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Human-Aware Navigation Planner for Diverse Human-Robot Contexts

Phani Teja Singamaneni1, Anthony Favier1,2, Rachid Alami1,2

Abstract— As more robots are being deployed into human
environments, a human-aware navigation planner needs to
handle multiple contexts that occur in indoor and outdoor
environments. In this paper, we propose a tunable human-aware
robot navigation planner that can handle a variety of human-
robot contexts. We present the architecture of the planner and
discuss the features and some implementation details. Then
we present a detailed analysis of various simulated human-
robot contexts using the proposed planner along with some
quantitative results. Finally, we show the results in a real-world
scenario after deploying our system on a real robot.

I. INTRODUCTION

In the recent decade, more and more robots are being
deployed into human environments. From the robotic vacuum
cleaners to the human assisting robots in shops, malls [1],
[2] and airports [3], all of these robots are working in
environments with humans moving around. To navigate in
these places, the robot needs to be aware of the humans in
the environment, and treating humans simply as obstacles
may not be enough. Besides, the robot’s motion should
be safe, legible and acceptable to the humans rather than
being optimal. Therefore, a new field of robotic navigation
called the human-aware (or social) navigation has emerged,
which studies various human motion and social aspects for
developing more human acceptable robotic navigation.

Human-aware navigation can be broadly divided into two
categories based on the environmental context, 1) Crowd or
outdoor navigation and 2) Indoor navigation. In the context
of crowd navigation, the planner needs to be reactive and
plan its motion quickly to avoid any possible collisions
or obstructions to people. On the contrary, in the indoor
contexts, a highly reactive planner is not preferable as the
robot’s actions may cause confusion [4] among the humans
in the shared space or lead to navigation failure in various
intricate scenarios. Therefore, a different set of navigation
planners are developed for various types of indoor envi-
ronments with shared human spaces like warehouses [5],
offices [6], labs, homes [7] etc. This is because there is
no single algorithm that can cover all environments and
situations. However, changing the navigation algorithm every
time to address a new human-robot context may not be
ideal. In order to address these issues, we propose a highly
tunable human-aware navigation system with multiple modes
of planning that can be employed in a variety of human-
robot contexts, simply by adjusting the system parameters.

1Authors are with LAAS-CNRS, Universite de Toulouse, CNRS,
Toulouse, France, {ptsingaman, anthony.favier, rachid.alami}@laas.fr

2Authors are with Artificial and Natural Intelligence Toulouse Institute
(ANITI)

Our main contributions in this work are threefold and are
summarized below:

1) We propose a tunable human-aware navigation planner
with different planning modes that can handle very
complex indoor scenarios as well as crowded scenarios.

2) We extend our previous work, Human-Aware Timed
Elastic Band (HATEB) [8] local planner, to effectively
handle large numbers of people and to offer more legible
and acceptable navigation.

3) We evaluate the proposed planner in several simulated
human-robot scenarios and present both qualitative and
quantitative analysis. Further, we also present some tests
conducted on the real robot at our lab.

The rest of the paper is organized as follows. In section II,
we discuss the related works, and in section III planner’s
architecture is presented along with explanations of various
modules and features. Following this, section IV presents
the evaluation of our planner in various simulated human
contexts. We also present a comparison with one of the
existing human-aware navigation planners. In section V, we
talk about the tests conducted on the real robot. Finally,
section VI presents some discussions and conclusions.

II. RELATED WORK

There are a variety of human-aware navigation planners
designed for different human-robot contexts. In the crowd
context, Ferrer. et al [9] presents a potential field based
navigation using the social force model. The authors of [10]
extended this to human-object and human group interactions
by proposing the proactive social motion model. The work by
Repiso et. al [11] shows the context of a robot accompanying
a human. The authors of [12] address this crowd navigation
problem by using reinforcement learning. Coming to the
indoor contexts, the works presented in [13], [6] and [7] show
some interesting costmap based approaches for planning
paths in complex indoor scenarios that can occur at homes
or offices. In this paper, we use a similar costmap based
approach to handle static humans. Fernandez Carmona et.
al [5] compares the performance of the existing navigation
planners in a warehouse context and proposes an architecture
to include humans into planning. The work of Güldenring
et. al [14] addresses the same context using reinforcement
learning. Khambhaita and Alami [15] addressed the context
of human-robot co-navigation based on an optimization-
based approach. Note that none of the above planners was
designed to handle multiple human contexts together.

A multi-context human-aware navigation planning is a
very new field, and not many works exist. The work by



Banisetty et. al [16] shows some preliminary results us-
ing a deep learning-based context classification and multi-
objective optimization based navigation planner. However,
these results are in indoor scenarios with static humans, and
the authors do not present any results in dynamic human
scenarios, whereas the human-aware navigation planner pro-
posed in this paper can handle static as well as dynamic
humans in both indoor and crowd contexts.

In order to handle the dynamic humans in our navigation
planner and to plan a socially acceptable trajectory for the
robot, a human motion prediction system is required. One of
the classic approaches of human motion prediction is based
on the social force model [17]. Ferrer et. al [18] uses this
social force model both to predict human motions and to
move the robot among the crowds. Kollmitz et. al [7] uses
a simple linear prediction based on current human velocity.
Instead of predicting the trajectory, a possible human goal
can also be predicted using certain reasoning over a probable
set of goals [19]. Our proposed navigation system uses one
such goal prediction system [20] as a part of the human path
prediction module. Apart from this, our system offers three
other human path prediction methods to handle a variety
of situations. In a recent work by Fisac et. al [21], the
authors suggest a probabilistic human model with confidence
to handle the uncertainties in a system.

One of the key elements of the proposed human-aware
navigation planner is the context-based shifting between
different planning modes. This kind of modality shifting
is discussed in the works of Qian et. al [22], and Mehta
et. al [23] based on Partially Observable Markov Decision
Processes. Unlike these, our system uses situation assessment
based modality shifting. In our previous work, [8], we
introduced this modality shifting with three different modes
of planning. In the current work, we extend this to handle a
large number of humans and also introduce some elements
including a new planning mode. This modified HATEB
local planner is integrated into the proposed human-aware
navigation framework as the local planner.

III. PLANNER ARCHITECTURE AND FEATURES

In this section, we present the overall architecture of the
human-aware navigation planning system and explain its
features that allow us to deal with various kinds of human-
robot contexts. Our system is developed over the ROS [24]
navigation stack, and the architecture of the proposed system
is shown in Fig. 1. The red blocks shown in the Fig. 1
are the modifications we introduced into the standard ROS
navigation stack and are the major contributions of this
work. As shown in the figure, we introduce Human Safety
and Human Visibility costmaps layers into both global and
local costmaps. The Human Safety layer is modelled as a
2D Gaussian around the human, and the Human Visibility
layer as a 2D half Gaussian on the backside of the human.
Both these layers have a cutoff radius of 3m [13] beyond
which the cost is zero. These layers are implemented using
a costmap plugin that we developed for ROS called the

Fig. 1: Software architecture of the proposed planner.

human layers1. The addition of these layers is controlled by
the Human State of the HATEB local planner. The Human
Path Prediction2 module predicts the possible paths for the
requested humans using the selected prediction method. The
HATEB local planner3 module accesses different human-
robot scenarios and determines the Human State and the
Planning State shown in the figure. Both these states together
decide the planning mode of the system and also control the
transition between different modes. Based on the Planning
State, the appropriate path prediction method is selected for
the humans. After accepting a navigation goal, the system
continuously accesses the human-robot scenario and appro-
priately chooses a planning mode that decides the command
velocity sent to the robot’s base controller. Note that the
planning mode need not be constant and can shift depending
on the context. Further, our system is completely tunable,
and the transition between different modes can be tuned (or
changed) by changing the mode transition parameters [8] as
per the requirement.

A. Types of Humans and Costmap layers

In our system, we deal with different types of humans
while navigating the robot to the goal. Fig. 2 shows all

Fig. 2: Different types of humans considered in our system. A
sample trajectory of the robot is shown among different humans.

1https://github.com/sphanit/human_layers/tree/tested
2https://github.com/sphanit/hanp_prediction/tree/tested
3https://github.com/sphanit/hateb_local_planner/tree/

tested



these types of humans along with the robot’s visibility
and the planning radius, R. While the robot is moving
in the environment, the system considers only the humans
within this planning radius that are in the visible region.
Among these humans, it checks for the static and dynamic
humans and updates the Human State for all the humans.
The human layers plugin checks the Human State of all the
observable humans and adds the Human Safety and Human
Visibility costmap layers around the static humans. We chose
to add these costmap layers only around static humans
because the response time for static humans is usually slow,
and hence the robot should maintain a larger safety distance
as well as avoid surprise appearances from behind [13].
Besides, as no elastic band is added to the static humans, the
addition of these layers is necessary to plan a safe path. For
the dynamic humans within the planning radius, the system
adds elastic bands to the nearest two humans and their path,
as well as trajectories, are predicted until they move behind
the robot or out of the planning radius.

B. Human Path Prediction

The Human Path Prediction module deals with different
kinds of human goal predictions and building the global plans
for required humans. Our system currently offers four types
of human goal prediction and path planning methods.

1) PredictBehind: This method predicts that the human
goal is behind the robot. The position of the robot when
the human enters the visible planning radius is used for
this. This goal is used to predict the path.

2) PredictGoal: This method predicts the most probable
goal among the set of goals provided to the system using
the approach described in [20]. The predicted goal is
then used for path prediction.

3) PredictVelObs: This method builds a path by extrapo-
lating the current human velocity over a fixed duration
and does not predict any goal. Currently, the duration
is set to 5s. This is the default prediction service in
VelObs mode.

4) PredictExternal: This service accepts a goal from an
external system and adds a global path prediction based
on the provided goal.

These services provide global plans for the humans that are
used by the HATEB local planner for planning local plans
(or trajectories).

C. HATEB local planner and planning modes

This is the core module of the proposed human-aware
navigation planning system. HATEB local planner is based
on the human-aware extension of Timed Elastic Band (TEB)
[25] local planner by Khambhaita and Alami [15]. This
module plans the robot’s trajectory, as well as the possible
human trajectories for the nearest two humans in the visible
planning radius, based on the predicted human paths. It
continuously assesses the current human-robot context and
sets the Planning State and the Human State. Depending on
the value of these states, it shifts between different planning
modes. This is needed in the intricate human-robot contexts

that cannot be solved using a single planning mode.
Modes of Planning: HATEB local planner provides four dif-
ferent modes of planning at the control level and intelligently
shifts between them based on the situation.
1. SingleBand mode: This is the mode in which the planning
system starts and has an elastic band only for the robot. The
system stays in this mode as long as there are no humans
within the visible planning radius. The default planning
radius is chosen as 10m.
2. DualBand mode: In this mode, elastic bands are added to
the two nearest dynamic humans in visible planning radius
and trajectories are planned for humans along with the robot.
This kind of human planning allows the robot to proactively
plan its trajectory and adapt to the changing human plans. On
top of being useful as predictions, these planned trajectories
also offer a possible solution for the human-robot context, if
followed, will resolve any conflict that exists.
3. VelObs mode: This mode uses all the human-aware criteria
while planning, but adds bands to humans only if they have
some velocity. This mode is useful in crowded human sce-
narios or when the robot cannot move due to entanglement
issues [8] of the DualBand mode.
The situation assessment and mode shifting scheme for the
above-mentioned planning modes is described clearly in our
previous work [8]. In this work, we extended this by adding
a Backoff-recovery mode.
4. Backoff-recovery mode: The Backoff-recovery mode is
required when there is no solution to the planning problem
unless one of the agents completely clears the way for
the other. This kind of situation commonly occurs in a
very narrow corridor where only one person (or robot) can
navigate at the same time. If a human and robot face each
other in a very narrow corridor or another situation where one
of them has to clear the way for the other, our system gives
priority to the human and makes the robot clear way for the
human. This is done by making the robot move back slowly
until it can go either left or right to clear the way. Once the
robot clears the way, it waits for the corresponding human
to complete its navigation or a timeout and then proceeds to
its goal. This mode is activated when the robot is in VelObs
mode in the near vicinity of the human (< 2.5m), and it is
stuck without progressing towards the goal for more than 10
seconds. It can also accept new goals in the waiting state
and navigate to them, discarding the existing goal.

HATEB uses several human-aware constraints in its opti-
mization scheme for proactive and legible planning around
humans in the environment. Several of these constraints are
listed in our previous works. In this work, we have added two
new constraints along with the previous constraints present
in the system. These new constraints, called the Visibility and
Relative Velocity are explained briefly below:

Visibility: This constraint adds cost to the optimization
when the robot is behind the human and it plans to cross
the human or to go in front of the human. This tries to avoid
the emerging of the robot suddenly from behind the human
and to emerge into the human’s field of view from a larger
distance. It is implemented by adding a 2D half Gaussian



behind the human.
Relative Velocity: This constraint adds cost to the optimiza-

tion based on the relative velocity between humans and the
robot and their distance. The main effect of this constraint
is low robot velocity in the close vicinity [4] of the human
if it cannot find a path to maintain a greater distance. If the
robot can find a path with a greater distance from a human,
it chooses that path with a normal velocity profile. Another
effect of this constraint is early intention show of the robot
similar to TTC or TTCplus constraint given in [8]. The cost
added is shown below.

costrel vel =
((max(

−−→
Vrel ·

−−−→
PrPh), 0) + ‖

−→
Vr‖+ 1)

‖
−−−→
PrPh‖

(1)

where
−→
Pr,
−→
Vr are the position and velocity of the robot,−→

Ph,
−→
Vh are the position and velocity of the human and

−−→
Vrel =−→

Vr −
−→
Vh. Since this constraint has similar effects as TTC or

TTCplus, we activated only this constraint and deactivated
TTC and TTCplus constraints in all the experiments presented
in this paper. HATEB takes all the activated human-robot
constraints and other necessary kinodynamic constraints and
plans the trajectories of the robot and the humans. Since the
local planner runs a computationally expensive optimization
in each control loop, extending the planning beyond two
humans does not yield real-time control of the robot. Hence
we restricted our human planning to the two nearest humans.

One more extension in this work is the addition of the
field of vision of the robot into the planning system. This is
done by using ray-tracing from the robot’s position on the
environmental map. Since human tracking is provided by
an external system, it is important to restrict the system to
consider the humans present in its field of view. This is more
natural and makes it easier to use our system with vision-
based human-tracking. The proposed system also offers a
variety of parameter settings that can choose prediction
mode, the human-aware constraints to be used and tuning
over these costs. Even the planning can be restricted to only
one of the three planning modes (except Backoff-recovery).
Hence, it is possible to extend it to many kinds of human-
robot contexts by properly choosing the parameters and
with simple tuning. With the addition of the costmap layers
around the static humans, this framework can handle all
the scenarios presented in [16]. We present our results in
different scenarios and environments in the next section.

IV. RESULTS IN VARIOUS SIMULATED SCENARIOS

To validate our system, we applied it to various kind of
human-robot contexts that can occur in day to day life.
These situations are generated in a simulated environment
based on MORSE [26]. The humans in these simulations are
controlled in three different ways to test the robustness of the
system: (1) Joystick based control by a human operator, (2)
Using an improved human motion simulator we have devel-
oped in our lab (under review (submitted to IROS2021)) and
(3) Using the human trajectories generated by HATEB local
planner (an ideal situation where human moves exactly as the

robot expects). We present in detail some of these intricate
scenarios in this section, along with some quantitative results.
Further, we also present some details about the extension of
our system to crowded scenarios using PedSim ROS4. In all
figures shown below, the trajectories of the robot and humans
(if shown) are shown as coloured circles. These circles are
the poses planned by HATEB local planner, and the colour
corresponds to the time instant. If the predicted human pose
and the robot pose has the same colour, they belong to the
same time instant.

A. Door Crossing Scenario

Door crossing is a very common and simple situation
in many human environments. If two humans try to pass
through the same door, one of them has to compromise and
clear the way for the other. We have placed the robot running
our planning system in the door crossing situation shown in
Fig. 3. The goal of the robot is beside the second human
standing in the room, and the system uses PredictBehind
human path prediction. The left part of the figure shows
the simulated scenario and the corresponding trajectories
planned by the system for the human and the robot. The
simulated human crossing the door was controlled by a
human and hence does not move as the planning system
expects. The system quickly adapts to these changes and
makes the robot clear the way for the human by waiting
on the side, as shown in the right part of Fig. 3. The robot
continues to its goal after the human crosses the robot. The
planning model is DualBand until the human crosses the
robot and then it switches to SingleBand. As soon as the

Fig. 3: Door crossing scenario in the simulated environment. The
human moves towards the door. The robot sees the human and waits
on the side of the door (right) until the human crosses.

robot crosses the door, it faces one more human, but this
human is just standing at the same place and does not move.
Since the human is static, our system adds the human layers
to the costmaps and re-plans its path. The same scenario
is repeated with the second human placed in two different
orientations and as shown in Fig. 4. In both scenarios, there is
enough space between the wall and the human for the robot
to reach its goal, maintaining a safe distance from the human.
On the top left scenario of the figure, the human can see the
robot, and so the planner makes the robot pass through this
space. However, in the second scenario, the human cannot
see the robot. Therefore, our planner completely re-plans the

4https://github.com/srl-freiburg/pedsim_ros



path as shown (top right) and makes the robot reach its goal
by taking a longer path that is visible to the human. This is
due to the added Human Visibility layer. Fig. 4 also shows
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Fig. 4: Door crossing scenario in the simulated environment with
the static human in two different orientations. Top two pictures show
the scenarios in simulation and the planned trajectory of the robot.
The bottom two figures show the robot velocity and human-robot
distance graphs over time steps.

the plots corresponding to robot velocity (on left y-axis)
and the distance between the moving human and the robot
(human-robot distance) (on right y-axis) with respect to the
time steps (on x-axis). Different colours in different portions
of the plots correspond to different planning modes of the
system, as indicated in the plots. The solid line represents
the robot’s velocity (Vel), while the dashed line shows the
human-robot distance (HRDist). The same conventions are
followed across this paper. From both the graphs (Fig. 4
bottom left and right), it can be observed that the robot’s
velocity decreases as the human-robot distance decreases.
This is a combined effect of several human-aware constraints
of our system. However, the Relative Velocity constraint plays
a major role here. Secondly, it can be seen in the graph of the
first scenario (bottom left) that the robot’s velocity decreases
one more time before the planner changes to VelObs mode.
This is because the robot is trying to navigate a narrow space
between the human and the wall. This causes the planner to
slowdown its velocity and checks the state of the human.
Since the human is static, it shifts to VelObs mode that has
little reduced constraints and continues its navigation.

B. Narrow Corridor Scenario

This scenario occurs when a long corridor has to be
traversed by two humans in opposite directions, and the
corridor is wide enough only for a single human. In this
case, one of them has to go back and wait for the other to
cross. When one of the agents in this scenario is a robot, it
becomes a little more complicated as the robot should back-
off giving priority to the human while taking legible actions.
Most of the existing planners either re-plan a long deviation

Fig. 5: Narrow corridor scenario simulated in MORSE. (a) The
initial planned trajectory of the robot in DualBand mode. (b) The
robot’s way is blocked by the human and the system shits to the
Backoff-recovery mode. (c) The robot clears the way for the human
and waits on the side until human crosses the robot. (d) The robot
continues to its goal in SingleBand mode.
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Fig. 6: Plots of velocity and human-robot distance over time steps
in the Narrow Corridor scenario.

to reach the goal or fail in this complicated situation. A more
natural way to handle this would be to clear the way for
the human and wait until the human crosses the robot to
resume its goal. The Backoff-recovery mode of our system
does exactly this. To make the actions more legible, the robot
moves back slowly without showing its back until it can go
either left or right to clear the way. The snapshots from the
simulated version of this scenario are shown in Fig. 5. Each
picture also shows the planned trajectory of the robot in each
setting with the planning mode shown behind the robot. This
scenario uses the PredictGoal human path prediction, and the
goal of the robot is on the other side of the corridor. Fig.
5 (a), shows the initial situation when the two agents are
entering the narrow corridor. As the robot can see the human
and the human is moving, it operates in DualBand mode until
the human blocks it’s way completely. The human agent in
this setting is controlled by the human simulator mentioned



(a) PedSim
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(b) Pillar Corridor
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(c) Wide Corridor
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(d) Open Space

Fig. 7: (a) The robot running the proposed navigation system in the PedSim ROS pedestrian simulator. The robots planned trajectory and
the predicted trajectories of the two nearest humans in VelObs mode are shown. (b) A corridor with pillars, wide enough for only one
agent at the side of pillar. (c) A wide corridor where the two agents have enough space to cross each other maintaining safe distances.
(d) An open space scenario where robot have enough space to avoid and show its intention to the human well in advance. In (b), (c) and
(d), the plots of robot’s velocity and human-robot distance over time steps are shown below the scenario.

earlier. As soon as the robot finds itself blocked, it switches
to VelObs mode and checks for a possible solution. However,
when it cannot find the solution after repeated checks, it
switches to Backoff-recovery mode after few seconds (> 10s)
as shown in Fig. 5 (b). Fig. 5 (c) shows the robot waiting
for the human to cross the corridor before it can resume its
goal. The robot switches to SingleBand mode and resumes
its navigation to the goal as in Fig. 5 (d).

The plots of robot velocity and human-robot distance with
respect to time steps for this scenario is shown in Fig.
6. As the human-robot distance decreases after a certain
threshold, the velocity of the robot decreases like in the door
crossing scenario (blue part). When the robot switches its
mode from DualBand to VelObs, the robot tries to move
in different directions causing the oscillations seen in the
plot (red part). In the Backoff-recovery mode, it maintains
a constant velocity (green part) and stops waiting for the
human. The human agent of the human simulator starts
moving towards the robot as soon as it starts moving back.
This explains a near-constant human-robot distance trend
in green. Once the human passes the robot, it resumes its
navigation in SingleBand mode (black part).

C. Results in the Crowd context and other scenarios

We further tested our system in various scenarios, includ-
ing crowds. For the simulation of crowds, we have used
the PedSim ROS simulator and use the system in VelObs
mode. Fig. 7 (a) shows two snapshots from the tests. The
robot adds elastic bands to two of the nearest humans in the
environment and successfully navigates the crowd generated
by the simulator (shown in video). Further, it can be seen
that the robot proactively clears the way for PedSim agents
while navigating in the corridor shown, Fig. 7 (a).

We have simulated three other scenarios in MORSE: (1)
Pillar Corridor, (2) Wide Corridor and (3) Open Space, and
used our system to navigate them. These scenarios are shown
in Fig. 7 (b), (c) and (d). In all three scenarios, human
and robot goals are behind the other agent. In the Wide
Corridor scenario, the robot predicts that the human’s goal is
behind its initial position and plans the human’s trajectory.
We use this planned human trajectory to control the human
in this case, and hence it represents the ideal scenario for
the planner. The scenario and its corresponding velocity and
human-robot distance plots are shown in Fig. 7 (c). For the
other two scenarios, the human agent was controlled by the
human simulator, and the system uses PredictGoal human
path prediction. The velocity and human-robot distance plots
for the Open Space (7 (b)) scenario are similar to the Wide
Corridor one (7 (d)), however, in the Pillar Corridor (7 (c))
scenario, the velocity almost reaches zero when the human
is at the closest. This occurs as the robot has to wait behind
the pillar for the human to cross.

D. Quantitative Results

In order to check the repeatability of our system and evalu-
ate its performance with respect to the existing human-aware
navigation planners, we selected four different simulated
scenarios and repeated the same experiment 10 times in each
of the scenarios. The scenarios we considered here include
Open Space, Narrow Passage (similar to the one in [8]),
Pillar Corridor and Narrow Corridor. The human in these
scenarios is controlled by the improved human simulator
mentioned earlier. In all these scenarios, our system produced
consistent results over the repetitions with similar paths.
Further, we compared it with the human-aware navigation
planner presented in [7] that was designed for indoor home



HATEB TPF
Experiment Path Length (m) Total Time (s) Min HRDist (m) Path Length (m) Total Time (s) Min HRDist (m)
Open Space 9.2329 16.0117 1.2927 8.7892 24.7683 0.9508

Narrow Passage 9.7279 17.8017 0.7061 9.4017 27.1633 0.935
Pillar Corridor 19.1127 31.46 0.8948 18.4489 52.9417 0.7589

Narrow Corridor 23.5369 48.3850 0.6636 - - -

TABLE I: Mean values of the metrics over 10 repetitions in four different contexts. TPF failed in the Narrow Corridor case.

context. This system uses Timed Path Follower (TPF) as its
local planner, and its trajectory is highly dependant on the
path produced by its global planner, Lattice Planner. Note
that our comparison was limited to only one planner as not
many human-aware planners are available openly for indoor
contexts. This planner was also made to run repeatedly 10
times in the above four scenarios. However, in the Narrow
Corridor case, this planner failed to complete the navigation,
and the robot got stuck in front of the human as the Lattice
Planner could not find a path.

We used three different metrics to present the comparisons
between these two planners, the total length of the path taken,
the total time to complete the scenario and the minimum
human to robot distance that the planner encountered while
executing each scenario. The average over the 10 runs is
taken and presented in Table. I. Note that the total time taken
by the TPF is greater as its linear velocity was limited by
the planner even though the same velocity and acceleration
limits of the robot were provided to both the planners. In
terms of the total path length, TPF always followed a lesser
distance compared to HATEB. This is because HATEB took
the larger deviations to either show intentions (in Open
Space) or a clear path for the human (Pillar Corridor and
Narrow Passage). However, in the Narrow Passage case, TPF
produced better behaviour by waiting for the human to cross,
while HATEB blocked the way for a bit before clearing the
way for the human. This can also be seen by comparing
the minimum human-robot distance in this case. Finally, in
terms of the minimum human-robot distances, HATEB varies
widely, as it handles each case differently. If the space is
available, it takes a greater distance than TPF, otherwise, it
slows down the robot’s velocity and approaches a little closer
to the human. In TPF, this metric produces similar results in
two of the three scenarios. In the Pillar Corridor, this metric
has a lesser value compared to HATEB as the robot goes
towards the wall opposite to pillar and waits, instead of going
behind the pillar.

V. EXPERIMENTS WITH REAL HUMANS

We deployed our system on a real robot platform, Pepper5,
for some real-world experiments in our lab. For the human
detection and tracking, we used the OptiTrack6 motion
capture system that publishes the positions and velocities of
the tracked humans at 10 Hz. We present results from two
experiments, one in open space and the other in the narrow
corridor. Fig. 8 shows the instances from these experiments.
The pictures on the top show the open space scenario with the

5https://www.ald.softbankrobotics.com/en/pepper
6http://www.optitrack.com/

Fig. 8: Our system deployed and tested on a real robot, Pepper. The
top pictures show the open space scenario, and the bottom pictures
show the test of the Backoff-recovery mode.

planned trajectory of the robot shown at the bottom of each
instance. In this scenario, the human approaches very close
to the robot at the crossing point, and this makes the robot
slow down, back off a little and then re-plan its trajectory
(please see the video7 attachment). The bottom part of Fig.
8 shows instants from the test of Backoff-recovery mode in
our system. The human stands in the corridor blocking the
robot’s way. The planner starts in DualBand mode and finally
switches to Backoff-recovery mode as there is no solution.
The robot slowly backs off and clears the way for the human
by moving to the left side of the corridor, as seen in Fig. 8.

VI. DISCUSSION AND CONCLUSION

In this work, we proposed a new human-aware navigation
planner that can handle a variety of human-robot contexts. It
was able to handle both outdoor crowd scenario and indoor
intricate scenarios, thanks to the different planning modes
and tunable parameters in the system. These planning modes
are at the control level and hence differs from higher-level
modes as used in [23]. Consider the Backoff-recovery mode
for example, instead of going into the corridor, the robot
could have stopped (or back-off) as soon as it sees a person
and waited for the human to complete his/her navigation.
Nonetheless, this may not be possible in very long corridors
due to the lack of visibility. By employing a higher level
planner, this case could be handled much more efficiently,
but our focus is on providing this feature at the control
level. We introduced Human Safety and Human Visibility
layers into the system through costmaps to address the static

7Video Link: https://youtu.be/Jwi_gYva_VQ



human scenarios. For handling the dynamic humans, we have
used a variety of human-aware constraints in HATEB along
with visibility and planning radius. The proposed system also
provided different types of human path prediction methods.
We introduced two new human-aware constraints in addition
to the previous ones present in HATEB to offer a more legible
trajectory. Further, we evaluated our system in a variety
of simulated scenarios and presented both qualitative and
quantitative results. Finally, the real-world tests on a robotic
platform were presented.

Limitations and Future Work: One of the major limitations
of our system could be computational complexity as it
performs optimization in each control loop. However, it
does not affect the real-time performance of the robot in
SingleBand and Backoff-recovery modes (10Hz). In the other
modes, it may lead to a little reduced control rate (8-9 Hz),
however still in realtime. One of the immediate future works
could be to use a higher-level planner on the top of our
system and include contexts like following or accompanying
a human. Currently, the system is not designed for handling
groups of people differently, and we plan to include it in the
future version of the system. One more possible future path
would be to include human detection and tracking system
along with the navigation system.
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