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Introduction 1.PAC-Bayesian theory

PAC-Bayesian machine learning theory can be traced back to the work of Shawe-Taylor and Williamson (see [START_REF] Shawe-Taylor | A pac-analysis of a bayesian estimator[END_REF][START_REF] Shawe-Taylor | Functional bregman divergence and bayesian estimation of distributions[END_REF]) and Mac-Allester ( [START_REF] David | Some pac-bayesian theorems[END_REF][START_REF] David | Pac-bayesian stochastic model selection[END_REF]). The goal of PAC-Bayesian theory is to get distribution free generalization bounds, ie that holds a priori, but where some prior or arbitrary domain knowledge is available on the set of candidate models. As in Bayesian statistics, it leads to a posteriori estimates of the generalization performances based on informative priors. Historically, it was proposed as an alternative to the structural risk minimization problem based on the Vapnik-Chervonenkis theory since Bayesian algorithms minimize a risk expression involving a likelihood or goodness of fit term based on the training data, and a prior probability, leading to a trade-off between empirical accuracy and complexity in terms of divergence from the prior. Formally, in the discrete case, for a set of finite weak learners G = {g 1 , . . . , g p } and a prior distribution π = (π k ) p k=1 over this set G, the first PAC-Bayesian bound appears in [START_REF] David | Some pac-bayesian theorems[END_REF]. Given a loss function (g, •) and a distribution S over a sample z 1 , . . . , z m , [START_REF] David | Some pac-bayesian theorems[END_REF] shows the existence of a decision ĝ ∈ G such that with probability 1 -δ, the generalization error R(•) := E z∼S (•, z) of ĝ is bounded as follows: R(ĝ) ≤ min 

1

It leads to the model selection of a particular candidate ĝ ∈ G that trades off the goodness of fit with the minimum description length -log π(ĝ) (see [START_REF] Peter | The Minimum Description Length Principle (Adaptive Computation and Machine Learning)[END_REF]). The result holds for any prior π but is interesting if there exists a prior π giving high probabilities on rules g ∈ G that fit well to the training problem. In term of domain knowledge, this is equivalent to suppose that particular candidates g ∈ G with low complexity fit well to the learning problem. This model selection principle is outperformed in [START_REF] David | Pac-bayesian stochastic model selection[END_REF] where (1) is extended to uncountable set G. In this case, a stochastic algorithm is prefered and leads to the existence of a distribution ρ ∈ P ¸(G) the set of probability distributions over G such that with probability 1 -δ, the expected generalization error is bounded as follows:

E g∼ρ R(g) ≤ inf ρ∈P(G) E g∼ρ 1 m m t=1 (g, z t ) + K(ρ, π) + log 1 δ + log m + 2 λ , (2) 
where K(ρ, π) is the Kullback-Leibler divergence from prior π to ρ. Noting that since K(δ g , π) = -log π(g) for any π and g, (2) appears as a powerfull generalization of [START_REF] David | Pac-bayesian stochastic model selection[END_REF]. Minimizing the RHS in (2) corresponds to compute the convex conjugate of K(•, π) and leads to a stochastic algorithm based on the following exponential weighted average or Gibbs posterior:

ρ(g) := 1 Z λ exp - λ m m t=1 (g, z t ) π(g), (3) 
where λ > 0 is a temperature parameter. This distribution reaches a trade-off between accuracy over the sample and Kullback-Leibler divergence from the prior, where the introduction of the Kullback-Leibler divergence is based on a Chernoff bound in [1, Lemma 4].

Based on these theoretical foundations, PAC-Bayesian theory has been widely used in high dimensional statistics, where g = p i=1 θ i f i ∈ G often represents the linear span of a set of dictionary functions {f 1 , . . . , f p }, where p is potentially huge. In this context, a sparsity scenario means that a small subset of the dictionary provides a nearly complete description of the underlying phenomenon. [START_REF] Arnak S Dalalyan | Mirror averaging with sparsity priors[END_REF] proves generalization performances under this sparsity scenario (see also [START_REF] Audibert | Fast learning rates in statistical inference through aggregation[END_REF][START_REF] Gerchinovitz | Sparsity regret bounds for individual sequences in online linear regression[END_REF][START_REF] Li | A quasi-bayesian perspective to online clustering[END_REF]). Then, instead of using a model selection technique leading to sparse estimators such as the lasso (see [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Bühlmann | Statistics for high-dimensional data[END_REF]), [START_REF] Arnak S Dalalyan | Mirror averaging with sparsity priors[END_REF] proposes a stochastic mirror averaging that reach a PAC-Bayesian inequality as in [START_REF] Shawe-Taylor | A pac-analysis of a bayesian estimator[END_REF]. Using a sparsity prior, one gets sparsity oracle inequalities. These techniques provide theoretical trade-off between goodness of fit and complexity in terms of 0 or 1 -norm of the solution. Whereas these complexity measures have been widely used in the literature (see [START_REF] Chee | Sparsity regret bounds for xnor-nets++[END_REF] for an application in deep learning), we expect in this paper more generic penalties to use any ad-hoc criterion for the set of candidates learning machines.

Main contributions

In this contribution we provide PAC-Bayesian bounds such as (2) replacing the Kullback-Leibler divergence and its usual convex conjugate (3) with Bregman and optimal transport divergences. We first extend the materials presented above to a more general divergence then the Kullback-Leibler divergence, namely Bregman divergences. In this context, we show that the two main ingredients, namely the convex duality gathering with the cancellation argument originated in [START_REF] Andrew R Barron | Are bayes rules consistent in information?[END_REF] can be still applied to our context. It leads to a new family of stochastic algorithms that generalize the previous exponential weighted averages with equivalent theoretical guarantees. We also propose to introduce optimal transport as a promising alternative to Bregman (or Kullback) divergences. Indeed, by proving the main assumption originated in [START_REF] Juditsky | Learning by mirror averaging[END_REF] (see Assumption A(Π, δ λ ) below), we lead to a new kind of procedure where the exponential averages are replaced by optimal transport optimization that satisfies a new PAC-Bayesian bound. With these theoretical results, we expect numerous possible regret bounds and new theoretical trade-off between goodness of fit and different complexity measures related with energy constraints (see [START_REF] Chee | Sparsity regret bounds for xnor-nets++[END_REF] for a survey of some recent advances in the environmental impact and electirc consumption of learning machines).

In the sequel, we adopt the online learning scenario where a sequence of deterministic values {z t , t = 1, . . . , T } is observed, where z t ∈ Z could be a couple (x t , y t ) in supervised learning, or an input data in unsupervised learning. Based on a loss function (g, z) that measures the loss of decision g ∈ G at observation z ∈ Z, the goal of the forecaster is to build a sequence of distributions {ρ t , t = 1, . . . , T } with small expected cumulative loss. We are hence looking at regret bounds of the following type:

T t=1 E g∼ρt (z t , g) ≤ inf g∈G T t=1 (z t , g) + pen(g) + δ T , (4) 
where pen(g) extends the sparsity paradigm where pen(g) = g 0,1 thanks to the introduction of Bregman divergences in [START_REF] Shawe-Taylor | A pac-analysis of a bayesian estimator[END_REF], and δ T > 0 is a residual term. To build this sequence of mixtures, we act sequentially as follows. At each round t ≥ 1, we have timely access to a temporal prior ρt derived from the previous observations. More precisely, given z t , we are looking at a randomized decision g ∼ ρt+1 where the posterior distribution ρt+1 ∈ P(G) is the solution of the following minimization:

ρt+1 := arg min ρ∈P(G) E g∼ρ h t (g) + 1 λ D(ρ, ρt ) , (5) 
where h t (g) is related with the loss of decision g ∈ G at z t and D(ρ, ρt ) is a suitable divergence from the temporal prior to the candidate posterior ρ. Parameter λ > 0 governs the trade-off between the two terms. Depending on the choice of λ > 0 and the penalty above, our procedure reaches automatically the desire trade-off between fitting the data and penalty in terms of domain knowledge. It is important to note that minimization (5) is equivalent to compute the Legendre-Fenchel transformation of D(•, ρt ) at each step t ≥ 1, and leads to different kind of posterior distribution. In this paper, we investigate two divergences:

• Bregman divergences D(ρ, π) = B Φ (ρ, π) (see Section 2.1), where Φ governs the explicit form of the penalty as well as the sequence of distributions {ρ t , t = 1 . . . , T }, • Optimal transport D(ρ, π) = W α (ρ, π) (see Section 2.2), where the introduction of a cost function C(•, •) : G × G lead to more flexibility.

Recall that in the PAC-Bayesian literature cited above, the proposed sequential procedure based on minimization (5) uses the classical Kullback-Leibler divergence where D(ρ, π) = K(ρ, π). It leads to the vanilla Gibbs posterior (3) since in this case the unique solution of (5) can be written explicitly as follows:

ρt+1 (dg) = 1 Z t exp(-h t (g))dρ t (g) = • • • = 1 Z exp - t u=1 h t (g) dπ(g),
where ρ1 = π is the prior distribution. Finally, the main results of the paper occur under an assumption on the same flavour as [START_REF] Audibert | Fast learning rates in statistical inference through aggregation[END_REF]. It can be generalized in our context as follows:

Assumption A(Π, δ λ ) ∀π ∈ P(G), ∃Π(π) ∈ P(G) : ∀z ∈ Z:

E g ∼Π(π) (g , z) ≤ 1 λ E g ∼Π(π) min ρ∈P(G) E g∼ρ [λ( (g, z)) + δ λ (z, g, g )] + D(ρ, π) .
Below we show particular cases when A(Π, δ λ ) holds for both Bregman divergences and Optimal Transport leading to regret bounds for weighted averages built sequentially following Algorithm 1 below.

Algorithm 1 General Algorithm init. λ > 0, t = 1, π ∈ P(G) a prior distribution. D a divergence such that A(Π, δ λ ) holds. Let ρ1 = Π • π.
repeat Predict z t according to ĝt ∼ ρt . Observe z t and compute h t (g) = (z t , g) + δ λ (z t , g, ĝt ) for all g ∈ G.

return ρt+1 = Π • ρt+1 where Π is defined in A(Π, δ λ ) and ρt+1 is the solution of the general optimisation problem:

min ρ∈P(G) {Eg∼ρ ( (g, z t ) + δ λ (z t , g, ĝt )) + D(ρ, ρt )} t = t + 1 until t = T + 1

PAC-Bayesian Inequalities

In this section we propose to state the main results of the paper. In the sequel, we consider a measurable space (G, Ω) endowed with a σ-finite measure ν, where G is a set of decisions. We denote by P(G) := {ρ : G → R + : ρ(g)ν(dg) = 1} the set of probability measure on G. The main objective of PAC-Bayesian theory is to propose data-dependent posterior distribution P(G) with some theoretical guarantees. In Theorem 2.2, we control the expected cumulative loss of Algorithm 2, where Bregman divergences are proposed as regularizers. It generalizes the classical setting based on the usual Kullback-Leibler divergence. In Theorem 2.4, we go one step further and propose to introduce optimal transport as a promising alternative to measure the divergences to the prior. It leads to a control of the expected cumulative loss of Algorithm 3 where the introduction of a generic cost function allows to launch more generic regularizers and regret bounds in Corollary 2.5 and Corollary 2.6.

Bregman divergences

Given a strictly convex function Φ : P(G) → R, twice-continuously Fréchet-differentiable on relint p P(G), the relative interior of P(G) with respect to L p (ν), we define the functional Bregman divergence between two probabilities on P(G) as follows:

B Φ (ρ, µ) := Φ(ρ) -Φ(µ) -∇Φ(µ), ρ -µ , (6) 
where ∇Φ(µ) stands for the Fréchet derivative of Φ at point µ. Equation ( 6) generalizes the standard vector Bregman divergence

B Φ (u, v) = Φ(u) -Φ(v) -∇Φ(v) T (u -v) for u, v ∈ R p where ∇Φ(v) is the standard gradient of Φ at point v.
Morever, as a particular case, we also introduce the class of pointwise Bregman divergences introduced by Csiszár in [START_REF] Csiszár | Generalized projections for non-negative functions[END_REF] as:

B s (ρ, µ) = G s(ρ(g)) -s(µ(g)) -s (µ(g))(ρ(g) -µ(g))ν(dg), (7) 
where s : R + → R is constrained to be differentiable and strictly convex and the limit lim x→0 s(x) and lim x→0 s (x) must exist. By definition, B s is non-negative and satisfies main properties of classical Bregman divergence such as convexity, linearity, and generalized Pythagorean theorem (see for instance [START_REF] Béla A Frigyik | Functional bregman divergence and bayesian estimation of distributions[END_REF] for a proof). An important fact with this pointwise Bregman divergence is the existence of an equivalent functional Φ : P(G) → R and a functional Bregman divergence for any pointwise Bregman divergence if the measure ν is finite. However, the reverse is not true. Different function s in pointwise Bregman divergences [START_REF] Audibert | Fast learning rates in statistical inference through aggregation[END_REF] leads to different Bregman divergences. For instance, let s

(x) = x log x. Then B s (ρ, µ) = K(ρ, µ) where K(•, •) is the Kullback-Leibler divergence. Moreover, if s(x) = x 2 , then B s (ρ, µ) = ρ -µ 2,ν whereas if s(x) = -log x we find the Itakura-Saito distance.
The following lemma is useful to state the main theoretical result.

Lemma 2.1. Let π ∈ P(G) where G is finite. For some function h : G → R + , let us consider the minimization problem:

min ρ∈P(G) E g∼ρ [h(g)] + B(ρ, π) , (8) 
where B ∈ {B Φ , B s } is a Bregman divergence according to definition (6) or (7).

• If B = B Φ for Φ : P(G) → R a strictly convex and continuously differentiable function, and h(•) is convex and continuously differentiable, the minimization problem (8) admits an unique solution ρh,π such that:

ρh,π (g) = max 0, ((∇ g Φ) -1 ∇ g Φ(π(g)) -h(g) + c h,π ) , ∀g ∈ G,
where c h,π > 0 is uniquely defined such that g∈G ρh,π (g) = 1. • More generally if a minimizer ρh,π of (8) exists, we have:

ρh,π (g) = max 0, ((∇ g Φ) -1 ∇ g Φ(π(g)) -h(g) + c h,π ) , ∀g ∈ G,
for some constant c h,π > 0 such that g∈G ρh,π (g) = 1.

• If B = B s for some differentiable and strictly convex s : R + → R such that the limit lim x→0 s(x) as well as lim x→0 s (x) must exist and lim x→0 s (x) = -∞, the minimization problem (8) admits an unique solution

ρh,π (g) = (s ) -1 (s (π(g)) -h(g) + c h,π ),
where c h,π > 0 is uniquely defined such that g∈G ρh,π (g) = 1.

Moreover, for any sequence (h t ) T t=1 and prior distribution ρ1 ∈ P(G), under the previous assumptions, we have:

ρT +1 = ρ T t=1 ht,ρ 1 , ( 9 
)
where ρT +1 is the solution of (8) with h = h T and π = ρT .

The proof is postponed to Section 3.

Remark 1. This lemma is useful to prove the PAC-Bayesian inequality stated in Theorem 2.2 for Algorithm 2. It generalizes the convex duality formula stated originally in [START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF] which corresponds in Lemma 2.1 to the particular case B = B s for s(x) = x log x. In this case, we deal with the Gibbs measure ρh,π (g) = exp{log π(g)

+ 1 -h(g) + c h,π -1} = 1 Z exp{-h(g)}π(g).
Remark 2. The last statement (9) is useful in the proof of Theorem 2.2 to extend the cancellation argument originally stated in [START_REF] Andrew R Barron | Are bayes rules consistent in information?[END_REF] in the classical Kullback-Leibler case.

Remark 3. Lemma 2.1 is restricted to a finite set of weak learners G for simplicity. Recent extensions of the KKT conditions to the infinite dimensional case (see [START_REF] Park | Wireless network intelligence at the edge[END_REF]) can be used in order to consider uncountable set G but it is out of the scope of the present paper.

Previous Lemma is useful to control the expected regret of Algorithm 2 as follows.

Theorem 2.2. Let λ > 0 and (Π, δ λ ) defined below such that A(Π, δ λ ) holds. Consider a sequence of distribution (ρ t ) T t=1 based on Algorithm 2, where B ∈ {B Φ , B s } and (h t ) T t=1 satisfy assumption of Lemma 2.1. Then for any deterministic sequence {z t , t = 1, . . . T }, for any prior π ∈ P(G), we have:

T t=1 E ĝt∼ρt (ĝ t , z t ) ≤ min ρ∈P(G) E g∼ρ T t=1 ¯ (g, z t ) + B(ρ, π) λ ,
where λ ¯ (g, z) := λ (g, z) + E (ĝ 1 ,...,ĝt) δ λ (z t , g, ĝt ).

Sketch of proof.

Since A(Π, δ λ ) holds, we have for any π ∈ P(G), for any z ∈ Z:

E g ∼Π(π) (g , z) ≤ 1 λ E g ∼Π(π) min ρ∈P(G) E g∼ρ λ (g, z) + δ λ (z, g, g ) + B(ρ, π) . (10) 
We first apply [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] 

for t = 1, . . . , T z = z t , π = ρt := ρh t-1 ,ρ t-1 in minimization (8) for h t (g) = λ( (z t , g)) + δ λ (z t , g, ĝt )
, with h 0 ≡ 0 and ρ0 correspond to the prior π. Then, summing accross iterations yields:

T t=1 E (ĝ 1 ,...,ĝt) (z t , g ) ≤ 1 λ T t=1 E g ∼ρt E g∼ρ t+1 h t (g) + B Φ (ρ t+1 , ρt ) = 1 λ E (ĝ 1 ,...,ĝ T ) T t=1 E g∼ρ t+1 h t (g) + Φ(ρ t+1 ) -Φ(ρ t ) -∇Φ(ρ t )(ρ t+1 -ρt ) = 1 λ E (ĝ 1 ,...,ĝ T ) T t=1 E g∼ρ t+1 h t (g) + Φ(ρ T +1 ) -Φ(π) - T t=1 ∇Φ(ρ t )(ρ t+1 -ρt ) .
Moreover, notice that by Lemma 3.1 (see Section 3), we have under the assumptions of Lemma 2.1:

T t=1 ∇Φ(ρ t )(ρ t+1 -ρt ) = ∇Φ(π)(ρ T +1 -π) -E g∼ρ T +1 T -1 t=1 h t (g) + T -1 t=1 E g∼ρ t+1 h t (g).
Then, gathering with the previous computations, we arrive at:

T t=1 E g ∼ρt (z t , g ) ≤ 1 λ E (ĝ 1 ,...,ĝ T ) E g∼ρ T +1 T t=1 h t (g) + Φ(ρ T +1 ) -Φ(π) -∇Φ(π)(ρ T +1 -π) = 1 λ E (ĝ 1 ,...,ĝ T ) E g∼ρ T +1 T t=1 h t (g) + B Φ (ρ T +1 , π) = 1 λ E (ĝ 1 ,...,ĝ T ) min ρ∈P(G) E g∼ρ T t=1 h t (g) + B Φ (ρ, π)
where we use the last statement of Lemma 2.1 for the last equality.

Remark 4. Theorem 2.2 controls the expected cumulative loss of Algorithm 2 in the online learning scenario presented in Section 1. Similar results can be stated in the i.i.d. case to get a control of the expected risk of a slightly modified version of Algorithm 2 by using a mirror averaging (see [START_REF] Arnak S Dalalyan | Mirror averaging with sparsity priors[END_REF] or [START_REF] Audibert | Fast learning rates in statistical inference through aggregation[END_REF]).

Remark 5. Theorem 2.2 generalizes the standard PAC-Bayesian bounds with Kullback-Leibler divergences to Bregman divergences. Indeed, in Theorem 2.2, if Φ involves a Kullback-Leibler divergence, we get a Gibbs measure in Algorithm 2 and find the existing bounds stated in [START_REF] Audibert | Fast learning rates in statistical inference through aggregation[END_REF].

Remark 6. The introduction of alternatives to the Kullback-Leibler divergence in PAC-Bayesian theory has been studied in the literature. [START_REF] Alquier | Simpler pac-bayesian bounds for hostile data[END_REF] studies Φ-divergence in a probabilistic context, whereas [START_REF] Li | Rényi divergence variational inference[END_REF] uses Renyi divergence. Moreover [START_REF] Knoblauch | Generalized variational inference: Three arguments for deriving new posteriors[END_REF] propose new posteriors in a Bayesians setting for variational inference for maximum likelihood estimators. Recently [START_REF] Alquier | Non-exponentially weighted aggregation: regret bounds for unbounded loss functions[END_REF] also states regret bounds for unbounded losses thanks to the introduction of a Φ-divergence.

Remark 7. Assumption A(Π, δ λ ) is necessary to conduct the proof. It can be traced back to [START_REF] Juditsky | Learning by mirror averaging[END_REF]. It is wellknown that this assumption is satisfied for any loss function in the Kullback-Leibler case for a particular quadratic function δ λ (see [START_REF] Audibert | Fast learning rates in statistical inference through aggregation[END_REF]). In the sequel, we prove this assumption in the Optimal Transport case to lead to a new kind of procedure where exponential averages are replaced by optimal transport optimization.

Remark 8. Theorem 2.2 is the main ingredient to derive the same kind of result for the optimal transport divergence, as well as regret bound in Section 2.2.

Algorithm 2 Bregman Algorithm init.λ > 0, t = 1, π ∈ P(G) a prior distribution. B Φ a Bregman divergence. Suppose A(Π, δ λ ) holds. Let ρ1 = Π • π.
repeat Predict z t with ĝt ∼ ρt . Observe z t and compute h t (g) = (g, z t ) + δ λ (z t , g, ĝt ) for all g ∈ G.

return ρt+1 = Π • ρt+1 where ρt+1 (g) = max 0, (∇gΦ) -1 ∇gΦ(ρ t (g)) -h t (g) + c h t , ρt for all g ∈ G.

t = t + 1 until t = T + 1

Optimal Transport

Given two probability measure ρ, π ∈ P(G), the Kantorovitch formulation of optimal transport between ρ and π is given by:

W C (ρ, π) := min Λ∈∆(ρ,π) G×G C(g, g )dΛ(g, g ), (11) 
where ∆(ρ, π) = {Λ ∈ P(G × G) : Λ 1 = ρ and Λ 2 = π} and Λ 1 (resp. Λ 2 ) stands for the first (resp. second) marginal of Λ. An optimizer of ( 11) is called a transportation plan and quantifies how mass is moved from π to ρ whereas the cost function C(•, •) : G × G → R measure the cost of mooving a unit mass from g to g.

For an mathematical introduction of optimal transport, we refer to the monograph [START_REF] Villani | Optimal transport: old and new[END_REF].

Optimal transport has recently inspired the machine learning community to get a variety of divergences between probability distributions (see the monograph of [START_REF] Peyré | Computational optimal transport[END_REF]). It rises to several applications where comparisons of complex and high dimensional objects are needed : time series (see for instance [START_REF] Cuturi | A kernel for time series based on global alignments[END_REF][START_REF] Muskulus | Wasserstein distances in the analysis of time series and dynamical systems[END_REF]), images (see [START_REF] Courty | Joint distribution optimal transportation for domain adaptation[END_REF][START_REF] Salimans | Improving GANs using optimal transport[END_REF]) or neuro-images ( [START_REF] Gramfort | Fast optimal transport averaging of neuroimaging data[END_REF][START_REF] Janati | Multisubject meg/eeg source imaging with sparse multi-task regression[END_REF]). Moreover in these machine learning applications, some form of regularization has been proposed to avoid the curse of dimensionality as well as to build scalable versions of the original optimization problem [START_REF] Bühlmann | Statistics for high-dimensional data[END_REF] (see [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]). For that purpose, entropy regularization makes the optimal transport problem more tractable and eliminates a number of analytic and computational difficulties. That is, we can consider a perturbation of the minimization problem [START_REF] Bühlmann | Statistics for high-dimensional data[END_REF] given by

W α (ρ, π) := min Λ∈∆(ρ,π) G×G C(g, g )dΛ(g, g ) + α(H(ρ) + H(π) -H(Λ)) , (12) 
for some α > 0, where H is the Shannon entropy. Note that the quantity H(ρ) + H(π) -H(Λ) ≥ 0. Moreover, since W α (•, π) is strictly convex for any distribution π ∈ P(G), we use divergence [START_REF] Chee | Sparsity regret bounds for xnor-nets++[END_REF] in the rest of the paper. 

min ρ∈P E g∼ρ [h(g)] + W α (ρ, π) . ( 13 
)
Then we have:

min ρ∈P E g∼ρ [h(g)] + W α (ρ, π) = αH(π) -π, v ,
where v : G → R + is the KKT multiplier and satisfies:

v(g ) = -α log g∈G M α (g, g ) exp h(g) α , ∀g ∈ G,
for M α the inverse of the kernel matrix

K α = exp - C(g,g ) α g,g ∈G .
Then, for any λ > 0, A(Π, δ λ ) holds for:

δ λ (z, g, g ) = λ 2 2α ( (z, g) -(z, g )) 2 + α log A(π) Π(π)(g) = A(π)E g ∼π exp - C(g,g ) α , ∀g ∈ G, (14) 
where A(π) is the normalizing constant.

Remark 9. The first statement is useful to prove [START_REF] Juditsky | Learning by mirror averaging[END_REF]. It uses the KKT conditions involved in the minimization problem [START_REF] Andrew R Barron | Are bayes rules consistent in information?[END_REF]. As before, the restriction to a finite set G only appears since we use the classical finite dimensional Lagrange theory. Extensions to infinite and uncountable set of candidates G is possible using recent extensions of the KKT conditions to the infinite dimensional case (see [START_REF] Park | Wireless network intelligence at the edge[END_REF]).

Remark 10. The second statement ensures the existence of a functional δ λ (z, •, •) and an operator Π(•) such that assumption A(Π, δ λ ) holds. As far as we know, this is the first time this assumption is used with non-trivial transformation Π(•) and Optimal Transport divergences instead of classical Kullback-Leibler divergence and duality. Operator Π depends on the cost function C(•, •) chosen in the optimal transport divergence and acts as a regularizer based on this cost.

This lemma is useful to prove the PAC-Bayesian bound for Algorithm 3.

Theorem 2.4. Assume G is finite. Let λ > 0. Consider a sequence of distribution (ρ t ) T t=1 based on Algorithm 3. Then for any deterministic sequence {z 1 , . . . , z T }, for any prior π ∈ P(G), we have:

T t=1 E ĝt∼ρt (ĝ t , z t ) ≤ min ρ∈P(G) E g∼ρ T t=1 ¯ (g, z t ) + W α (ρ, π) λ + ∆ T,λ (B Φα , W α ) ,
where ¯ (g, z) := (g, z)+ λ 2α E (ĝ 1 ,...,ĝt) ( (g, z) -(ĝ t , z)) 2 +α log A(π) and the extra-term ∆ T (B Φα , W α ) is defined in Section 3.

Remark 11. The proof uses Theorem 2.2 with a particular function Φ α : ρ → W α (ρ, ν) for some ν ∈ P(G) and allows us to extend the previous PAC-Bayesian bound to entropy regularized optimal transportation (see Section 3 for a detailled proof). 

h t (g) = (g, z t ) + λ 2α ( (g, z t ) -(ĝ t , z t )) 2 + α log A(ρ t ), for all g ∈ G,
where A(ρ t ) is defined in Lemma 2.3. return ρt+1 = Π • ρt+1 where Π is defined in Lemma 2.3 and ρt+1 is the solution of the minimization problem in Lemma 2.3 with h = h t .

t = t + 1 until t = T

Generic regret bounds

We are now on time to apply Theorem 2.4 in the following toy generic example. Let us consider a finite set of learning machines G = {g 1 , . . . , , g p }, where p ≥ 1 is the number of learners. Suppose we have at hand a prior knowledge on these learning machines, in terms of generalization power, as well as another generic criterion to minimize (such as for instance energy consumption or carbon footprint, see [START_REF] Chee | Sparsity regret bounds for xnor-nets++[END_REF] and the references therein). We denote by {(Err 1 , Crit 1 ), . . . , (Err p , Crit p )} these sequences of criteria, where g i has generalization error estimate Err i and score Crit i for the generic criterion. We consider in the sequel two different scenarii corresponding to Corollary 2.5 and Corollary 2.6. In the first scenario, we suppose the simplest multiple-criteria decision-making problem, where for any η > 0, there exists an unique optimal decision g η = g i η ∈ G such that:

i η = arg min g∈G (Err i + ηCrit i ) ,
where η > 0 governs the trade-off between both criteria. Large value of η > 0 corresponds for instance to a small energy budget whereas η = 0 corresponds to a classical machine learning problem. With this in mind, consider a new task based on a deterministic sample {z 1 , . . . , z T } and a loss function (g, z). We want to draw a distribution, or mixture, on the finite set G able to trades off dynamically the loss over the new set of observations, and the generic criterion. For that purpose, we start from g η , the best compromise at hand and adapts sequentially the mixture thanks on Algorithm 3 as follows. At each round t ≥ 1, we choose a new distribution ρt+1 ∈ P(G) that minimizes the expected loss on new observation z t and the transport from ρt , where the optimal transport is based on a cost function depending on the sequence Crit, such as for instance C(g i , g j ) := Crit i -Crit j . We hence have the following result based on a direct application of Theorem 2.4: Corollary 2.5. Let π = δ g η the Dirac measure on g η and consider Algorithm 3 with C(g i , g j ) := C(Crit i , Crit j ) for any i, j = 1, . . . p in the optimal transport divergence (11). Then we have, for any deterministic sequence {z 1 , . . . , z T }:

T t=1 E ĝt∼ρt (ĝ t , z t ) ≤ min g∈G T t=1 ¯ (g, z t ) + C(g, g i ) λ + ∆ T ,
where ¯ and ∆ T > 0 are defined in Theorem 2.4 and λ > 0.

The proof is straightforward using Theorem 2.4 with Dirac prior δ g η . However, in practice, the existence and uniqueness of g η is rarely satisfied due to the unstability of the problem. Indeed, the generalization power, as well as the generic criterion, could be considered as stochastic values depending on unknown parameters such as the variability of the problem, the considered hardware, or some other practices. As a result, it could be more realistic to consider a prior π b based on a weighted average of candidate learners {g 1 , . . . , g p }. Moreover, if we have at hand a budget b > 0, we can choose π b as a solution of the following optimization:

min ρ E g∼ρ Err(g) s.t. E g∼ρ Crit(g) ≤ b,
where Err(g) and Crit(g) are respectively estimates of the true but untractable generalization power and, for instance, electric consumption of learner g ∈ G. In this case, strarting from π b for some b > 0, we have the following result:

Corollary 2.6. Let π = π b for some b > 0 in Algorithm 3 and C(g i , g j ) := C(Crit i , Crit j ) for any i, j = 1, . . . p in the optimal transport divergence (11). Then we have for the sequence of distribution {ρ t , t = 1 . . . , T } based on Algorithm 3:

T t=1 E ĝt∼ρt (ĝ t , z t ) ≤ inf i=1,...,p T t=1 ¯ (g, z t ) + E g ∼π b C(g i , g ) λ + ∆ T ,
where ¯ and ∆ T > 0 are defined in Theorem 2.4.

The proof is also straightforward using Theorem 2.4 with prior π b .

Proofs

Proof of Lemma 2.1

We start with the proof of Lemma 2.1. Since G is finite, the solution can be described directly by the Karush-Kuhn-Tucker (KKT) theory (see [START_REF] Cristianini | An introduction to support vector machines and other kernel-based learning methods. repr. Introduction to Support Vector Machines and other Kernel-Based Learning Methods[END_REF]). We first formally write the optimization problem as:

   min ρ F h,π (ρ) := E g∼ρ [h(g)] + B Φ (ρ, π) s.t. ρ(g) ≥ 0, ∀g ∈ G g∈G ρ(g) -1 = 0
For the first statement, since Φ and h are convex and continuously differentiable, F h,π (•) is convex and continuously differentiable and by the KKT conditions involved in the strong duality theorem, we first have for ρ := ρh,π minimizer of F h,π :

h(g) + ∇ g Φ(ρ(g)) -∇ g Φ(π(g)) = µ(g) -λ, ∀g ∈ G,
where µ : G → R + and λ ≥ 0 are KKT multipliers. Moreover, the complementary slackness condition (see [START_REF] Cristianini | An introduction to support vector machines and other kernel-based learning methods. repr. Introduction to Support Vector Machines and other Kernel-Based Learning Methods[END_REF], Theorem 5.21) implies that if ρ(g) = 0, then µ(g) = 0. That is, if ρ(g) = 0, then

∇ g Φ(ρ(g)) = ∇ g Φ(π(g)) -h(g) -λ (15) 
while if ρ(g) = 0, then

∇ g Φ(0) = ∇ g Φ(ρ(g)) = ∇ g Φ(π(g)) -h(g) -λ + µ(g) ≥ ∇ g Φ(π(g)) -h(g) -λ.
Combining the above conditions, there is some constant c h,π such that for every g ∈ G:

∇ g Φ(ρ(g)) = max{a g , ∇ g Φ(π(g)) -h(g) + c h,π },
where a g = inf r∈(0,1) ∇ g Φ(r). In particular, for every g ∈ G,

ρ(g) = max 0, (∇ g Φ) -1 ∇ g Φ(π(g)) -h(g) + c h,π
where c h,π satisfies the following constraint:

g∈G ρ(g) = g∈G max{0, min{1, (∇ g Φ) -1 ∇ g Φ(π(g)) -h(g) + c h,π }} = 1.
Moreover, by strict convexity of Φ, it is straightforward to see that c h,π is unique.

For the second statement, we suppose the existence of a minimizer. Then, by KKT conditions, (15) holds. Moreover, the uniqueness of the minimizer follows for the dual convexity formula. Indeed, consider another distribution ρ and define the family of convex combinations ρ = (1

-)ρ + ρ for ∈ [0, 1].
Then, consider the first variation of ρ → B Φ (ρ, π):

d d E ρ h + B Φ (ρ , π) =0 = d d Φ(ρ ) - d d (∇Φ(π) -h)(ρ -π) =0 = ∇Φ(ρ )(ρ -ρ) -(∇Φ(π) -h)(ρ -ρ) =0 = ∇Φ(ρ)(ρ -ρ) -(∇Φ(π) -h)(ρ -ρ) = (∇Φ(π) -h + c1)(ρ -ρ) -(∇Φ(π) -h)(ρ -ρ) = 0.
Then, consider the second variation

d 2 d 2 E ρ h + B Φ (ρ , π) =0 = ∇ 2 Φ(ρ )(ρ -ρ) 2 =0 = ∇ 2 Φ(ρ)(ρ -ρ) 2 > 0.
This shows that ρ is indeed a local minimizer. Moreover, the global convexity of the Bregman divergence in the first argument yields to the uniqueness of the global minimizer.

For the third statement, we provide a pointwise Bregman divergence as in [START_REF] Audibert | Fast learning rates in statistical inference through aggregation[END_REF], where the measure ν is assumed to be finite. Moreover, suppose that lim x→0 s (x) → -∞.

As noted in the above remark, this is a special case of the general Bregman divergence. Naturally, B s = B Φ , where Φ(p) = s(p(x))ν(dx) and ∇Φ(p)(q) = s (p(x))q(x) ν(dx). Recall, as in the discrete case, that under the assumptions, the monotonicity of s implies that it is invertible on R. It follows that the inverse problem in [START_REF] Csiszár | Generalized projections for non-negative functions[END_REF] has solution ρ(g) = (s ) -1 (s (π(g)) -h(g) + c). Indeed, the fact that there is a unique c such that ρ is a distribution follows from the strict convexity of s and

d dc (s ) -1 (s (π(g)) -h(g) + c) ν(dg) = 1 s (ρ(g)) ν(dg) > 0.
Then, we use the intermediate value theorem with

(s ) -1 (s (π(g)) -h(g) + M ) ν(dg) ≥ (s ) -1 (s (π(g)) ν(dg) = 1 and (s ) -1 (s (π(g)) -h(g) + m) ν(dg) ≤ (s ) -1 (s (π(g)) ν(dg) = 1,
where M = sup g h(g) and m = inf g h(g).

For the last statement, considering for concision a pointwise Bregman divergence as above, we have coarselly:

ρT +1 (g) := (s ) -1 (s(ρ T (g)) -h T (g) + c T ) = (s ) -1 (s(ρ T -1 (g)) -h T -1 (g) + c T -1 -h T (g) + c T ) . . . = (s ) -1 (s(ρ 1 (g)) - T t=1 h t (g) + c).

Proof of Theorem 2.2

The proof of Lemma 2.2 is based on the following lemma.

Lemma 3.1. Let (ρ t ) T +1
t=1 the sequence of distribution defined in the proof of Theorem 2.2. Then under the assumptions of Lemma 2.1:

T t=1 ∇Φ(ρ t )(ρ t+1 -ρt ) = ∇Φ(π)(ρ T +1 -π) -E g∼ρ T +1 T -1 t=1 h t (g) + T -1 t=1 E g∼ρ t+1 h t (g).
Proof. From Lemma 2.1, since G is finite and using KKT conditions, [START_REF] Csiszár | Generalized projections for non-negative functions[END_REF] holds. Then by definition of the sequence (ρ t ) T +1 t=1 , we have for any t = 1, . . . , T , and any ρ, ρ ∈ P(G):

∇Φ(ρ t )(ρ -ρ ) = ∇Φ(ρ t-1 ) -h t-1 + c ht,ρ t-1 (ρ -ρ ) = ∇Φ(ρ t-1 )(ρ -ρ ) - g∈G h t-1 (g) ρ(g) -ρ (g) ,
where ρ0 = ρ1 . Then, applying extensively this equality and telescoping terms, we hence have:

T t=1 ∇Φ(ρ t )(ρ t+1 -ρt ) = T -1 t=1 ∇Φ(ρ t )(ρ t+1 -ρt ) + ∇Φ(ρ T -1 )(ρ T +1 -ρT ) - g∈G h T -1 (g) (ρ T +1 (g) -ρT (g)) = T -2 t=1 ∇Φ(ρ t )(ρ t+1 -ρt ) + ∇Φ(ρ T -1 )(ρ T +1 -ρT -1 ) - g∈G h T -1 (g) (ρ T +1 (g) -ρT (g)) = T -2 t=1 ∇Φ(ρ t )(ρ t+1 -ρt ) + ∇Φ(ρ T -2 )(ρ T +1 -ρT -1 ) - T -1 t=T -2 g∈G h t (g) (ρ T +1 (g) -ρt+1 (g)) . . . = ∇Φ(π)(ρ T +1 -π) - T -1 t=1 g∈G h t (g) (ρ T +1 (g) -ρt+1 (g)) = ∇Φ(π)(ρ T +1 -π) -E g∼ρ T +1 T -1 t=1 h t (g) + T -1 t=1
E g∼ρ t+1 h t (g).

Proof of Lemma 2.3

We write the minimization problem of Lemma 2.3 with the embedded optimal transport problem to consider a single minimization problem over Λ ∈ ∆(π), the space of couplings whose right marginal is π.

     min g,g ∈G Λ(g, g )(C(g, g ) + h(g)) + α H(π) + g,g ∈G Λ(g, g )(log Λ(g, g ) -log g ∈G Λ(g, g )) s.t. g∈G Λ(g, g ) = π(g ) ∀g ∈ G Λ(g, g ) ≥ 0, ∀g, g ∈ G.
(16) Then, by the Karush-Kuhn-Tucker (KKT) conditions, there exist

u ∈ R G×G + , v ∈ R G + such that for every g, g ∈ G, C(g, g ) + h(g) -u(g, g ) + v(g ) + α   log Λ(g, g ) -log ḡ∈G Λ(g, ḡ)   = 0. (17) 
Moreover, Λ(g, g ) • u(g, g ) = 0 for all g, g ∈ G, so either u(g, g ) or Λ(g, g ) is zero. Thus, when multiplying the constraint by Λ(g, g ), we can assume in general that u(g, g ) = 0. Multiplying by Λ(g, g ) and summing in both g and g yields:

F (h, π) -αH(π) = g,g Λ(g, g ) C(g, g ) + h(g) + α   g,g Λ(g, g ) log Λ(g, g ) - g g Λ(g, g ) log g Λ(g, g )   = - g,g ∈G Λ(g, g )v(g ) = -π, v .
Thus, the optimal value satisfies

F (h, π) = αH(π) -π, v .
We use the other constraints to solve for v explicitly. Denote ρ(g) = ḡ∈G Λ(g, ḡ). Exponentiating the KKT conditions yields:

Λ(g, g ) = ρ(g) exp - C(g, g ) + h(g) -u(g, g ) + v(g ) α .
Summing in g yields:

π(g ) = g∈G ρ(g) exp - C(g, g ) + h(g) -u(g, g ) + v(g ) α . (18) 
On the other hand, we see that Λ(g, g ) = 0 if and only if ρ(g) = 0. Consequently, the equation holds in general with u(g, g ) = 0. For ρ(g) = 0, summing in g yields

1 = g ∈G exp - C(g, g ) + h(g) + v(g ) α .
Let v±α (g ) = e ±v(g )/α and ĥ±α (g) = e ±h(g)/α . Let Ĉ-α be the matrix with entries exp(-C(g, g )/α) and under the assumption that it is invertible, let B α be its inverse. Then, we rewrite the equation above in matrix form

ĥ+α = Ĉ-α v-α =⇒ v-α = B α ĥ+α . That is, v(g ) = -α log   g∈G B α (g, g )e h(g)/α   .
Finally, to prove the second statement, let λ > 0. Let ρ be the minimizer of (13) and let Π : P(G) → P(G) such that for any g ∈ G:

Π(π)(g) := A(π) -1 E g ∼π e -C(g,g )/α , where A(π) is the normalizing constant defined as:

A(π) = g∈G E g ∼π e -C(g,g )/α .
By equation [START_REF] Park | Wireless network intelligence at the edge[END_REF], we have:

π(g )v +α (g ) = g∈G ρ(g) exp - C(g, g ) + h(g) α .
Recall that

F (h, π) = αH(π) -π, v = -α π, log π + v α = π, -α log(πe v/α ) = π, -α log(πv +α ) = -αE g ∼π log   g∈G ρ(g) exp - C(g, g ) + h(g) α  
Then by Jensen's inequality, to show A(Π, δ λ ), it suffices to show:

E g ∼Π(π) E g ∼π g∈G ρ(g) exp - C(g, g ) + h(z, g, g ) α ≤ 1 
Compute:

E g ∼Π(π) E g ∼π g∈G ρ(g) exp - C(g, g ) + h(z, g, g ) α = E g ∼Π(π) g∈G ρ(g)E g ∼π exp - C(g, g ) α exp - h(z, g, g ) α ≤ g∈G E g ∼π exp - C(g, g ) α E g ∼Π(π) exp - h(z, g, g ) α = A(π) E g,g ∼Π(π) exp - h(z, g, g ) α = A(π) E g∼ρ,g ∼Π(π) exp - λ( (g, z) -(g , z)) + δ λ (z, g, g ) α = E g,g ∼Π(π) exp - λ α ( (g, z) -(g , z)) - 1 2 λ α ( (g, z) -(g , z)) 2 ≤ 1.

Proof of Theorem 2.4

Let α > 0. First note that from Lemma 2.3, we have for any π ∈ P(G), for any z ∈ Z:

E g ∼Π(π) (g , z) ≤ 1 λ E g ∼Π(π) min ρ∈P(G) E g∼ρ λ (g, z) + δ λ (z, g, g ) + W α (ρ, π) , (19) 
where Π and δ λ are defined in Lemma 2.3. Then applying [START_REF] Alquier | Simpler pac-bayesian bounds for hostile data[END_REF] for t = 1, . . . , T , with π = ρt minimizer of (13) in Lemma 2.3 for h t-1 = λ (z t-1 , g) + δ λ (z t-1 , g, ĝt-1 ) and h 0 ≡ 0 and summing accross iterations yields:

T t=1 E g ∼Π(ρt) (g , z t ) ≤ 1 λ T t=1 E g ∼Π(ρt) min ρ∈P(G) {E g∼ρ h t (g) + W α (ρ, ρt )}. (20) 
The idea of the proof is to decompose the RHS in (20) by introducing a particular Bregman divergence, and to use Theorem 2.2 as a main ingredient. For that purpose, let π ∈ P(G) and consider the function Φ α : ρ → W α (ρ, π ) based on the regularized optimal transport [START_REF] Chee | Sparsity regret bounds for xnor-nets++[END_REF]. First, note that by the entropy regularization, Φ α is strictly convex and differentiable is its arguments for any α > 0. Then we can decompose the RHS in [START_REF] Li | Rényi divergence variational inference[END_REF] as follows:

T (W α (ρ t+1 , ρt ) -B Φα (ρ t+1 , ρt ) + B Φα (ν t+1 , ρt ) -B Φα (ν t+1 , νt )) .

Lemma 3.2. Let α > 0 and π ∈ P(G). Let Φ α : ρ → W α (ρ, π ). Then we have:

B Φα (ρ, π) = W α (ρ, π ) -W α (π, π ) + v, ρ -π ,
where v := v(ρ, π ) ∈ R G + is the KKT multiplier based on the optimization W α (ρ, π ) defined in [START_REF] Chee | Sparsity regret bounds for xnor-nets++[END_REF].

Proof First note that by the entropy regularization, Φ α is strictly convex and differentiable is its arguments for any α > 0. Then B Φα is well defined in [START_REF] Arnak S Dalalyan | Mirror averaging with sparsity priors[END_REF]. Moreover since G is finite, Φ α can be described directly by the Karush-Kuhn-Tucker (KKT) multipliers. We first formally write the optimization problem as:

        
min Λ g,g ∈G Λ(g, g )C(g, g ) + α H(π ) + g,g ∈G Λ(g, g ) log Λ(g, g ) -log ρ(g) s.t. Λ(g, g ) ≥ 0, ∀g, g ∈ G g ∈G Λ(g, g ) -ρ(g) = 0, ∀g ∈ G g∈G Λ(g, g ) -π (g ) = 0, ∀g ∈ G

By the KKT conditions and the strong duality theorem, there exist u ∈ R G×G + , v, v ∈ R G + such that for every g, g ∈ G:

C(g, g ) -u(g, g ) + v(g) + v (g ) + α log Λ (g, g ) -log ρ(g) = 0, where Λ is the solution of [START_REF] Knoblauch | Generalized variational inference: Three arguments for deriving new posteriors[END_REF]. Then, gathering with the same computations as in the proof of Lemma 2.3, we have:

W α (ρ, π ) = αH(π ) -ρ, v -π , v
By definition of the Bregman divergence [START_REF] Arnak S Dalalyan | Mirror averaging with sparsity priors[END_REF] and the choice of Φ α , we hence have:

B Φα (ρ, π) = W α (ρ, π ) -W α (π, π ) + v, ρ -π .
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t (ρ) = W α (ρ, ρ t ) -B Φα (ρ, ρ t ). T t=1 E g ∼Π(ρt) min ρ∈P(G) {E g∼ρ h t (g) + B Φα (ρ, ρt )} + 1 λ