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ABSTRACT

Spoofing countermeasures aim to protect automatic speaker
verification systems from attempts to manipulate their relia-
bility with the use of spoofed speech signals. While results
from the most recent ASVspoof 2019 evaluation show great
potential to detect most forms of attack, some continue to
evade detection. This paper reports the first application of
RawNet2 to anti-spoofing. RawNet2 ingests raw audio and
has potential to learn cues that are not detectable using more
traditional countermeasure solutions. We describe modifica-
tions made to the original RawNet2 architecture so that it can
be applied to anti-spoofing. For A17 attacks, our RawNet2
systems results are the second-best reported, while the fusion
of RawNet2 and baseline countermeasures gives the second-
best results reported for the full ASVspoof 2019 logical ac-
cess condition. Our results are reproducible with open source
software.

Index Terms— anti-spoofing, countermeasures, presenta-
tion attack detection, automatic speaker verification

1. INTRODUCTION

Our recent efforts to improve the reliability of spoofing coun-
termeasures for automatic speaker verification (ASV) have
confirmed that: (i) artefacts from converted voice or syn-
thetic speech spoofing attacks reside at the sub-band level [1];
(ii) detection performance can be improved through the use of
high-spectral-resolution front-ends, particularly those which
emphasize information within the same sub-bands [2]. When
used even with a trivial Gaussian mixture model (GMM)
back-end, high-spectral-resolution front-ends lead to compet-
itive performance that would have obtained fourth position
(out of 48 submissions) in the ASVspoof 2019 challenge.

Unfortunately, though, some spoofing attacks continue to
evade detection, particularly the infamous A17 attack, a neu-
ral network voice conversion (VC) based attack that uses a
generalised direct waveform modification method for wave-
form generation. While we have seen that even A17 attacks
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can be detected when classifiers are learned with representa-
tive data (i.e. through learning with evaluation data), perfor-
mance is poor when the same classifier is learned using only
standard training data. Hence, while high-spectral-resolution
front-ends do capture A17 artefacts, they cannot be detected.

The same observation shows that, once training data for
a newly discovered spoofing attack is available, then vul-
nerabilities can be fixed easily simply by re-learning with
representative training data. More proactive or preemptive
strategies that offer some protection against the unexpected
are preferable. This idea embodies the objectives of the
ASVspoof initiative since its inception, namely the pursuit
of generalisable spoofing countermeasures that are capable
of detecting attacks not seen in training data. The latter are
characteristic of in-the-wild settings in which the nature of
spoofing attacks cannot be predicted and will evolve contin-
uously. The question addressed in this paper is whether A17
attacks can be detected even in the absence of representative
training data.

This is a difficult question to answer reliably in a post-
evaluation setting where the characteristics of attack A17 are
now known and cannot be forgotten. One-class classifiers
trained only on bona fide data without the use of any spoofed
data are an obvious candidate solution and have shown some
previous success in anomaly, novelty and spoofing detection
tasks [3, 4, 5, 6]. Anecdotal evidence, however, shows that
many, including the authors of the current article, have failed
to apply them successfully to ASVspoof 2019 data. Since
A17 attacks cannot be detected using our current countermea-
sure (at least not without representative A17 training data) we
must seek cues elsewhere.

Our assumption is that the use of hand-crafted features
does not offer the best potential to detect unforeseen attacks
since they rely too much upon the characterisation of artefacts
corresponding to known attacks. Attack-specific artefacts are
likely to be insufficient for the detection of unseen attacks and
a higher-level, more generalisable representation is needed to
ensure robust performance. This paper reports what is, to the
best of our knowledge, the first application of RawNet2 [7]
deep neural network classifiers to anti-spoofing. RawNet2 op-
erates directly upon the raw speech waveform, circumventing
almost entirely any dependence upon hand-crafted features.



The goal of this work is not just to design more reliable spoof-
ing countermeasures, but also to determine whether such end-
to-end approaches that utilise some degree of automatic fea-
ture learning can improve performance in a worst-case sce-
nario such as that of A17.

The paper is organised as follows. The original RawNet2
architecture and its application to ASV are described in Sec-
tion 2. Modifications made to RawNet2 in order to apply it
successfully to anti-spoofing are described in Section 3. Ex-
perimental work is described in Section 4. Our conclusions
are presented in Section 5.

2. PREVIOUS WORK

This section provides a brief review of past work that led
to the development of RawNet2 [7]. The treatment is upon
automatic speaker verification. As in many fields of speech
processing, recent years have seen the adoption of end-to-end
classifier architectures where every component between, and
including any front-end processing and back-end classifica-
tion, is automatically and jointly optimised. Many of these
solutions operate directly upon the raw speech waveform
and avoid limitations introduced from the use of knowledge-
based, hand-crafted acoustic features. One advantage is the
use of representations optimised for the application, rather
than the use of generic, fixed-bandwidth decompositions
such as those stemming from Fourier based analysis [8].

There is already a sizeable body of work in the automatic
speaker verification literature which reports end-to-end solu-
tions that operate on the raw speech waveform. Among other
early solutions is RawNet [9], introduced in 2019. RawNet
is a convolutional neural network architecture which outputs
speaker embeddings. The first convolutional layer is applied
directly to the raw speech waveform, with all filter param-
eters being learned automatically. Among the higher lay-
ers are residual blocks [10] which extract frame-level repre-
sentations. Residual blocks use skip connections that enable
the training of deeper classifiers to leverage more discrimi-
native information. They use either long short-term memory
(LSTM) as in [11] or gated recurrent units (GRUs) as in [9] to
aggregate utterance-level representations and either a b-vector
classifier [12, 13] as in [11] or a DNN backend with concate-
nation and multiplication (concat & mul) technique as in [9]
for verification. The use of a wholly unconstrained first layer
whose parameters are learned automatically can result in slow
learning. The first layer outputs also tend to be noisy, espe-
cially when training data is sparse.

One solution to these issues is SincNet [14, 15]. Whereas
the higher layers of the SincNet architecture are relatively
standard, the first convolutional layer operates upon the
raw waveform and consists in a bank of band-pass filters
parametrized in the form of sinc functions. The use of a con-
strained first layer, with fewer learnable parameters whereby
only the cut-in and cut-off frequencies are learned with a

fixed rectangular-shaped filter response, leads to the learning
of a more meaningful filterbank structure and outputs.

RawNet2 [7], proposed in 2020, combines the merits of
the original RawNet approach (RawNet1) with those of Sinc-
Net. The first layer of RawNet2 is essentially the same as
that of SincNet, whereas the upper layers consist of the same
residual blocks and GRU layer as RawNet1. New to RawNet2
is the application of filter-wise feature map scaling (FMS) us-
ing a sigmoid function applied to residual block outputs as
in [16]. FMS acts as an attention mechanism and has the goal
of deriving more discriminative representations. The embed-
ding dimension for RawNet2 is also greatly increased, from
128 for RawNet1 to 1024 for RawNet2. Last, whereas Raw-
Net1 obtains better results with a DNN-based back-end clas-
sifier, RawNet2 gives better results with a cosine similarity
score.

Experiments using the VoxCeleb1 database show that
RawNet1 gives an 11% relative improvement in terms of
an equal error rate (EER) metric compared to an i-vector
based system [17], and is also shown to be competitive with
those of an x-vector system [18]. When trained using the
VoxCeleb2 database, RawNet2 gives a 20% relative improve-
ment compared to an x-vector based system [19] whereas,
using the expanded VoxCeleb1-E evaluation dataset pro-
tocol, it gives a 13% relative improvement compared to a
Thin-ResNet-34 based system [20]. There is hence plentiful
evidence that end-to-end architectures which avoid the use of
knowledge-based, hand-crafted features have potential to im-
prove automatic speaker verification performance. The goal
of the work reported in this paper is to determine whether
the benefit translates also to anti-spoofing, especially in worst
case scenarios.

3. APPLICATION TO ANTI-SPOOFING

This section describes modifications made to the original
RawNet2 architecture [7] so that it can be applied success-
fully to anti-spoofing. Modifications to parameters or archi-
tecture components are highlighted in Table 1 in bold text.

The first modification concerns the first layer of the archi-
tecture which ingests raw speech. Since it leads to worse per-
formance, we did not apply layer normalization [21] to the in-
put. On account of training data sparsity, or rather the limited
number of different spoofing attacks (only 6 for the training &
development partitions of the ASVspoof 2019 LA database),
we neither learn automatically the bandwidth nor spectral po-
sition of each sinc filter. Other experiments not reported here
show that it leads to overfitting. While SincNet is initialised
with a Mel-distributed filterbank, we experimented also with
linearly-distributed and inverse-Mel scaled filterbank. These
choices are motivated by the success of linear and inverse-
Mel [22] front-ends for anti-spoofing. We fixed the duration
of the raw waveform input to ≈ 4 sec (64000 samples) by
either cropping long utterances or concatenating short utter-



Table 1. The RawNet2 architecture used for anti-spoofing.
Modifications made to the original architecture are high-
lighted in boldface. BN refers to batch normalisation.

Layer Input: 64000 samples Output shape
Conv(129,1,128)

Fixed Sinc filters Maxpooling(3) (21290,128)
BN & LeakyReLU

Res block

{ BN & LeakyReLU
Conv(3,1,128)

BN & LeakyReLU
Conv(3,1,128)
Maxpooling(3)

FMS

}
×2 (2365,128)

Res block

{ BN & LeakyReLU
Conv(3,1, 512)

BN & LeakyReLU
Conv(3,1, 512)
Maxpooling(3)

FMS

}
×4 (29,512)

GRU GRU(1024) (1024)
FC 1024 (1024)

Output 1024 2

ances such that all utterances have the same length.
In similar fashion to [7], we also optimised the filter

length (impulse response duration). This is because the du-
ration of cues used to detect spoofing are not necessarily the
same as those for speaker recognition. Whereas the original
work used filter lengths of 251 samples, we observed better
results using only 129 samples. Whereas the configuration
of the first residual block is left unchanged, we use a larger
number of kernel filters (512) in second residual block. As
for RawNet2, we apply FMS independently to the output of
each residual-block, thereby helping to emphasize the most
informative filter outputs. We adopt the combined additive
and multiplicative feature scaling approach in [7].

A GRU layer with 1024 hidden nodes is applied to aggre-
gate frame-level representations into a single utterance-level
representation. Rather than producing embeddings as in Raw-
Net 2, the GRU output is followed by an additional fully con-
nected layer which precedes the output layer. A softmax ac-
tivation function is then applied in order to produce two-class
predictions: bona-fide or spoof. The network was trained
with ADAM optimisation using a learning rate of 0.0001, 100
epochs and a mini-batch size of 32. The full architecture is
summarised in Table 1.

4. EXPERIMENTAL WORK

The following describes the ASVspoof 2019 LA database,
evaluation metrics, baseline countermeasure and results. We
report results for three different RawNet2 variants and results
for fused systems.

4.1. ASVspoof 2019 and t-DCF metric

The ASVspoof 2019 logical access (LA) database consists of
three independent partitions: train, development and evalu-
ation. Spoofed attacks are generated using a set of 19 dif-
ferent speech synthesis, voice conversion and hybrid algo-
rithms [23]. The training and development partitions con-
tain bona fide and spoofed data generated with 6 different
attack algorithms (A01-A06), whereas the evaluation parti-
tions contains bona fide speech and spoofed data generated
with 13 different algorithms (A07-A19). As permitted by
ASVspoof rules [24], we re-partitioned the data by supple-
menting training data with 90% of development data. The
remaining 10% was used for validation. The primary metric
is the minimum normalised tandem detection cost function (t-
DCF) metric [25, 26]. For consistency with results reported
in [27], t-DCF results derived according to the original min
t-DCF metric in [25, 26]. Results are also reported in terms
of the pooled equal error rate (EER) computed using [28].

4.2. Baseline

The baseline classifier for this work is the high-spectral res-
olution linear frequency cepstral coefficient (LFCC) counter-
measure reported in [2]. It uses 70 linearly-spaced filters with
conventional cepstral analysis and a GMM back-end classi-
fier. Despite its simplicity, it outperforms all but three systems
submitted to the ASVspoof 2019 challenge.

4.3. RawNet2 results

Table 2 shows results in terms of min t-DCF for the base-
line (L) and three different RawNet configurations (S1-3). At-
tacks A01-06 correspond to development data whereas A07-
A19 correspond to evaluation data. P1 and P2 columns show
pooled min t-DCF and EER results respectively for each par-
tition.

Results for all three RawNet classifiers are inferior to
those of the baseline. Focusing only upon the evaluation
set, the pooled min t-DCF for the baseline is 0.09, whereas
the best performing S2 RawNet2 system which uses fixed
inverse Mel-scaled sinc filters gives a min t-DCF of 0.1175.
Results for the infamous A17 attack, i.e. the worst case for
the baseline and all of the top-performing ASVspoof 2019
LA submissions, are more favourable. Whereas the base-
line classifier gives a min t-DCF of 0.3524 for A17, the S3
RawNet2 classifier that uses fixed, linearly-scaled sinc filters
gives a min t-DCF of 0.181. To the best of our knowledge,
this is among very best published results for A17.

4.4. Fusion

Since the LFCC-GMM baseline system gives the best over-all
pooled result, whereas the S3 RawNet system performs best



Table 2. Results in terms of min t-DCF for development (A01-A06) and evaluation (A07-A19) partitions and respective pooled
min t-DCF (P1) and pooled EER (P2). L: High-spectral-resolution LFCC. S1: fixed Mel-scaled sinc filters. S2: fixed inverse
Mel-scaled sinc filters. S3: fixed linear-scale sinc filters.
S A01 A02 A03 A04 A05 A06 P1 P2 A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 P1 P2
L .0000 .0000 .0000 .0005 .0000 .0000 .0000 .00 .0011 .0009 .0003 .1536 .0048 .1150 .0798 .0697 .0695 .0007 .3524 .0741 .0084 .0904 3.50
S1 .0443 .0125 .0274 .0435 .0598 .0653 .0460 1.36 .0277 .1984 .0118 .0373 .0195 .0379 .0433 .0192 .0314 .0457 .2620 .6145 .0526 .1301 5.64
S2 .0269 .0025 .0045 .0291 .0297 .0347 .0285 0.86 .0131 .0551 .0131 .0300 .0100 .0360 .0076 .0046 .0344 .0187 .2626 .6237 .0409 .1175 5.13
S3 .0230 .0315 .0117 .0468 .0354 .0690 .0400 1.25 .0382 .1106 .0348 .0493 .0505 .0445 .0459 .0380 .0378 .0460 .1810 .5285 .0679 .1294 4.66

Table 3. Performance for the ASVspoof 2019 evaluation par-
tition in terms of pooled min t-DCF and pooled EER for top-
performing systems (T05, T45, T60 and T24), SVM-based
fusions of high-spectral-resolution LFCC (L) [2] and ResNet2
systems (boldface), and ASVspoof 2019 baseline systems
(B1, B2). Individual min t-DCF results for A17 are illustrated
in the right-most column.

System min-tDCF EER min t-DCF (A17)
T05 0.0069 0.22 0.0040

L+S1 0.0330 1.12 0.1161
L+S1+S2+S3 0.0347 1.14 0.0808

L+S3 0.0370 1.14 0.0965
L+S2 0.0443 1.35 0.1339

T45 [29] 0.0510 1.86 0.2208
T60 [30] 0.0755 2.64 0.3254

L [2] 0.0904 3.50 0.3524
T24 0.0953 3.45 0.3547

LFCC:B2 [27] 0.2116 8.09 0.2042
CQCC:B1 [27] 0.2366 9.57 0.5859

for the worst case A17 attack, it is of interest to evaluate the
benefit of their fusion.

Experiments were conducted using the support vector ma-
chine (SVM) based fusion approach described in [2]. It was
used to fuse the high-spectral-resolution countermeasure (L)
with S1, S2 and S3 RawNet2 systems. Fusion results are il-
lustrated in Table 3, with the top-4 ASVspoof 2019 challenge
results. Also shown are results for the two official ASVspoof
2019 baseline systems: the CQCC B1 baseline and the low-
spectral-resolution LFCC B2 baseline.

All systems outperform the official baselines, with the
high-spectral-resolution baseline (L) giving a min t-DCF of
0.0904, marginally better than the min t-DCF result of 0.0953
for team T24. Team T60 produced a min t-DCF of 0.0755
and team T45 a result of 0.0510. All fusions of the high-
spectral-resolution countermeasure (L) with either S1, S2 and
S3 RawNet2 systems perform better, with the L+S1 combina-
tion even outperforming fusion with all three RawNet systems
(L+S1+S2+S3).

The last column of Table 3 shows performance in terms of
min t-DCF for each countermeasure system for attack A17.
Just like individual system results shown in Table 2, all Raw-
Net2 fused systems produce a substantially lower min t-DCF

than the baseline system (L), confirming that the end-to-end
RawNet2 system is complementary; it is learning artefacts
that the baseline system is not. Last, while the results for
team T05 show a lower pooled min t-DCF and lower min t-
DCF for attack A17, our results are reproducible with open
source software1.

5. DISCUSSION AND CONCLUSIONS

This paper reports the first successful application of Raw-
Net2 to automatic speaker verification anti-spoofing. While
pooled results are inferior to those of the baseline counter-
measure, those for the infamous, worst case A17 voice con-
version spoofing attack are the second best reported thus far.
Whether the comparison of countermeasure solutions should
be based upon pooled or worst case results is an interesting
question since, once a vulnerability is exposed, then attacks
that exploit it will likely occur more frequently than less effec-
tive attacks. Despite the competitiveness of our proposed so-
lution, the min t-DCF for attack A17 is still over 250% higher
than for the pooled min t-DCF.

The fusion of baseline and RawNet2 classifier scores give
the second best results reported in the literature. Fusion re-
sults suggest that the RawNet2 classifier is learning cues that
are different to those learned by the baseline classifier. This
observation raises the questions of what these cues are and
what about the RawNet2 classifier enables it to learn them.
Our current hypothesis is that, aside from operating upon the
raw signal, the ability comes from temporal attention, an abil-
ity which the baseline classifier clearly lacks. This hypothesis
would seem to be supported by the presence of occasional,
punctual clicking noises that characterise A17 attacks. Our
suspicion is that A17 artefacts are phase-related and that they
are captured by the linear-phase filters in the first layer of
the RawNet2 architecture which hence produce phase-aligned
waveforms to the first residual block. The validation of this
hypothesis is the subject of ongoing work. Other directions
for future work concern the exploration of embeddings and
alternative back-end approaches to classification.

1URL to be made available upon publication.
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