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Human-Aware Navigation Planner for Diverse
Human-Robot Interaction Contexts

Phani Teja Singamaneni1, Anthony Favier1,2, Rachid Alami1,2

Abstract— As more robots are being deployed into human
environments, a human-aware navigation planner needs to
handle multiple contexts that occur in indoor and outdoor
environments. In this paper, we propose a tunable human-
aware robot navigation planner that can handle a variety
of human-robot contexts. We present the architecture of the
system and discuss the features along with some implementation
details. Then we present a detailed analysis of various simulated
human-robot contexts using the proposed planner. Further, we
show that our system performs better when compared with an
exiting human-aware planner in various contexts. Finally, we
show the results in a real-world scenario after deploying our
system on a real robot.

I. INTRODUCTION

In the recent decade, more and more robots are entering
into human environments. From the robotic vacuum cleaners
to the human assisting robots in shops, malls [1], [2] and
airports [3], all of these robots are working in environments
with humans moving around. To navigate in these places, the
robot needs to be aware of the humans in the environment,
and treating humans simply as obstacles may not be enough.
Besides, the robot’s motion should be safe, legible and
acceptable to humans rather than being optimal from the
sole point of view of the robot (time, energy etc.). There-
fore, a new field of robotic navigation called human-aware
(or social) navigation has emerged, which studies various
human motion and social aspects for developing more human
acceptable robotic navigation.

Depending on the shape of the local environment (large
area, small rooms, narrow corridors or passage) and the
density and activity of the humans (individuals, crowds,
domestic or public space motion activity) in that environ-
ment, human-aware robot navigation has to address various
types of human-robot interaction contexts. These contexts
can differ from the situations where the current position
of the human is enough to where a good estimate of the
goal is necessary or even where path negotiation has to take
place. For instance, if the robot is in the middle of a dense
crowd, it should better be purely reactive and compliant
to the overall motion flows than in a corridor where less
reactive and more cooperative motion with path negotiation
is preferable. Therefore, different navigation planners are
developed for different types of environments with shared
human spaces like malls [2], streets [4], warehouses [5],
offices [6], labs, homes [7] etc. All these different planners
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emerged as there is no single algorithm that can cover all
environments and situations. In order to address these issues,
we propose a highly tunable human-aware navigation system
with multiple modes of planning that can be employed in a
variety of human-robot contexts, with a small number of
pertinent parameters that can be adjusted to treat various
contexts. Our main contributions in this work are threefold:

1) We propose a tunable human-aware navigation planner
with different planning modes that can handle very
complex indoor scenarios as well as crowded scenarios
called the Cooperative Human-Aware Navigation (Co-
HAN) Planner.

2) We extend our previous work, Human-Aware Timed
Elastic Band (HATEB) [8] local planner, to effectively
handle large numbers of people and to offer more legible
and acceptable navigation.

3) We evaluate the proposed planner in several simulated
human-robot scenarios and present both qualitative and
quantitative analysis. Further, we also present the tests
conducted on the real robot at our lab.

The rest of the paper is organized as follows. In section II,
we discuss the related works. The planner’s architecture is
presented in section III along with explanations of various
modules and features. Following this, section IV presents
the evaluation of our planner in various simulated human
contexts. We also present a comparison with one of the
existing human-aware navigation planners. In section V, we
talk about the tests conducted on the real robot. Finally,
section VI presents some discussion and conclude.

II. RELATED WORK

There are a variety of human-aware navigation planners
designed for different human-robot contexts. In the context
of a crowd or robot navigation in the street, Ferrer. et al
[4] presents a potential field based navigation using the
social force model. The authors of [9] extended this to
human-object and human group interactions by proposing
the proactive social motion model. The work by Repiso
et. al [10] shows the context of a robot accompanying a
human. The authors of [11] address this crowd navigation
problem by using reinforcement learning and, the works [3],
[12] address the same with inverse reinforcement learning.
Coming to other contexts, the works presented in [13], [6]
and [7] show some interesting costmap based approaches for
planning paths in complex indoor scenarios that can occur
at homes or offices. In this paper, we use a similar costmap
based approach to handle static humans. Fernandez Carmona
et. al [5] compares the performance of the existing navigation
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planners in a warehouse context and proposes an architecture
to include humans in planning. The work of Güldenring
et. al [14] addresses the same context using reinforcement
learning. Some other works like [15], [16] use inverse rein-
forcement learning for confined and public space navigation
contexts. Khambhaita and Alami [17] addressed the context
of human-robot co-navigation based on an optimization-
based approach. Note that none of the above planners was
designed to handle multiple human contexts together. A
multi-context human-aware navigation planning is a very
new field, and not many works exist. Lu et. al [18] proposed
a layered costmap based approach for handling different
navigation contexts. A more recent work by Banisetty et.
al [19] shows some promising results using a deep learning-
based context classification and multi-objective optimization
based navigation planner [20]. However, these results are
validated only in indoor scenarios and, the authors do not
present any results in a crowd, unlike the proposed system.

In order to handle the dynamic humans in our navigation
planner and plan a socially acceptable trajectory for the
robot, a human motion prediction system is required. One of
the classic approaches of human motion prediction is based
on the social force model [21]. Ferrer et. al [22] uses this
social force model both to predict human motions and to
move the robot among the crowds. Kollmitz et. al [7] uses
a simple linear prediction based on current human velocity.
Instead of predicting the trajectory, a possible human goal
can also be predicted using certain reasoning over a probable
set of goals [23]. Our proposed navigation system uses one
such goal prediction system [24] as a part of the human path
prediction module. Apart from this, our system offers three
other human path prediction methods to handle different
situations. In a recent work by Fisac et. al [25], the authors
suggest a probabilistic human model with confidence to
handle the uncertainties in a system.

One of the key elements of the proposed system is the
context-based shifting between different planning modes.
This kind of modality shifting is discussed in the works of
Qian et. al [26], and Mehta et. al [27] based on Partially
Observable Markov Decision Processes. Unlike these, our
system uses situation assessment based modality shifting. In
our previous work [8], we introduced this modality shifting
with three different modes of planning. In the current work,
we extend this to handle a large number of humans and also
introduce some elements, including a new planning mode.
This modified HATEB local planner is integrated into the
proposed framework as the local planner.

III. PLANNER ARCHITECTURE AND FEATURES

In this section, we present the overall architecture of the
human-aware navigation planning system and explain its
features that allow us to deal with various kinds of human-
robot contexts. Our system is developed over the ROS [28]
navigation stack, and the architecture of the proposed system
is shown in Fig. 1. The red blocks shown in the Fig. 1
are the modifications we introduced into the standard ROS
navigation stack and are the major contributions of this

Fig. 1: Software architecture of the proposed planner.

work. As shown in the figure, we introduce Human Safety
and Human Visibility costmaps layers into both global and
local costmaps. The Human Safety layer is modelled as a
2D Gaussian around the human, and the Human Visibility
layer as a 2D half Gaussian on the backside of the human.
Both these layers have a cutoff radius of 3m [13] beyond
which the cost is zero. These layers are implemented using
a costmap plugin that we developed called the human layers.
The addition of these layers is controlled by the Human State
of the HATEB local planner. The Human Path Prediction
module predicts the possible paths for the requested humans
using the selected prediction method. The HATEB local plan-
ner module accesses different human-robot scenarios and
determines the Human State and the Planning State shown
in the figure. Both these states together decide the planning
mode of the system and also control the transition between
different modes. Based on the Planning State, the appropriate
path prediction method is selected for the humans. After
accepting a navigation goal, the system continuously ac-
cesses the human-robot scenario and appropriately chooses a
planning mode that decides the command velocity sent to the
robot’s base controller. Note that the planning mode need not
be constant and can shift depending on the context. Further,
our system is completely tunable, and the transition between
different modes can be tuned (or changed) by changing
the mode transition parameters [8] as per the requirement.
We call this entire system together with all modules as
CoHAN planner. The system is publicly available on github
at https://github.com/sphanit/CoHAN_Planner.

A. Types of Humans and Costmap layers

In our system, we deal with different types of humans
while navigating the robot to the goal. Fig. 2 shows all
these types of humans along with the robot’s visibility
and the planning radius, R. While the robot is moving
in the environment, the system considers only the humans
within this planning radius that are in the visible region.
Among these humans, it checks for the static and dynamic
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humans and updates the Human State for all the humans.
The human layers plugin checks the Human State of all
the observable humans and adds the Human Safety and
Human Visibility costmap layers around the static humans.
We chose to add these costmap layers only around static
humans because the response time for static humans is
usually slow, and the robot should therefore maintain a larger
safety distance as well as avoid surprise appearances from
behind [13]. Besides, no elastic band is added to the static

Fig. 2: Different types of humans considered in our system. A
sample trajectory of the robot is shown among different humans.

humans, and the addition of these layers is necessary to plan
a safe path. For the dynamic humans within the planning
radius, the system adds elastic bands to the two nearest
humans and plan their paths and trajectories until they move
behind the robot or out of the planning radius.

B. Human Path Prediction

The Human Path Prediction module deals with different
kinds of human goal predictions and building the global plans
for required humans. Our system currently offers four types
of human goal prediction and path planning methods.

1) PredictBehind: This method predicts that the human
goal is behind the robot. The position of the robot when
the human enters the visible planning radius is used for
this. This goal is used to predict the path.

2) PredictGoal: This method predicts the most probable
goal among the set of goals provided to the system using
the approach described in [24]. The predicted goal is
then used for path prediction.

3) PredictVelObs: This method builds a path by extrapo-
lating the current human velocity over a fixed duration
and does not predict any goal. Currently, the duration
is set to 5s. This is the default prediction service in
VelObs mode.

4) PredictExternal: This service accepts a goal from an
external system and adds a global path prediction based
on the provided goal.

These services provide global plans for the humans that are
used by the HATEB local planner for planning local plans
(or trajectories).

C. HATEB local planner and planning modes

It is the core module of the proposed human-aware naviga-
tion planning system. HATEB local planner is based on the
human-aware extension of Timed Elastic Band (TEB) [29]
local planner by Khambhaita and Alami [17]. This module
plans the robot’s trajectory and the possible human trajecto-
ries for the two nearest humans in the visible planning radius
based on the predicted human paths. It continuously assesses
the current human-robot context and sets the Planning State
and the Human State. Depending on the value of these states,
it shifts between different planning modes. This is needed
in the intricate human-robot contexts that cannot be solved
using a single planning mode.
Modes of Planning: HATEB local planner provides four dif-
ferent modes of planning at the control level and intelligently
shifts between them based on the situation.
1. SingleBand mode: This is the mode in which the planning
system starts and has an elastic band only for the robot. The
system stays in this mode as long as there are no humans
within the visible planning radius. The default planning
radius is taken as 10m.
2. DualBand mode: In this mode, elastic bands are added to
the two nearest dynamic humans in visible planning radius
and trajectories are planned for humans along with the robot.
This kind of human planning allows the robot to proactively
plan its trajectory and adapt to the changing human plans. On
top of being useful as predictions, these planned trajectories
also offer a possible solution for the human-robot context,
which, if followed, will resolve any conflict that exists.
3. VelObs mode: This mode uses all the human-aware criteria
while planning but adds bands to humans only if they have
some velocity. This mode is useful in crowded human sce-
narios or when the robot cannot move due to entanglement
issues [8] of the DualBand mode.
The situation assessment and mode shifting scheme for the
above-mentioned planning modes is described clearly in our
previous work [8]. In this work, we extended this by adding
a Backoff-recovery mode.
4. Backoff-recovery mode: The Backoff-recovery mode is
required when there is no solution to the planning problem
unless one of the agents completely clears the way for the
other. This kind of situation commonly occurs in a very
narrow corridor where only the person (or robot) can navigate
at a time. If a human and robot face each other in a very
narrow corridor or another situation where one of them has
to clear the way for the other, our system gives priority to
the human and makes the robot clear way for the human.
This is done by making the robot move back slowly until it
can go either left or right to clear the way (by querying the
costmaps on all three sides and setting a temporary goal in
the possible direction). Once the robot clears the way, it waits
for the corresponding human to complete its navigation or a
timeout and then proceeds to its goal. This mode is activated
when the robot is in VelObs mode in the near vicinity of the
human (< 2.5m), and it is stuck without progressing towards
the goal for more than 10 seconds. It can also accept new
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goals in the waiting state and navigate to them, discarding
the existing goal.

HATEB uses several human-aware constraints in its opti-
mization scheme for proactive and legible planning around
humans in the environment. Several of these constraints are
listed in our previous works. In this work, we have added two
new constraints along with the previous constraints. These
new constraints, called the Visibility and Relative Velocity
are explained briefly below:

Visibility: It adds cost to the optimization when the robot
is behind the human and it plans to cross or go in front
of the human. This constraint tries to avoid the emergence
of the robot suddenly from behind and makes the robot
enter the human’s field of view from a larger distance. It
is implemented by adding a 2D half Gaussian behind the
human.

Relative Velocity: This constraint adds cost to the optimiza-
tion based on the relative velocity between humans and the
robot and their distance. The main effect of this constraint
is low robot velocity in the close vicinity [30] of the human
if it cannot find a path to maintain a greater distance. If the
robot can find a path with a greater distance from a human,
it chooses that path with a normal velocity profile. Another
effect of this constraint is early intention show of the robot
similar to TTC or TTCplus constraint given in [8]. The cost
added is shown below.

costrel vel =
((max(

−−→
Vrel ·

−−−→
PrPh), 0) + ‖

−→
Vr‖+ 1)

‖
−−−→
PrPh‖

(1)

where
−→
Pr,
−→
Vr are the position and velocity of the robot,−→

Ph,
−→
Vh are the position and velocity of the human and

−−→
Vrel =−→

Vr −
−→
Vh. Since this constraint has similar effects as TTC

or TTCplus, we activate this constraint alone and deactivate
TTC and TTCplus constraints in all the experiments presented
in this paper. HATEB takes all the activated human-robot
constraints and other necessary kinodynamic constraints and
plans the trajectories of the robot and the humans. Since the
local planner runs a computationally expensive optimization
in each control loop, extending the planning beyond two
humans does not yield real-time control of the robot. Hence
we restricted our human planning to the two nearest humans.

One more extension in this work is the addition of the
field of view of the robot into the planning system. This
is done using ray-tracing from the robot’s position on the
environmental map. Since human tracking is provided by
an external system, it is important to restrict the system
to consider the humans present in its field of view. This
is more natural and makes it easier to use our system
with vision-based human tracking. The proposed system
also offers a variety of parameter settings that can choose
prediction mode, the human-aware constraints to be used and
tuning over these costs. Even the planning can be restricted
to only one of the three planning modes (except Backoff-
recovery). Hence, it is possible to extend it to many kinds of
human-robot contexts by properly choosing the parameters
and with simple tuning. With the addition of the costmap

layers around the static humans, this framework can handle
all the scenarios presented in [19]. We present our results in
different scenarios and environments in the next section.

IV. RESULTS IN VARIOUS SIMULATED SCENARIOS

To validate our system, we applied it to various kinds
of human-robot contexts that can occur in day-to-day life.
These situations are generated in a simulated environment
based on MORSE [31]. The humans in these simulations
are controlled in three different ways to test the robustness of
the system: (1) Joystick based control by a human operator,
(2) Using an improved human motion simulator we have
developed in our lab and (3) Using the human trajectories
generated by HATEB local planner (an ideal situation where
the human moves as expected by the robot). We present
in detail some of these intricate scenarios in this section,
along with some quantitative results. Further, we also present
some details about the extension of our system to crowded
scenarios using PedSim ROS1. In all figures shown below,
the trajectories of the robot and humans (if shown) are shown
as coloured dots. These are the poses planned by HATEB
local planner, and the colour visualizes the time. If the colour
of the predicted human pose dot is the same as the colour of
the robot pose dot, they will both be at that location at the
same time.

A. Door Crossing Scenario

Door crossing is a common situation in many human
environments. If two humans try to pass through the same
door, one of them has to compromise and clear the way for
the other. We have placed the robot running our planning
system in the door crossing situation shown in Fig. 3. The
goal of the robot is beside the second human standing in
the room, and the system uses PredictBehind human path
prediction. The left part of the figure shows the simulated
scenario and the corresponding trajectories planned for the
human and the robot. The simulated human crossing the door
was controlled using a joystick and, hence does not move as
the planning system expects. The system quickly adapts to
these changes and makes the robot clear the way for the
human by waiting on the side, as shown in the right part
of Fig. 3. The robot continues to its goal after the human
crosses the robot. The planning mode is DualBand until the
human crosses the robot, and then it switches to SingleBand.
As soon as the robot crosses the door, it faces one more
human, but this human is just standing at the same place
and does not move. Since the human is static, our system
adds the human layers to the costmaps and re-plans its path.
The same scenario is repeated with the second human placed
in two different orientations and as shown in Fig. 4. In both
scenarios, there is enough space between the wall and the
human for the robot to reach its goal, maintaining a safe
distance from the human. On the top left scenario of the
figure, the human can see the robot, and so the planner
makes the robot pass through this space. However, in the

1https://github.com/srl-freiburg/pedsim_ros
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Fig. 3: Door crossing scenario in the simulated environment. The
human moves towards the door. The robot sees the human and waits
on the side of the door (right) until the human crosses.

second scenario, the human cannot see the robot. Therefore,
our planner completely re-plans the path as shown (top right)
and makes the robot reach its goal by taking a longer path
making the robot visible to the human. It is due to the
added Human Visibility layer. Fig. 4 also shows the plots
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Fig. 4: Door crossing scenario in the simulated environment with
the static human in two different orientations. Top two pictures show
the scenarios in simulation and the planned trajectory of the robot.
The bottom two figures show the robot velocity and human-robot
distance graphs over time.

corresponding to robot velocity (on the left y-axis) and the
distance between the moving human and the robot (human-
robot distance) (on the right y-axis) with respect to the
time (on the x-axis). Different colours in different portions
of the plots correspond to different planning modes of the
system, as indicated in the plots. The solid line represents
the robot’s velocity (Vel), while the dashed line shows the
human-robot distance (HRDist). The same conventions are
followed across this paper. From both the graphs (Fig. 4
bottom left and right), it can be observed that the robot’s
velocity decreases as the human-robot distance decreases. It
is a combined effect of several human-aware constraints of
our system. However, the Relative Velocity constraint plays a
major role here. Secondly, it can be seen in the graph of the
first scenario (bottom left) that the robot’s velocity decreases
one more time before the planner changes to VelObs mode.

It is because the robot is trying to navigate a narrow space
between the human and the wall. This causes the planner to
slow down its velocity and checks the state of the human.
Since the human is static, it shifts to VelObs mode that has
little reduced constraints and continues its navigation.

B. Narrow Corridor Scenario

Fig. 5: Narrow corridor scenario simulated in MORSE. (a) The
initial planned trajectory of the robot in DualBand mode. (b) The
robot’s way is blocked by the human and the system shits to the
Backoff-recovery mode. (c) The robot clears the way for the human
and waits on the side until human crosses the robot. (d) The robot
continues to its goal in SingleBand mode.
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Fig. 6: Plots of velocity and human-robot distance over time in the
Narrow Corridor scenario.

This scenario occurs when a long corridor has to be
traversed by two humans in opposite directions, and the
corridor is wide enough only for a single human. In this
case, one of them has to go back and wait for the other to
cross. When one of the agents in this scenario is a robot, it
becomes a little more complicated as the robot should back-
off giving priority to the human while taking legible actions.
Most of the existing planners either re-plan a long deviation
to reach the goal or fail in this complicated situation. A more
natural way to handle this would be to clear the way for
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(a) PedSim
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(b) Pillar Corridor
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(c) Wide Corridor
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(d) Open Space

Fig. 7: (a) The robot running the proposed navigation system in the PedSim ROS pedestrian simulator. The robots planned trajectory and
the predicted trajectories of the two nearest humans in VelObs mode are shown. (b) A corridor with pillars, wide enough for only one
agent at the side of the pillar. (c) A wide corridor where the two agents have enough space to cross each other maintaining safe distances.
(d) An open space scenario where the robot has enough space to avoid and show its intention to the human well in advance. In (b), (c)
and (d), the plots of robot’s velocity and human-robot distance over time are shown below the scenario.

the human and wait until the human crosses the robot to
resume its goal. The Backoff-recovery mode of our system
does exactly this. To make the actions more legible, the robot
moves back slowly without showing its back until it can go
either left or right to clear the way. The snapshots from the
simulated version of this scenario are shown in Fig. 5. Each
picture also shows the planned trajectory of the robot in each
setting with the planning mode shown behind the robot. This
scenario uses the PredictGoal human path prediction, and
the goal of the robot is on the other side of the corridor.
Fig. 5 (a) shows the initial situation when the two agents are
entering the narrow corridor. As the robot can see the human
is moving, it operates in DualBand mode until the human
blocks it’s way completely. The human agent in this setting
is controlled by the human simulator mentioned earlier. As
soon as the robot finds itself blocked, it switches to VelObs
mode and checks for a possible solution. However, when it
cannot find the solution after repeated checks, it switches to
Backoff-recovery mode after few seconds (> 10s) as shown
in Fig. 5 (b). Fig. 5 (c) shows the robot waiting for the human
to cross the corridor before it can resume its goal. The robot
switches to SingleBand mode and resumes its navigation to
the goal as in Fig. 5 (d).

The plots of robot velocity and human-robot distance with
respect to time for this scenario is shown in Fig. 6. As the
human-robot distance decreases after a certain threshold, the
velocity of the robot decreases like in the door crossing
scenario (blue part). When the robot switches its mode from
DualBand to VelObs, the robot tries to move in different
directions causing the oscillations seen in the plot (red
part). In the Backoff-recovery mode, it maintains a constant
velocity (green part) and stops waiting for the human. The

human agent of the human simulator starts moving towards
the robot as soon as it starts moving back. This explains
a near-constant human-robot distance trend in green. Once
the human passes the robot, it resumes its navigation in
SingleBand mode (black part).

C. Results in the Crowd context and other scenarios

We further tested our system in various scenarios, includ-
ing crowds. For the simulation of crowds, we have used
the PedSim ROS simulator and use the system in VelObs
mode. Fig. 7 (a) shows two snapshots from the tests. The
robot adds elastic bands to two of the nearest humans in the
environment and successfully navigates the crowd generated
by the simulator (shown in video). Further, it is seen that the
robot proactively clears the way for PedSim agents while
navigating in the corridor shown, Fig. 7 (a).

We have simulated three other scenarios in MORSE: (1)
Pillar Corridor, (2) Wide Corridor and (3) Open Space, and
used our system to navigate them. These scenarios are shown
in Fig. 7 (b), (c) and (d). In all three scenarios, human
and robot goals are behind the other agent. In the Wide
Corridor scenario, the robot predicts that the human’s goal is
behind its initial position and plans the human’s trajectory.
We use this planned human trajectory to control the human
in this case, and hence it represents the ideal scenario for
the planner. The scenario and its corresponding velocity and
human-robot distance plots are shown in Fig. 7 (c). For the
other two scenarios, the human agent was controlled by the
human simulator, and the system uses PredictGoal human
path prediction. The velocity and human-robot distance plots
for the Open Space (7 (b)) scenario are similar to the Wide
Corridor one (7 (d)), however, in the Pillar Corridor (7 (c))
scenario, the velocity almost reaches zero when the human
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HATEB TPF
Experiment Path Length (m) Total Time (s) Min HRDist (m) Path Length (m) Total Time (s) Min HRDist (m)
Open Space 9.2329 16.0117 1.2927 8.7892 24.7683 0.9508

Narrow Passage 9.7279 17.8017 0.7061 9.4017 27.1633 0.935
Pillar Corridor 19.1127 31.46 0.8948 18.4489 52.9417 0.7589

Narrow Corridor 23.5369 48.3850 0.6636 - - -

TABLE I: Mean values of the metrics over 10 repetitions in four different contexts. TPF failed in the Narrow Corridor case.

is at the closest. This occurs as the robot has to wait behind
the pillar for the human to cross.

D. Quantitative Results

In order to check the repeatability of our system and
evaluate its performance with respect to the existing human-
aware navigation planners, we have selected four different
simulated scenarios and repeated the same experiment 10
times in each of the scenarios. The scenarios we considered
here include Open Space, Narrow Passage (similar to the
one in [8]), Pillar Corridor and Narrow Corridor. The human
in these scenarios is controlled by the improved human
simulator mentioned earlier. In all these scenarios, our system
produced consistent results over the repetitions with similar
paths. Further, we compared it with the human-aware navi-
gation planner presented in [7] that was designed for indoor
home context. This system uses Timed Path Follower (TPF)
as its local planner, and its trajectory is highly dependant
on the path produced by its global planner, Lattice Planner.
Note that our comparison was limited to only one planner
as not many human-aware planners are available openly
for indoor contexts. This planner was also made to run
repeatedly 10 times in the above four scenarios. However,
in the Narrow Corridor case, this planner failed to complete
the navigation, and the robot got stuck in front of the human
as the Lattice Planner could not find a path.

We used three different metrics to present the comparisons
between these two planners, the total length of the path taken,
the total time to complete the scenario and the minimum
human to robot distance that the planner encountered while
executing each scenario. The average over the 10 runs is
taken and presented in Table. I. Note that the total time taken
by the TPF is greater as its linear velocity was limited by
the planner, even though the same velocity and acceleration
limits of the robot were provided to both the planners. In
terms of the total path length, TPF always followed a lesser
distance compared to HATEB. This is because HATEB took
the larger deviations to either show intentions (in Open
Space) or a clear path for the human (Pillar Corridor and
Narrow Passage). However, in the Narrow Passage case, TPF
produced better behaviour by waiting for the human to cross,
while HATEB blocked the way for a bit before clearing the
way for the human. This can also be seen by comparing
the minimum human-robot distance in this case. Finally, in
terms of the minimum human-robot distances, HATEB varies
widely, as it handles each case differently. If the space is
available, it takes a greater distance than TPF otherwise, it
slows down the robot’s velocity and approaches a little closer
to the human. In TPF, this metric produces similar results in

two of the three scenarios. In the Pillar Corridor, this metric
has a lesser value compared to HATEB as the robot goes
towards the wall opposite to the pillar and waits instead of
going behind the pillar.

V. EXPERIMENTS WITH REAL HUMANS

We deployed our system on a real robot platform, Pepper2

for some real-world experiments in our lab. For the human
detection and tracking, we used the OptiTrack3 motion
capture system that publishes the positions and velocities of
the tracked humans at 10 Hz. We present results from two
experiments, one in open space and the other in the narrow
corridor. Fig. 8 shows the instances from these experiments.

Fig. 8: Our system deployed and tested on a real robot, Pepper. The
top pictures show the open space scenario, and the bottom pictures
show the test of the Backoff-recovery mode.

The pictures on the top show the open space scenario with the
planned trajectory of the robot shown at the bottom of each
instance. In this scenario, the human approaches very close
to the robot at the crossing point, and this makes the robot
slow down, back off a little and then re-plan its trajectory
(please see the video4 attachment). The bottom part of Fig.
8 shows instants from the test of Backoff-recovery mode in

2https://www.ald.softbankrobotics.com/en/pepper
3http://www.optitrack.com/
4Video Link: https://youtu.be/DB_8HpjngJ4
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our system. The human stands in the corridor blocking the
robot’s way. The planner starts in DualBand mode and finally
switches to Backoff-recovery mode as there is no solution.
The robot slowly backs off and clears the way for the human
by moving to the left side of the corridor, as seen in Fig. 8.

VI. DISCUSSION AND CONCLUSION

In this work, we proposed a new human-aware navigation
planner that can handle a variety of human-robot contexts. It
was able to handle both outdoor crowd scenarios and indoor
intricate scenarios, thanks to the different planning modes
and tunable parameters in the system. These planning modes
are at the control level and hence differs from higher-level
modes as used in [27]. Consider the Backoff-recovery mode
for example, instead of going into the corridor, the robot
could have stopped (or back-off) as soon as it sees a person,
or if the robot has progressed more than the human, the
human can go back and let the robot go. By employing a
higher level planner over our system, this case can be handled
much more efficiently, but our focus is on providing this
feature at the control level. We introduced Human Safety and
Human Visibility layers into the system through costmaps to
address the static human scenarios. For handling the dynamic
humans, we have used a variety of human-aware constraints
in HATEB along with visibility and planning radius. The
proposed system also provided different types of human path
prediction methods. We introduced two new human-aware
constraints in addition to the previous ones present in HATEB
to offer a more legible trajectory. Further, we evaluated our
system in a variety of simulated scenarios and presented both
qualitative and quantitative results. Finally, the real-world
tests on a robotic platform were presented.

Limitations and Future Work: One of the major limita-
tions of our system could be computational complexity as
it performs optimization in each control loop. However, it
does not affect the real-time performance of the robot in
SingleBand and Backoff-recovery modes (10Hz). In the other
modes, it may lead to a little reduced control rate (8-9 Hz),
however still in real-time. One of the immediate future works
is to develop a higher-level planner on top of our system
to handle the contexts more efficiently and to include more
contexts like following or accompanying a human. Currently,
the system is not designed for handling groups of people
differently, and we plan to include it in the future version
of the system. One more possible future path would be to
include human detection and tracking system along with the
navigation system.
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