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ABSTRACT:
Machine listening systems for environmental acoustic monitoring face a shortage of expert annotations to be used as
training data. To circumvent this issue, the emerging paradigm of self-supervised learning proposes to pre-train
audio classifiers on a task whose ground truth is trivially available. Alternatively, training set synthesis consists in
annotating a small corpus of acoustic events of interest, which are then automatically mixed at random to form a
larger corpus of polyphonic scenes. Prior studies have considered these two paradigms in isolation but rarely ever in
conjunction. Furthermore, the impact of data curation in training set synthesis remains unclear. To fill this gap in
research, this article proposes a two-stage approach. In the self-supervised stage, we formulate a pretext task
(Audio2Vec skip-gram inpainting) on unlabeled spectrograms from an acoustic sensor network. Then, in the super-
vised stage, we formulate a downstream task of multilabel urban sound classification on synthetic scenes. We find
that training set synthesis benefits overall performance more than self-supervised learning. Interestingly, the geo-
graphical origin of the acoustic events in training set synthesis appears to have a decisive impact.
VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005277
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I. INTRODUCTION

A. Monitoring sound quality with urban acoustic
sensors

The urban population of the world is growing rapidly:
from 751! 106 in 1950, it reached 4.2! 109 in 2018, and it
is expected to increase further over the next decades (United
Nations, 2018). In this context, noise pollution jeopardizes
the well-being of many residents in dense industrialized
areas. For example, in the United States, 70! 106 people
suffer from harmful levels of noise (Hammer et al., 2014),
with effects including sleep disruption, cardiovascular dis-
ease, and hearing loss (Basner et al., 2014). Moreover,
repeated exposure to noise has been proved to reduce the
learning abilities of children during class (Bronzaft, 2002).
Beyond the scope of public health, the issue of urban noise
pollution has many other sociopolitical implications, such as
effects on tourism and real estate values (Bristow and
Thanos, 2015).

Modeling the appraisal of citizens of their sound envi-
ronment is a difficult task. Different studies have proposed a
taxonomy of urban sounds (Berglund and Nilsson, 2006;

Brown et al., 2011; Salamon et al., 2014) and have con-
cluded that the perception of the acoustic environment of
urban areas is primarily influenced by three sources
(Ricciardi et al., 2015): traffic (presence of vehicles), voices
(presence of humans), and birds (presence of nature).
Furthermore, these studies show that it is possible to predict
the perceived pleasantness of outside sound environment
from the point of view of pedestrians nearby. To this end, it
is necessary to take into account the overall loudness of this
sound environment but also the presence of traffic, voices,
and birds. In this context, the motivation of our paper is to
detect and classify the presence of these sources on a frame-
level basis, with a frame duration that is typically equal to 1 s.
We will leave as future work the integration of urban sound
classification into predictive perceptual models of the urban
auditory environment.

The characteristics of sound environments may vary
at small spatiotemporal scales, i.e., typically 1000 m2

! 10 min (Brocolini et al., 2013). Therefore, a map of all
major noise sources in a given city cannot be achieved by
human inspection alone, be it expert or crowdsourced (New
York City Department of Health and Mental Hygiene,
2014). Rather, the prospect of monitoring urban noise in
real time calls for the deployment of an acoustic sensor net-
work (Vida~na-Vila et al., 2020). Indeed, prior research has
demonstrated the potential of acoustic sensors for noise
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mitigation, particularly via cartography (Park et al., 2014)
and partnership with city agencies (Mydlarz et al., 2017).

Meanwhile, the past decade has witnessed a surge of
deep learning models for the computational analysis of
sound scenes and events, with remarkable results in the
automatic classification of environmental sounds (Virtanen
et al., 2018). These statistical models may detect the pres-
ence of sound sources near each sensor at any time of the
day or night (Cartwright et al., 2019c). In addition, urban
sound classifiers may serve as pre-processing systems for
soundscape ecology (Pijanowski et al., 2011).

A recent publication has shown that estimating the pres-
ence of three coarse categories (traffic, voice, and birds) by
means of a deep convolutional network suffices to predict
the pleasantness of polyphonic urban soundscapes, as
judged by human listeners (Gontier et al., 2019).
Henceforth, the effective monitoring of audible patterns in a
city requires high-throughput analysis software paired with
low-cost sensing hardware (Picaut et al., 2020).

B. Limitations of supervised machine listening
models

The ultimate goal of urban sound classification is to
reach a high degree of agreement between the outputs of the
machine and the judgments of one or multiple human listen-
ers, over a diverse range of recording conditions. The most
straightforward way to achieve this goal is to train the
machine listening model in a supervised way, i.e., to repli-
cate the classification of humans over a collection of anno-
tated samples (And!en et al., 2019; Lagrange et al., 2015;
Piczak, 2015). Despite its simplicity, supervised learning in
acoustic sensor networks suffers from a number of practical
drawbacks.

First, annotating sounds is a tedious and time-
consuming task (Cartwright et al., 2019b). Auditory percep-
tion is inherently tied to the constraints of real time: the
physical duration of an annotated audio collection scales in
proportion with the number of human-hours spent annotat-
ing. On the one hand, the “weak labeling” task, where listen-
ers only annotate acoustic sources in terms of presence or
absence, can be accomplished almost on par with real time.
On the other hand, the “strong labeling” task also involves
the precise onset and offset of each acoustic event in the
recording: as such, it often requires multiple playbacks and
is thus much slower than real time (Cartwright et al., 2017).
While recent advances in multiple-instance learning have
proposed “strong” machine listening systems that are trained
on “weak” labels only (McFee et al., 2018), the topic of effi-
cient audio annotation remains central in urban sound classi-
fication (M!endez M!endez et al., 2019).

Second, supervised machine listening is exposed to
sampling bias as well as label noise (Fonseca et al., 2019).
In the age of user-generated content, media sharing plat-
forms harvest massive amounts of crowdsourced audio data
in general and urban sounds in particular (Font et al., 2013).
Specifically, scraping YouTube (for-profit) and Freesound
(nonprofit) has led to the curation of the AudioSet

(Gemmeke et al., 2017) and FSD50k (Fonseca et al., 2021)
datasets, respectively. That being said, the probability distri-
bution of acoustic events in crowdsourced data does not
reflect the real-world use case of sound quality monitoring.
This is a form of convenience sampling, which incurs sam-
pling bias in the machine learning process. Besides, delegat-
ing the annotation process to crowdsourcers tends to lower
inter-rater agreement, a phenomenon known as label noise
(Zhu et al., 2020).

Third, and perhaps most fundamentally, supervised
models for urban sound classification cannot be re-used ver-
batim from one city to another. This is because different cit-
ies will typically enforce different “noise codes,” depending
on geographical and cultural factors (Brown et al., 2011).
For example, the Sounds of New York City (SONYC) pro-
ject has deployed a network of 50 acoustic sensors to moni-
tor noise pollution in New York City (Bello et al., 2019).
Meanwhile, the CENSE project operates a network of 100
sensors to monitor sound quality, which are attached onto
street lights at 3 m high, in the city of Lorient, France
(Ardouin et al., 2018). According to the New York City
Department of Environmental Protection, the list of most
frequent causes of noise complaints in New York includes
pile driver and large rotating saw (Cartwright et al., 2019c).
These construction tools are virtually unheard of in the cen-
ter of a small city such as Lorient (population 57 149).
Therefore, although SONYC and CENSE have similar aims,
mutualizing their machine listening systems would be far
from trivial. More generally, the robust deployment of
machine listening systems across mismatched acoustic envi-
ronments remains a challenging task (Lostanlen et al.,
2019).

For the reasons mentioned above, the paradigm of
supervised learning does not suffice to train machine listen-
ing systems for acoustic sensor networks. Sections I C and
I D review two alternatives to this paradigm: training set
synthesis and self-supervised learning.

C. Training set synthesis: Real-world tasks on fake
data

Training set synthesis consists in synthesizing a training
set for the task of multilabel classification (Lafay et al.,
2016). The key idea is to curate a relatively small collection
of acoustic events of interest, which are then combined iter-
atively to form complex polyphonic scenes. Because the
onset and offset times of all events are under control, there
is no need for manual annotation: instead, a “virtual
annotator” assigns strong labels to the synthetic scene at
hand based on its monophonic constituents.

The most widely used software libraries for training set
synthesis in machine listening are simScene in MATLAB

(Lafay et al., 2016) and Scaper in Python (Salamon et al.,
2017a). These libraries have led to the public release of syn-
thetic audio datasets, such as DCASE OS (Mesaros et al.,
2018; Stowell et al., 2015) for office sounds, URBAN-SED
(Salamon et al., 2017b) for urban sounds, BirdVox-scaper-
10k (Mendoza et al., 2019) for avian flight calls, and
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DESED (Turpault and Serizel, 2020) for domestic sounds.
Furthermore, state-of-the-art systems in singer identification
(Lee and Nam, 2019) and audio segmentation in radio
broadcasts currently rely on fully synthetic training sets.
Beyond the scope of machine listening, the topic of learning
in simulated environments has a long history in computer
vision as well as robotics (Gaidon et al., 2018). Therefore,
training set synthesis is a promising, yet largely unexplored,
technique for urban sound classification with limited labeled
data.

D. Self-supervised learning: Fake tasks on real-world
data

Self-supervised learning is a more recent approach than
training set synthesis. It proposes to circumvent the cost of
human annotation by formulating a machine learning task
whose ground truth is trivially available to the machine
itself. This paradigm, known as self-supervised learning,
optimizes the trainable parameters of the machine listening
system according to computer-generated labels rather than
crowdsourced ones. In the context of urban acoustic sensor
networks, one example of a self-supervised task consists in
predicting the time of day that is associated with a given
audio recording (Cartwright et al., 2019a). Here, the key
idea is that anthropogenic noise follows a certain circadian
pattern, thus making local time approximately identifiable
from audio measurements.

Of course, this “pretext task” has no practical interest
per se: clocks already provide the local time with sufficient
precision. However, the postulate of self-supervised learning
is that solving the pretext task will indirectly train the
machine to extract informative features for general-purpose
machine listening. These features operate at an intermediate
level of abstraction, between the raw data and the associated
class labels (Kolesnikov et al., 2019). Once the self-
supervised learning stage on the pretext task has converged,
the mid-level features serve as an input representation to a
“downstream task,” in our case, urban sound classification.
Unlike the pretext task, the downstream task does require
manual labeling and is optimized via conventional super-
vised learning.

Interestingly, training set synthesis and self-supervised
learning play dual roles: while the former simulates fake
data to accomplish real-world classification tasks, the latter
formulates fake tasks as a pretext for analyzing real-world
unlabeled data. We refer to Pascual et al. (2019) for a recent
review of the state of the art in self-supervised machine
listening.

E. Contributions of the present paper

Our paper aims at alleviating the cost of human labor in
the process of training a machine listening system. The
motivation for this study resides in the deployment of an
acoustic sensor network for monitoring. Taking the CENSE
project as an example use case, we present a new approach
for training a multilabel audio classifier. Specifically, we

combine two emerging techniques: self-supervised learning,
which requires large-scale data acquisition but no annota-
tion, and training set synthesis, which requires small-scale
data acquisition and small-scale annotation.

Prior studies have considered training set synthesis and
self-supervised learning separately but rarely ever in conjunc-
tion. To the best of our knowledge, our publication is the first
to combine both these techniques in the context of machine
listening. We note that a recent publication relies on audio-
visual correspondence to separate sounds and synthesize iso-
lated sources from an audio mixture (Zhao et al., 2018). That
publication regards audio synthesis as its end goal, not as a
technique for generating computer-annotated data. Outside of
the field of machine listening, Tung et al. (2017) have trained
a deep neural network to perform motion capture (mocap)
from a single-camera video input via a combination of strong
supervision on synthetic video data and self-supervised ren-
dering of three-dimensional (3D) keypoints.

Figure 1 illustrates our approach. The key idea is to
decompose the machine learning process into two stages. In
the first stage, we formulate a “pretext task” to analyze unla-
beled spectrogram data from the sensor network: our paper
relies on Audio2Vec skip-gram (SG) inpainting
(Tagliasacchi et al., 2020) for that purpose. In the second
stage, we curate and annotate a limited amount of audio
recordings for sources of interest (40 min in our case) and
fine-tune the self-supervised model to accomplish the super-
vised task of multilabel urban sound classification.

After having trained a convolutional recurrent neural
network (CRNN) with the two-stage approach described
above, we evaluate it on a hold-out dataset of audio record-
ings from the city of Lorient. We name this dataset Lorient-
1k, since it has an approximate duration of 1k seconds (see
Appendix C). On this dataset, our system reaches an average
accuracy of 73.6% across the three classes of interest: traf-
fic, voice, and birds. Removing self-supervised learning
from our pipeline reduces accuracy slightly (72.9%),
whereas reducing polyphonic training set synthesis reduces
it dramatically (49.6%). In comparison, the official pre-
trained classifier of TensorFlow Hub (YAMNet) achieves an
average accuracy of 71.4%.

Beyond the raw performance comparison, we note that
YAMNet was trained on a large-scale corpus (AudioSet) in
a supervised way, by relying on extensive crowdsourced
annotation (Gemmeke et al., 2017). Meanwhile, our
approach accomplishes the task of urban sound classification
despite having been trained only on a pretext task
(Audio2Vec) and fine-tuned on synthetic data. Crucially, we
acquired the training datasets (CENSEgram-5M and
simCENSE-18k) and evaluation dataset (Lorient-1k) in the
same city but with different hardware: respectively, station-
ary sensors [Micro-Electro-Mechanical System (MEMS)-
based] and Zoom (Hauppauge, NY) H4n handheld devices.
Therefore, our approach generalizes to sensor technologies
that are unseen in the training set.

Our most surprising observation is that, in the prepara-
tion of training set synthesis, curating audio samples in the
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same city as the evaluation dataset appears to be necessary.
On the one hand, training on synthetic scenes from Lorient
samples (simCENSE-18k) yields state-of-the-art perfor-
mance; on the other hand, replacing these local samples by
external ones (from FreeSound and Librispeech in our case)
brings the frame-wise classification accuracy down to
59.6% on average. This finding suggests that small-scale
annotation in the acoustic environment of interest, combined
with training set synthesis, has the potential to outperform
general-purpose audio classifiers trained on large-scale
corpora.

Section II describes the self-supervised learning stage,
in particular, the Audio2Vec pretext task. Section III
describes the supervised learning stage, which is based on
training set synthesis with simScene. Section IV presents
our evaluation dataset, metrics, and results. Last, Sec. V
presents a detailed benchmark of our approach, during
which we evaluate the effect of three methodological com-
ponents: self-supervised learning, training set synthesis, and
local curation of training data.

II. SELF-SUPERVISED LEARNING WITH AUDIO2VEC

This section applies the self-supervised learning para-
digm to a network of urban acoustic sensors, named
CENSE. Specifically, we train a deep convolutional network
to solve a “pretext task” named Audio2Vec. This pretext
task was initially proposed by Chung and Glass (2017) for
similarity retrieval between spoken words and extended by
Tagliasacchi et al. (2020) to general-purpose acoustic simi-
larity retrieval. The originality of our protocol is that it oper-
ates on pre-computed spectrograms, without requiring
persistent access to waveform audio.

A. The CENSE acoustic sensor network

The central goal of the CENSE project is to monitor
urban acoustic environments. As a case study, CENSE cur-
rently operates a network of over 100 acoustic sensors in the

French city of Lorient. This network has a greater density of
sensors per unit area than comparable projects, such as
SONYC in New York City (Mydlarz et al., 2019),
DYNAMAP in Rome (Bellucci et al., 2017), SONORUS in
Antwerp (Botteldooren et al., 2018), or StadtL€arm in Jena
(Abeßer et al., 2018). For more general information on the
CENSE project, see CENSE (2019).

Another originality of the CENSE network lies in the
extraction of spectrograms on the sensing device itself. This
design choice is a form of edge computing, a paradigm in
which acoustic sensors perform audio feature extraction or
content analysis before transmitting data (Sheng et al.,
2019). Edge computing is opposed to cloud computing, in
which sensors transmit audio data verbatim to a central
server.

B. On-device extraction of third-octave spectrograms

Each sensor in the CENSE network extracts spectro-
grams via an STM32L4 microcontroller or a Raspberry Pi
single-board computer, depending on node connectivity.
Following the efficient algorithm of Antoni (2010), we
decompose the audio input over 29 third-octave bands
whose center frequencies range from 20 Hz to 12.5 kHz.
Then we apply the pointwise squared modulus and integrate
each band over non-overlapping windows of duration equal
to 125 ms; i.e., 8 frames per second. Last, we apply point-
wise logarithmic compression, thereby mapping the raw
energy values in the spectrogram onto a decibel scale.

The advantage of storing third-octave spectrograms
compared to audio waveforms is the drastic reduction in the
volume of data to be transferred and stored. Indeed, the
throughput of spectrogram data, as encoded in compressed
JSON files, is on the order of 4.4 kilobytes per second
(kbps) on average. In comparison, audio in “CD quality”
(16-bit PCM at 44.1 kHz) has a bit rate of 705.6 kbps, while
compressed audio in MP3 format has a typical bit rate of
128 kbps.

FIG. 1. Overview of the proposed system. Solid and dashed arrows, respectively, denote data collection procedures by humans and machines. Large double
arrows denote transfers of model weights. See Sec. I E for details.
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C. Scalability and privacy considerations

The drastic reduction of bit rate caused by spectrogram
analysis on the edge has two implications. First, it alleviates
the technical constraints of transmission and storage that are
associated with acoustic monitoring. Instead of carrying
audio over a high-throughput channel, such as Ethernet or
VoLTE (Poikselk€a et al., 2012), it becomes possible to
adopt emerging protocols for low-rate wireless personal
area networking (LR-WPAN), such as 6LoWPAN or
LoRaWAN (Turchet et al., 2020). Although the present
paper relies purely on data acquired via Ethernet communi-
cation, CENSE has recently extended its network to encom-
pass solar-powered wireless sensors (Ardouin et al., 2018).
Beyond the example of CENSE, the edge computing para-
digm has the potential to improve the scalability of machine
listening systems by offloading server-side applications
(Cerutti et al., 2020).

Second, the fact that, except in few well-controlled cases
(see Sec. III A), the CENSE network does not store wave-
forms permanently brings a guarantee of privacy. A prior
publication has demonstrated that low-resolution spectro-
grams do not contain the necessary information to recover
intelligible speech, even with state-of-the-art spectrogram
inversion techniques (Gontier et al., 2017). This is an instance
of “privacy by design and by default” (Romanou, 2018), in
compliance with the European General Data Protection
Regulation (GDPR). An alternative approach, proposed by
Cohen-Hadria et al. (2019), would be to acquire waveform
audio, detect the presence of voice, and obfuscate it with digi-
tal audio effects. Although this approach is promising, we
note that it remains error-prone and is still at an experimental
stage. We refer to Appendix B for more details on privacy
preservation in the CENSE project.

D. Audio2Vec pretext task

The gist of the Audio2Vec task is to learn sequential
associations between neighboring snippets in real-world
sounds (Chung and Glass, 2017; Tagliasacchi et al., 2020).
This task is inspired by Word2Vec, a well-established tech-
nique in natural language processing (Mikolov et al., 2013).
The analogy between Audio2Vec and Word2Vec consists in
seeing acoustic scenes as sentences and short-term audio
snippets as their constituent words. Once represented in the
time–frequency domain, these snippets form spectrogram
“clips” of fixed duration.

Just like Word2Vec, Audio2Vec comes in two flavors:
continuous bag of words (CBoW) or skip-gram (SG). In the
CBoW formulation, the self-supervised model takes one
spectrogram clip as input and attempts to predict the content
of a predefined number of adjacent clips, i.e., the past ones
and future ones. Conversely, in the SG formulation, it takes a
predefined number of disjoint clips as input and attempts to
predict the content of the central clip. Both formulations of
Audio2Vec resemble context encoders in computer vision
(Pathak et al., 2016), in the sense that they perform self-
supervised feature learning by inpainting unobserved portions

of a two-dimensional (2D) input. We adopt the SG formula-
tion in this article. We set the context length to two past clips
and two future clips, with one skipped clip at the center.

In accordance with the original implementation of
Audio2Vec, we set the clip duration equal to 1 s, i.e., eight
non-overlapping frames of 125 ms. However, note that the
original implementation of Audio2Vec operates on mel-
frequency spectrograms with a higher frequency resolution
(64 mel-frequency bins in the range from 60 to 7800 Hz) as
well as a higher time resolution (window size of 25 ms and
hop size of 10 ms).

Figure 2 illustrates our implementation of the
Audio2Vec SG task. Note that this task is a “pretext task”
for self-supervised learning: it may be formulated on real-
world acoustic scenes without any human intervention. In
line with Word2Vec models, we solve the task by means of
a deep generative encoder–decoder architecture. We share
the synaptic weights of the encoder across all four context
clips. We set the output dimension of the encoder to 128,
hence a concatenated embedding of 512 for the entire con-
text. This concatenated embedding serves as input to the
decoder, which predicts a third-octave spectrogram clip of
29! 8¼ 232 decibel-scaled values.

E. Deep convolutional encoder–decoder architecture

Figure 3 illustrates the architecture of our encoder for
the Audio2Vec SG task. It is a deep convolutional neural
network (CNN) with six convolutional layers and one dense
(fully connected) layer. Convolutional layers grow in width
as depth increases, with, respectively, 64, 64, 128, 128, 256,
and 256 filters. Each filter covers a receptive field of
3! 3¼ 9 adjacent values in the time–frequency activation
of the previous layer. After the learned operations of convo-
lution and additive bias, each layer applies batch normaliza-
tion (Ioffe and Szegedy, 2015) and rectified linear unit
(ReLU) activation. Furthermore, we apply maximum pool-
ing to every other convolutional layer, i.e., three pooling
layers in total. We set the pooling size to ð2! 2Þ and apply
pooling without overlap, hence a subsampling by a factor of
2 in time and 2 in frequency. The last layer connects the
“flattened” response of the third convolutional block onto
128 output units, i.e., the chosen dimension of the embed-
ding. In total, the encoder contains 1.2! 106 parameters.

Figure 4 illustrates the architecture of the decoder. This
decoder takes a 512-dimensional vector as input and pre-
dicts a third-octave spectrogram clip of shape 29! 8, corre-
sponding to 1 s of audio. Following the SG formulation of
Audio2Vec, we train the encoder and decoder jointly: the
512-dimensional input to the decoder results from the con-
catenation of 128-dimensional embeddings produced by the
encoder over four context clips.

The sequential composition of layers in the Audio2Vec
encoder and decoder are symmetric to each other. The
decoder contains one dense layer followed by six convolu-
tional layers of decreasing widths: 256, 128, 128, 64, 64,
and 1 filter, respectively. We re-use the same receptive field
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size (3! 3), batch normalization, and activation function
(ReLU) in the encoder and decoder. However, we replace
maximum pooling in the encoder by nearest-neighbor
upsampling in the decoder. The decoder has roughly the
same overall number of parameters as the encoder, i.e.,
around 1.2! 106.

F. Self-supervised training on the CENSEgram-5M
dataset

Between December 1 and 5, 2019, we collected third-
octave spectrogram data from 16 urban acoustic sensors
belonging to the CENSE network. The resulting dataset,

FIG. 2. (Color online) Encoder–
decoder architecture used to solve the
Audio2Vec pretext task by predicting a
third-octave spectrogram clip from
neighboring clips. See Sec. II D for
details.

FIG. 3. (Color online) Encoder archi-
tecture used to extract information
from 1 s third-octave spectrogram clip.
The architecture is common to the pre-
text and downstream tasks in a self-
supervised learning setting. See Sec.
II E for details.
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named CENSEgram-5M, contains a total of 4.6! 106 s of
spectrogram data, i.e., 1280 h. We divide CENSEgram-5M
into training, validation, and test subsets, with proportions
of 70%, 20%, and 10%, respectively. In doing so, we ensure
that these subsets are temporally disjoint across all sensors.

We initialize the encoder and decoder with random
independent and identically distributed weights and train
them on the CENSEgram-5M dataset in an end-to-end fash-
ion. We define the reconstruction error of a given spectro-
gram clip in terms of Euclidean distance on a decibel scale.
With the encoder–decoder architecture, we aim to minimize
the mean square error (MSE) across all spectrogram clips in
the training set (3.2! 106 s). To this end, we apply the
Adam algorithm (Kingma and Ba, 2014), an improved vari-
ant of stochastic gradient descent with the PyTorch frame-
work (version 1.1.0). We set the learning rate to 10%3 and
leave all other hyperparameters of Adam to their default val-
ues. We train for 20 epochs (65! 106 samples in total) with
a minibatch size equal to 64. The training lasted about 20 h
on a graphics processing unit (GPU), i.e., NVIDIA
RTX2080Ti.

At the random initialization of the deep neural network,
the MSE of the Audio2Vec task on the validation set is
equal to 1973.35. This MSE decreases exponentially during
training until reaching a plateau. At epoch 20, the MSE of
Audio2Vec is equal to 9.29, i.e., 2 orders of magnitude
below the MSE at epoch zero. This decrease indicates that
the self-supervised learning stage updates the deep neural
network toward solving the pretext task, as expected.

III. TRAINING SET SYNTHESIS WITH SIMSCENE

This section proposes to synthesize a training set for
urban sound classification by means of a software library
named simScene, which is publicly available (Lagrange,
2018). Specifically, we collect real-world monophonic
recordings of sources of interest in Lorient (traffic, voice,
and birds) to build the CENSE-2k dataset. We then

assemble them to form a dataset of polyphonic scenes
named simCENSE-18k.

A. Semi-automatic curation of monophonic acoustic
events

We aim to curate a dataset of audio samples for three
sources of interest: traffic, voice, and birds. In this regard, a
widespread approach is to record audio data in bulk by
means of a sensor network and then to annotate these sour-
ces manually in terms of presence or absence. Despite its
computational simplicity, this approach incurs a high
amount of human labor, especially for infrequent sources.
Furthermore, in the case of the CENSE project, the principle
of “privacy by default” forbids the bulk collection of audio
data in the waveform domain. Rather, the CENSE network
may only store third-octave spectrograms in its normal oper-
ation regime, while the collection of audio waveforms must
be kept to a minimum.

Thus, for reasons of scalability and privacy, we restrict
the collection of audio data to the three sources of interest
by means of a template matching algorithm implemented
“on the edge.” Specifically, we begin by curating a small
corpus of public-domain audio samples from the Freesound
archive. We compute the third-octave spectrogram corre-
sponding to each of these samples and average them over
time to produce a spectral template. In addition, we define a
“flat” third-octave template, corresponding to the power
spectral density of pink noise, to extract “neutral” back-
ground noise. Then we implement a template matching
algorithm, based on the cosine similarity in the third-octave
spectrogram domain, on four sensors from the CENSE
network.

Between May 1 and July 1, 2020, these sensors
recorded 182 waveform audio samples, each of them corre-
sponding to a high cosine similarity with one of the tem-
plates. We listen to each of these audio samples to verify
that they contained an example of the source of interest. We
trim their duration to exclude silent regions. On some voice

FIG. 4. (Color online) Decoder archi-
tecture proposed to solve the
Audio2Vec pretext task. See Sec. II E
for details.
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and bird samples, we apply background noise reduction by
means of the Adobe Audition software to enhance the pres-
ence of the source.

Table I summarizes the content of the resulting dataset,
named CENSE-2k. These 182 samples have a maximum
duration of 10 s and a total duration of 41 min, i.e., 2400 s.
Note that this total duration corresponds to about 0.01% of
the operating time of the template matching algorithm, i.e.,
2 months in four sensors. We refer to Appendix B for more
details on privacy preservation in the CENSE project.

B. Probabilistic simulation of polyphonic scenes

Simulation tools allow the production of large datasets
of polyphonic sound scenes. Specifically, the simScene
library (Lafay et al., 2016) simulates a sound scene from
two components, as illustrated in Fig. 5. The first component
is a small-scale dataset of monophonic samples, in our case
CENSE-2k. The second component, named “scenario,”
refers to the activity of sound sources through time. This
scenario includes one background source, whose properties
remain stationary throughout the scene, and foreground
sources, which are characterized by a class, an onset time,
and an “event-to-background ratio” in dB.

The simScene library generates original scenarios by
sampling from distributions that set source activity parame-
ters. Event sources are then associated with a probability of
appearance, as well as Gaussian distributions of inter-onsets
and event-to-background ratios. Source probabilities of
appearance and activity distributions are obtained by manu-
ally annotating a corpus of 74 sound scenes recorded in
Paris (Aumond et al., 2017). This annotation is introduced
in Gloaguen et al. (2019). Distributions are conditional to

five types of sound environments: quiet street, noisy street,
very noisy street, park, and square environment type with
predominant voice content (Gontier et al., 2019). This con-
ditioning should allow a more complete coverage of typical
urban situations by simulated corpora.

The simScene library instantiates every scenario by
selecting monophonic samples uniformly at random from
within the CENSE-2k database, according to the class of
foreground acoustic events. Each of these monophonic sam-
ples is scaled in amplitude according to event-to-back-
ground ratios and shifted in time according to onset
timestamps. Last, simScene combines all acoustic events
with the background audio track to produce a polyphonic
mixdown.

A development set designated simCENSE-18k is simu-
lated with the CENSE-2k database presented in Sec. III A.
The dataset contains 400 scenes of 45 s (total duration 5 Hz).
It is balanced in terms of types of sound environments, i.e.,
80 scenes are simulated for each type. After simulation,
each sound scene is scaled to a sound level, drawn randomly
from Gaussian distributions conditionally to the type of
environment. For training purposes, the simCENSE-18k
dataset is split into training and validation subsets contain-
ing 70% and 30% of simulated scenes, respectively. This
split is done for each type of sound environment to conserve
balanced characteristics.

C. Virtual annotator

Due to the additive combination process, ground truth
contributions of types of sound sources in simulated scenes
are known. This information enables trivially labeling
acoustical source presence or absence by application of an
energy threshold on individual source contributions.
However, the present study is oriented toward urban sound
classification in a perceptual context. In some cases, audi-
tory masking may occur in critical bands of the spectrum,
where a source is not heard within the mixed scene despite
being objectively present. Thus, we define the presence of a
source in terms of its audibility in context, that is, as an ele-
ment of a polyphonic scene. This definition approximately

TABLE I. Specifications of the CENSE-2k database.

Source type Source class Extracts Duration (min)

Background Neutral noise 16 3:41

Event Traffic 128 31:20

Voice 10 2:22

Birds 28 3:19

FIG. 5. (Color online) Overview of the scene simulation process from a scenario and a database of monophonic source samples.
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corresponds to the behavioral response of an active human
listener—e.g., a pedestrian passing by—who would be con-
tinuously attending to all concurrent sound sources.

We simulate auditory masking in polyphonic acoustic
scenes via the method of Gontier et al. (2019), which is
based on relative energy thresholding in the time–frequency
domain. Let S denote the set of sources of interest: in our
case, S contains traffic, voices, and birds. For any given
source s in S, we denote by Xsðt; f Þ the third-octave decibel-
scaled spectrogram associated with the audio track of s in
the virtual polyphonic scene. Furthermore, we denote by
X#sðt; f Þ the third-octave decibel-scaled spectrogram associ-
ated with all other tracks; that is, sources s0 62 S as well as
the background noise track.

To model auditory masking, a binary time–frequency
mask, proposed in Gontier et al. (2019), is computed from
the third-octave ratio of energy DXsðt; f Þ of source s with
respect to all other sources combined #s,

DXs t; fð Þ ¼ Xs t; fð Þ % X#s t; fð Þ; (1)

where Xs is the third-octave spectrogram in dB SPL. The
first processing step determines whether the source of inter-
est is present on each time frame t and frequency band f by
application of a threshold parameter a to the emergence
spectrogram,

Ys;aðt; f Þ ¼ 1DXsðt;f Þ>a; (2)

where 1 denotes the indicator function. Thus, the operation
returns 1 if the emergence is greater than a and 0 otherwise.
A single presence label for a given time frame is obtained

by averaging the source emergence on selected bands and
applying a second threshold b,

YsðtÞ ¼ 1

XNf

f¼1

DXsðt; f Þ1DXsðt;f Þ>a

XNf

f¼1

1DXsðt;f Þ>a

> b

2

6666664

3

7777775
: (3)

Note that the average over the Nf third-octave bands is taken
for logarithmic sound levels; thus, it cannot be interpreted as
a sound level.

The values of hyperparameters a and b have been opti-
mized by (Gontier et al., 2019) with respect to subjective
assessments collected during a listening test. In this paper,
we re-use the optimal values that arose from that listening
test, i.e., a ¼ %14 dB and b ¼ %7 dB.

D. Urban sound classification model

The downstream task is the multilabel classification of
three sources of interest—traffic, voice, and birds—at the
time scale of 1 s. Figure 6 describes the system we propose
to address the downstream task. It is a CRNN taking the
third-octave spectrogram of a 1-s audio clip as input. The
acoustic frontend corresponds to the encoder of the
Audio2Vec pretext task (see Sec. II). We set the hop length
between adjacent clips to 125 ms, i.e., one spectrogram
frame.

This encoder produces a 128-dimensional representa-
tion of the current audio clip, which feeds a single-layer

FIG. 6. (Color online) Decision archi-
tecture for the downstream task of
source presence prediction.
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gated recurrent unit (GRU), whose recurrent state comprises
128 neurons (Cho et al., 2014). Every second, this recurrent
state is passed through a LeakyReLU nonlinearity whose
slope equals 0.1 and to a fully connected layer.

The fully connected layer predicts a three-
dimensional vector y, containing the predicted probability
of presence of all three sources of interest. The entire neu-
ral network architecture is trained in an end-to-end fashion
so as to minimize the binary cross-entropy (BCE) loss
function,

BCEðy; ŷÞ ¼ %
X

s

ys log ŷsð Þ þ ð1% ysÞ log 1% ŷsð Þ; (4)

where s is the source, ys 2 f0; 1g is the target presence label
for source s, and ŷs 2 ½0; 1( is the predicted presence.

As in Gontier et al. (2019), we apply the Adam algo-
rithm with default hyperparameters to train the model above
on the simCENSE-18k dataset. We set the batch size to 32
and keep the learning rate constant at 10%4.

IV. EVALUATION METHODOLOGY AND RESULTS

A. From localized software to localized machine
learning

In the terminology of software development,
“localization” refers to the adaptation of a software product
to a group of users from a particular geographic region
(Esselink, 2000). Such adaptation includes, for example, the
translation of texts appearing on screen to a different lan-
guage, the conversion of physical units, the formatting of
times and dates, and other national or cultural conventions.
Our paper proposes to borrow from this terminology and
extend it to the realm of machine learning, specifically urban
sound classification.

Thus, we envision the combination of self-supervised learn-
ing and training set synthesis as a procedure for data-efficient
“localization of models.” In other words, our ambition is not to
advance the state of the art in general-purpose audio classifica-
tion (e.g., AudioSet), but rather to focus on the acoustic events
that are most relevant to a specific location. We approach this
problem as the auditory equivalent to “recognition in terra
incognita” in computer vision (Beery et al., 2018).

Going back to the example of the CENSE project, the
location of interest is the city of Lorient (France). Moreover,
the relevant acoustic events correspond to the known pre-
dominant factors to the perceived pleasantness of urban
soundscapes in Lorient (Gontier et al., 2019): traffic, voice,
and birds.

B. Recording and annotation of the Lorient-1k dataset

To evaluate a “localized machine learning model” (see
above), the evaluation set must belong to the same location
as the training set. However, collecting the evaluation set
with the same hardware equipment as the training set would
give an unfair advantage to our methodology in comparison
with pre-trained systems. Indeed, in the absence of any

acoustic matching frontend (Su et al., 2020), deep learning
systems tend to overfit the frequency response of the micro-
phone in the training set (Das et al., 2014). However, we
aim to specialize the model to a particular location while
generalizing to potentially unseen recording equipment.
Therefore, while our training set purely consists of sensor
network data (CENSE), we decided to collect an evaluation
set with handheld devices.

On July 30, 2020, we visited ten different locations in
the downtown area of Lorient, within the area of coverage of
the CENSE network. With Zoom H4n handheld devices, we
recorded 30 acoustic scenes of 45 s each. The microphone
was attached at the top of a backpack, thus at approximately
2 m high, which leads to a discrepancy of recording height
between the training and the evaluation data of about 1 m.

In parallel, we measured the A-weighted sound pressure
level of the scenes by means of a class-1 sound level meter.
In this way, we were able to calibrate the amplitude of the
waveform incoming from the Zoom H4n device according
to the measured A-weighted decibel level (dBA). The result-
ing dataset, named Lorient-1k, has a total duration of
22.5 min, i.e., 1350 s.

The 30 recorded sound scenes are then annotated by a
panel of four researchers with expertise on acoustics or audi-
tory perception. Following the recommendations of
Cartwright et al. (2017), we allow all participants to pause,
repeat, and view spectrograms during the annotation pro-
cess. The participant first annotates the scenes in terms of
perceived sound presence and then annotates them in terms
of activity onsets and offsets for each of the three sources,
respectively, traffic, voice, and birds. No distinction is made
between subclasses of sounds, e.g., small birds and seagulls.
Participants are instructed not to change the software audio
level during the procedure to preserve relative sound levels
between sound scenes. To match the hop and clip sizes of
the predictors, annotations are sampled with 125 ms, and
sound events separated by less than 1 s are merged.

Starting from those annotations, an expert in the percep-
tion of the urban acoustic environment (C.L. of the authors),
provides a unique ground truth to compare the predictors
with, using the following procedure. First, she annotates the
30 scenes in terms of time of presence for each source by tak-
ing into account the time of presence of the four annotators.
For the traffic class, some discrepancies between annotators
are observed due to the lack of formal definition of the traffic
class, from the background noise to the pass-by of vehicles.

For her “main” annotation, C.L. has tried to understand
the strategies chosen by the annotators and kept a middle-
ground approach for strategies in line with literature about
urban sound quality. She eliminates the annotations that
were insufficiently compliant with this definition. In the
case of traffic, she only considers the sound as active when
the sound due to the traffic class is not perceived as fully sta-
tionary within a period of a few seconds.

Second, she annotates activity onsets and offsets for
each of the three sources and goes back to the first annota-
tion step if necessary so that the difference between the sum
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of the time spans of each source and the perceived time of
presence is below 10%. This value is assumed as satisfac-
tory, as it can be considered to be the human precision in
terms of perceived time of presence (Aumond et al., 2017).

C. Current state of the art: YAMNet pre-trained
classifier

Our approach requires the collection of local audio
material and the training of dedicated machine learning
models. To motivate the need for such a procedure, we eval-
uate the comparative performance of a state-of-the-art sys-
tem that does not require any of those interventions.

YAMNet is a deep neural network that predicts 521
audio event classes and is pre-trained on the AudioSet-
YouTube (Gemmeke et al., 2017) corpus of more than
2! 106 sound clips.1 It relies on the Mobilenet_v1 (Howard
et al., 2017) depthwise-separable convolution architecture.
We employ YAMNet as an off-the-shelf system without any
form of transfer learning. Rather, we use domain-specific
knowledge to aggregate labels semantically: for example,
squawk, caw, and hoot all fall under the umbrella term birds
for our purpose. Appendix A describes exhaustively how we
map AudioSet labels onto our three sources of interest,
namely, traffic, voice, and birds.

On the Lorient-1k dataset, YAMNet achieves a classifica-
tion accuracy of 71.4% on average: 63.9% for traffic, 80.5%
for voice, and 69.8% for birds. The lower performance of traf-
fic and birds in comparison with voice can partly be explained
by the class imbalance of training data in AudioSet: whereas
speech appears in 50% of AudioSet examples, car and bird
appear in 2% and 1% of examples, respectively. Another plau-
sible explanation is the choice of time–frequency representa-
tion that is passed as input to YAMNet. Indeed, this
representation is a mel-frequency spectrogram with 64 filters
ranging between 125 Hz and 7.5 kHz, that is, roughly the
bandwidth of human voice, yet frequencies below 125 kHz
have a crucial role in denoting the presence of traffic.
Conversely, some bird families, such as warblers and spar-
rows, often vocalize above 7.5 kHz (Lostanlen et al., 2018). In
comparison, our third-octave spectrogram (see Sec. II B) cov-
ers the audible range from 20 Hz to 12.5 kHz.

V. BENCHMARK

In this section, we analyze the main factors to overall
performance in our proposed model. Figure 7 summarizes
our results.

We present five variations of our proposed neural net-
work architecture, that is, a deep CRNN taking third-octave
spectrograms as input representation (see Secs. II B, II E,
and II D). All five models have the same number of trainable
parameters and the same computational complexity at pre-
diction time, yet the models differ in terms of how they
were trained: with or without self-supervised learning, with
or without polyphonic training set synthesis, and with local
or external annotated data.

A. Baseline: Local self-supervised learning followed
by external supervised learning

We begin with a simple-minded pipeline in which we
skip local data curation (Sec. III A) training set synthesis
(Sec. III) entirely. Rather than curating a local dataset of
sound events for the city of Lorient (CENSE-2k), we collect
these sound events via external sources. Specifically, we
download audio samples of traffic and bird vocalizations
from the Freesound archive and speech samples from the
Librispeech (Panayotov et al., 2015) dataset. In this way, we
obtain a freely licensed dataset containing monophonic exam-
ples of all three sources of interest: traffic, voice, and birds.

The resulting dataset, which we name FSD-2k
(FreeSound Dataset, 2k seconds), has the same size and event
taxonomy as CENSE-2k. However, FSD-2k differs from
CENSE-2k in terms of intra-class variability: for example,
FSD-2k contains speech in other languages besides French and
bird vocalizations from species whose habitats exclude the
region of Lorient. We split recordings from FSD-2k into seg-
ments of 3 s or less. We mix 3 s of low-level pink noise with
each segment to guarantee that all segments last this duration
exactly. Because all segments are monophonic, it is trivial to
obtain labels of source activity for these samples. Table II sum-
marizes the contents of this dataset on a per-source basis. We
refer to Appendix C 6 for more details on FSD-2k.

As a first stage, we train the encoder for the baseline
model on CENSEgram-5M (see Sec. II F) in a self-supervised
way by means of the Audio2Vec pretext task. We call this
first stage “local self-supervised learning” because the unla-
beled spectrogram data of CENSEgram-5M are local to the
city of Lorient. Then, as a second stage, we transfer the
weights of this pre-trained encoder into a CRNN architecture
to solve the downstream task of multilabel sound classifica-
tion. We train this CRNN on FSD-2k in an end-to-end fash-
ion, i.e., “fine-tuning” the encoder weights instead of

FIG. 7. Overall, traffic, voice, and bird accuracies in percentages achieved
by the several flavors compared to the YAMNet detector.
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“freezing” them. We call this second stage “external super-
vised learning” because the labeled audio data of FSD-2k
come from online audio archives, most of them external to
the city of Lorient. The motivation behind this baseline is that
it does not require any annotation of local data: CENSEgram-
5M is local but unlabeled, whereas FSD-2k is already labeled
by the original contributors of FreeSound and LibriSpeech.

On the hold-out test set (Lorient-1k), the baseline clas-
sifier reaches a classification accuracy of 49.6% on average,
i.e., about 20% points below YAMNet (71.4%, Sec. IV C).
This result suggests that our pretext task, Audio2Vec, does
not suffice to encode the properties of urban auditory envi-
ronments. In the baseline procedure, there is a mismatch
between the self-supervised learning stage, which is local
and polyphonic, and the supervised learning stage, which is
external and monophonic. We hypothesize that, after having
learned the peculiarities of the local urban environment
(CENSEgram-5M) during the pretext task, the encoder
“forgets” these peculiarities when being fine-tuned on an
external dataset (FSD-2k) to solve the downstream task.

B. Role of polyphonic training set synthesis

To improve the baseline performance, we apply poly-
phonic training set synthesis on the external dataset of urban
sound recordings, FSD-2k. Specifically, we run the simScene
algorithm as described in Sec. III). In doing so, we take fore-
ground samples (traffic, voice, and birds) from an external
source (FSD-2k) and background samples from a local source
(CENSE-2k). We obtain 400 polyphonic scenes of duration
equal to 45 s each, yielding a dataset that we call simFSD-
18k (simulated FreeSound Dataset, 18k seconds). We refer to
Appendix C 7 for more details on simFSD-18k.

Not only does simScene increase the amount of training
data by a factor of 6 or so; it also makes the training data
more reflective of the downstream task: that is, multilabel
urban sound classification. Indeed, many spectrogam clips
in the hold-out test set (Lorient-1k) contain overlapping
sound events from different classes: see Sec. IV B.

After self-supervised training on CENSEgram-5M and
supervised training on simFSD-18k, the model reaches a
classification accuracy of 59.6% on average. Although this
result remains below YAMNet performance (71.4%, Sec.
IV C), it fares ten percentage points above the baseline
(49.6%, Sec. V A). This result suggests that polyphonic
training set synthesis has a crucial role to play in improving
the generalization of self-supervised learning for sound
event classification. To our knowledge, our paper is the first
in reporting an experimental observation of this kind.

C. Role of local data collection and best performing
system

We now turn to the question of training the model with
annotated local data, as opposed to external data, for the
downstream task of multilabel sound event classification. To
address this question, we pass the CENSE-2k dataset of local
sound events from Lorient (Sec. III A) as input to simScene.
Thus, we obtain 400 polyphonic scenes of duration equal to
45 s each, yielding a dataset that we call simCENSE-18k. The
simCENSE-18k and simFSD-18k datasets have the same total
duration and share the same hyperparameters in terms of per-
source probability distributions (Sec. III B). However,
simCENSE-18k and simFSD-18k differ in terms of their
acoustic constituents. In simCENSE-18k, both the back-
ground noise and the foreground events come from CENSE-
2k and are thus local to the city of Lorient. Meanwhile, in
simFSD-18k, the background noise is from a local source
(CENSE-2k), but all foreground events come from external
sources (FSD-2k, i.e., FreeSound and LibriSpeech).

After self-supervised training on CENSEgram-5M and
supervised training on simCENSE-18k, the model reaches a
classification accuracy of 73.6% on average. This perfor-
mance is above YAMNet, which we took as current state of
the art (71.4%, see Sec. IV C). Crucially, our model sur-
passes YAMNet even though it was never exposed to any
real-world annotated data: we have formulated the pretext
task on real-world unlabeled data and the downstream task
on synthetic labeled data. Furthermore, to allow a fair com-
parison with YAMNet, our test set (Lorient-1k, see Sec.
IV B) does not come from the sensor network that produced
the local training data but from mobile handheld devices.

On the flip side, we note that our system surpasses
YAMNet on average but does not do so on every sound
source. Specifically, the per-source classification accuracy
of our system is: 69.6% for traffic, 74.7% for voice, and
76.6% for birds. Thus, our system outperforms YAMNet in
the classification of traffic and birds but remains below
YAMNet on the classification of voice. Section VI will dis-
cuss the possible causes of such discrepancy.

D. Ablation of self-supervised learning

We have seen thus far that polyphonic training set syn-
thesis improves self-supervised learning, and even more so
when the isolated events that serve as input to simScene
come from the same recording location (Lorient in our case)
as the test set. It remains to be seen whether self-supervised
learning plays an essential role in our proposed pipeline or
whether polyphonic training set synthesis suffices on its own.

To answer this question, we experiment with removing
the self-supervised learning stage from our pipeline. Instead
of using the large-scale unlabeled spectrogram data in
CENSEgram-5M for the pretext task, we initialize the deep
neural network with random Gaussian weights (Giryes
et al., 2016) and train the CRNN directly on simCENSE-
18k in a supervised fashion.

TABLE II. Contents of the isolated samples database used to generate

simFSD-18k.

Source type Source class Extracts Duration (min)

Background Neutral noise 16 3:41

Event Traffic 82 24:50

Voice 160 9:10

Birds 22 4:18
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After ablation of self-supervised learning, the classifica-
tion accuracy slightly decreases from 73.6% to 72.9% on aver-
age. On a per-class basis, the accuracy breaks down as 69.4%
for traffic, 72.4% for voice, and 77.0% for birds. Interestingly,
the impact of self-supervised learning is more noticeable on
the voice class than on traffic and birds. Although this anec-
dotal finding deserves further inquiry, we note that voice is the
least frequent class in CENSE-2k, with only ten different
extracts (see Table I). This is because speech is rarely heard in
isolation in an urban acoustic sensor network such as CENSE.
Thus, voice is also the least varying source in simCENSE-18k,
with ten or so different speaker identities. Meanwhile, our
unlabeled dataset for self-supervised learning (CENSEgram-
5M) contains over 1000 h of audio data and thus potentially
thousands of different speaker identities. Together, these obser-
vations suggest that self-supervised learning potentially miti-
gates class imbalance and strengthens the detection of acoustic
events that infrequently appear on their own.

E. Ablation of polyphonic training set synthesis

Last, we experiment with the removal of polyphonic
training set synthesis while maintaining self-supervised
learning and local data curation. As shown in Secs. V A and
V B, simScene brings a noticeable performance gain: from
49.6% to 59.6% classification accuracy on average.
However, the cause of this performance gain might not be
the shift from monophonic (CENSE-2k) to polyphonic
(simCENSE-18k) training but, more simply, from a sixfold
increase in the amount of training data.

To refute this hypothesis, we perform artificial data
augmentation on the monophonic examples of CENSE-2k,
thus yielding a new synthetic dataset, which we name
augCENSE-18k. Following Salamon and Bello (2017), our
data augmentation procedure includes pitch shifting in a
range of %6 to 6 semitones and time stretching with a factor
from 0.7 to 1.3 or a combination of both at random. In doing
so, we augment monophonic samples from the voice and
birds sources, therefore matching the duration of the most
frequent class: traffic. In this way, the total duration of
augCENSE-18k is approximately 5 h, i.e., the same as
simCENSE-18k. Furthermore, by construction, augCENSE-
18k is free from any class imbalance, unlike CENSE-2k.

After self-supervised learning on CENSEgram-5M and
supervised learning on augCENSE-18k, the model achieves
an average classification accuracy of 70.1% on the Lorient-
1k test set. This underperforms our best performing model
(73.6% on average), which is trained on simCENSE-18k
during the supervised stage. It also fares below the YAMNet
off-the-shelf classifier (71.4% on average) which is trained
on AudioSet. That being said, the replacement of poly-
phonic training set synthesis (simCENSE-18k) by artificial
data augmentation (augCENSE-18k) produces a model that
remains competitive with the state of the art. We observe
that the combination of artificial data augmentation and
polyphonic training set synthesis, as proposed by the Scaper
library, for example (Salamon et al., 2017a), does not

improve the state of the art any further in our experimental
benchmark, yet we believe that this sort of combination
deserves further investigation.

VI. DISCUSSION

This section proposes some qualitative comments on
the outcome of our experimental benchmark.

A. Hardware mismatch between training and test set

Even with microphones used for all the sensors of the
same type and model, difference in manufacturing and in
aging may lead to subtle changes in their frequency proper-
ties (Picaut et al., 2020). To design detectors that are more
resilient to change in frequency response, we thus chose to
use different microphones with different frequency
responses to build the training sets (CENSEgram-5M and
simCENSE-18k) and the evaluation set (Lorient-1k).

We assume that the impact of this discrepancy is weak,
but sensitivity and evaluation of robustness of classifiers to
modifications of the frequency response should be addressed
in further research nonetheless. At this stage, using different
microphones for training and evaluation is a good way to
ensure that this matter does not compromise our conclusion
on the performance of the proposed system.

B. Choice of pretext task

The gain achieved in this study with pretext-based
learning is rather marginal. This is potentially due to two
factors. First, the design of the Audio2Vec pretext task is
unrelated to a choice of downstream task. Indeed, it relies
purely on the mutual information between successive clips.
Other pretext tasks may be considered in the future: for
example, the TriCycle task (Cartwright et al., 2019a), which
relies on domain-specific knowledge about cycling patterns
in urban acoustic sensor networks. Second, we expect that
increasing our training set, both in terms of time span and in
terms of spatial coverage, will improve the generalization of
self-supervised learning.

C. Diversity of detected sources

From an application perspective, there is a need to
expand the diversity of sources to produce a more versatile
predictive model for high-level auditory perception. This
could be achieved by refining the taxonomy of urban
sounds: for example, breaking down traffic into motorcy-
cle, car, truck, and so forth. Likewise, the birds class could
be divided into various orders, families, and ultimately spe-
cies (Cramer et al., 2020). One advantage of training set
synthesis is that such an expansion in taxonomy would
come at a moderate cost in human workload: indeed, the
curation of a dataset of isolated samples for every source
of interest suffices to train a deep learning system on poly-
phonic scenes.
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D. Application to the prediction of high-level
perceptual attributes

The original motivation of our study, as stated in the
Introduction, is to predict the time of presence of three sour-
ces (traffic, voice, and birds) in urban acoustic scenes, as
represented by third-octave spectrograms. Indeed, linear
combinations between these three times of presence and
overall loudness provide a good approximation of the per-
ceived pleasantness of the scene as well as other high-level
perceptual attributes (Aumond et al., 2017).

For this reason, we evaluate all proposed models, not
only in terms of accuracy, but also in terms of relative pre-
dicted time of presence. Specifically, for each of the three
classes in our taxonomy, we compute the ratio between the
number of positive frames and the total number of frames in
the scene. This ratio ranges between zero and one and can
be readily compared with human judgments. To this end, we
use the square root of the mean square error (RMSE) as an
auxiliary metric to the task of multilabel urban sound classi-
fication. Similarly to the micro-averaging of accuracy across
all three classes of interest, we compute the RMSE of each
source across all scenes and then average the per-source
RMSE to obtain a unified metric per model. Note that accu-
racy is a “higher-is-better” metric, whereas RMSE is a
“lower-is-better” metric.

We find an average RMSE of 60.3% for the baseline:
local self-supervised learning on CENSEgram-5M followed
by external supervised learning on FSD-2k (see Sec. V A).
In comparison, the YAMNet model achieves an average
RMSE of 35.4% (see Sec. IV C). Last, our full-fledged
model (see Sec. V C) achieves a RMSE of 32.5%.

Together, these results suggest that accuracy improve-
ments correlate with reductions in RMSE. That being said,
we should take the RMSE results with caution because they
are aggregated across scenes, whereas accuracy results are
aggregated across frames. In Lorient-1k, there are 1350
frames per source yet only 30 scenes. This explains why we
conducted our benchmark with accuracy as the primary met-
ric of interest and measure the predicted time of presence
only as a secondary metric.

Last, we should note that the new state-of-the-art per-
formance, i.e., 73.6% accuracy and 32.5% RMSE, remains
perfectible. Ideally, a reliable model for urban sound moni-
toring should estimate the time of presence of each source
with a deviation of 10% or less with respect to human anno-
tation. Future work is needed to close the gap in perfor-
mance between deep learning models for urban sound
classification and the response of expert listeners.

VII. CONCLUSION

A prior study (Gontier et al., 2019) has demonstrated
that CNNs are effective for estimating the time of presence
of sources.

In this paper, we show that the design of the training
methodology for learning the deep architecture in order to
perform well for a given spatial location is critical.

In this paper, we employed YAMNet as a baseline system.
This is a pretrained classifier learned on AudioSet, a very large
dataset of more than 20! 106 s of audio. Another option
would be to extract a task-agnostic embedding, such as Open-
L3 (Cramer et al., 2019) or the penultimate layer or YAMNet.
In this case, a classification layer would have to be learned on
top of the embedding, which requires annotated local data.

We demonstrate that simulating polyphonic sound
scenes is an efficient method of training set synthesis when
the volume of labeled data is limited. Crowdsourcing audio
annotations produces noisy labels (Fonseca et al., 2019) and
demands intensive unskilled labor; in contrast, training set
synthesis relies on computer-generated labels and demands
a small amount of highly skilled labor.

The simScene software library automates the process of
large-scale training set synthesis and produces a “virtual
annotation” as a by-product. This library leads to the genera-
tion of arbitrary polyphonic urban sound datasets of arbi-
trarily large duration, such as simCENSE-18k. Our results
suggest that recording sound sources for training set synthe-
sis at the same place where the sensor is operating is impor-
tant for achieving good performance.

Some limitations of the study have been discussed in
Sec. VI. The impact of the difference of microphone fre-
quency response between sensors should be studied. The
ambiguity between the background noise and the traffic
source should be tackled both from a perception and compu-
tational architecture design point of view. The training set
synthesis approach proposed in this paper seems to be com-
plementary with self-supervised learning. While we
employed a simple-minded pretext task (Audio2Vec) with a
short receptive field of 1 s, we believe that the design of
new pretext tasks with longer receptive fields has the poten-
tial to improve performance even further.
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APPENDIX A: THE YAMNET BASELINE

For each clip, the three most likely sound classes among
the 521 classes of the AudioSet ontology are selected. If one
of those three classes belongs to the set of events of a given
source Es, the source s is set as active in this clip. The use of
the YAMNet baseline thus requires the definition of source
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event sets Es for the three classes of interest: traffic, voice,
and bird.

Curating the AudioSet ontology for building the three
source sets may bias the performance of the baseline. We
thus consider two alternative curations: one with source sets
of low cardinality and the other with higher cardinality. We
list both variants in Table III for traffic, Table IV for voices,
and Table V for birds. We observe that both variants are
within one-tenth of a percentage point in terms of our evalu-
ation metric, max#j. With this observation in mind, we con-
sider only the low-cardinality variant of YAMNet in the
remainder of this study.

APPENDIX B: ETHICS STATEMENT

1. Data acquisition

Local recordings of 10-s clips made from the network
are stored on an offline server with fully end-to-end
encrypted access, restricted to a few researchers within the
project. Each audio clip is deleted if it contains intelligible
speech, does not illustrate a source of interest, or is not
monophonic. Monophonic samples, sound scenes produced
from these samples, and the evaluation dataset are not dis-
tributed or made available publicly in the waveform
domain.

APPENDIX C: SUPPLEMENTARY MATERIAL

Our study introduces seven new datasets. All of them
have been made available along with the processing code
(Lagrange, 2021). This section summarizes their
characteristics.

1. CENSEgram-5M: A large-scale dataset
of spectrograms from an urban acoustic
sensor network in Lorient (France)

CENSEgram-5M contains third-octave spectrograms
from the CENSE network of acoustic sensors. These spec-
trograms correspond to 5 days of continuous measurements
obtained in December 2019! 16 sensors. The total duration
of the dataset is on the order of 5! 106 s, i.e., 1280 h. Our
paper uses CENSEgram-5M for self-supervised learning.
See Sec. II for details.

2. CENSE-2k: An annotated dataset of sound events
from an urban acoustic sensor network in Lorient
(France)

CENSE-2k contains 182 monophonic audio clips from
the CENSE network of acoustic sensors. One expert anno-
tated these audio clips in terms of four classes: background
noise, traffic, voice, and birds. Our paper uses CENSE-2k
for training set synthesis. The total duration of the dataset
is on the order of 2400 s, i.e., 40 min. Our paper uses
CENSE-2k for training set synthesis. See Sec. III A for
details.

TABLE IV. Selected sound event classes for the voice set Ev. Only the clas-
ses with underlined IDs are considered for the small sound event set.

ID Name

0 Speech

1 Child speech, kid speaking

2 Conversation

3 Narration, monologue

4 Babbling

5 Speech synthesizer

6 Shout

7 Bellow

8 Whoop

9 Yell

10 Children shouting

11 Screaming

12 Whispering

13 Laughter

14 Baby laughter

15 Giggle

16 Snicker

17 Belly laugh

18 Chuckle, chortle

19 Crying, sobbing

20 Baby cry, infant cry

21 Whimper

TABLE V. Selected sound event classes for the bird set Eb. Only the clas-
ses with underlined IDs are considered for the small sound event set.

ID Name

106 Bird

107 Bird vocalization, bird call, bird song

108 Chirp, tweet

109 Squawk

110 Pigeon, dove

111 Coo

112 Crow

113 Caw

114 Owl

115 Hoot

116 Bird flight, flapping wings

TABLE III. Selected sound event set for the traffic set Et. Only the classes

with underlined IDs are considered for the small sound event set.

ID Name

300 Motor vehicle (road)

307 Tire squeal

308 Car passing by

309 Race car, auto racing

310 Truck

315 Bus

320 Motorcycle

321 Traffic noise, roadway noise
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3. simCENSE-18k: A dataset of synthetic acoustic
scenes from Lorient (France)

simCENSE-18k contains 400 acoustic scenes of dura-
tion equal to 45 s. We synthesized these polyphonic scenes
via the simScene software, based on monophonic audio clips
from the CENSE-2k dataset. The total duration of the data-
set is equal to 18 000 s, i.e., 5 h. Our paper uses simCENSE-
18k to train a multilabel classifier of urban sounds on
synthetic data. See Sec. III for details.

4. Lorient-1k: An annotated dataset of acoustic
scenes from handheld devices in Lorient (France)

Lorient-1k contains 30 acoustic scenes of duration
equal to 45 s. These scenes were recorded with Zoom H4n
handheld devices at 10 different locations of Lorient
(France). Four experts annotated the onset and offset times
of three sources of interest: traffic, voice, and birds. The
total duration of the dataset is on the order of 1350 s, i.e.,
22.5 min. Our paper uses Lorient-1k as a hold-out evaluation
set for benchmarking urban sound classifiers. See Sec. IV
for details.

5. augCENSE-18k: An artificially augmented version
of CENSE-2k

augCENSE-18k is a derivative of CENSE-2k, obtained
by time stretching and pitch shifting audio clips of the voice
and birds classes at random. The total duration of the dataset
is equal to 18k seconds, i.e., the same as simCENSE-18k,
with balanced material over classes. Our paper uses
augCENSE-18k to demonstrate that artificial data augmen-
tation (yielding augCENSE-18k) underperforms training set
synthesis with simScene (yielding simCENSE-18k). See
Sec. V for details.

6. FSD-2k: A dataset of events collected
from Freesound and Librispeech

FSD-2k contains about 200 monophonic audio clips
collected from online resources, which are unrelated to the
city of Lorient: Freesound for birds and traffic and
Librispeech for voice.

7. simFSD-18k: A dataset of synthetic acoustic
scenes made with Freesound and Librispeech
samples

simFSD-18k contains 400 acoustic scenes of duration
equal to 45 s. We synthesized these polyphonic scenes via
the simScene software, based on FSD-2k. The total duration
of the dataset is equal to 18000 s, i.e., the same as
simCENSE-18k. Our paper uses simFSD-18k to demon-
strate that training set synthesis with external audio samples
(yielding simFSD-18k) underperforms training set synthesis
with local audio samples (yielding simCENSE-18k). See
Sec. V for details.
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