‖1 s.t. ‖M Γ̂h0 − Γ̂h0+1‖max ≤ λ0 (LP)

This problem can be reformulated as a linear program and decomposed along each dimension,
which allows for an efficient and parallel solution procedure. The only thing left to do is
decide how to estimate the covariance matrices.

11
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2.2.2 Moment-Based Covariance Estimation

Since Yt = ΠtXt + ηt where ηt is zero-mean, a natural proxy for Xt is given by X̂t = Π+
t Yt.

It would therefore seem logical to build an estimator of Γh by plugging this proxy into the
empirical covariance between Xt+h and Xt. However, if we want it to work, we must make
two adjustments to this idea:

1. To account for the random sampling, this plug-in empirical covariance must be scaled
by a factor S(h). Intuitively, since X̂t+hX̂

′
t has a fraction p2 of nonzero coefficients,

we need to divide it by something close to p2 to get an unbiased covariance estimator.

2. To account for the observation noise, we must incorporate an additive correction C(h)
multiplied by ω2. This correction becomes unnecessary for h ≥ 1 since the observation
noise ηt is independent across time.

We obtain the following estimator:

Γ̂h :=
[

1
S(h) �

1
T − h

T−h∑
t=1

(
Π+
t+hYt+h

) (
Π+
t Yt

)′]
− C(h). (8)

The scaling matrix S(h) and the noise correction C(h) both depend on the sampling
mechanism. Their expressions are given in Lemma 18.

3. Lower and Upper Bound on the Estimation Error

We now have all the necessary background to state our theoretical results.

3.1 Minimax Lower Bound

We start with a lower bound on the minimax estimation error for partially-observed Vector
AutoRegressions. This lower bound is estimator-independent, and quantifies the intrinsic
difficulty of our statistical problem. The term minimax means that we study the worst-case
probability of error for the best possible estimator. One can picture it this way:

1. First, we pick an estimation algorithm θ̂ among all measurable functions of the
observations.

2. Then, the universe replies by choosing the worst possible true value θ ∈ Θs in terms of
estimator performance (see below).

3. To measure the performance of our estimator, we draw observations from Pθ(Y,Π). For
a given threshold ζ, we then compute the probability that the `∞ operator distance
between θ̂ and θ exceeds ζ.

In not so many words, the quantity of interest is

inf
θ̂

sup
θ∈Θs

Pθ
[
‖θ̂ − θ‖∞ ≥ ζ

]
,

and we want to find a threshold ζ such that the probability of exceeding it is non-negligible,
for instance equal to 1/2. The evolution of this threshold will tell us how the error behaves
with respect to the various problem parameters.

12
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Theorem 1 (Minimax lower bound) Consider the partially-observed VAR model de-
fined in Section 2.1 and suppose that T is “large enough”, as specified by Equations (10)
and (11). We define

γ`(D) = (1− ϑ)3/2 1D6=Dfixedσ
2
min + ω2

σ2
max

.

Then, for both non-Markov sampling mechanisms Dindep and Dfixed, we have the lower bound

inf
θ̂

sup
θ∈Θs

Pθ

[
‖θ̂ − θ‖∞ ≥ cγ`(D) s

p
√
T

]
≥ 1

2

whereas for Markov sampling DMarkov we have a weaker lower bound

inf
θ̂

sup
θ∈Θs

Pθ

[
‖θ̂ − θ‖∞ ≥ cγ`(D) s

√
pq
√
T

]
≥ 1

2 with q = max{1− b, 2p− (1− b)}.

Note that our choice of norm is not only useful for the proof but coherent with our
railway application: since the `∞ norm of a congestion vector Xt represents a maximum
amount of lost minutes on the network at time t, the induced operator norm ‖θ‖∞ controls
the evolution of this maximum congestion through time.

The proof of this bound is based on Fano’s method, which we sum up in Lemma 34.
For a detailed presentation, we refer the reader to Tsybakov (2008, Chapter 2). Note that
Wainwright (2019, Chapter 15) and Duchi (2019, Chapter 7) also offer good treatments of
the subject.

Fano’s method relies on choosing a set of parameters θ0, θ1, ..., θM satisfying two seemingly
contradictory conditions: their induced distributions must be hard to distinguish, yet they
must lie as fart apart from one another as possible. In particular, the crucial requirement
of Fano’s method is a tight upper bound on the KL divergence between two distributions
generated by different parameters θi and θ0. More precisely, we want to bound

1
M + 1

M∑
i=1

KL {Pθi(Π, Y ) ‖ Pθ0(Π, Y )} ≤ max
i

KL {Pθi(Π, Y ) ‖ Pθ0(Π, Y )}

≤ max
i

(KL {Pθi(Π) ‖ Pθ0(Π)}+ EΠ [KL {Pθi(Y |Π) ‖ Pθ0(Y |Π)}]) ,

where we used Lemma 35 for the last step. Since θi does not affect the distribution of the
index set Π, the first term of the RHS is zero, and we will concentrate on the second term.
First, we will upper-bound the random variable inside the expectation for a fixed value of Π,
and then we will average said bound over all possible sampling matrices.

We now give the structure of the proof in a coherent order, along with the most important
intermediate results:

1. Compute the conditional covariance Covθ[Y |Π] and decompose it into a constant
term QΠ (corresponding to the independent case θ = 0) plus a residual RΠ(θ)
(Lemma 12).

2. Upper-bound the conditional KL divergence KL {Pθ[Y |Π] ‖ P0[Y |Π]} using the “devi-
ations from the identity” ∆Π(θ) = Q

−1/2
Π RΠ(θ)Q−1/2

Π (Lemma 13).

13
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3. Control ∆Π(θ) using features of R(θ) scaled by factors that depend on the distribution
of Π (Lemmas 14, 15 and 16).

4. Deduce an upper bound on the KL divergence EΠ[KL {Pθ(Y |Π) ‖ P0(Y |Π)}] (Lemma 17).

5. Apply Fano’s method to a set of parameters θi constructed from a pruned binary
hypercube of well-chosen radius.

See Appendix B for the details of the argument.

3.2 Non-Asymptotic Error of the Sparse Estimator

Let us now move on to a positive result on the specific estimator we introduced earlier. We
start by quantifying the non-asymptotic error of the covariance estimator.

Theorem 2 (Convergence rate of the covariance estimator) Consider the covariance
matrix estimator Γ̂h defined by Equation (8) and suppose that T is “large enough”, as speci-
fied by Equations (16) and (18). Then for some well-chosen value of λ0, the estimator Γ̂h
satisfies

‖Γ̂h − Γh‖max ≤ c
σ2

max + ω2

(1− ϑ)2

√
log(D/δ)
p
√
T

with probability greater than 1− δ.

From this, we deduce the convergence rate of the transition matrix estimator.

Theorem 3 (Convergence rate of the transition matrix estimator) Consider the tran-
sition matrix estimator θ̂ defined by the optimization problem (LP) with h0 = 0. We impose
the same conditions on T as in Theorem 2, and we define

γu(θ) = ‖θ‖∞ + 1
(1− ‖θ‖2)2

σ2
max + ω2

‖Γ0(θ)−1‖−1
1
.

Then for some well-chosen value of λ0, the estimator θ̂ satisfies

‖θ̂ − θ‖∞ ≤ cγu(θ)s
√

log(D/δ)
p
√
T

with probability greater than 1− δ.

Our proof goes through the following steps:

1. Justify the formula for Γ̂h by computing S(h) and C(h) such that Equation (8) defines
an unbiased estimator of Γh (Lemma 18).

2. Fixing d1 and d2, reformulate (Γ̂h − Γh)d1,d2 using quadratic forms g′iΨ′iLijΨjgj of
standard Gaussian vectors (Lemma 19).

3. Control the norms and traces of the Lij matrices using discrete concentration inequali-
ties (Lemmas 20, 21, 22 and 23).

14
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4. Apply a modified version of the Hanson-Wright inequality to bound the deviation
of g′iΨ′iLijΨjgj using what we know about the Lij (Lemmas 24 and 25).

5. Conclude on (Γ̂h − Γh)d1,d2 and deduce a high-probability bound on ‖Γ̂h − Γh‖max.

6. Using an argument from Han et al. (2015) that exploits the optimization problem
defining θ̂, extract a high-probability bound on ‖θ̂ − θ‖∞ (Lemmas 26 and 27).

See Appendix C for the details.

3.3 Extension to VAR Processes of Higher Order

Although our theorems only apply to state-space models based on an underlying VAR process
of order 1, we could try to extend them to the more general case of VAR(P ) processes. Just
for this Section, suppose Xt is no longer given by Equation (4), but instead satisfies:

Xt = θ1Xt−1 + θ2Xt−2 + ...+ θPXt−P + εt.

Then we can represent this as a VAR(1) process using augmented variables (Lütkepohl, 2005,
Equation 2.1.8):

X̃t = θ̃X̃t−1 + ε̃t with X̃t =


Xt

Xt−1
...

Xt−P+1

 , ε̃t =


εt
0
...
0


and where the augmented transition matrix is given by a block companion matrix of
dimension D̃ = PD:

θ̃ =


θ1 θ2 · · · θP−1 θP
ID 0 · · · 0 0
0 ID 0 0
... . . . ...

...
0 0 · · · ID 0

 .

Unfortunately, by this reasoning, the distribution D chosen for Π gives rise to a new distri-
bution D̃ for Π̃ which is not among {Dindep,Dfixed,DMarkov}. For instance, when D = Dindep,
the order-P sampling matrix Π̃ defines a stochastic process Π̃t that is no longer independent
but instead has a memory of size P . Therefore, the adaptation is not straightforward and
would require a more careful proof.

3.4 Comments on Both Bounds

Let us now compare the convergence rate of Theorem 3, which is an upper bound on the
error of the optimal algorithm, with the minimax lower bound of Theorem 1.

Our first and most important remark is that s and T play exactly the same roles in both
bounds, which proves that the dependency of the error in s/

√
T is right (up to a logarithmic

factor in the upper bound).

15



Dalle and De Castro

3.4.1 Role of the Observation Probability

The fraction of observations p appears as 1/p in the upper bound, regardless of the sampling
mechanism. This dependency matches the minimax lower bound for Dindep and Dfixed.
However, for the Markov sampling mechanism DMarkov, the lower bound scales as 1/√pq
instead. Subsequently, for this scenario, we have not proven the optimality of either bound.
The numerical experiments of Section 4 will help shed light on this phenomenon.

However, it is reassuring to notice that when a = 1− b = p, that is, when DMarkov boils
down to Dindep, the lower bound simplifies into the 1/p dependency we expect (since q =
max{1− b, 2p− (1− b)} = p).

3.4.2 Role of the Maximum Norm

Quite surprisingly, the maximum `2 operator norm of the transition matrix, which we called ϑ,
plays opposite roles in both bounds. In the minimax lower bound, (1− ϑ) appears in the
numerator, whereas in the estimator’s convergence rate it appears in the denominator. We
do not know whether the respective exponents are optimal, but at least they are compatible
with one another: as ϑ→ 1, that is, as the VAR process becomes unstable, the lower bound
tends to 0 and the upper bound to +∞. This is simply a reflection of the fact that our
proofs make heavy use of the distance between θ and the unit circle, which means they
become invalid when θ gets too large.

3.4.3 Role of the Variances

The variances Σ and ω2 appear in γ`(D) for the lower bound, and in γu(θ) for the upper
bound. In both cases, the ratio γ tells us if the underlying process is big enough to be
detected among the noise. Roughly speaking, the magnitude of X is related to the spectrum
of Σ, while the magnitude of Y is related to the spectrum of Σ + ω2I. If the latter is
significantly bigger than the former, recovering X is a hopeless endeavor.

To simplify the comparison of both bounds, we assume that Σ = σ2I is proportional
to the identity matrix. We also assume that θ is normal, i.e. that it commutes with its
transpose. This enables us to simplify the factor ‖Γ0(θ)−1‖−1

1 appearing in γu(θ):

‖Γ−1
0 (θ)‖−1

1 =
∥∥∥∥(σ2(I − θθ′)−1

)−1
∥∥∥∥−1

1
= σ2‖I − θθ′‖−1

1 .

We can then give a more precise expression of γ` and γu (for all D 6= Dfixed):

γ`(D) = (1− ϑ)3/2σ
2
min + ω2

σ2
max

= (1− ϑ)3/2σ
2 + ω2

σ2

γu(θ) = ‖θ
′‖1 + 1

(1− ϑ)2
σ2

max + ω2

‖Γ0(θ)−1‖−1
1

= (‖θ′‖1 + 1)‖I − θθ′‖1
(1− ϑ)2

σ2 + ω2

σ2 .

As we can see, in this simple case, we retrieve the same dependency in both bounds, namely

γ ∝ 1 + σ2

ω2 .

We will now give a heuristic argument suggesting it may be optimal.
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For that, let us consider the one-dimensional setting (D = 1) with full observations
(p = 1), since we are mainly interested in the role of the parameters σ2 and ω2. In this case,
Theorem 1 argues that the error of any estimator should grow at least like γ` = 1 + ω2

σ2 . We
also note that in this simple case, Theorem 3 states that γu ∝ γ`.

We will compare this to the asymptotic error of the Maximum Likelihood Estimator
(MLE) θ̂, which (for well-behaved models) is given by the inverse of the Fisher information
matrix. To make this statement more precise, we will invoke Douc et al. (2014, Proposition
2.14). Let us verify the conditions:

• The process is stable, i.e. ρ(θ) < 1. We made sure of that by assuming ‖θ‖2 ≤ ϑ < 1.

• The sampling matrix Πt is constant across time. Although this assumption is not
essential, it is true here since p = 1 and D = 1 hence Πt = I1.

• The model has the smallest possible dimension.

• The true parameter θ is identifiable and does not lie on the boundary of Θs. Identifia-
bility is easily deduced from Lemma 11 by observing that θ = Γ1(θ)Γ0(θ)−1 can be
entirely deduced from distribution moments.

Since all of these prerequisites hold in our simple setting, Douc et al. (2014, Proposition
2.14) gives us a Central Limit Theorem for the MLE of linear Gaussian models:

√
T (θ̂ − θ) L−−−−→

T→∞
N (0, I∞(θ)−1) where I∞(θ) = lim

T→∞

IT (θ)
T

.

We only have to compute the Fisher information matrix IT (θ). The covariance matrix of Y
is given by Lemma 12, but in our case the sampling matrix is constant, and we obtain the
simpler (unconditional) result

Covθ[Y ] = (σ2 + ω2)IT +R(θ),

where the residual R(θ) is of order 1 in θ. Indeed, our simplifying assumptions imply Γ0(θ) =
σ2

1−θ2 and therefore

R(θ) = σ2

1− θ2


θ2 θ1 θ2 · · ·
θ1 θ2 θ1

θ2 θ1 θ2

... . . .

 ∂θR(θ) = σ2


0 1 0 · · ·
1 0 1
0 1 0
... . . .

+O(θ).

The Fisher information of Y with respect to θ has an explicit formula (Malagò and Pistone,
2015, Section 3.5):

IT (θ) = 1
2 Tr

[
Covθ[Y ]−1∂θ Covθ[Y ] Covθ[Y ]−1∂θ Covθ[Y ]

]
= 1

2 Tr
[(
I + R(θ)

σ2 + ω2

)−1 ∂θR(θ)
σ2 + ω2

(
I + R(θ)

σ2 + ω2

)−1 ∂θR(θ)
σ2 + ω2

]
.
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If assume θ is small and perform a Taylor expansion, we get:

IT (θ) ≈ 1
2(σ2 + ω2)2 Tr

[
(∂θR(θ))2

]
.

Incidentally, we also note that at the lowest order in θ,

Tr[(∂θR(θ))2] = ‖∂θR(θ)‖2F ≈ 2σ4(T − 1).

Which gives us an approximate information matrix for T steps:

IT (θ) ≈ Tr[(∂θR(θ))2]
2(σ2 + ω2)2 ≈

T

2

(
σ2

σ2 + ω2

)2

.

Taking the temporal limit yields:

I∞(θ) = lim
T→∞

IT (θ)
T
≈ 1

2

(
σ2

σ2 + ω2

)2

.

In conclusion, this informal analysis reveals an asymptotic error equivalent to

1√
T

√
I∞(θ)−1 ≈

√
2√
T

(
1 + ω2

σ2

)
,

which is coherent with the dependency we identified in Theorem 1.

4. Numerical Illustrations

We start by illustrating our results on simulated data, and then move on to a real case study
of railway event times.

All experiments were run on a Dell Precision 5530 mobile workstation with Intel Core
i7-8850H CPU (2.60GHz × 12) and 31 GiB of RAM, running under Ubuntu 20.04. The
code was written in Python (version 3.8) and it is available on GitHub3 and Zenodo (Dalle
and Castro, 2021), along with instructions to download the dataset we used.

Data preparation was performed using Pandas (Wes McKinney, 2010; Reback et al.,
2021), graph stuctures were represented within NetworkX (Hagberg et al., 2008) while linear
optimization problems were modeled using CVXPY (Diamond and Boyd, 2016; Agrawal
et al., 2018) and solved with the ECOS solver (Domahidi et al., 2013).

4.1 Simulated Dataset

Simulating a partially-observed VAR process with known transition matrix θ allows us
to compute the estimation error ‖θ̂ − θ‖∞ and study its dependence on parameters such
as T , D, p, ω, etc.

3. https://github.com/gdalle/PartiallyObservedVectorAutoRegressions
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4.1.1 Data Generation

Each point on the result graphs below corresponds to one run of the algorithm, aimed at
estimating a random value of θ. These values for θ were drawn using independent standard
Gaussian distributions for each matrix coefficient. They were subsequently normalized to
satisfy ‖θ‖2 = ϑ = 1/2.

To simplify comparison with the theoretical bounds, we used a diagonal covariance
matrix Σ = σ2I. The default sampling mechanism is Dindep. When not mentioned or plotted
explicitly, all simulation parameters are equal to their default values given below:

T = 10000 D = 5 σ = 1.0 ω = 0.1

Many of the following graphs are displayed with logarithmic scaling, in order to highlight
the exponent of the dependencies. When a straight line is present on a plot, it is the result
of a Siegel regression (a robust form of linear regression, see Siegel, 1982) applied to the
points of the same color: its slope is denoted as α in the legend.

Most of the simulations are run in a dense estimation scenario. For those who require
the sparse procedure, selecting a good regularization parameter λ is paramount: indeed,
Theorem 3 is only valid for a specific choice of λ (which is not known in practice, but we
can hope to approximate this near-optimal choice).

A standard way to tune λ would be cross-validation. However, evaluating a choice
of λ (and the resulting estimate θ̂λ) requires inferring the hidden state sequence Xt from
the observations Y . If the sampling matrices Πt were known constants, the inference
could be performed with Kalman filtering (Kalman, 1960), but since they are random, the
distribution of (X,Y ) is no longer a Gaussian and the whole procedure breaks down. Finding
an appropriate inference method in our setting will be the topic of future studies.

In the meantime, to tune λ, we resorted to a slightly unrealistic method which requires
knowing (or guessing) the sparsity level of the real transition matrix θ. Suppose we have
an estimate sguess for the number of non-zero coefficients in each row of θ: we can then use
dichotomy on λ to find a transition matrix estimate θ̂ whose row sparsity level is also close
to sguess. Incidentally, this procedure allows us to study the effect of a wrong guess on the
obtained sparsity level of θ̂.

Another parameter we have to guess is the observation noise level ω. Unless otherwise
specified, we will assume that it is known to the estimator.

4.1.2 Results

We start by studying the impact of dimension parameters, as shown on Figure 1. As the
number of time steps T goes up, the estimation error goes down proportionally to 1/

√
T .

Note that this is only true because the sampling probability p remains constant. If instead we
had a limited observation budget but an increasing time precision, we would have p ∝ 1/T ,
in which case the error would increase with

√
T instead of decreasing.

The dimension D of the transition matrix has the opposite effect and makes the error
increase linearly (recall that here s = D). This is not surprising, since we measure the error
with the `∞ operator norm, and this norm scales with the dimension of the matrix.
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Figure 1: Influence of dimension parameters on the estimation error (dense case)

When p is too small, the extreme parts of the curves (when T is small or when D is
large) sometimes deviate from the linear dependency predicted by our analysis. We should
expect this, since our theorems are only valid for a certain range of parameters where the
error is small enough, which probably excludes these hard edge cases.

We briefly comment on the influence of the standard deviations σ (for the innovations)
and ω (for the observation noise). Since they only play a role through their ratio ω/σ, we
can keep σ fixed and vary only ω. As we can see on Figure 2, the higher the noise, the
harder it becomes to extract a meaningful signal from the observations. More precisely, three
phases are clearly identifiable. In the first one, corresponding to ω/σ � 1, the error remains
small and constant. Then, the error increases (presumably with slope 2) when ω/σ ∼ 1. In
the third phase, corresponding to ω/σ � 1, the error remains high and volatile, which is the
only case not predicted by our theoretical analysis.

Other insights can be gained from looking at the role of our noise level guess ωguess.
When much information is available, we see a clear optimum around the true value of ω
(a region in which the error drops). However, in harder estimation settings (for instance
with lower p), this effect is drowned by the noise, and we might as well pick ωguess = 0. This
justifies our approach on the real-life data set.

Moving on to the influence of the sampling fraction p, we are pleased to notice that the
slopes of Figure 3 reflect a linear dependency of the error in 1/p for both non Markovian
sampling mechanisms. However, when it comes to Markov sampling, the convergence rate
depends not only upon p, but also upon b, as can be deduced from the second row of plots.

This raises the question of the correct order of magnitude for the error in this scenario:
is it really 1/p, as our upper bound calculations suggest? Is it rather 1/√pq, as we could
wonder by looking at the minimax lower bound? Or is the true convergence rate somewhere
in between? Figure 4 provides a partial answer by showing both the evolution of the error
as a function of a and b (on the heatmap) and the level sets for p and √pq (with the white
lines). The color map and the level values are represented with a logarithmic scale, as are
the axes, to enable visual comparison. As we can see, neither of our candidate convergence
rates perfectly fits the shape of the error, which suggests the real order of magnitude might
be a more complex function of (a, b).
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Figure 2: Influence of standard deviations on the estimation error (dense case)

In particular, the beneficial influence of 1− b on Figure 3 suggests that the global number
of observations (given by p) is not the only thing that matters. Indeed, if these observations
are close to one another, they might bring more information regarding the transition structure
than when they are equally numerous but more widely spaced. Since 1− b is the probability
for a given dimension d to remain active between t and t+ 1, it measures the tendency of
observations to cluster together, hence this interpretation is coherent with our numerical
findings.

We continue with the influence of the sparsity level, both the real value s and the
guess sguess used to tune λ in the estimation procedure. Figure 5 shows what happens
when D = 5 is kept constant while the value of s is increased (with sguess = s). When we do
that, the error rises as expected, but not with a slope of 1, which seemingly contradicts the
linear relationship demonstrated by Theorem 3. Our interpretation of this behavior is that
the function γu(θ) also depends upon the sparsity level in complicated ways, through the
various norm terms (which are also affected by our renormalization to ‖θ‖2 = 1/2). This
may interfere with the linear dependency between s and ‖θ̂ − θ‖∞ predicted by the theory.

Meanwhile, Figure 6 displays another experiment where the true value of s = 5 is kept
constant while D is increased. We compare two scenarios: one in which we assume θ is dense
(sguess = D) and one in which we know θ is sparse (sguess = s). As we can see, knowing the
true sparsity level of θ enables the estimation error to rise much slower when compared to a
naive dense estimation. However, Theorem 3 suggests that in the sparse case, the estimation
error should actually be completely independent of D, which is not the case here. We think
it may be due to our heuristic choice of λ (selected by density matching) which does not
guarantee an optimal speed of convergence.

We conclude with the influence of h0, which is the smallest covariance lag used for
estimating θ. Our default procedure requires the estimators Γ̂0 and Γ̂1, which means h0 = 0,
but nothing prevents us from using higher lags.

The upside of basing our estimation on (for instance) Γ̂1 and Γ̂2 is that we do not need
to guess a value for ω: indeed, the observation noise only appears in the formula for Γ̂0, see
Equation (8). Unfortunately, the higher the lag, the harder it becomes to correctly infer the
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value of θ, as can be seen on Figure 7: when h0 > 0, both the error and its variance increase
significantly. Therefore, when applying our method to the real data set, we will stick to the
lowest lag h0 = 0 and accept a small bias (due to the unknown value of ω) in the hope of
reducing the variance.

4.2 Real Dataset

We now turn to a real-life use case of partially-observed VAR processes: railway delay
modeling. This application was described in Section 1.2, but now we go into more details
regarding the data set and our analysis method.

4.2.1 Data Description and Preprocessing

Public transport agencies often make their theoretical transportation plan available (for
instance using the General Transit Feed Specification format developed by Google), and many
also provide an Application Programming Interface to query real-time traffic information.
However, it is much harder to find large historical archives of realized event times. One such
data set is available on the open data platform Mobility Switzerland4.

Starting in January 2018, an increasing number of train arrival and departure times were
pulled from the customer information systems of railway companies operating in Switzerland.
These event times were then stored into daily CSV files, along with other useful information
regarding each train5: company, line, trip and stop ID, possible perturbations (like cancelled
trips or skipped stops).

Our intuition tells us that a congestion model such as ours best applies to a dense network
with frequent trips, for instance that of a large urban or suburban area. As a consequence, we
chose to focus on the tramway network of Zürich, operated by Verkehrsbetriebe Zürich6. We
further restricted ourselves to the years 2018 and 2019, since data before 2018 is incomplete
and data from 2020 onwards is likely to be affected by the ongoing Covid-19 crisis.

4. https://opentransportdata.swiss/en/dataset
5. https://opentransportdata.swiss/en/dataset/istdaten
6. https://www.stadt-zuerich.ch/vbz/en/index.html
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Figure 8: Number of observations for each month, weekday and hour on the Zürich tram
data set
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Figure 9: Effect of outlier filtering

Figure 8 gives an overview of the quantity of data available for these two years: these
visualizations are important to prepare a homogeneous data set in terms of data quantity.
Indeed, if trains are less frequent on a significant portion of the period we study, the
congestion will propagate differently and our estimation procedure will be biased.

We notice that apart from July 2020, the months are relatively similar to one another.
As for the weekdays, Saturdays and Sundays have fewer observations, which is why we
exclude them from analysis. Finally, train frequency is zero at night but otherwise relatively
constant through the day. Still, we choose to focus on what would be the evening “peak
hour” in a typical urban network, that is from 5 pm to 8 pm.

Beyond this initial filtering, we applied a few more preprocessing steps. First, we removed
skipped stops, unplanned and cancelled trips. We then removed departures to keep only
arrival events. An important step consisted in detecting outliers by imposing limits on the
minimum and maximum values for edge durations, arrival delays and additional edge delays.
This is illustrated on Figure 9.

It may seem strange to keep slightly negative edge durations or delay values. We made
this decision because the planned arrival times are rounded to the minute, while the actual
event times are recorded with second-level precision. As a consequence, a train could appear
to be a few tens of seconds late or early simply due to rounding phenomena.
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Then, we had to construct the graph representation G of our data set, with one vertex
per stop and edges corresponding to railway tracks. We could have used a network map,
but since we wanted the process to be automated, we chose to build the graph directly from
our event data.

To each arrival event, we map the next event for the same train journey, which gives us
a collection of station couples, also known as directed edges. Some of these edges are crossed
frequently, whereas others are only used a few times over the two-year period. Since the
precision of estimation relies on a good approximation of the congestion Xt,e on each edge e,
we must get rid of these infrequent edges. Indeed, keeping every single edge we obtained
(there are over 2500) would result in a much higher dimension for the underlying process,
but without sufficient data to exploit it.

Our pruning method consisted in selecting the 200 most frequently crossed edges in the
complete network, and then retrieving the largest connected component of the resulting
subgraph: it has 78 nodes and D = 163 edges. A graphical representation is given on
Figure 10 (some edges are denser because of superposition).

The final preprocessing step required centering the data at expectation by removing
additional delay averages for each edge. Indeed, for the real process, we suspected that the
noise η may not be zero-mean, so this was our method to standardize it.

4.2.2 Results

As we mentioned during the discussion on simulated data, cross-validation is difficult to
achieve here due to the lack of a standard inference algorithm for hidden congestion values.
Since in this case we don’t have access to the sparsity level of the “true” θ, we tried
several values of the regularization parameter λ and plotted the behavior of the resulting
estimator θ̂λ. The main features of interest are presented on Figure 11. As expected, the
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first graph shows the fraction of non-zero coefficients in θ̂λ decreasing as the penalization λ
increases.

The second graph is more interesting: it depicts the evolution of a quantity characterizing
the typical distance at which edges seem to interact, based on the estimated transition
matrix. This quantity is computed as a weighted average of distances dGe1,e2 between edge
couples, each distance being weighed by the absolute value |θ̂λe1,e2 | of the relevant transition
coefficient. In other words, this “average interaction distance” is given by the formula

AID =
∑
e1,e2 |θ̂

λ
e1,e2 |d

G
e1,e2∑

e1,e2 |θ̂λe1,e2 |
.

Since graph distances are only defined between vertices, we need to specify what we mean
with dGe1,e2 . If e1 = (u1, v1) and e2 = (u2, v2), we define it as dGe1,e2 = min{dGu1,u2 , d

G
u2,u1}.

It makes sense because we use the first vertex u of an edge to determine the time step at
which a train reaches it. Since G was chosen to be connected, at least one of those two
distances dGu1,u2 and dGu2,u1 will be finite. And since we use mean edge durations as weights,
the resulting interaction distance will be expressed in minutes. One could say it measures
the distance traveled by the congestion signal during a period of ∆t, except that the distance
is expressed in minutes (using the average train speed) instead of kilometers.

Our initial intuition for this propagation model is that the network congestion should
propagate locally, from one edge to its neighbors, as time flows. And there is one clue on
Figure 11 that supports this intuition: the fact that interaction distance decreases as the
penalization becomes stronger.

For small values of λ0, the average interaction distance stabilizes around a high value,
which is close to the unweighted average of the distances between all pairs of edges (e1, e2).
In other words, no signal is captured. But as λ0 rises, we see that the average interaction
distance decreases, which suggests that local effects start to prevail. This behavior would not
be observed if the transition matrix θ was completely independent of the graph structure G.

In addition, when we pick a small interval ∆t, the average interaction distance seems to
stabilize at the end of the curve, whereas it quickly drops to zero for larger intervals. This
suggests that picking ∆t close to the typical duration of an edge (1.5 min in our data set)
may be a good idea.

Of course, there are still things we do not understand, such as the increasing behavior of
the curve for ∆t = 5 min or the sudden jump at the end of the one for ∆t = 7 min. We
assume these must be due to outliers in the data that only appear at a specific sampling
frequency, not unlike a resonance phenomenon. We are also unsure how to compare these
curves with one another quantitatively, since each of them captures interactions at a different
timescale: if the “true model” was the one with ∆t = 1, then each of these curves would
roughly correspond to an estimation of θ∆t.

At any rate, we should keep in mind that our procedure is still just a linear Gaussian
model, with very little fine-tuning for this specific use case. The fact that we recover a
real-world intuition from railway experts is very encouraging, and suggests that we may be
on the right path. However, building a more sophisticated predictor that takes into account
more network and timetable features would undoubtedly lead to a better understanding of
this phenomenon.
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5. Conclusion and Perspectives

In this paper, we studied a partially-observed VAR process, whose coordinates are randomly
sampled and corrupted with noise. The spatial and temporal correlations within the sampling
matrices are a novel feature of our work, and combining both sources of randomness (discrete
and continuous) required the use of tailored probabilistic methods. We provided upper and
lower bounds for the optimal estimation error on the transition matrix, and found that these
bounds roughly match. This analysis, supported by empirical results, sheds light on the
intrinsic difficulty of such statistical problems, which arise naturally when analyzing several
types of dynamic network processes.

However, our study leaves many questions open for future work:

• In public transport applications such as the one mentioned in Section 1.2, the sampling
process may even be dependent from the underlying state. In this case, new methods
must be introduced to handle such dependencies in error estimates.

• The simulations involving Markov sampling suggest that the true convergence rate
of the transition estimator lies somewhere in the gap between our lower and upper
bound. Finding more advanced methods to capture the effect of temporal dependency
in sampling could provide more insight into the behavior of such processes.

• For practical purposes, finding a good compromise between model simplicity and
statistical power is paramount to foster adoption in the field. As a consequence, more
research is needed to transfer these theoretical ideas into fully usable real-time delay
predictors that make use of all the available information.

More generally, we believe that the study of partially-observed evolving networks has a
steadily growing number of applications, and the development of adequate mathematical
tools will be a fruitful area of research for years to come.
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Appendix A. Proof Preliminaries

Here we present a few useful building blocks of the main proofs.

A.1 Moments of the Sampling Distributions

For the rest of the appendix, we denote by κt,d the integer random variable equal to the
number of observations (that is, rows o of Πt) where column d is activated (that is, in which
coefficient (Πt)o,d is equal to 1). We also define πt,d as the binary random variable equal
to 1 if the column d is activated in at least one observation row o of Πt. Since Πt is binary,
these definitions amount to

κt,d =
∑
o

(Πt)o,d and πt,d = 1{κt,d > 0}. (9)

We recall that the number of rows in Π is itself random and corresponds to the number of
observations. Moreover, each row of Πt has exactly one non-zero entry.

Lemma 4 The first- and second-order moments of κ and π are given by Tables 1 and 2 for
all sampling mechanisms. Regardless of the sampling mechanism, every coefficient from the
scaling matrix S(h) = E[πt+hπ′t] satisfies S(h)d1,d2 ≥ cp2 =: S(h)min.

E[πt,d] E[κt,d]
Dindep Dfixed DMarkov Dfixed

p 1−
(
1− 1

D

)pD
p p

Table 1: First-order moments of π and κ for all sampling mechanisms

S(h)d1,d2 = E [πt+h,d1πt,d2 ] E [κt+h,d1κt,d2 ]
Conditions Dindep Dfixed DMarkov Dfixed

d1 = d2 and h = 0 p 1−
(
1− 1

D

)pD
p p

(
1− 1

D

)
+ p2

d1 6= d2 and h = 0 p2 1−
(
1− 2

D

)pD
p2 p2 − p

D

d1 = d2 and h ≥ 1 p2
(

1−
(
1− 1

D

)pD)2 p2 + p(1− p)×
(1− a− b)h p2

d1 6= d2 and h ≥ 1 p2
(

1−
(
1− 1

D

)pD)2
p2 p2

Table 2: Second-order moments of π and κ for all sampling mechanisms

Proof We must distinguish between each sampling mechanism. Let i = (t + h, d1)
and j = (t, d2) be two indices in [T ]× [D].

31



Dalle and De Castro

A.1.1 Independent Sampling

For the independent sampling mechanism, each component of X can be sampled at most
once, hence κ = π takes values in {0, 1}. Since πi has a Bernoulli distribution, we obviously
have

E[πi] = E[π2
i ] = p.

And if i 6= j, independence yields

E[πiπj ] = E[πi]E[πj ] = p2.

A.1.2 Fixed-size Sampling

For the fixed-size sampling mechanism with replacement, we explore a case where κ 6= π,
since the same component of X can be sampled multiple times. We start with κi, which
follows a binomial distribution B(pD, 1/D). In particular,

E[κi] = pD

D
= p.

As for the second-order moments, we can deduce E[κ2
i ] from the decomposition of the

variance:

E[κ2
i ] = Var[κi] + E[κi]2 = pD

1
D

(
1− 1

D

)
+ p2 = p

(
1− 1

D

)
+ p2.

For i 6= j, we have to consider the value of h. If h ≥ 1, then κt+h and κt are independent,
hence

E[κiκj ] = E[κi]E[κj ] = p2.

If h = 0, we remark that the whole vector κt has a multinomial distribution with pD trials
and individual success probabilities 1/D for each dimension:

E[κiκj ] = Cov[κi, κj ] + E[κi]E[κj ] = −pD 1
D

1
D

+ p2 = − p
D

+ p2.

We now turn to the variable π, which is only zero if every one of the pD draws at time t
fails to select dimension d1. As a consequence,

E[πi] = E[π2
i ] = 1−

(
D − 1
D

)pD
.

For i 6= j, we have a similar disjunction as before. If h ≥ 1 then independence yields

E[πiπj ] = E[πi]E[πi] =
(

1−
(

1− 1
D

)pD)2

,

whereas if h = 0 we have the slightly different expression

E[πiπj ] = 1−
(
D − 2
D

)pD
= 1−

(
1− 2

D

)pD
.

We finally note that all the values in this column of Table 2 are greater than a constant
times p2. Indeed,(

1−
(

1− 1
D

)pD)2

≥ (1− e−p)2 ≥
(
−p+ p2

2

)2

= p2(1− p/2)2 ≥ cp2.
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A.1.3 Markov Sampling

For the Markov sampling mechanism, each component of X can be sampled at most once,
hence κ = π. We once again have E[πi] = E[π2

i ] = p. If d1 6= d2, then the variables πi
and πj belong to independent Markov chains, and thus E[πiπj ] = p2. Otherwise, we
have i = (t + h, d) and j = (t, d), which means these two variables are part of the same
Markov chain. Stationarity yields

E[πiπj ] = P[πt,d = 1]× P[πt+h,d = 1|πt,d = 1] = p(Qh)11.

When diagonalizing Q, we see that the bottom-right coefficient of Qh is given by

(Qh)11 = a+ b(1− a− b)h
a+ b

= p+ (1− p)(1− a− b)h.

Plugging this in, we get

E[πiπj ] = p2 + p(1− p)(1− a− b)h.

A.2 Concentration of 1
T−h

∑
t πt+h,d1πt,d2

Here we study the product variables πt+h,d1πt,d2 , seen as a stochastic process indexed by the
time t. We aim to prove the following concentration result:

Lemma 5 (Concentration of the sampling Bernoullis) There exist constants c1 and c2
such that for any d1, d2, for any bounded h, for any sampling mechanism, for all u ∈ [0, 1]
(this restriction is important),

P
(∣∣∣∣∣ 1
T − h

T−h∑
t=1

πt+h,d1πt,d2 − S(h)d1,d2

∣∣∣∣∣ ≥ uS(h)d1,d2

)
≤ c1 exp(−c2u

2TS(h)d1,d2).

Proof Once again, we must distinguish between sampling mechanisms. Before delving into
the details, note that we only consider bounded values of h, so that T − h ≥ cT . This is
why the T − h factor in the exponential can be simplified to T , as long as we are ready to
accept a slightly smaller constant in front of it.

A.2.1 Independent Sampling

We start by assuming Π ∼ Dindep. When d1 = d2 and h = 0, or when d1 6= d2, the
process πt+h,d1πt,d2 is composed of independent Bernoulli variables. If d1 = d2 and h ≥ 1
however, the Bernoulli variables πt+h,d1πt,d2 are no longer mutually independent.

To tackle this difficulty, we restrict ourselves to the subprocesses with indices that have the
same remainder modulo h+ 1. Let us define [T ]h+1

r = {t ∈ [T ] : t = r mod h+ 1} We easily
remark that mutual independence holds again for the subprocesses (πt+h,d1πt,d2)t∈[T−h]h+1

r

for each r ∈ {0, . . . , h}. This is illustrated on Figure 12: two pairs of variables linked with
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Figure 12: Illustration of alternate independence for Dindep sampling with h = 2
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t

Figure 13: Illustration of alternate independence for Dfixed sampling with h = 2

the same line style have empty intersection. Each of these h + 1 separate subprocesses
satisfies the Chernoff bound of Lemma 38: for all u ∈ [0, 1] and all r ∈ [h+ 1],

P
(∣∣∣∣∣ h+ 1
T − h

∑
t∈[T−h]h+1

r

πt+h,d1πt,d2 − S(h)d1,d2

∣∣∣∣∣ ≥ uS(h)d1,d2

)

≤ c1 exp
(
−c2u

2T − h
h+ 1 S(h)d1,d2

)
.

By the union bound,

P
(∣∣∣∣∣ 1
T − h

T−h∑
t=1

πt+h,d1πt,d2 − S(h)d1,d2

∣∣∣∣∣ ≥ uS(h)d1,d2

)

≤
h∑
r=0

P
(∣∣∣∣∣ h+ 1
T − h

∑
t∈[T−h]h+1

r

πt+h,d1πt,d2 − S(h)d1,d2

∣∣∣∣∣ ≥ u

h+ 1S(h)d1,d2

)

≤ c1(h+ 1) exp
(
−2
(

u

h+ 1

)2 T − h
h+ 1 S(h)d1,d2

)
≤ c1 exp

(
−c2u

2TS(h)d1,d2

)
since we only consider bounded values of h.

A.2.2 Fixed-size Sampling

Let us now assume that Π ∼ Dfixed. When d1 = d2, or when d1 6= d2 and h = 0, the situation
is identical to the previous one, since we also have to deal with a sequence of independent
Bernoulli variables. When d1 6= d2 and h ≥ 1 however, the variables πt+h,d1πt,d2 are no
longer independent across time. Once again, considering h + 1 subprocesses separately
solves the issue. This is illustrated on Figure 13: although the variables in each column are
(negatively) correlated, skipping enough steps restores independence.

A.2.3 Markov Sampling

Finally, we delve into the scenario Π ∼ DMarkov.

34



Minimax Estimation of Partially-Observed VAR

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(a) When d1 6= d2: transition matrix Q⊗Q

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(b) When d1 = d2: transition matrix R(1)

Figure 14: State space and transitions for the Markov chain (πt,d2 , πt+1,d1)t

• When d1 = d2 = d and h = 0, the product πt+h,d1πt,d2 boils down to πt,d, which is
a 2-state Markov chain with transition matrix Q.

• When d1 6= d2, the couple (πt,d2 , πt+h,d1) is a 4-state Markov chain with transition ma-
trix Q⊗Q since the chains πt+h,d1 and πt,d2 along different dimensions are independent.
Its state space diagram for h = 1 is given on Figure 14a.

• When d1 = d2 and h ≥ 1, we must study the (h+ 1)-tuple (πt,d1 , πt+1,d1 , ..., πt+h,d1).
It is a 2h+1-state Markov chain with transition matrix R(h). Its state space diagram
for h = 1 is given on Figure 14b.

In all of these cases, our variable of interest πt+h,d1πt,d2 is a function of the underlying
Markov chain. The relevant functions are:

f1 : x 7→ x f2 : (x, y) 7→ yx f3 : (x0, ..., xh) 7→ xhx0.

We note that since all the coefficients of Q are greater than χ, all the coefficients of Q⊗Q
are greater than χ2. We can even go further and state that the coefficients of R(h)h+1

are greater than χh+1, because all pairs of states are connected after h + 1 steps. Let us
illustrate this phenomenon with h = 1:

R(1) =


1− a a 0 0

0 0 b 1− b
1− a a 0 0

0 0 b 1− b

 R(1)2 =


(1− a)2 a(1− a) ab a(1− b)
(1− a)b ab (1− b)b (1− b)2

(1− a)2 a(1− a) ab a(1− b)
(1− a)b ab (1− b)b (1− b)2

 .
Subsequently, all the transition matrices T we are interested in, namely T ∈ {Q,Q ⊗
Q,R(h)h+1}, satisfy the Doeblin condition with r = h+ 1 and δ = χh+1:

T h+1 ≥ χh+1

1 · · · 1
... . . . ...
1 · · · 1

 .
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Since we will only consider bounded values of h, and since χ is fixed for our purposes, these
chains fulfill the conditions of Lemma 41. We thus conclude:

P
(∣∣∣∣∣ 1
T − h

T−h∑
t=1

πt+h,d1πt,d2 − S(h)d1,d2

∣∣∣∣∣ ≥ uS(h)d1,d2

)
≤ c1 exp

(
−c2u

2TS(h)d1,d2

)
.

A.3 Conditional Gaussian Concentration

Here, we present a conditional version of a very useful Gaussian concentration inequality.
We start with the unconditional case.

Lemma 6 (Hanson-Wright inequality: Gaussian case) Let A be a square matrix. If X
and Y are two independent standard Gaussian vectors, we have:

P
(
|X ′AX − E[X ′AX]| ≥ u

)
≤ 2 exp

(
−cmin

{
u2

‖A‖2F
,

u

‖A‖2

})

P
(
|X ′AY − E[X ′AY ]| ≥ u

)
≤ 2 exp

(
−cmin

{
u2

‖A‖2F
,

u

‖A‖2

})
.

Proof See Vershynin (2018, Theorem 6.2.1) for the first inequality. We will see that it
implies the second one. Let us define

Ã =
[
0 A
0 0

]
and X̃ =

[
X
Y

]
.

We note that ‖Ã‖F= ‖A‖F and ‖Ã‖2= ‖A‖2. Applying the first inequality to X̃ ′ÃX̃ = X ′AY
yields the expected result.

Now we move on to our custom conditional version.

Lemma 7 (Conditional Hanson-Wright inequality) Let A be a random square matrix
such that with probability 1− δ,

‖A‖2 ≤M2 and ‖A‖2F ≤M2
F .

If X and Y are two independent standard Gaussian vectors independent of A, we have:

P
(
|X ′AX − E[X ′AX]| ≥ u

)
≤ δ + 2 exp

(
−cmin

{
u2

M2
F

,
u

M2

})
+ P (|Tr(A− E[A])| ≥ u/2)

P
(
|X ′AY − E[X ′AY ]| ≥ u

)
≤ δ + 2 exp

(
−cmin

{
u2

M2
F

,
u

M2

})
.
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The additional trace term that appears inside Lemma 7 (as opposed to the non-conditional
version of Lemma 6) is absent from the papers by Rao et al. (2017a,b), which is why we
think their upper bound proofs are incomplete.
Proof We start with the first case. Since A is a discrete random matrix with a finite set A
of possible values,

P(|X ′AX − E[X ′AX]| ≥ u) =
∑
a∈A

P(|X ′AX − E[X ′AX]| ≥ u ∩A = a)

=
∑
a∈A

P(|X ′aX − E[X ′AX]| ≥ u ∩A = a).

Using independence between X and A gives us

P(|X ′AX − E[X ′AX]| ≥ u) =
∑
a∈A

P(|X ′aX − E[X ′AX]| ≥ u)P(A = a).

We now split the set of feasible values A into

A≤ = {a ∈ A : ‖a‖2F ≤M2
F } and A> = {a ∈ A : ‖a‖2F > M2

F }.

Since we assumed P(A ∈ A>) = ∑
a∈A> P(A = a) ≤ δ, we get:

P(|X ′AX − E[X ′AX]| ≥ u) ≤ δ +
∑
a∈A≤

P(|X ′aX − E[X ′AX]| ≥ u)P(A = a).

Unfortunately, Lemma 6 only lets us bound

P(|X ′aX − E[X ′aX]| ≥ u) and not P(|X ′aX − E[X ′AX]| ≥ u)

(notice the change inside the expectation), which means we need an additional step. For a
fixed a ∈ A≤, we use independence and normality to obtain

E[X ′aX]− E[X ′AX] = E[Tr(X ′(a−A)X)] = Tr(E[XX ′(a−A)])
= Tr(E[XX ′]E[a−A]) = Tr(a− E[A]).

We are now ready to decompose, with the help of the union bound:

P(|X ′aX − E[X ′AX]| ≥ u) = P
(
|X ′aX − E[X ′aX] + E[X ′aX]− E[X ′AX]| ≥ u

)
≤ P

(
|X ′aX − E[X ′aX]| ≥ u/2

)
+ P

(
|E[X ′aX]− E[X ′AX]| ≥ u/2

)
≤ 2 exp

(
−cmin

{
u2

‖a‖2F
,
u

‖a‖2

})
+ 1 {|Tr(a− E[A])| ≥ u/2} .

This implies:

P(|X ′AX − E[X ′AX]| ≥ u) ≤ δ +
∑
a∈A≤

P(A = a)P(|X ′aX − E[X ′AX]| ≥ u)

≤ δ +
∑
a∈A≤

P(A = a)× 2 exp
[
−cmin

{
u2

‖a‖2F
,
u

‖a‖2

}]

+
∑
a∈A≤

P(A = a)× 1 {|Tr(a− E[A])| ≥ u/2} .
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By definition of A≤,

P(|X ′AX − E[X ′AX]| ≥ u) ≤ δ +
∑
a∈A≤

P(A = a)× 2 exp
(
−cmin

{
u2

M2
F

,
u

M2

})

+ P (|Tr(A− E[A])| ≥ u/2)

≤ δ + 2 exp
(
−cmin

{
u2

M2
F

,
u

M2

})
+ P (|Tr(A− E[A])| ≥ u/2) .

The proof forX ′AY follows the same lines, except that we replace E[XX ′] = I by E[XY ′] = 0,
which removes the trace term in the final expression.

A.4 A Useful Pseudo-Inverse

Here we explore some properties of our sampling matrix Π which do not depend upon the
sampling mechanism.

Lemma 8 Let A be a binary matrix with at most one 1 per row. Then we have:

A′A = diag
{∑

k

Ak,j : j ∈ [n]
}
.

Proof We first recall that
(A′A)i,j =

∑
l

Al,iAl,j .

If i 6= j, since A has at most one 1 per row, either Al,i = 0 or Al,j = 0. We thus
have Al,iAl,j = 0 for all values of l, which implies (A′A)i,j = 0. Otherwise, Al,iAl,j = Al,j
which yields the expected result.

Lemma 9 Let A be a binary matrix with at most one 1 per row. Then its pseudo-inverse is
given by

A+
i,j = Aj,i∑

k Ak,i
,

where we decide that 0/0 = 0. It satisfies

A+A = diag
{

1
[∑

k

Ak,j > 0
]

: j ∈ [n]
}
.

Proof Let Bi,j = Aj,i/
∑
k Ak,i be our pseudo-inverse candidate. We compute

(BA)i,j =
∑
l

Bi,lAl,j =
∑
lAl,iAl,j∑
k Ak,i

(AB)i,j =
∑
l

Ai,lBl,j =
∑
l

Ai,lAj,l∑
k Ak,l

.

It is clear that both (AB)i,j and (BA)i,j are symmetric expressions in (i, j). We will use the
first expression to compute the products ABA and BAB. We have three cases to consider:
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• If i 6= j, since A has at most one 1 per row, either Al,i = 0 or Al,j = 0. This
means Al,iAl,j = 0 for all values of l, which implies (BA)i,j = 0.

• If i = j and the column A·,i contains only zeroes, then Al,i = Al,j = 0 for all values
of l, which also implies (BA)i,j = 0.

• If i = j and the column A·,i contains at least one 1, then

(BA)i,j =
∑
lA

2
l,i∑

k Ak,i
=
∑
lAl,i∑
k Ak,i

= 1,

since both numerator and denominator contain the sum of the same non-empty column.

In conclusion,

(BA)i,j =
{

1 if i = j and ∑k Ak,i > 0
0 otherwise.

From this, we deduce

(ABA)i,j =
∑
l

Ai,l(BA)l,j =
∑
l

Ai,l1
[
i = j and

∑
k

Ak,l > 0
]

= Ai,j1[ΣA·,j > 0] = Ai,j

(BAB)i,j =
∑
l

(BA)i,lAl,j =
∑
l

1[i = j and ∑
k Ak,l > 0]Aj,l∑

k Ak,l

= 1[∑k Ak,i > 0]Aj,i∑
k Ak,i

= Aj,i∑
k Ak,i

= Bi,j .

We thus verified the following conditions:

1. ABA = A;

2. BAB = B;

3. AB symmetric;

4. BA symmetric.

This characterizes B as the pseudo-inverse A+ of A. The expression of A+A is a by-
product of the proof.

Lemma 10 The matrix Π and its transpose Π′ satisfy:

Π′Π = diag(κ).

The matrix Π and its pseudo-inverse Π+ satisfy:

Π+ = diag(π/κ)Π′ and Π+Π = diag(π).

With the appropriate indices, these equalities also hold for Πt, Π′t and Π+
t .

Proof These equalities are straightforward consequences of Lemmas 8 and 9.
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Appendix B. Proof of the Minimax Lower Bound

We now present the detailed proof of Theorem 1.

B.1 Covariance Matrices

As we saw in the proof sketch, the KL divergence will be a crucial ingredient of our
information-theoretical argument. To compute it, we need to know the covariance matrix of
the observations, but first we turn to the underlying VAR process.

Lemma 11 (VAR covariance matrix) The blocks of the covariance matrix for the sta-
tionary VAR process defined by Equation (4) have the following expression:

Γ0(θ) = Covθ[Xt] =
∞∑
k=0

θkΣθ′k

Γh(θ) = Covθ[Xt+h, Xt] = θhΓ0(θ).

In our opinion, the derivation of this covariance matrix in the proofs for Rao et al.
(2017b) was incorrect, which invalidates the rest of their argument. Note however that in
their setting, X0 = 0 while we assume stationarity of the process.
Proof We start by noting that according to Equation (4), the stacked vector X =
(Xt,d)(t,d)∈[T ]×[D] follows a TD-dimensional centered multivariate Gaussian distribution. The
covariance matrix of Xt can be deduced from the recursion:

Γ0(θ) = Covθ[Xt] = Covθ[θXt−1 + εt] = θCovθ[Xt−1]θ′ + Σ = θΓ0(θ)θ′ + Σ.

There is a unique stationary solution:

Γ0(θ) =
∞∑
k=0

θkΣθ′k.

The covariance matrix between Xt+h and Xt is obtained similarly:

Γh(θ) = Covθ[Xt+h, Xt] = E[Xt+hX
′
t] = E[(θXt+h−1 + εt+h)X ′t]

= θCovθ[Xt+h−1, Xt] = θh Covθ[Xt, Xt] = θhΓ0(θ).

And Covθ[Xt, Xt+h] = Covθ[Xt+h, Xt]′. In other words, we just proved that

Covθ[X] =


Γ0(θ) Γ0(θ)θ′1 Γ0(θ)θ′2 · · · Γ0(θ)θ′T−1

θ1Γ0(θ) Γ0(θ) Γ0(θ)θ′1
θ2Γ0(θ) θ1Γ0(θ) Γ0(θ)

... . . .
θT−1Γ0(θ) Γ0(θ)

 .

As we announced in the proof sketch, our reference parameter will be θ = 0, which is
why it makes sense to express the conditional covariance of Y as a deviation from the case
without interactions. This is the aim of the following result.
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Lemma 12 (Conditional covariance decomposition) The covariance matrix of Y given Π
decomposes as

Covθ[Y |Π] = QΠ +RΠ(θ),
where QΠ is a constant term and RΠ(θ) is a residual which vanishes as θ → 0. They are
defined as follows: the constant term is

QΠ = Π(bdiagT Σ)Π′ + ω2I

whereas the residual equals

RΠ(θ) = ΠR(θ)Π′ with R(θ) =


θΓ0(θ)θ′ Γ0(θ)θ′1 Γ0(θ)θ′2 · · ·
θ1Γ0(θ) θΓ0(θ)θ′ Γ0(θ)θ′1
θ2Γ0(θ) θ1Γ0(θ) θΓ0(θ)θ′

... . . .

 .
Proof We use Equation (6) to see that the conditional distribution Pθ[Y |Π] is a centered
multivariate Gaussian with covariance Covθ[Y |Π] = Π Covθ[X]Π′ + ω2I. We then use
Lemma 11 to get an expression of Covθ[X] and conclude that its zero-order term (in θ)
is Π bdiagT (Σ)Π′ + ω2I =: QΠ.

Finally, we defineR(θ) = Covθ[X]−bdiagT Σ andRΠ(θ) = ΠR(θ)Π′ to obtain Covθ[Y |Π] =
QΠ +RΠ(θ). The diagonal blocks of R(θ) are easily computed by noticing that Γ0(θ)−Σ =
θΓ0(θ)θ′.

B.2 From the KL Divergence to ∆Π(θ)
Judging by Lemma 12, choosing a parameter θ close to 0 yields a conditional distribution
for Y whose covariance is close to QΠ. In the next result, we translate this into a bound on
the KL divergence between Pθ(Y |Π) and P0(Y |Π).

Lemma 13 Recall that QΠ and RΠ(θ) are defined in the covariance decomposition of
Lemma 12. Let us define the deviation from the identity:

∆Π(θ) := Q
−1/2
Π RΠ(θ)Q−1/2

Π .

Then the conditional KL divergence is upper-bounded by:

KL {Pθ(Y |Π) ‖ P0(Y |Π)} ≤ ‖∆Π(θ)‖2F
2(1 + λmin(∆Π(θ))) .

Proof The conditional KL divergence KL {Pθ[Y |Π] ‖ P0[Y |Π]} can be bounded using
Lemma 37. Indeed, both conditional distributions are Gaussian and have the same expecta-
tion, and covariance matrices that are “close” in the following sense: by Lemma 12,

Cov0(Y |Π) = QΠ = Q
1/2
Π (Q1/2

Π )′

Covθ(Y |Π) = QΠ +RΠ(θ) = Q
1/2
Π

(
I +Q

−1/2
Π RΠ(θ)Q−1/2

Π︸ ︷︷ ︸
∆Π(θ)

)
(Q1/2

Π )′.
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Remember that Covθ(Y |Π) � ω2I � 0 and the same goes for QΠ. By Lemma 29,

∃r ∈ [ςmin(Q1/2
Π )2, ςmax(Q1/2

Π )2], λmin(Covθ(Y |Π)) = rλmin(I + ∆Π(θ)).

Therefore,
λmin(I + ∆Π(θ)) = 1 + λmin(∆Π(θ)) > 0

and we can apply Lemma 37 with P1 = Pθ[Y |Π] and P0 = P0[Y |Π].

B.3 From ∆Π(θ) to RΠ(θ)
Lemma 13 strongly suggests studying a certain fraction involving ∆Π(θ). In the following
result, we boil it down to a function of the residual term RΠ(θ).

Lemma 14 Assume ‖R(θ)‖2 ≤ σ2
min
2 . We have the following upper bound, which depends

on our choice of sampling distribution D:

‖∆Π(θ)‖2F
2(1 + λmin(∆Π(θ))) ≤

‖RΠ(θ)‖2F[
1D6=Dfixedσ

2
min + ω2]2 .

Proof Since the quantity λmin(∆Π(θ)) in the denominator is hard to control, we will work
with the spectral norm instead, since whenever ‖∆Π(θ)‖2 < 1 we have

1
1− λmin(∆Π(θ)) ≤

1
1− ‖∆Π(θ)‖2

.

Let us start by noticing that, thanks to Lemma 31,

‖∆Π(θ)‖2F = ‖Q−1/2
Π RΠ(θ)Q−1/2

Π ‖2F ≤ ‖Q
−1/2
Π ‖42‖RΠ(θ)‖2F = ‖Q−1

Π ‖
2
2‖RΠ(θ)‖2F

‖∆Π(θ)‖2 = ‖Q−1/2
Π ΠR(θ)Π′Q−1/2

Π ‖2 ≤ ‖Q−1/2
Π Π‖22‖R(θ)‖2.

We will later see how the spectral and Frobenius norms of the full residual can be controlled
as a function of θ. For now, we must work to upper bound ‖Q−1

Π ‖2 and ‖Q−1
Π Π‖22. To simplify

the following proof, we write Σd := bdiagT Σ. Since Σd is block-diagonal, its spectrum is
the same as the spectrum of Σ repeated T times, hence λmin(Σd) = σ2

min.
We start with ‖Q−1

Π ‖2. Since QΠ � ω2I � 0 is non-singular and symmetric,

‖Q−1
Π ‖2 = λmax(Q−1

Π ) = 1
λmin(QΠ) = 1

λmin(ΠΣdΠ′ + ω2I) = 1
λmin(ΠΣdΠ′) + ω2 .

Since Σd � σ2
minI, we have ΠΣdΠ′ � σ2

minΠΠ′ and thus

‖Q−1
Π ‖2 ≤

1
λmin(ΠΠ′)σ2

min + ω2 .

We now continue with ‖Q−1/2
Π Π‖22. By definition of the spectral norm,

‖Q−1/2
Π Π‖22 = λmax

[
Π′Q−1

Π Π
]

= λmax
[
Π′(ΠΣdΠ′ + ω2I)−1Π

]
.
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We use the observation
ΠΣdΠ′ + ω2I � σ2

minΠΠ′ + ω2I

to deduce that, since matrix inversion is decreasing w.r.t. the Loewner order on positive
semi-definite matrices,

(ΠΣdΠ′ + ω2I)−1 � (σ2
minΠΠ′ + ω2I)−1

Π′(ΠΣdΠ′ + ω2I)−1Π � Π′(σ2
minΠΠ′ + ω2I)−1Π.

It follows that

‖Q−1/2
Π Π‖22 ≤ λmax

[
Π′(σ2

minΠΠ′ + ω2I)−1Π
]

= 1
σ2

min
λmax

Π′
(

ΠΠ′ + ω2

σ2
min

I

)−1

Π

 .
By Lemma 33,

‖Q−1/2
Π Π‖22 ≤

1
σ2

min

λmax(ΠΠ′)
ω2

σ2
min

+ λmax(ΠΠ′)
= λmax(ΠΠ′)
λmax(ΠΠ′)σ2

min + ω2 ≤
1

σ2
min

.

Another partial conclusion is within reach:

‖∆Π(θ)‖2F
1 + λmin(∆Π(θ)) ≤

‖∆Π(θ)‖2F
1− ‖∆Π(θ)‖2

≤ ‖Q−1
Π ‖22‖RΠ(θ)‖2F

1− ‖Q−1/2
Π Π‖22‖R(θ)‖2

≤ ‖Q
−1
Π ‖22‖RΠ(θ)‖2F

1− 1
σ2

min
‖R(θ)‖2

≤ ‖Q
−1
Π ‖22‖RΠ(θ)‖2F

1− 1
2

= 2‖RΠ(θ)‖2F[
λmin(ΠΠ′)σ2

min + ω2]2 .
To make sure that this holds, we only need to assume that ‖∆Π(θ)‖2 < 1, which is implied
by ‖R(θ)‖2 ≤ 1

2σ
2
min ≤ 1

2‖Σ‖2.
The final step requires lower-bounding the eigenvalue λmin(ΠΠ′). Let us first recall

that ΠΠ′ and Π′Π have the same non-zero eigenvalues, and that Π′Π = diag(κ). Thus,
if ΠΠ′ is non-singular then

λmin(ΠΠ′) = min{κt,d : κt,d > 0} ≥ 1.

For the sampling mechanisms Dindep and DMarkov, each state component is sampled at most
once, hence ΠΠ′ is almost surely non-singular. For Dfixed on the other hand, the probability
of singularity is non-zero. To simplify the rest of the argument, we will use the crude lower
bound λmin(ΠΠ′) ≥ 0 for this sampling mechanism, even though it is clearly suboptimal.
We obtain the final bound:

‖∆Π(θ)‖2F
1 + λmin(∆Π(θ)) ≤

2‖RΠ(θ)‖2F[
1D6=Dfixedσ

2
min + ω2]2 .
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B.4 From RΠ(θ) to R(θ)
As the previous lemma underlines, the last step we need to get rid of the dependency in Π
is to study the average norm of RΠ(θ).

Lemma 15 If Π is distributed according to Dindep or Dfixed then

E
[
‖RΠ(θ)‖2F

]
≤ pTr[R(θ)�R(θ)] + p2‖R(θ)‖2F ,

whereas if Π follows DMarkov then

E
[
‖RΠ(θ)‖2F

]
≤ pTr[R(θ)�R(θ)] + pq‖R(θ)‖2F .

Note that when p = 1 = a = 1 − b (full observation), our bounds have the same order of
magnitude as for the full residual.
Proof We first notice that for any matrix A,

E
[
‖ΠAΠ′‖2F

]
= ETr

[
ΠAΠ′ΠA′Π

]
= ETr

[
diag(κ)Adiag(κ)A′

]
= E

∑
i

κi(Adiag(κ)A′)i,i = E
∑
i

κi
∑
j

Ai,jκjA
′
j,i

∑
i,j

E[κiκj ]A2
i,j .

We can apply this to RΠ(θ) = ΠR(θ)Π′:

E
[
‖RΠ(θ)‖2F

]
=
∑
i,j

E[κiκj ]R(θ)2
i,j .

The rest of the proof consists in instantiating this formula using the moments computed
in Lemma 4. For independent sampling, we have

EDindep

[
‖RΠ(θ)‖2F

]
=

∑
t1,t2,d1,d2

(t1,d1)=(t2,d2)

pR(θ)2
(t1,d1),(t2,d2) +

∑
t1,t2,d1,d2

(t1,d1)6=(t2,d2)

p2R(θ)2
(t1,d1),(t2,d2),

which we can concisely upper bound as:

EDindep

[
‖RΠ(θ)‖2F

]
≤ pTr[R(θ)�R(θ)] + p2‖R(θ)‖2F .

We move on to fixed-size sampling, for which we have

EDfixed

[
‖RΠ(θ)‖2F

]
=

∑
t1,t2,d1,d2

(t1,d1)=(t2,d2)

(
p

(
1− 1

D

)
+ p2

)
R(θ)2

(t1,d1),(t2,d2)

+
∑

t1,t2,d1,d2
t1 6=t2

p2R(θ)2
(t1,d1),(t2,d2)

+
∑

t1,t2,d1,d2
t1=t2,d1 6=d2

(
p2 − p

D

)
R(θ)2

(t1,d1),(t2,d2),
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which has the same concise upper bound:

EDfixed

[
‖RΠ(θ)‖2F

]
≤ pTr[R(θ)�R(θ)] + p2‖R(θ)‖2F .

Finally, in the case of Markov sampling,

EDMarkov

[
‖RΠ(θ)‖2F

]
=

∑
t1,t2,d1,d2

(t1,d1)=(t2,d2)

pR(θ)2
(t1,d1),(t2,d2)

+
∑

t1,t2,d1,d2
d1 6=d2

p2R(θ)2
(t1,d1),(t2,d2)

+
∑

t1,t2,d1,d2
d1=d2,t1 6=t2

(p2 + p(1− p)(1− a− b)|t1−t2|)R(θ)2
(t1,d1),(t2,d2).

The sum in the last term can be crudely controlled as follows:∑
t1,t2,d
t1 6=t2

(1− a− b)|t1−t2|R(θ)2
(t1,d),(t2,d) ≤ |1− a− b|

∑
t1,t2
t1 6=t2

∑
d

(R(θ)[t1,t2])2
d,d

≤ |1− a− b|
∑
t1 6=t2
‖R(θ)[t1,t2]‖2F

≤ |1− a− b| · ‖R(θ)‖2F

This yields a shorter, but probably looser bound:

EDMarkov

[
‖RΠ(θ)‖2F

]
≤ pTr[R(θ)�R(θ)] + (p2 + p(1− p)|1− a− b|)‖R(θ)‖2F .

Finally, we remember our hypothesis a+ b ≤ 1, which will be useful to simplify the previous
expression:

p+ (1− p)(1− a− b) = a

a+ b
+ b

a+ b
(1− a− b)

= a+ b− ab− b2

a+ b
= a(1− b) + b(1− b)

a+ b

= 1− b

p+ (1− p)(a+ b− 1) = a

a+ b
+ b

a+ b
(a+ b− 1)

= a+ ba+ b2 − b
a+ b

= a(1 + b)− b(1− b)
a+ b

= p(1 + b)− (1− p)(1− b) = 2p− (1− b).

As a consequence,

p+ (1− p)|1− a− b| = max{1− b, 2p− (1− b)} =: q.
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B.5 Bounding R(θ)
Lemma 15 relates the bounds involving RΠ(θ) to features of the full residual R(θ), which we
now study.

Lemma 16 The residual R(θ) satisfies the following inequalities:

‖R(θ)‖2 ≤
2σ2

min
(1− ϑ)2 ‖θ‖2

‖R(θ)‖2F ≤
2Tσ4

min
(1− ϑ)3 ‖θ‖

2
F

Tr[R(θ)�R(θ)] ≤ Tσ4
min

(1− ϑ)2 ‖θ‖
2
2‖θ‖2F .

Proof In what follows, we will heavily use the following remark

‖Γ0(θ)‖2 ≤
∞∑
k=0
‖θkΣθ′k‖2 ≤ ‖Σ‖2

∞∑
k=0
‖θ‖2k2 = ‖Σ‖2

1− ‖θ‖22
≤ ‖Σ‖21− ϑ2 .

We start by giving a formula for the blocks of R(θ): by Lemma 12,

R(θ)[t,s] =


θt−sΓ0(θ) if s ∈ [1, t− 1]
θΓ0(θ)θ′ if s = t

Γ0(θ)θ′t−s if s ∈ [t+ 1, T ].

These individual blocks can be bounded using Lemma 31: if r ≥ 1, then

‖θrΓ0(θ)‖2F ≤ ‖Γ0(θ)‖22‖θr‖2F ≤ ‖Γ0(θ)‖22‖θ‖2F ‖θr−1‖22 ≤
‖Σ‖22

(1− ϑ)2 ‖θ‖
2
F ‖θ‖

2(r−1)
2

‖Γ0(θ)θ′r‖2F ≤ ‖Γ0(θ)‖22‖θr‖2F ≤ ‖Γ0(θ)‖22‖θ‖2F ‖θr−1‖22 ≤
‖Σ‖22

(1− ϑ)2 ‖θ‖
2
F ‖θ‖

2(r−1)
2

‖θΓ0(θ)θ′‖2F ≤ ‖θ‖22‖Γ0(θ)‖22‖θ‖2F ≤
‖Σ‖22

(1− ϑ)2 ‖θ‖
2
F ‖θ‖22.

Since we control the norm of each block of R(θ), we control the norm of the whole matrix:

‖R(θ)‖2F =
T∑
t=1

(
t−1∑
s=1
‖θt−sΓ0(θ)‖2F + ‖θΓ0(θ)θ‖2F +

T∑
s=t+1

‖Γ0(θ)θs−t‖2F

)

≤ ‖Σ‖
2
2‖θ‖2F

(1− ϑ2)2

T∑
t=1

(
t−1∑
s=1
‖θ‖2(t−s−1)

2 + ‖θ‖22 +
T∑

s=t+1
‖θ‖2(s−t−1)

2

)

≤ ‖Σ‖
2
2‖θ‖2F

(1− ϑ2)2

T∑
t=1

(
t−1∑

s=−∞
‖θ‖2(t−1−s)

2 + ‖θ‖22 +
+∞∑
s=t+1

‖θ‖2(s−1−t)
2

)

= ‖Σ‖
2
2‖θ‖2F

(1− ϑ2)2 T

( 1
1− ‖θ‖22

+ ‖θ‖22 + 1
1− ‖θ‖22

)
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We now remember our hypothesis ‖θ‖2 ≤ ϑ < 1:

‖R(θ)‖2F ≤
‖Σ‖22‖θ‖2F
(1− ϑ2)2 T

( 1
1− ϑ2 + ϑ2 + 1

1− ϑ2

)
= ‖Σ‖

2
2‖θ‖2F

(1− ϑ2)2 T

(
2 + ϑ2(1− ϑ2)

1− ϑ2

)

≤ ‖Σ‖
2
2‖θ‖2F

(1− ϑ2)2 T

(2 + 2ϑ
1− ϑ2

)
= ‖Σ‖

2
2‖θ‖2F

(1− ϑ2)2 T

( 2
1− ϑ

)
= 2T ‖Σ‖

2
2‖θ‖2F

(1− ϑ)3 .

Now that we have a handle on the Frobenius norm of R(θ), we move on to its spectral
norm. Notice that R(θ) can be written as a sum of Kronecker products with the subdiagonal
matrices Jt:

R(θ) = I ⊗ θΓ0(θ)θ′ +
T−1∑
t=1

[
Jt ⊗ θtΓ0(θ) + J ′t ⊗ Γ0(θ)θ′t

]
.

We can use Lemma 30 and write:

‖R(θ)‖2 ≤ ‖I‖2 × ‖θΓ0(θ)θ′‖2 +
T−1∑
t=1

[
‖Jt‖2 × ‖θtΓ0(θ)‖2 + ‖J ′t‖2 × ‖Γ0(θ)θ′t‖2

]

≤ ‖Γ0(θ)‖2
(
‖θ‖22 + 2

T−1∑
t=1
‖θ‖t2

)
≤ ‖Σ‖21− ϑ2

(
‖θ‖22 + 2 ‖θ‖2

1− ‖θ‖2

)

≤ ‖Σ‖2‖θ‖21− ϑ2

(
ϑ+ 2

1− ϑ

)
≤ ‖Σ‖2‖θ‖21− ϑ

(2 + 2ϑ
1− ϑ2

)
= 2‖Σ‖2‖θ‖2(1− ϑ)2 .

We finish with the trace of the Hadamard product R(θ)�R(θ).

Tr[R(θ)�R(θ)] = T Tr[(θΓ0(θ)θ′)� (θΓ0(θ)θ′)]

≤ T‖θΓ0(θ)θ′‖2F ≤ T‖Σ‖22
‖θ‖22‖θ‖2F
(1− ϑ)2 .

The last step is replacing ‖Σ‖2 = λmax(Σ) = σ2
max in all the previous bounds.

B.6 Upper Bound on the KL Divergence

We now have all the tools in hand to extract a KL divergence bound.

Lemma 17 (Final KL bound) Assume θ satisfies

‖θ‖2 ≤ min
{
ϑ,

(1− ϑ)2

4

}
,
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then the expected conditional divergence is upper-bounded as follows:

EΠ [KL {Pθ(Y |Π) ‖ P0(Y |Π)}] ≤ KLmax(‖θ‖2, ‖θ‖F )

where we defined

KLmax(‖θ‖2, ‖θ‖F ) = 2
γ`(D)Tp(‖θ‖

2
2 + 1D6=DMarkovp+ 1D=DMarkovq)‖θ‖2F

and
γ`(D) = (1− ϑ)3/2 1D6=Dfixedσ

2
min + ω2

σ2
max

.

Proof We only provide the proof for Π ∼ DMarkov. Let us start with Lemma 13 on the
conditional KL divergence between Pθ[Y |Π] and P0[Y |Π]:

E [KL {Pθ(Y |Π) ‖ P0(Y |Π)}] ≤ E
[

‖∆Π(θ)‖2F
2(1 + λmin(∆Π(θ)))

]

Our hypothesis on the spectral norm of θ is useful to bound the spectral norm of R(θ) using
Lemma 16:

‖R(θ)‖2 ≤
2σ2

min
(1− ϑ)2 ‖θ‖2 ≤

2σ2
min

(1− ϑ)2 ×
(1− ϑ)2

4 ≤ 1
2σ

2
min

Since this condition is satisfied, we can move on with Lemma 14 linking ∆Π(θ) to RΠ(θ):

E [KL {Pθ(Y |Π) ‖ P0(Y |Π)}] ≤ E
[
‖RΠ(θ)‖2F

][
σ2

min + ω2]2 .
We follow up with Lemma 15 to get rid of the expectation:

E [KL {Pθ(Y |Π) ‖ P0(Y |Π)}] ≤ pTr[R(θ)�R(θ)] + pq‖R(θ)‖2F[
σ2

min + ω2]2 .

By Lemma 16, both terms in the numerator can be controlled using the norms of θ:

‖R(θ)‖2F ≤
2Tσ4

min
(1− ϑ)3 ‖θ‖

2
F

Tr[R(θ)�R(θ)] ≤ Tσ4
min

(1− ϑ)2 ‖θ‖
2
2‖θ‖2F .

This leaves us with:

E [KL {Pθ(Y |Π) ‖ P0(Y |Π)}] ≤
p× Tσ4

min
(1−ϑ)2 ‖θ‖22‖θ‖2F + pq × 2Tσ4

min
(1−ϑ)3 ‖θ‖2F[

σ2
min + ω2]2

≤
(

σ2
min

σ2
min + ω2

)2 2Tp(‖θ‖22 + q)
(1− ϑ)3 ‖θ‖2F .

We obtain the result we expected by noting the presence of γ`(DMarkov) in the denominator
of the previous expression.
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B.7 Application of Fano’s Method

Given the KL bound we just obtained, we are finally able to prove Theorem 1.
Proof Again, we only provide the proof for Markov sampling. Fano’s method requires
finding M + 1 parameters θi such that θ0 = 0 and ‖θi − θj‖F ≥ 2τ for i 6= j (with τ to be
specified), while keeping control upon the average KL divergence between the probability
distributions Pθi and P0. Judging by Lemma 17, one way to achieve this control on the KL
divergence is to bound the ‖θi‖F uniformly in i (in other words, to choose them all inside a
ball of fixed radius). We will then have to see how many 2τ -separated matrices we can fit in
such a ball.

Let us consider the setH(r) of all block-diagonal D×D matrices with coefficients in {0, r}
such that each block has size s× s (we assume s divides D). In particular, these matrices
are all column-sparse, with no more than s non-zero coefficients per column. In terms of
dimensionality, we are dealing with the (scaled) matrix equivalent of a Ds-dimensional
hypercube, hence the notation H(r). It has cardinality 2Ds and for every θ ∈ H, we have
the following norm bounds:

‖θ‖2 ≤ rs and ‖θ‖F ≤ r
√
Ds.

The spectral norm bound on θ is obtained as the maximum spectral norm of each block,
which we in turn control using the Frobenius norm of each block.

Unfortunately, in this hypercube, not all pairs of vertices are well-separated. That is
why we need the Gilbert-Varshamov bound of Lemma 42: according to this result, there
exists a pruned subset K(r) ⊂ H(r) containing 0 and such that

|K(r)| ≥ |H(r)|1/8 = 2Ds/8 and ‖vec(θi)− vec(θj)‖1≥
rDs

8

for all pairs of distinct vertices θi and θj in K(r). We choose our set of parameters θ0, θ1, ..., θM
to be exactly this pruned subset K(r), in particular M + 1 = |K(r)|.

The missing ingredient is an upper bound on the maximum average KL divergence
between Pθi and P0: we can obtain it using Lemma 17. We only need to assume

‖θi‖F ≤ r
√
Ds ≤ min

{
ϑ,

(1− ϑ)2

4

}

to get

max
i

EΠ [KL {Pθi(Y |Π) ‖ Pθ0(Y |Π)}] ≤ max
i

KLmax(‖θi‖2, ‖θi‖F ) ≤ KLmax(rs, r
√
Ds).

Since we must satisfy the constraint from Equation (19) in Fano’s method, we will choose r
so that:

KLmax(rs, r
√
Ds) ≤ α log(M) = α log

(
2Ds/8 − 1

)
with α = log 3−log 2

log 2 . We want to solve the previous inequality for r, and for that we start
by replacing KLmax(rs, r

√
Ds) with its value from Lemma 17, replacing γ`(D) with γ` to
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lighten notations:

KLmax(rs, r
√
Ds) ≤ α log

(
2Ds/8 − 1

)
⇐⇒ 2

γ`
Tp
(
(rs)2 + q

)
(r
√
Ds)2 ≤ cDs

⇐⇒ Ds3r4 + qDsr2 − cγ
2
`Ds

Tq
≤ 0.

If we consider this as a degree two polynomial in the variable r2, its determinant is

∆ = q2D2s2 + 4Ds3c
γ2
`Ds

Tp
.

For β to be small enough, r2 must remain below the only positive root of the polynomial,
namely

r2 ≤
−qDs+

√
q2D2s2 + c

γ2
`
D2s4

Tp

2Ds3 = q

2s2

√1 + c
γ2
` s

2

Tpq2 − 1

 .
If we assume the quantity c γ

2
` s

2

Tpq2 inside the square root is smaller than 1, i.e.

γ`s
√
pq
√
T
≤ c, (10)

then we can lower-bound
√

1 + x by its chord (
√

2−1)x. In other words, a sufficient condition
for r2 to remain small enough is given by

r2 ≤ q

2s2 × (
√

2− 1)c γ
2
` s

2

Tpq2 = c
γ2
`

Tpq
.

To sum up, we have three constraints on r:

rs ≤ ϑ

rs ≤ (1− ϑ)2

4

r ≤

√
c
γ2
`

Tpq
.

We can therefore choose r as the largest value satisfying all three of them:

r := min
{
ϑ

s
,
(1− ϑ)2

4s , c
γ`

√
pq
√
T

}

To reach our conclusion, we simply need to remark that the vectorized `1 distance between
any two matrices in K(r) gives us a lower bound on the operator `∞ distance that separates
them:

‖θi − θj‖∞ = max
k∈[D]

∑
l∈[D]

|(θi − θj)|k,l ≥
1
D

∑
1≤k,l≤D

|(θi − θj)|k,l

= 1
D
‖vec(θi)− vec(θj)‖1 ≥

rDs

8D = rs

8
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Subsequently, our parameters θi are 2τ -separated (in `∞ operator distance) with

τ = rs

8 = min
{
ϑ

8 ,
(1− ϑ)2

32 , c
γ`s

√
pq
√
T

}
.

As soon as
c

γ`s
√
pq
√
T
≤ cmin{ϑ, (1− ϑ)2} (11)

we can simplify this expression as

τ = c
γ`s

√
pq
√
T
.

In this case, by Lemma 34, we can conclude:

inf
θ̂

sup
θ∈Θs

Pθ

[
‖θ̂ − θ‖∞ ≥ c

γ`s
√
pq
√
T

]
≥ log(M + 1)− log 2

logM − α ≥ 1
2 .

Appendix C. Proof of the Estimator’s Convergence Rate

Here we present the detailed proofs of Theorems 2 and 3.
For this part, we slightly change the previous conventions: we now assume that Πt has

a fixed size of O, with a variable number of non-trivial observation rows stacked at the
top, followed if necessary by a block of rows that are full of zeroes. This allows us to fully
decouple η from Π, but it doesn’t change the heart of our problem since we do not have
more information available, just a number of rows containing only noise.

In this new setting, it is crucial to notice that Lemma 10 still applies, because the
matrices Πt now have at most one 1 per row instead of exactly one.

C.1 Building an Unbiased Estimator

The first step consists in justifying the construction of our estimator for Γh.

Lemma 18 (Expectation of the covariance estimator) Let us define

S(h) := E[πt+hπ′t] and C(h) := 1{h=0}ω
2 diag

(E[πt/κt]
E[πt]

)
.

Then the estimator Γ̂h given by Equation (8) for the covariance matrix Γh of rank h is
unbiased.

Proof By Equation (6),

(Π+
t+hYt+h)(Π+

t Yt)′ = Π+
t+h(Πt+hXt+h + ηt+h)(X ′tΠ′t + η′t)Π+

t
′

= Π+
t+hΠt+hXt+hX

′
tΠ′tΠ+

t
′ + Π+

t+hΠt+hXt+hη
′
tΠ+

t
′

+ Π+
t+hηt+hX

′
tΠ′tΠ+

t
′ + Π+

t+hηt+hη
′
tΠ+

t
′,

(12)
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so that

E[(Π+
t+hYt+h)(Π+

t Yt)′|Π] = E
[
Π+
t+h(Πt+hXt+h + ηt+h)(X ′tΠ′t + η′t)Π+

t
′∣∣Π]

= Π+
t+hΠt+hE

[
Xt+hX

′
t

]
Π′tΠ+

t
′

+ Π+
t+hΠt+hE

[
Xt+hη

′
t

]
Π+
t
′

+ Π+
t+hE

[
ηt+hX

′
t

]
Π′tΠ+

t
′

+ Π+
t+hE

[
ηt+hη

′
t

]
Π+
t
′.

The two cross-product terms in the middle are zero because X and η are centered at
expectation and independent (given Π). Since E [Xt+hX

′
t] = Γh and E[ηt+h, ηt] = 1{h=0}ω

2I,
we are left with:

E[(Π+
t+hYt+h)(Π+

t Yt)′|Π] = (Π+
t+hΠt+h)Γh(Π+

t Πt)′ + 1{h=0}ω
2Π+

t Π+
t
′.

Using Lemma 10, we find Π+
t Πt = diag(πt) and

Π+
t Π+

t
′ = diag

(
πt
κt

)
Π′tΠt diag

(
πt
κt

)
= diag

(
πt
κt

)
diag(κt) diag

(
πt
κt

)
= diag

(
πt
κt

)
. (13)

Plugging this in yields

E[(Π+
t+hYt+h)(Π+

t Yt)′|Π] = diag(πt+h)Γh diag(πt) + 1{h=0}ω
2 diag(πt/κt)

= (πt+hπ′t)� Γh + 1{h=0}ω
2 diag(πt/κt).

We now take the expectation w.r.t. Π:

E[(Π+
t+hYt+h)(Π+

t Yt)′] = E
[
E[(Π+

t+hYt+h)(Π+
t Yt)′|Π]

]
= E[πt+hπ′t]� Γh + 1{h=0}ω

2E[diag(πt/κt)],

Dividing by E[πt+hπ′t], we get

E
[ 1
E[πt+hπ′t]

� (Π+
t+hYt+h)(Π+

t Yt)′
]

= Γh + 1{h=0}ω
2E[diag(πt/κt)]�

1
E[πtπ′t]

,

= Γh + 1{h=0}ω
2 diag

(E[πt/κt]
E[πt]

)
which shows that our estimator

Γ̂h := 1
T − h

T−h∑
t=1

1
E[πt+hπ′t]

� (Π+
t+hYt+h)(Π+

t Yt)′ − 1{h=0}ω
2 diag

(E[πt/κt]
E[πt]

)

is unbiased. Since the process (Πt) is stationary, the values of

S(h) = E[πt+hπ′t] and C(h) = 1{h=0}ω
2 diag

(E[πt/κt]
E[πt]

)
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do not depend on t, and we get:

Γ̂h = 1
S(h) �

1
T − h

T−h∑
t=1

(Π+
t+hYt+h)(Π+

t Yt)′ − C(h)

The reasoning above immediately entails that Γ̂h is unbiased.

Note that for distributions Dindep and DMarkov, since πt = κt, the fraction in C(h) is a sim-
ple Bernoulli variable πt,d

κt,d
= πt,d ∼ B(p) whose expectation is known. Meanwhile, for Dfixed,

the fraction πt,d
κt,d

(whenever it is nonzero) is the inverse of a binomial variable B(pD, 1/D),
whose expectation has no closed form but can easily be approximated numerically.

C.2 Gaussian Concentration, Episode 1

From now on, our goal will be to quantify the concentration of Γ̂h around its expectation.
We will do this coefficient by coefficient: let us fix two indices d1 and d2. Our goal is to
control the deviation of (Γ̂h)d1,d2 around its mean.

Lemma 19 (Deviation of (Γ̂h)d1,d2) The deviation probability for (Γ̂h)d1,d2 can be decom-
posed as follows:

P(|(Γ̂h − Γh)d1,d2 | ≥ u) ≤ P
(
|g′εΨ′εLεεΨεgε − E

[
g′εΨ′εLεεΨεgε

]
| ≥ u/4

)
+ P

(
|g′ηΨ′ηLηεΨεgε − E

[
g′ηΨ′ηLηεΨεgε

]
| ≥ u/4

)
+ P

(
|g′εΨ′εLεηΨηgη − E

[
g′εΨ′εLεηΨηgη

]
| ≥ u/4

)
+ P

(
|g′ηΨ′ηLηηΨηgη − E

[
g′ηΨ′ηLηηΨηgη

]
| ≥ u/4

)
where the (random) L matrices are defined in Equation (14) and the Ψ matrices are defined
in Equation (15).

Proof By Equation (8),

(Γ̂h + C(h))d1,d2 = 1
T − h

T−h∑
t=1

( 1
S(h) � (Π+

t+hYt+h)(Π+
t Yt)′

)
d1,d2

= 1
T − h

T−h∑
t=1

1
S(h)d1,d2

1′d1(Π+
t+hYt+h)(Π+

t Yt)′1d2

= 1
T − h

T−h∑
t=1

Tr
[

1d21′d1

S(h)d1,d2

(Π+
t+hYt+h)(Π+

t Yt)′
]
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Equation (12) allows us to rewrite (Π+
t+hYt+h)(Π+

t Yt)′:

(Γ̂h + C(h))d1,d2 = 1
T − h

T−h∑
t=1

X ′tΠ′tΠ+
t
′ 1d21′d1

S(h)d1,d2

Π+
t+hΠt+hXt+h

+ 1
T − h

T−h∑
t=1

η′tΠ+
t
′ 1d21′d1

S(h)d1,d2

Π+
t+hΠt+hXt+h

+ 1
T − h

T−h∑
t=1

X ′tΠ′tΠ+
t
′ 1d21′d1

S(h)d1,d2

Π+
t+hηt+h

+ 1
T − h

T−h∑
t=1

η′tΠ+
t
′ 1d21′d1

S(h)d1,d2

Π+
t+hηt+h

Let us denote by Pt the projection keeping only the components associated with time t, i.e.
such that Xt = PtX and ηt = Ptη. We then have

(Γ̂h + C(h))d1,d2 = X ′
( 1
T − h

T−h∑
t=1

P ′t(Π+
t Πt)′

1d21′d1

S(h)d1,d2

(Π+
t+hΠt+h)Pt+h︸ ︷︷ ︸

Lεε

)
X

+ η′
( 1
T − h

T−h∑
t=1

P ′tΠ+
t
′ 1d21′d1

S(h)d1,d2

(Π+
t+hΠt+h)Pt+h︸ ︷︷ ︸

Lηε

)
X

+X ′
( 1
T − h

T−h∑
t=1

P ′t(Π+
t Πt)′

1d21′d1

S(h)d1,d2

Π+
t+hPt+h︸ ︷︷ ︸

Lεη

)
η

+ η′
( 1
T − h

T−h∑
t=1

P ′tΠ+
t
′ 1d21′d1

S(h)d1,d2

Π+
t+hPt+h︸ ︷︷ ︸

Lηη

)
η

(14)

Since X) and η both follow centered multivariate Gaussian distributions, we can write them
as linear combinations of standard Gaussian vectors gε and gη (indexed by the source of
randomness):

X = Ψεgε with
{
gε ∼ N (0, ITD)

Ψε := Cov[X]1/2 (see Lemma 11)

η = Ψηgη with
{
gη ∼ N (0, ITO)

Ψη := Cov[η]1/2 = ωI.

(15)

We replace X and η to get:

(Γ̂h + C(h))d2,d1 = g′εΨ′εLεεΨεgε + g′ηΨ′ηLηεΨεgε + g′εΨ′εLεηΨηgη + g′ηΨ′ηLηηΨηgη,
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which implies

(Γ̂h − Γh)d1,d2 = g′εΨ′εLεεΨεgε − E[g′εΨ′εLεεΨεgε]
+ g′ηΨ′ηLηεΨεgε − E[g′ηΨ′ηLηεΨεgε]
+ g′εΨ′εLεηΨηgη − E[g′εΨ′εLεηΨηgη]
+ g′ηΨ′ηLηηΨηgη − E[g′ηΨ′ηLηηΨηgη].

The union bound gives us the expected result.

C.3 Interlude: Discrete Concentration

Now, our goal is to control the L matrices, in order to apply a conditional version of the
Hanson-Wright inequality (Lemma 7) to these deviation probabilities. Since these L are
random and built from the binary sampling matrices Πt, we need to take a little detour
through discrete concentration inequalities.

We first notice that each one of these L matrices can be written as

L = 1
T − h

T−h∑
t=1

P ′tL[t,t+h]Pt+h

which means they are block-superdiagonal of rank h and satisfy

‖L‖2 = 1
T − h

max
t∈[T−h]

‖L[t,t+h]‖2 and ‖L‖2F = 1
(T − h)2

T−h∑
t=1
‖L[t,t+h]‖2F

Lemma 20 (Spectral norm bound for the L matrices) The spectral norms of all L
matrices are bounded by the same deterministic quantity:

max{‖Lεε‖2, ‖Lηε‖2, ‖Lεη‖2, ‖Lηη‖2} ≤
c

p2T
.

Proof We must bound the spectral norm of L[t,t+h]. By Lemma 10, we know that ‖Π+
t Πt‖2 =

‖diag(πt)‖2 ≤ 1. Meanwhile, Equation (13) gives us

‖Π+
t ‖2 =

√
λmax (diag(πt/κt)) ≤ 1

And of course ‖1d21′d1
‖2 = 1. Judging by Equation (14), this means that L[t,t+h] can be

written as 1/S(h)d1,d2 times the product of three matrices with spectral norm smaller than 1.
As a consequence,

‖L[t,t+h]‖2 ≤
1

S(h)d1,d2

≤ 1
S(h)min

≤ c

p2

So we can conclude

max{‖Lεε‖2, ‖Lηε‖2, ‖Lεη‖2, ‖Lηη‖2} ≤
1

T − h
max
t∈[T−h]

c

p2 ≤
c

Tp2 .
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Lemma 21 (Frobenius norm comparison for the L matrices) The Frobenius norm
of all L matrices is controlled by that of Lεε:

max{‖Lεε‖2F , ‖Lηε‖2F , ‖Lεη‖2F , ‖Lηη‖2F } = ‖Lεε‖2F .

Proof In this whole proof, we will be using Lemma 10 to simplify expressions involving Π+
t .

Let us start with the simplest one, namely Lεε:

‖Lεε‖2F = 1
(T − h)2

T−h∑
t=1

∥∥∥∥∥(Π+
t Πt)′

1d21′d1

S(h)d1,d2

(Π+
t+hΠt+h)

∥∥∥∥∥
2

F

= 1
(T − h)2

T−h∑
t=1

∥∥∥∥∥diag(πt)
1d21′d1

S(h)d1,d2

diag(πt+h)
∥∥∥∥∥

2

F

= 1
(T − h)2

T−h∑
t=1

∥∥∥∥∥πt+h,d1πt,d2

S(h)d1,d2

1d21′d1

∥∥∥∥∥
2

F

= 1
(T − h)2S(h)2

d1,d2

T−h∑
t=1

πt+h,d1πt,d2 .

Now we move on to Lηε (the reasoning for Lε,η is the same):

‖Lηε‖2F = 1
(T − h)2

T−h∑
t=1

∥∥∥∥∥Π+
t
′ 1d21′d1

S(h)d1,d2

(Π+
t+hΠt+h)

∥∥∥∥∥
2

F

= 1
(T − h)2

T−h∑
t=1

∥∥∥∥∥Πt diag(πt/κt)
1d21′d1

S(h)d1,d2

diag(πt+h)
∥∥∥∥∥

2

F

= 1
(T − h)2

T−h∑
t=1

∥∥∥∥∥πt+h,d1(πt,d2/κt,d2)
S(h)d1,d2

Πt1d21′d1

∥∥∥∥∥
2

F

= 1
(T − h)2S(h)2

d1,d2

T−h∑
t=1

πt+h,d1πt,d2

∥∥∥Πt1d21′d1

∥∥∥2

F

κ2
t,d2

.

Let us now finish with Lηη:

‖Lηη‖2F = 1
(T − h)2

T−h∑
t=1

∥∥∥∥∥Π+
t
′ 1d21′d1

S(h)d1,d2

Π+
t+h

∥∥∥∥∥
2

F

= 1
(T − h)2

T−h∑
t=1

∥∥∥∥∥Πt diag(πt/κt)
1d21′d1

S(h)d1,d2

diag(πt+h/κt+h)Π′t+h

∥∥∥∥∥
2

F

= 1
(T − h)2

T−h∑
t=1

∥∥∥∥∥(πt+h,d1/κt+h,d1)(πt,d2/κt,d2)
S(h)d1,d2

Πt1d21′d1Π′t+h

∥∥∥∥∥
2

F

= 1
(T − h)2S(h)2

d1,d2

T−h∑
t=1

πt+h,d1πt,d2

∥∥∥Πt1d21′d1
Π′t+h

∥∥∥2

F

κ2
t+h,d1

κ2
t,d2

.
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To prove that Lε,ε has the largest Frobenius norm of them all, we only need the following
insight: ∥∥∥Πt1d21′d1

∥∥∥2

F

κ2
t,d2

≤ 1 and

∥∥∥Πt1d21′d1
Π′t+h

∥∥∥2

F

κ2
t,d2

κ2
t+h,d1

≤ 1

Indeed, Πt1d2 is the d2-th column from Πt, and the number of non-zero coefficients in this
column is given by κt,d2 . As a consequence, its Frobenius (Euclidean) norm is κt,d2 . The
same goes for Πt+h1d1 .

Lemma 22 (Frobenius norm bound for the L matrices) For any δ such that condi-
tion (16) holds, the Frobenius norm of Lεε is bounded by:

‖Lεε‖2F ≤
c

p2T

with probability at least 1− δ.

Proof We will exploit discrete concentration inequalities to get a high-probability bound on

‖Lεε‖2F = 1
(T − h)2S(h)2

d1,d2

T−h∑
t=1

πt+h,d1πt,d2 .

By Lemma 5, for all u ∈ [0, 1],

P
(

1
T − h

T−h∑
t=1

πt+h,d1πt,d2 ≥ (1 + u)S(h)d1,d2

)
≤ c1 exp(−c2u

2TS(h)d1,d2).

Which implies, by rescaling,

P
(

1
T − h

T−h∑
t=1

πt+h,d1πt,d2

S(h)d1,d2

≥ 1 + u

)
≤ c1 exp(−c2u

2TS(h)d1,d2).

The conclusion about ‖Lεε‖2F is now within reach:

P
(
‖Lεε‖2F ≥

1 + u

(T − h)S(h)d1,d2

)

= P
(

1
(T − h)S(h)d1,d2

(
1

T − h

T−h∑
t=1

πt+h,d1πt,d2

S(h)d1,d2

)
≥ 1 + u

(T − h)S(h)d1,d2

)
≤ c1 exp(−c2u

2TS(h)d1,d2).

We finally remember that S(h)d1,d2 ≥ S(h)min ≥ cp2, so that

P
(
‖Lεε‖2F ≥

c3(1 + u)
Tp2

)
≤ c1 exp

(
−c2u

2p2T
)
.
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All we need to make sure that P
(
‖Lεε‖2F ≥

c3(1+u)
Tp2

)
≤ δ is to choose u such that

c1 exp
(
−c2u

2p2T
)
≤ δ

⇐⇒ − c2u
2p2T ≤ log(δ/c1)

⇐⇒ u ≥
( 1
c2p2T

log(c1/δ)
)1/2

= c4 log(1/δ)
p
√
T

.

However, for this to be valid, we must assume that our choice of u is smaller than 1, i.e.

c log(1/δ)
p
√
T

≤ 1. (16)

If this holds, we might as well replace u with 1 directly in the concentration result, which
yields the simpler result announced above.

Lemma 23 (Trace bound for the L matrices) The trace of Ψ′ηLηηΨη is always zero.
The trace of Ψ′εLεεΨε concentrates around its mean as follows: for every u ∈ [0, 1],

P(|Tr(Ψ′εLεεΨε − E[Ψ′εLεεΨε])| ≥ u) ≤ c1 exp
(
−c2u

2p2T

‖Γh‖22

)
.

Proof By definition, Ψη = ωI is diagonal. For h ≥ 1, Lηη is superdiagonal of rank h by
blocks, so Ψ′ηLηηΨη is too. This means that the trace of Ψ′ηLηηΨη is zero almost surely. The
case of Ψ′εLεεΨε is harder since Ψε = Cov[X]1/2 is not block-diagonal.

Luckily, we can compute an explicit formula for the trace, again thanks to Lemma 10:

Tr(Ψ′εLεεΨε) = Tr
(

1
T − h

T−h∑
t=1

Ψ′εP ′t diag(πt)
1d21′d1

S(h)d1,d2

diag(πt+h)Pt+hΨε

)

= 1
T − h

T−h∑
t=1

πt+h,d1πt,d2

S(h)d1,d2

Tr
(
Ψ′εP ′t1d21′d1Pt+hΨε

)
.

Remembering the definition of Ψε in Equation (15) gives

Tr(Ψ′εLεεΨε) = 1
T − h

T−h∑
t=1

πt+h,d1πt,d2

S(h)d1,d2

(
1′d1Pt+h Cov[X]P ′t1d2

)
= 1
T − h

T−h∑
t=1

πt+h,d1πt,d2

S(h)d1,d2

(Γh)d1,d2 .

And therefore,

Tr(Ψ′εLεεΨε − E[Ψ′εLεεΨε]) = (Γh)d1,d2

(
1

T − h

T−h∑
t=1

πt+h,d1πt,d2

S(h)d1,d2

− 1
)
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Like before, we apply Lemma 5: for all u ∈ [0, 1],

P
(∣∣∣∣∣ 1
T − h

T−h∑
t=1

πt+h,d1πt,d2

S(h)d1,d2

− 1
∣∣∣∣∣ ≥ u

)
≤ c1 exp(−c2u

2TS(h)d1,d2).

Since |(Γh)d1,d2 | ≤ ‖Γh‖2, we can deduce

P
(
|Tr(Ψ′εLεεΨε − E[Ψ′εLεεΨε])| ≥ u‖Γh‖2

)
≤ c1 exp(−c2u

2TS(h)d1,d2)

which is equivalent to:

P
(
|Tr(Ψ′εLεεΨε − E[Ψ′εLεεΨε])| ≥ v

)
≤ c1 exp

(
−c2v

2p2T

‖Γh‖22

)
.

C.4 Gaussian Concentration, Episode 2

We will now apply a Gaussian concentration inequality that exploits our knowledge of the L
matrices.

Lemma 24 (Applying Hanson-Wright) The deviation probability for (Γ̂h)d1,d2 satisfies

P(|(Γ̂h − Γh)d1,d2 | ≥ u) ≤ 4δ + c1 exp
(
− c2p

2Tu2

(‖Ψε‖22 + ‖Ψη‖22)2

)
+ c1 exp

(
−c2p

2Tu2

‖Γh‖22

)
.

Proof The bound we had reached before our discrete concentration detour is given by
Lemma 19, and we can rewrite it as

P(|(Γ̂h − Γh)d1,d2 | ≥ u) ≤ pεε + pηε + pεη + pηη,

where each pij represents a deviation probability for a specific quadratic form g′iΨ′iLijΨjgj .
We control the norms of these quadratic forms as follows: by Lemmas 20 and 22, with prob-
ability at least 1− δ, the following eight inequalities occur at the same time if condition (16)
holds:

‖Ψ′εLεεΨε‖2 ≤
‖Ψε‖22
p2T

‖Ψ′εLεεΨε‖2F ≤
‖Ψε‖42
p2T

‖Ψ′ηLηεΨε‖2 ≤
‖Ψη‖2‖Ψε‖2

p2T
‖Ψ′ηLηεΨε‖2F ≤

‖Ψη‖22‖Ψε‖22
p2T

‖Ψ′εLεηΨη‖2 ≤
‖Ψε‖2‖Ψη‖2

p2T
‖Ψ′εLεηΨη‖2F ≤

‖Ψε‖22‖Ψη‖22
p2T

‖Ψ′ηLηηΨη‖2 ≤
‖Ψη‖22
p2T

‖Ψ′ηLηηΨη‖2F ≤
‖Ψη‖42
p2T

.
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Lemma 7 (applied with X = ga, Y = gb and A = Ψ′aLΨb) now provides the concentration
result we need:

pεε ≤ δ + 2 exp
(
−c1p

2T min
{

(u/4)2

‖Ψε‖42
,

(u/4)
‖Ψε‖22

})
+ P

(
|Tr(Ψ′ηLεεΨε)− E[Ψ′εLεεΨε])| ≥ u/2

)
pηε ≤ δ + 2 exp

(
−c1p

2T min
{

(u/4)2

‖Ψη‖22‖Ψε‖22
,

(u/4)
‖Ψη‖2‖Ψε‖2

})

pεη ≤ δ + 2 exp
(
−c1p

2T min
{

(u/4)2

‖Ψε‖22‖Ψη‖22
,

(u/4)
‖Ψε‖2‖Ψη‖2

})

pηη ≤ δ + 2 exp
(
−c1p

2T min
{

(u/4)2

‖Ψη‖42
,

(u/4)
‖Ψη‖22

})
+ P

(
|Tr(Ψ′ηLηηΨη)− E[Ψ′ηLηηΨη])| ≥ u/2

)
.

The denominators inside the minimums can be controlled as follows:

max
{
‖Ψε‖42, ‖Ψε‖22‖Ψη‖22, ‖Ψη‖42

}
≤
(
‖Ψε‖22 + ‖Ψη‖22

)2

max
{
‖Ψε‖22, ‖Ψε‖2‖Ψη‖2, ‖Ψη‖22

}
≤ (‖Ψε‖2 + ‖Ψη‖2)2 ≤ 2

(
‖Ψε‖22 + ‖Ψη‖22

)
.

This means we can upper bound each of the 4 minimums by

min


(

u/4
‖Ψε‖22 + ‖Ψη‖22

)2

,
u/4

‖Ψε‖22 + ‖Ψη‖22

 .
From now on, we additionally suppose that

u/4
‖Ψε‖22 + ‖Ψη‖22

≤ 1 (17)

This enables us to get rid of the min{·, ·} by reducing it to the (smaller) quadratic term only.
We end up with

pεε ≤ δ + 2 exp
(
−c1p

2T
u2(

‖Ψε‖22 + ‖Ψη‖22
)2
)

+ P
(
|Tr(Ψ′ηLεεΨε)− E[Ψ′εLεεΨε])| ≥ u/2

)
pηε ≤ δ + 2 exp

(
−c1p

2T
u2(

‖Ψε‖22 + ‖Ψη‖22
)2
)

pεη ≤ δ + 2 exp
(
−c1p

2T
u2(

‖Ψε‖22 + ‖Ψη‖22
)2
)

pηη ≤ δ + 2 exp
(
−c1p

2T
u2(

‖Ψε‖22 + ‖Ψη‖22
)2
)

+ P
(
|Tr(Ψ′ηLηηΨη)− E[Ψ′ηLηηΨη])| ≥ u/2

)
.

As for the trace terms, they are taken care of by Lemma 23:

P
(
|Tr(Ψ′ηLηηΨη)− E[Ψ′ηLηηΨη])| ≥ u/2

)
= 0

P
(
|Tr(Ψ′ηLεεΨε)− E[Ψ′εLεεΨε])| ≥ u/2

)
≤ c3 exp

(
−c4

(u/2)2p2T

‖Γh‖22

)
.
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We plug this in and merge some constants to obtain the expected result:

pεε + pηε + pεη + pηη ≤ 4δ + 8 exp
(
− c1p

2Tu2

(‖Ψε‖22 + ‖Ψη‖22)2

)
+ c3 exp

(
−c4p

2Tu2

‖Γh‖22

)
.

Lemma 25 (Spectral norms of Ψε, Ψη and Γh) The matrices Ψε and Ψη satisfy:

‖Ψε‖22 ≤
σ2

min
(1− ϑ)2 ‖Ψη‖22 = ω2 ‖Γh‖2 ≤

ϑh

1− ϑσ
2
min.

Proof We can write Ψε as a sum of Kronecker products:

Ψ2
ε = Cov[X] = I ⊗ Γ0(θ) +

T−1∑
t=1

[
Jt ⊗ θtΓ0(θ) + J ′t ⊗ Γ0(θ)θ′t

]
As a consequence, we have control over its spectral norm thanks to Lemma 30:

‖Ψε‖22 = ‖Ψ2
ε‖2 ≤ ‖I‖2 × ‖Γ0(θ)‖2 +

T−1∑
t=1

[
‖Jt‖2 × ‖θtΓ0(θ)‖2 + ‖J ′t‖2 × ‖Γ0(θ)θ′t‖2

]

≤ ‖Γ0(θ)‖2
(

1 + 2
T−1∑
t=1
‖θ‖t2

)
≤ ‖Σ‖21− ϑ2

(
1 + 2 ‖θ‖2

1− ‖θ‖2

)

≤ σ2
min

1− ϑ2
1 + ϑ

1− ϑ = σ2
min

(1− ϑ)2 .

The spectral norm of Ψη is easily seen to equal ‖Ψη‖22 = ‖ω2I‖2 = ω2. Finally, we turn
to Γh using Lemma 11:

‖Γh‖2 = ‖θhΓ0(θ)‖2 ≤
ϑh

1− ϑ2 ‖Σ‖2 ≤
ϑh

1− ϑσ
2
min.

We can now finish the proof of Theorem 2.
Proof Let us plug Lemma 25 into Lemma 24

P(|(Γ̂h − Γh)d1,d2 | ≥ u) ≤ 4δ + c1 exp

− c2p
2Tu2(

σ2
min

(1−ϑ)2 + ω2
)2

+ c1 exp

− c2p
2Tu2(

ϑhσ2
min

1−ϑ

)2


≤ 4δ + c1 exp

(
−c2(1− ϑ)4p2Tu2

(σ2
min + ω2)2

)
+ c1 exp

(
−c2(1− ϑ)2p2Tu2

ϑ2hσ4
min

)
.

We merge both exponential terms by keeping the least negative exponent:

P(|(Γ̂h − Γh)d1,d2 | ≥ u) ≤ 4δ + c1 exp
(
−c2(1− ϑ)4p2T

(σ2
min + ω2)2 u

2
)
.
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All that is left to do is choose u such that

P(|(Γ̂h − Γh)d1,d2 | ≥ u) ≤ 8δ,

which will be true if

c1 exp
(
−c2(1− ϑ)4p2T

(σ2
min + ω2)2 u

2
)
≤ 4δ ⇐⇒ u ≥ c

√
log(D/δ)(σ2

min + ω2)
(1− ϑ)2p

√
T

.

With this choice of u, the assumption we made in Equation (17) translates into√
log(1/δ)(σ2

min + ω2)
(1− ϑ)2p

√
T (‖Ψε‖22 + ‖Ψη‖22)

≤ c

Using Lemma 25 again yields the condition√
log(1/δ)

(1− ϑ)2p
√
T

(
1 + σ2

min
ω2

)
≤ c. (18)

Summing up, we just proved that with probability at least 1− 8δ,

|(Γ̂h − Γh)d1,d2 | ≤ c
σ2

min + ω2

(1− ϑ)2

√
log(1/δ)
p
√
T

.

We finish with a union bound, applying the previous result to all pairs (d1, d2) ∈ [D]2. With
probability greater than 1− 2D2δ, we have:

max
d1,d2
|(Γ̂h − Γh)d1,d2 | = ‖Γ̂h − Γh‖max ≤ c

σ2
min + ω2

(1− ϑ)2

√
log(1/δ)
p
√
T

.

Replacing δ with D2δ gives us the result we wanted: with probability greater than 1− δ,

‖Γ̂h − Γh‖max ≤ c
σ2

min + ω2

(1− ϑ)2

√
log(D/δ)
p
√
T

.

C.5 Behavior of the Dantzig selector

We now walk the final steps from the error on Γ̂h to the error on θ̂. In order to obtain
Theorem 2, we adapt the convergence proof from Han et al. (2015, Appendix A.1). However,
we use our own notations and our custom concentration results for Γ̂h. To make comparison
between both papers easier, we provide a dictionary of the main notations in Table 3.

Lemma 26 (Feasibility of the real θ) If we define

err(δ) := c
σ2

min + ω2

(1− ϑ)2

√
log(D/δ)
p
√
T

and select the penalization level

λ0 := (‖θ‖∞ + 1) err(δ),

then the real θ is a feasible solution to the optimization problem (LP) with probability 1− δ.
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This paper Han et al. (2015)
VAR def Xt = θXt−1 + εt Xt = A′1Xt−1 + Zt

Covariance Γh = Cov(Xh, X0) Σi = Cov(X0, Xi)
Yule-Walker Γh = θhΓ0 Σi = Σ0A

i
1

Covariance estimate Γ̂h Si
Covariance error err(δ) ζi

Optimization constraint ‖M Γ̂0 − Γ̂1‖max ≤ λ0 ‖S0M − S1‖max ≤ λ0
Optimization objective ‖vec(M)‖1 ‖vec(M)‖1
Threshold in proof ν λ1

Table 3: Notation correspondence between this paper and Han et al. (2015)

Proof Our sparse transition estimator is defined as a solution to (LP). The end goal is
to control the error ‖θ̂ − θ‖1, where θ = Γ1Γ−1

0 is the true transition matrix. We start by
choosing a specific λ0 such that θ is feasible with high probability:

‖θΓ̂0 − Γ̂1‖max = ‖Γ1Γ−1
0 Γ̂0 − Γ̂1‖max

= ‖Γ1Γ−1
0 Γ̂0 − Γ1 + Γ1 − Γ̂1‖max

≤ ‖Γ1Γ−1
0 Γ̂0 − Γ1Γ−1

0 Γ0‖max + ‖Γ1 − Γ̂1‖max

= ‖θ(Γ̂0 − Γ0)‖max + ‖Γ1 − Γ̂1‖max

By Lemma 32,
‖θ(Γ̂0 − Γ0)‖max ≤ ‖θ‖∞‖Γ̂0 − Γ0‖max

By Theorem 2, with probability greater than 1− δ (more precisely greater than 1− 2δ, but
we ignore constants here),

‖Γ̂0 − Γ0‖max ≤ err(δ) and ‖Γ̂1 − Γ1‖max ≤ err(δ)

Thus, with probability greater than 1− δ,

‖θΓ̂0 − Γ̂1‖max ≤ (‖θ‖∞ + 1) err(δ)

which is exactly the feasibility criterion for (LP) if λ0 = (‖θ‖∞ + 1) err(δ).

Lemma 27 (Error in max norm) If we choose λ0 = (‖θ‖∞ + 1) err(δ), then with proba-
bility at least 1− δ,

‖θ̂ − θ‖max ≤ 2λ0‖Γ−1
0 ‖1

Proof

‖θ̂ − θ‖max = ‖θ̂ − Γ1Γ−1
0 ‖max

= ‖(θ̂Γ0 − Γ1)Γ−1
0 ‖max

= ‖(θ̂Γ0 − θ̂Γ̂0 + θ̂Γ̂0 − Γ̂1 + Γ̂1 − Γ1)Γ−1
0 ‖max

≤ ‖(θ̂Γ0 − θ̂Γ̂0)Γ−1
0 ‖max + ‖(θ̂Γ̂0 − Γ̂1)Γ−1

0 ‖max + ‖(Γ̂1 − Γ1)Γ−1
0 ‖max

63



Dalle and De Castro

By Lemma 32,

‖θ̂ − θ‖max ≤
(
‖θ̂(Γ0 − Γ̂0)‖max + ‖θ̂Γ̂0 − Γ̂1‖max + ‖Γ̂1 − Γ1‖max

)
‖Γ−1

0 ‖1

≤
(
‖θ̂‖∞‖Γ0 − Γ̂0‖max + ‖θ̂Γ̂0 − Γ̂1‖max + ‖Γ̂1 − Γ1‖max

)
‖Γ−1

0 ‖1

We want to control ‖θ̂‖∞ using ‖θ‖∞. Let us recall that the operator `∞ norm is equal to
the maximum `1 norm of the rows of a matrix. To control the rows of θ̂, we notice that the
optimization problem defining θ̂, namely

min
M∈RD×D

‖vec(M)‖1 s.t. ‖M Γ̂0 − Γ̂1‖max ≤ λ0

is equivalent to the row-wise minimization

∀i, min
Mi,·∈R1×D

‖Mi,·‖1 s.t. ‖Mi,·Γ̂0 − (Γ̂1)i,·‖max ≤ λ0

From this, we deduce that each row of the optimum θ̂ satisfies ‖θ̂i,·‖1 ≤ ‖θi,·‖1, which
implies ‖θ̂‖∞ ≤ ‖θ‖∞. Going back to our error estimate, we get:

‖θ̂ − θ‖max ≤
(
‖θ‖∞‖Γ0 − Γ̂0‖max + ‖θ̂Γ̂0 − Γ̂1‖max + ‖Γ̂1 − Γ1‖max

)
‖Γ−1

0 ‖1

Note that the middle term is smaller than λ0 because the optimum θ̂ is a feasible solution.
Meanwhile, the first and third term are smaller than err(δ) with probability 1− δ:

‖θ̂ − θ‖max ≤ (‖θ‖∞ err(δ) + λ0 + err(δ)) ‖Γ−1
0 ‖1 = 2λ0‖Γ−1

0 ‖1

To complete the proof of Theorem 3, we simply need to go from the max norm to the `∞
operator norm.
Proof Let ν > 0 be a threshold (to be chosen later). We define

s1 = max
i

∑
j

min
{ |θi,j |

ν
, 1
}

and Ti = {j : |θi,j | ≥ ν}

With high probability, the following holds for any row i:

‖θ̂i,· − θi,·‖1 ≤ ‖θ̂i,T ci − θi,T ci ‖1 + ‖θ̂i,Ti − θi,Ti‖1
≤ ‖θ̂i,T ci ‖1 + ‖θi,T ci ‖1 + ‖θ̂i,Ti − θi,Ti‖1
= (‖θ̂i,·‖1 − ‖θ̂i,Ti‖1) + ‖θi,T ci ‖1 + ‖θ̂i,Ti − θi,Ti‖1
≤ ‖θi,·‖1 − ‖θ̂i,Ti‖1 + ‖θi,T ci ‖1 + ‖θ̂i,Ti − θi,Ti‖1
= (‖θi,Ti‖1 + ‖θi,T ci ‖1)− ‖θ̂i,Ti‖1 + ‖θi,T ci ‖1 + ‖θ̂i,Ti − θi,Ti‖1
= 2‖θi,T ci ‖1 + (‖θi,Ti‖1 − ‖θ̂i,Ti‖1) + ‖θ̂i,Ti − θi,Ti‖1
≤ 2‖θi,T ci ‖1 + 2‖θ̂i,Ti − θi,Ti‖1
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By definition of Ti, for all j ∈ T ci , |θi,j | ≤ ν, hence

‖θi,T ci ‖1 =
∑
j∈T ci

|θi,j | =
∑
j∈T ci

min{|θi,j |, ν} ≤
∑
j

min{|θi,j |, ν} ≤ νs1

Meanwhile, the second term satisfies

‖θ̂i,Ti − θi,Ti‖1 ≤ |Ti| × ‖θ̂ − θ‖max

And by definition of Ti, for all j ∈ Ti, |θi,j | ≥ ν, hence

|Ti| =
∑
j∈Ti

1 =
∑
j∈Ti

min
{ |θi,j |

ν
, 1
}
≤
∑
j

min
{ |θi,j |

ν
, 1
}
≤ s1

Combining all of this, we get that with high probability,

‖θ̂i,· − θi,·‖1 ≤ 2(ν + 2λ0‖Γ−1
0 ‖1)s1

Judging by the last Equation, it makes sense to choose ν = 2λ0‖Γ−1
0 ‖1. Furthermore, our spar-

sity hypothesis on θ implies that for all but s of the coefficients of any row i, min{|θi,j |, ν} =
|θi,j | = 0. We deduce that for every i,∑

j

min {|θi,j |, ν} ≤ smax
j

min {|θi,j |, ν} ≤ νs

which directly implies
νs1 = max

i

∑
j

min {|θi,j |, ν} ≤ νs

We finally find that with high probability,

‖θ̂i,· − θi,·‖1 ≤ 4νs1 ≤ 4νs = 8λ0‖Γ−1
0 ‖1s

With the help of a union bound, again with high probability,

‖θ̂ − θ‖∞ = max
i
‖θ̂i,· − θi,·‖1 ≤ 8λ0‖Γ−1

0 ‖1s

We replace the value of λ0 and obtain

‖θ̂ − θ‖∞ ≤ 8(‖θ‖∞ + 1) err(δ)‖Γ−1
0 ‖1s

Once we plug in the value of err(δ), the resulting high-probability error bound reads

‖θ̂ − θ‖∞ ≤ c
‖θ‖∞ + 1
(1− ϑ)2

σ2
min + ω2

‖Γ−1
0 ‖
−1
1

s
√

log(D/δ)
p
√
T

Since ϑ only acted as an upper bound on ‖θ‖2 in this proof, we can define

γu(θ) = ‖θ‖∞ + 1
(1− ‖θ‖2)2

σ2
min + ω2

‖Γ−1
0 ‖
−1
1

to obtain the compressed expression

‖θ̂ − θ‖∞ ≤ cγu(θ)s
√

log(D/δ)
p
√
T

.
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Appendix D. Independent Lemmas

D.1 Linear Algebra

The following set of results will sometimes be used in matrix calculations without explicit
justifications.

Lemma 28 (Weyl’s inequality) Let A and B be two n × n symmetric matrices. Then
for all i we have:

λi(A) + λn(B) ≤ λi(A+B) ≤ λi(A) + λ1(B).
In particular,

λmin(A) + λmin(B) ≤ λmin(A+B).

Proof See Horn and Johnson (2012, Theorem 4.3.1).

Lemma 29 (Ostrowski) Let S and A be two n× n matrices with S symmetric. For all i,
there is a real number ri ∈ [ςmin(A)2, ςmax(A)2] such that λi(ASA′) = riλi(S).

Proof See Horn and Johnson (2012, Theorem 4.5.9 and Corollary 4.5.11)

Lemma 30 (Singular values of the Kronecker product) Let A and B be two matri-
ces. Then

‖A⊗B‖2 ≤ ‖A‖2‖B‖2.

Proof See Horn and Johnson (1994, Theorem 4.2.15).

Lemma 31 For any two matrices A and B, we have:

‖AB‖F ≤ min {‖A‖2‖B‖F , ‖A‖F ‖B‖2}

Proof The Loewner order on symmetric matrices satisfies the following properties:

∀(A,B) ∈ Sn(R),∀C, A � B =⇒ C ′AC � C ′BC
∀(A,B) ∈ Sn(R), A � B =⇒ Tr(A) ≤ Tr(B).

The first inequality is true because if x is a vector, x′C ′(B−A)Cx = (Cx)′(B−A)(Cx) ≥ 0
due to the Loewner positivity of B−A. The second inequality can be directly deduced from
the relation between the spectra of A and B. Therefore, since A′A is symmetric,

B′A′AB ≤ λmax(A′A)B′B

which implies

‖AB‖2F = Tr(B′A′AB) ≤ λmax(AA′) Tr(B′B) = ‖A‖22‖B‖2F .

The proof for the other inequality is identical.
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Lemma 32 Let A and B be two matrices with compatible sizes: then

‖AB‖max ≤ min{‖A‖∞‖B‖max, ‖A‖max‖B‖1}.

Proof

‖AB‖max = max
i,j
|(AB)i,j | = max

i,j

∣∣∣∣∣∑
k

Ai,kBk,j

∣∣∣∣∣
We easily deduce:

‖AB‖max ≤ max
i

∣∣∣∣∣∑
k

Ai,k

∣∣∣∣∣× ‖B‖max = ‖A‖∞‖B‖max

‖AB‖max ≤ ‖A‖max ×max
j

∣∣∣∣∣∑
k

Bk,j

∣∣∣∣∣ = ‖A‖max‖B‖1

Lemma 33 Let A be an m × n rectangular matrix and b > 0 be a positive real number.
Then the eigenvalues of M = A′(bI +AA′)−1A are given by

λi(M) = ςi(A)2

b+ ςi(A)2 .

In particular, its spectral norm is

‖A′(bI +AA′)−1A‖2 = ‖A‖22
b+ ‖A‖22

.

Proof Let A = USV ′ be the singular value decomposition of A, in which S = diag(ςi) is
rectangular of size m× n while U and V are both square orthogonal matrices. We have

A′(bI +AA′)−1A = V SU ′
(
bI + USS′U ′

)−1
USV ′

= V SU ′
(
U(bI + S2)U ′

)−1
USV ′

= V S(U ′U)(bI + S2)−1(U ′U)SV ′

= V S(bI + S2)−1SV ′

= V diag
(

ςi(A)2

b+ ςi(A)2

)
V ′.
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D.2 Probability

Lemma 34 (Fano’s method) Let θ0, ..., θM be M + 1 parameters that are 2τ -separated
w.r.t. a distance d

∀i 6= j, d(θi, θj) ≥ 2τ

and such that the average KL divergence between Pθi and Pθ0 is small enough

1
M + 1

M∑
i=1

KL {Pθi ‖ Pθ0} ≤ α logM with 0 < α < 1 (19)

Then the minimax probability of an error at threshold τ satisfies:

inf
θ̂

sup
θ∈Θs

Pθ
[
d
(
θ̂, θ
)
≥ τ

]
≥ log(M + 1)− log 2

logM − α.

Proof See Tsybakov (2008, Section 2.2 + Corollary 2.6). In particular, since M 7→
log(M+1)−log 2

logM is increasing, setting α = log(3)−log(2)
2 log(2) is enough to obtain a minimax risk ≥

α ≥ 1/2.

Lemma 35 (Chain rule for KL divergence) If P0 and P1 are probability densities on
a product space X × Y with X discrete, then:

KL {P0[X,Y ] ‖ P1[X,Y ]} = KL {P0[X] ‖ P1[X]}+ EX [KL {P0[Y |X] ‖ P1[Y |X]}] .

Proof See Cover and Thomas (2012, Theorem 2.5.3).

Lemma 36 (KL divergence between Gaussians) The KL divergence between two mul-
tivariate Gaussian distributions P0 = N (µ0,Σ0) and P1 = N (µ1,Σ1) of dimension n is

KL {P0 ‖ P1} = 1
2
(
Tr(Σ0Σ−1

1 ) + (µ1 − µ0)′Σ−1
1 (µ1 − µ0)− n+ logdet(Σ1Σ−1

0 )
)
.

Proof See Duchi (2007, page 13).

Lemma 37 (KL divergence between close Gaussians) Let ∆ be a symmetric matrix
of size n such that λmin(∆) > −1, and let M be a rectangular matrix such that MM ′ � 0.
Then the KL divergence between

P1 = N (µ,M(I + ∆)M ′) and P0 = N (µ,MM ′)

satisfies

KL {P1 ‖ P0} ≤
‖∆‖2F

2(1 + λmin(∆)) .
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Proof From Lemma 36 (beware of the switch between P0 and P1) we get:

KL {P1 ‖ P0} = 1
2
(
Tr(Σ1Σ−1

0 ) + (µ0 − µ1)′Σ−1
0 (µ0 − µ1)− n+ logdet(Σ0Σ−1

1 )
)

= 1
2
(
Tr(M(I + ∆)M−1)− n− logdet(M(I + ∆)M−1)

)
= 1

2 (Tr(∆)− logdet(I + ∆)) .

As it happens, for small deviations from the identity, the log-determinant is almost equal to
the trace. Indeed, since

∀x > −1, log(1 + x) ≥ x

1 + x
,

we have

Tr(∆)− logdet(I + ∆) =
n∑
k=1

λk(∆)−
n∑
k=1

log(1 + λk(∆))

≤
n∑
k=1

λk(∆)−
n∑
k=1

λk(∆)
1 + λk(∆)

=
n∑
k=1

λk(∆)2

1 + λk(∆) ≤
1

mink(1 + λk(∆))

n∑
k=1

λk(∆)2

= ‖∆‖2F
1 + λmin(∆) .

Lemma 38 (Chernoff inequality for Bernoulli variables) Let (Xt) be sequence of in-
dependent B(p) variables. Their average satisfies

∀u ∈ [0, 1], P
(∣∣∣∣∣ 1T

T∑
t=1

Xt − p
∣∣∣∣∣ ≥ up

)
≤ c1 exp

(
−c2u

2Tp
)
.

Proof See Dubhashi and Panconesi (2009, Theorem 1.1).

Lemma 39 (Doeblin condition and mixing time) Let (Xt) be an irreducible aperiodic
Markov chain with state space X , transition matrix P and stationary distribution µ. Suppose
that (Xt) satisfies the Doeblin condition:

∃r ∈ N, ∃δ > 0, ∀(x, y) ∈ X 2, P r(x, y) ≥ δµ(y).

Then the mixing time of Xt, defined as

tmix(ε) = min
{
t ∈ N : max

x∈X

∥∥∥P t(x, ·)− µ∥∥∥
TV
≤ ε

}
,

satisfies:

tmix(ε) ≥ r
(

1 +
log 1

ε

log 1
1−δ

)
.
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Proof The proof of Levin and Peres (2017, Theorem 5.4) shows that with our assumptions,

∀x ∈ X ,
∥∥∥P t(x, ·)− µ∥∥∥

TV
≤ (1− δ)bt/rc.

From which we can deduce a sufficient condition for ε-mixing:

(1− δ)bt/rc ≤ ε ⇐⇒
⌊
t

r

⌋
≥ log(ε)

log(1− δ) ⇐= t

r
− 1 ≥

log 1
ε

log 1
1−δ

.

The result follows easily.

Lemma 40 (Chernoff inequality for Markov chains) Let (Xt) be an ergodic station-
ary Markov chain with finite state space X . We consider a function f : X → R such
that E[f(Xt)] = µ. Then:

∀u ∈ [0, 1], P
(∣∣∣∣∣ 1T

T∑
t=1

Xt − µ
∣∣∣∣∣ ≥ uµ

)
≤ c1 exp

(
−c2

u2Tµ

tmix(1/8)

)

Proof See Chung et al. (2012, Theorem 3)

Lemma 41 (Chernoff inequality for Markov chains under Doeblin condition) Under
the hypotheses of the previous two Lemmas (39 and 40), if the parameters r and δ in the
Doeblin condition are constants, then we have:

∀u ∈ [0, 1], P
(∣∣∣∣∣ 1T

T∑
t=1

Xt − µ
∣∣∣∣∣ ≥ uµ

)
≤ c1 exp

(
−c2u

2Tµ
)

Proof By Lemma 39, since r and δ are constants, the 1
8 -mixing time of (Xt) can be bounded

by a constant

tmix(1/8) ≤ r
(

1 + log(8)
log 1

1−δ

)
≤ c3,

which we merge with the c2 inside the exponential of Lemma 40.

Lemma 42 (Gilbert-Varshamov) Let H = {0, 1}d be the d-dimensional binary hypercube.
If d ≥ 8, there exists a pruned subset K ⊂ H such that

∀(x, y) ∈ K, ‖x− y‖1 ≥
d

8 and |K| ≥ 2d/8.

Proof See Tsybakov (2008, Lemma 2.9)
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Appendix E. Glossary

Here is a list of the most frequent symbols and their meaning.

Dimensions:

• t ∈ [T ]: time step

• d ∈ [D] or e ∈ E : dimension

• n ∈ [N ]: number of days

State process:

• Xt: state process / network congestion

• θ: transition matrix

• εt: innovations

• Σ: covariance matrix of εt

• σ2
min, σ

2
max: extremal eigenvalues of Σ

• s: sparsity level of θ (number of non-zero coefficients in each row)

• ϑ: maximum `2 norm for θ

• Θs: set of feasible values for θ

• Γh(θ): covariance between Xt+h and Xt

Observations:

• Πt: random sampling matrix

• D: distribution of the sampling matrix

• p: fraction of state components activated by observations

• Q: transition matrix for Markov sampling

• a, b: transition probabilities for Markov sampling

• χ: minimum distance between a or b and {0, 1} (considered constant)

• πt,d: indicator of whether (t, d) is activated

• κt,d: counter of how many times (t, d) was activated

• Yt: observations / train arrival times

• ηt: noise

• ω2: variance of ηt
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Estimation:

• h: covariance time lag

• S(h): multiplicative scaling for covariance estimation

• S(h)min: smallest coefficient of the scaling matrix

• C(h): additive noise correction for covariance estimation

• h0: minimum covariance time lag for transition estimation

Other:

• G = (V, E): network graph

• ∆t: time interval for discretization

• g: standard Gaussian vector

• H (resp. K): binary hypercube (resp. pruned hypercube)

• I: Fisher information matrix

• L: bilinear form

• r: small radius

• R(θ): non-constant term in the covariance of Y

• u: threshold in concentration inequalities

• δ: small probability

• QΠ: constant term in the conditional variance of Y

• RΠ(θ): varying term in the conditional variance of Y

• ∆Π(θ): deviation from the identity

• γ`(D) (resp. γu(θ)): signal-to-noise ratio in the lower bound (resp. the upper bound)

• τ : separation of the parameters in Fano’s method

• Ψε (resp. Ψη): link between X (resp. η) and a standard Gaussian vector
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