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The introduction of the Kullback-Leibler divergence in PAC-Bayesian theory can be traced back to the work of [1]. It
allows to design learning procedure with generalization errors based on an optimal trade-off between accuracy on the
training set, and complexity. This complexity is penalized thanks to the Kullback-Leibler divergence from a prior dis-
tribution, modeling a domain knowledge over the set of candidates or weak learners. In the context of high dimensional
statistics, it gives rise to sparsity oracle inequalities or more recently sparsity regret bounds, where the complexity is
measured thanks to `0 or `1−norms. In this paper, we propose to extend the PAC-Bayesian theory to get more generic
regret bounds for sequential weighted averages, where (1) the measure of complexity is based on any ad-hoc criterion
and (2) the prior distribution could be very simple. These results arise by introducing a new measure of divergences from
the prior in terms of Bregman divergence or Optimal Transport.
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1. Introduction

1.1. PAC-Bayesian theory

PAC-Bayesian machine learning theory can be traced back to the work of Shawe-Taylor and Williamson (see
[2, 3]) and Mac-Allester ([4, 1]). The goal of PAC-Bayesian theory is to get distribution free generalization
bounds, ie that holds a priori, but where some prior or arbitrary domain knowledge is available on the
set of candidate models. As in Bayesian statistics, it leads to a posteriori estimates of the generalization
performances based on informative priors. Historically, it was proposed as an alternative to the structural risk
minimization problem based on the Vapnik-Chervonenkis theory since Bayesian algorithms minimize a risk
expression involving a likelihood or goodness of fit term based on the training data, and a prior probability,
leading to a trade-off between empirical accuracy and complexity in terms of divergence from the prior.
Formally, in the discrete case, for a set of finite weak learners G = {g1, . . . , gp} and a prior distribution
π = (πk)pk=1 over this set G, the first PAC-Bayesian bound appears in [4]. Given a loss function `(g, ·)
and a distribution S over a sample z1, . . . , zm, [4] shows the existence of a decision ĝ ∈ G such that with
probability 1− δ, the generalization error R(·) := Ez∼S`(·, z) of ĝ is bounded as follows:

R(ĝ)≤ min
g∈{g1,...,gp}

 1

m

m∑
t=1

`(g, zt) +

√
log 1

π(g)
+ log 1

δ

2m

 . (1)
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It leads to the model selection of a particular candidate ĝ ∈ G that trades off the goodness of fit with the
minimum description length − logπ(ĝ) (see [5]). The result holds for any prior π but is interesting if there
exists a prior π giving high probabilities on rules g ∈ G that fit well to the training problem. In term of domain
knowledge, this is equivalent to suppose that particular candidates g ∈ G with low complexity fit well to the
learning problem. This model selection principle is outperformed in [1] where (1) is extended to uncountable
set G. In this case, a stochastic algorithm is prefered and leads to the existence of a distribution ρ̂ ∈ P̧(G) the
set of probability distributions over G such that with probability 1− δ, the expected generalization error is
bounded as follows:

Eg∼ρ̂R(g)≤ inf
ρ∈P(G)

(
Eg∼ρ

1

m

m∑
t=1

`(g, zt) +
K(ρ,π) + log 1

δ + logm+ 2

λ

)
, (2)

whereK(ρ,π) is the Kullback-Leibler divergence from prior π to ρ. Noting that sinceK(δg, π) =− logπ(g)
for any π and g, (2) appears as a powerfull generalization of (1). Minimizing the RHS in (2) corresponds
to compute the convex conjugate of K(·, π) and leads to a stochastic algorithm based on the following
exponential weighted average or Gibbs posterior:

ρ̂(g) :=
1

Zλ
exp

(
− λ
m

m∑
t=1

`(g, zt)

)
π(g), (3)

where λ > 0 is a temperature parameter. This distribution reaches a trade-off between accuracy over the
sample and Kullback-Leibler divergence from the prior, where the introduction of the Kullback-Leibler
divergence is based on a Chernoff bound in [1, Lemma 4].

Based on these theoretical foundations, PAC-Bayesian theory has been widely used in high dimen-
sional statistics, where g =

∑p
i=1 θifi ∈ G often represents the linear span of a set of dictionary functions

{f1, . . . , fp}, where p is potentially huge. In this context, a sparsity scenario means that a small subset of the
dictionary provides a nearly complete description of the underlying phenomenon. [6] proves generalization
performances under this sparsity scenario (see also [7, 8, 9]). Then, instead of using a model selection tech-
nique leading to sparse estimators such as the lasso (see [10, 11]), [6] proposes a stochastic mirror averaging
that reach a PAC-Bayesian inequality as in (2). Using a sparsity prior, one gets sparsity oracle inequalities.
These techniques provide theoretical trade-off between goodness of fit and complexity in terms of `0 or
`1−norm of the solution. Whereas these complexity measures have been widely used in the literature (see
[12] for an application in deep learning), we expect in this paper more generic penalties to use any ad-hoc
criterion for the set of candidates learning machines.

1.2. Main contributions

In this contribution we provide PAC-Bayesian bounds such as (2) replacing the Kullback-Leibler divergence
and its usual convex conjugate (3) with Bregman and optimal transport divergences. We first extend the mate-
rials presented above to a more general divergence then the Kullback-Leibler divergence, namely Bregman
divergences. In this context, we show that the two main ingredients, namely the convex duality gathering
with the cancellation argument originated in [13] can be still applied to our context. It leads to a new family
of stochastic algorithms that generalize the previous exponential weighted averages with equivalent theoret-
ical guarantees. We also propose to introduce optimal transport as a promising alternative to Bregman (or
Kullback) divergences. Indeed, by proving the main assumption originated in [14] (see Assumption A(Π, δλ)
below), we lead to a new kind of procedure where the exponential averages are replaced by optimal transport
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optimization that satisfies a new PAC-Bayesian bound. With these theoretical results, we expect numerous
possible regret bounds and new theoretical trade-off between goodness of fit and different complexity mea-
sures related with energy constraints (see [12] for a survey of some recent advances in the environmental
impact and electirc consumption of learning machines).

In the sequel, we adopt the online learning scenario where a sequence of deterministic values {zt, t =
1, . . . , T} is observed, where zt ∈ Z could be a couple (xt, yt) in supervised learning, or an input data in
unsupervised learning. Based on a loss function `(g, z) that measures the loss of decision g ∈ G at obser-
vation z ∈ Z , the goal of the forecaster is to build a sequence of distributions {ρ̂t, t= 1, . . . , T} with small
expected cumulative loss. We are hence looking at regret bounds of the following type:

T∑
t=1

Eg∼ρ̂t`(zt, g)≤ inf
g∈G

(
T∑
t=1

`(zt, g) + pen(g)

)
+ δT , (4)

where pen(g) extends the sparsity paradigm where pen(g) = ‖g‖0,1 thanks to the introduction of Bregman
divergences in (2), and δT > 0 is a residual term. To build this sequence of mixtures, we act sequentially
as follows. At each round t ≥ 1, we have timely access to a temporal prior ρ̂t derived from the previous
observations. More precisely, given zt, we are looking at a randomized decision g ∼ ρ̂t+1 where the posterior
distribution ρ̂t+1 ∈ P(G) is the solution of the following minimization:

ρ̂t+1 := arg min
ρ∈P(G)

{
Eg∼ρht(g) +

1

λ
D(ρ, ρ̂t)

}
, (5)

where ht(g) is related with the loss of decision g ∈ G at zt and D(ρ, ρ̂t) is a suitable divergence from the
temporal prior to the candidate posterior ρ. Parameter λ > 0 governs the trade-off between the two terms.
Depending on the choice of λ > 0 and the penalty above, our procedure reaches automatically the desire
trade-off between fitting the data and penalty in terms of domain knowledge. It is important to note that
minimization (5) is equivalent to compute the Legendre–Fenchel transformation of D(·, ρ̂t) at each step
t≥ 1, and leads to different kind of posterior distribution. In this paper, we investigate two divergences:

• Bregman divergences D(ρ,π) =BΦ(ρ,π) (see Section 2.1), where Φ governs the explicit form of the
penalty as well as the sequence of distributions {ρ̂t, t= 1 . . . , T},

• Optimal transport D(ρ,π) =Wα(ρ,π) (see Section 2.2), where the introduction of a cost function
C(·, ·) : G × G lead to more flexibility.

Recall that in the PAC-Bayesian literature cited above, the proposed sequential procedure based on mini-
mization (5) uses the classical Kullback-Leibler divergence where D(ρ,π) =K(ρ,π). It leads to the vanilla
Gibbs posterior (3) since in this case the unique solution of (5) can be written explicitly as follows:

ρ̂t+1(dg) =
1

Zt
exp(−ht(g))dρ̂t(g) = · · ·= 1

Z
exp

(
−

t∑
u=1

ht(g)

)
dπ(g),

where ρ̂1 = π is the prior distribution.
Finally, the main results of the paper occur under an assumption on the same flavour as [7]. It can be

generalized in our context as follows:
Assumption A(Π, δλ) ∀π ∈ P(G),∃Π(π) ∈ P(G) : ∀z ∈Z:

Eg′∼Π(π)`(g
′, z)≤ 1

λ
Eg′∼Π(π) min

ρ∈P(G)

{
Eg∼ρ[λ(`(g, z)) + δλ(z, g, g′)] +D(ρ,π)

}
.
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Below we show particular cases when A(Π, δλ) holds for both Bregman divergences and Optimal Transport
leading to regret bounds for weighted averages built sequentially following Algorithm 1 below.

Algorithm 1 General Algorithm
init. λ > 0, t= 1, π ∈ P(G) a prior distribution. D a divergence such that A(Π, δλ) holds.
Let ρ̃1 = Π ◦ π.
repeat Predict zt according to ĝt ∼ ρ̃t. Observe zt and compute

ht(g) = `(zt, g) + δλ(zt, g, ĝt) for all g ∈ G.

return ρ̃t+1 = Π ◦ ρ̂t+1 where Π is defined in A(Π, δλ) and ρ̂t+1 is the solution of the general optimisation problem:

min
ρ∈P(G)

{Eg∼ρ (`(g, zt) + δλ(zt, g, ĝt)) +D(ρ, ρ̂t)}

t= t+ 1
until t= T + 1

2. PAC-Bayesian Inequalities

In this section we propose to state the main results of the paper. In the sequel, we consider a mea-
surable space (G,Ω) endowed with a σ-finite measure ν, where G is a set of decisions. We denote by
P(G) := {ρ : G → R+ :

∫
ρ(g)ν(dg) = 1} the set of probability measure on G. The main objective of PAC-

Bayesian theory is to propose data-dependent posterior distribution P(G) with some theoretical guarantees.
In Theorem 2.2, we control the expected cumulative loss of Algorithm 2, where Bregman divergences are
proposed as regularizers. It generalizes the classical setting based on the usual Kullback-Leibler divergence.
In Theorem 2.4, we go one step further and propose to introduce optimal transport as a promising alternative
to measure the divergences to the prior. It leads to a control of the expected cumulative loss of Algorithm
3 where the introduction of a generic cost function allows to launch more generic regularizers and regret
bounds in Corollary 2.5 and Corollary 2.6.

2.1. Bregman divergences

Given a strictly convex function Φ : P(G) 7→ R, twice-continuously Fréchet-differentiable on relintpP(G),
the relative interior of P(G) with respect to Lp(ν), we define the functional Bregman divergence between
two probabilities on P(G) as follows:

BΦ(ρ,µ) := Φ(ρ)−Φ(µ)− 〈∇Φ(µ), ρ− µ〉, (6)

where ∇Φ(µ) stands for the Fréchet derivative of Φ at point µ. Equation (6) generalizes the standard vector
Bregman divergenceBΦ(u, v) = Φ(u)−Φ(v)−∇Φ(v)T (u−v) for u, v ∈Rp where∇Φ(v) is the standard
gradient of Φ at point v. Morever, as a particular case, we also introduce the class of pointwise Bregman
divergences introduced by Csiszár in [15] as:

Bs(ρ,µ) =

∫
G
s(ρ(g))− s(µ(g))− s′(µ(g))(ρ(g)− µ(g))ν(dg), (7)
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where s : R+ → R is constrained to be differentiable and strictly convex and the limit limx→0 s(x) and
limx→0 s

′(x) must exist. By definition,Bs is non-negative and satisfies main properties of classical Bregman
divergence such as convexity, linearity, and generalized Pythagorean theorem (see for instance [16] for a
proof). An important fact with this pointwise Bregman divergence is the existence of an equivalent functional
Φ :P(G) 7→R and a functional Bregman divergence for any pointwise Bregman divergence if the measure ν
is finite. However, the reverse is not true. Different function s in pointwise Bregman divergences (7) leads to
different Bregman divergences. For instance, let s(x) = x logx. ThenBs(ρ,µ) =K(ρ,µ) whereK(·, ·) is the
Kullback-Leibler divergence. Moreover, if s(x) = x2, thenBs(ρ,µ) = ‖ρ−µ‖2,ν whereas if s(x) =− logx
we find the Itakura-Saito distance.

The following lemma is useful to state the main theoretical result.

Lemma 2.1. Let π ∈ P(G) where G is finite. For some function h : G →R+, let us consider the minimiza-
tion problem:

min
ρ∈P(G)

{
Eg∼ρ[h(g)] +B(ρ,π)

}
, (8)

where B ∈ {BΦ,Bs} is a Bregman divergence according to definition (6) or (7).

• If B = BΦ for Φ : P(G)→ R a strictly convex and continuously differentiable function, and h(·) is
convex and continuously differentiable, the minimization problem (8) admits an unique solution ρ̂h,π
such that:

ρ̂h,π(g) = max
(

0, ((∇gΦ)−1 (∇gΦ(π(g))− h(g) + ch,π)
))
,∀g ∈ G,

where ch,π > 0 is uniquely defined such that
∑
g∈G ρ̂h,π(g) = 1.

• More generally if a minimizer ρ̂h,π of (8) exists, we have:

ρ̂h,π(g) = max
(

0, ((∇gΦ)−1 (∇gΦ(π(g))− h(g) + ch,π)
))
,∀g ∈ G,

for some constant ch,π > 0 such that
∑
g∈G ρ̂h,π(g) = 1.

• If B = Bs for some differentiable and strictly convex s : R+→ R such that the limit limx→0 s(x) as
well as limx→0 s

′(x) must exist and limx→0 s
′(x) = −∞, the minimization problem (8) admits an

unique solution

ρ̂h,π(g) = (s′)−1(s′(π(g))− h(g) + ch,π),

where ch,π > 0 is uniquely defined such that
∑
g∈G ρ̂h,π(g) = 1.

Moreover, for any sequence (ht)
T
t=1 and prior distribution ρ̂1 ∈ P(G), under the previous assumptions, we

have:

ρ̂T+1 = ρ̂∑T
t=1 ht,ρ̂1

, (9)

where ρ̂T+1 is the solution of (8) with h= hT and π = ρ̂T .

The proof is postponed to Section 3.

Remark 1. This lemma is useful to prove the PAC-Bayesian inequality stated in Theorem 2.2 for Algorithm
2. It generalizes the convex duality formula stated originally in [17] which corresponds in Lemma 2.1 to
the particular case B = Bs for s(x) = x logx. In this case, we deal with the Gibbs measure ρ̂h,π(g) =

exp{logπ(g) + 1− h(g) + ch,π − 1}= 1
Z exp{−h(g)}π(g).
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Remark 2. The last statement (9) is useful in the proof of Theorem 2.2 to extend the cancellation argument
originally stated in [13] in the classical Kullback-Leibler case.

Remark 3. Lemma 2.1 is restricted to a finite set of weak learners G for simplicity. Recent extensions of
the KKT conditions to the infinite dimensional case (see [18]) can be used in order to consider uncountable
set G but it is out of the scope of the present paper.

Previous Lemma is useful to control the expected regret of Algorithm 2 as follows.

Theorem 2.2. Let λ > 0 and (Π, δλ) defined below such that A(Π, δλ) holds. Consider a sequence of
distribution (ρ̃t)

T
t=1 based on Algorithm 2, where B ∈ {BΦ,Bs} and (ht)

T
t=1 satisfy assumption of Lemma

2.1. Then for any deterministic sequence {zt, t= 1, . . . T}, for any prior π ∈ P(G), we have:

T∑
t=1

Eĝt∼ρ̃t`(ĝt, zt)≤ min
ρ∈P(G)

{
Eg∼ρ

T∑
t=1

¯̀(g, zt) +
B(ρ,π)

λ

}
,

where λ¯̀(g, z) := λ`(g, z) + E(ĝ1,...,ĝt)δλ(zt, g, ĝt).

Sketch of proof. Since A(Π, δλ) holds, we have for any π ∈ P(G), for any z ∈Z:

Eg′∼Π(π)`(g
′, z)≤ 1

λ
Eg′∼Π(π) min

ρ∈P(G)

{
Eg∼ρλ

(
`(g, z) + δλ(z, g, g′)

)
+B(ρ,π)

}
. (10)

We first apply (10) for t = 1, . . . , T z = zt, π = ρ̂t := ρ̂ht−1,ρ̂t−1
in minimization (8) for ht(g) =

λ(`(zt, g)) + δλ(zt, g, ĝt), with h0 ≡ 0 and ρ̂0 correspond to the prior π. Then, summing accross iterations
yields:

T∑
t=1

E(ĝ1,...,ĝt)`(zt, g
′)≤ 1

λ

T∑
t=1

Eg′∼ρ̃t
{
Eg∼ρ̂t+1

ht(g) +BΦ(ρ̂t+1, ρ̂t)
}

=
1

λ
E(ĝ1,...,ĝT )

T∑
t=1

{
Eg∼ρ̂t+1

ht(g) + Φ(ρ̂t+1)−Φ(ρ̂t)−∇Φ(ρ̂t)(ρ̂t+1 − ρ̂t)
}

=
1

λ
E(ĝ1,...,ĝT )

T∑
t=1

{
Eg∼ρ̂t+1

ht(g) + Φ(ρ̂T+1)−Φ(π)−
T∑
t=1

∇Φ(ρ̂t)(ρ̂t+1 − ρ̂t)

}
.

Moreover, notice that by Lemma 3.1 (see Section 3), we have under the assumptions of Lemma 2.1:

T∑
t=1

∇Φ(ρ̂t)(ρ̂t+1 − ρ̂t) =∇Φ(π)(ρ̂T+1 − π)−Eg∼ρ̂T+1

T−1∑
t=1

ht(g) +

T−1∑
t=1

Eg∼ρ̂t+1
ht(g).

Then, gathering with the previous computations, we arrive at:

T∑
t=1

Eg′∼ρ̃t`(zt, g
′)≤ 1

λ
E(ĝ1,...,ĝT )Eg∼ρ̂T+1

T∑
t=1

ht(g) + Φ(ρ̂T+1)−Φ(π)−∇Φ(π)(ρ̂T+1 − π)
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=
1

λ
E(ĝ1,...,ĝT )Eg∼ρ̂T+1

T∑
t=1

ht(g) +BΦ(ρ̂T+1, π)

=
1

λ
E(ĝ1,...,ĝT ) min

ρ∈P(G)

{
Eg∼ρ

T∑
t=1

ht(g) +BΦ(ρ,π)

}

where we use the last statement of Lemma 2.1 for the last equality.

Remark 4. Theorem 2.2 controls the expected cumulative loss of Algorithm 2 in the online learning sce-
nario presented in Section 1. Similar results can be stated in the i.i.d. case to get a control of the expected
risk of a slightly modified version of Algorithm 2 by using a mirror averaging (see [6] or [7]).

Remark 5. Theorem 2.2 generalizes the standard PAC-Bayesian bounds with Kullback-Leibler diver-
gences to Bregman divergences. Indeed, in Theorem 2.2, if Φ involves a Kullback-Leibler divergence, we
get a Gibbs measure in Algorithm 2 and find the existing bounds stated in [7].

Remark 6. The introduction of alternatives to the Kullback-Leibler divergence in PAC-Bayesian theory
has been studied in the literature. [19] studies Φ-divergence in a probabilistic context, whereas [20] uses
Renyi divergence. Moreover [21] propose new posteriors in a Bayesians setting for variational inference for
maximum likelihood estimators. Recently [22] also states regret bounds for unbounded losses thanks to the
introduction of a Φ-divergence.

Remark 7. Assumption A(Π, δλ) is necessary to conduct the proof. It can be traced back to [14]. It is well-
known that this assumption is satisfied for any loss function in the Kullback-Leibler case for a particular
quadratic function δλ (see [7]). In the sequel, we prove this assumption in the Optimal Transport case to
lead to a new kind of procedure where exponential averages are replaced by optimal transport optimization.

Remark 8. Theorem 2.2 is the main ingredient to derive the same kind of result for the optimal transport
divergence, as well as regret bound in Section 2.2.

Algorithm 2 Bregman Algorithm
init.λ > 0, t= 1, π ∈ P(G) a prior distribution. BΦ a Bregman divergence. Suppose A(Π, δλ) holds.
Let ρ̃1 = Π ◦ π.
repeat Predict zt with ĝt ∼ ρ̃t. Observe zt and compute

ht(g) = `(g, zt) + δλ(zt, g, ĝt) for all g ∈ G.

return ρ̃t+1 = Π ◦ ρ̂t+1 where

ρ̂t+1(g) = max
(

0, (∇gΦ)−1
(
∇gΦ(ρ̂t(g))− ht(g) + cht,ρ̂t

))
for all g ∈ G.

t= t+ 1
until t= T + 1
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2.2. Optimal Transport

Given two probability measure ρ,π ∈ P(G), the Kantorovitch formulation of optimal transport between ρ
and π is given by:

WC(ρ,π) := min
Λ∈∆(ρ,π)

∫
G×G

C(g, g′)dΛ(g, g′), (11)

where ∆(ρ,π) = {Λ ∈ P(G × G) : Λ1 = ρ and Λ2 = π} and Λ1 (resp. Λ2) stands for the first (resp. second)
marginal of Λ. An optimizer of (11) is called a transportation plan and quantifies how mass is moved from
π to ρ whereas the cost function C(·, ·) : G × G →R measure the cost of mooving a unit mass from g′ to g.
For an mathematical introduction of optimal transport, we refer to the monograph [23].

Optimal transport has recently inspired the machine learning community to get a variety of divergences
between probability distributions (see the monograph of [24]). It rises to several applications where compar-
isons of complex and high dimensional objects are needed : time series (see for instance [25, 26]), images
(see [27, 28]) or neuro-images ([29, 30]). Moreover in these machine learning applications, some form of
regularization has been proposed to avoid the curse of dimensionality as well as to build scalable versions of
the original optimization problem (11) (see [31]). For that purpose, entropy regularization makes the optimal
transport problem more tractable and eliminates a number of analytic and computational difficulties. That
is, we can consider a perturbation of the minimization problem (11) given by

Wα(ρ,π) := min
Λ∈∆(ρ,π)

{∫
G×G

C(g, g′)dΛ(g, g′) + α(H(ρ) +H(π)−H(Λ))

}
, (12)

for some α > 0, where H is the Shannon entropy. Note that the quantity H(ρ) +H(π)−H(Λ)≥ 0. More-
over, sinceWα(·, π) is strictly convex for any distribution π ∈ P(G), we use divergence (12) in the rest of
the paper.

Lemma 2.3. Assume G is finite. Let π ∈ P(G), α> 0 and C : G ×G →R a cost function and consider the
minimization problem:

min
ρ∈P

{
Eg∼ρ[h(g)] +Wα(ρ,π)

}
. (13)

Then we have:

min
ρ∈P

{
Eg∼ρ[h(g)] +Wα(ρ,π)

}
= αH(π)− 〈π, v〉,

where v : G →R+ is the KKT multiplier and satisfies:

v(g′) =−α log
∑
g∈G

Mα(g, g′) exp

(
h(g)

α

)
, ∀g′ ∈ G,

for Mα the inverse of the kernel matrix Kα =
(

exp
(
−C(g,g′)

α

))
g,g′∈G

.

Then, for any λ > 0, A(Π, δλ) holds for:{
δλ(z, g, g′) = λ2

2α (`(z, g)− `(z, g′))2 + α logA(π)

Π(π)(g) = A(π)Eg′∼π exp
(
−C(g,g′)

α

)
,∀g ∈ G,

(14)

where A(π) is the normalizing constant.
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Remark 9. The first statement is useful to prove (14). It uses the KKT conditions involved in the minimiza-
tion problem (13). As before, the restriction to a finite set G only appears since we use the classical finite
dimensional Lagrange theory. Extensions to infinite and uncountable set of candidates G is possible using
recent extensions of the KKT conditions to the infinite dimensional case (see [18]).

Remark 10. The second statement ensures the existence of a functional δλ(z, ·, ·) and an operator Π(·)
such that assumption A(Π, δλ) holds. As far as we know, this is the first time this assumption is used with
non-trivial transformation Π(·) and Optimal Transport divergences instead of classical Kullback-Leibler
divergence and duality. Operator Π depends on the cost function C(·, ·) chosen in the optimal transport
divergence and acts as a regularizer based on this cost.

This lemma is useful to prove the PAC-Bayesian bound for Algorithm 3.

Theorem 2.4. Assume G is finite. Let λ > 0. Consider a sequence of distribution (ρ̃t)
T
t=1 based on Algo-

rithm 3. Then for any deterministic sequence {z1, . . . , zT }, for any prior π ∈ P(G), we have:

T∑
t=1

Eĝt∼ρ̃t`(ĝt, zt)≤ min
ρ∈P(G)

{
Eg∼ρ

T∑
t=1

¯̀(g, zt) +
Wα(ρ,π)

λ

}
+ ∆T,λ (BΦα ,Wα) ,

where ¯̀(g, z) := `(g, z)+ λ
2αE(ĝ1,...,ĝt) (`(g, z)− `(ĝt, z))2 +α logA(π) and the extra-term ∆T (BΦα ,Wα)

is defined in Section 3.

Remark 11. The proof uses Theorem 2.2 with a particular function Φα : ρ 7→Wα(ρ, ν) for some ν ∈ P(G)
and allows us to extend the previous PAC-Bayesian bound to entropy regularized optimal transportation (see
Section 3 for a detailled proof).

Remark 12. Theorem 2.4 allows us to derive regret bounds for Algorithm 3. It gives more flexibility into
the regularization thanks to the introduction of a particular cost function C in (12).

Algorithm 3 Optimal transport PAC-Bayesian Algorithm
init.λ,α > 0, t= 1, π ∈ P(G) a prior distribution. C a cost function inWα.
Let ρ̃1 = Π ◦ π.
repeat Observe zt and predict ĝt ∼ ρ̃t. Compute:

ht(g) = `(zt, g) +
λ

2α
(`(zt, g)− `(zt, ĝt))2 + α logA(ρ̂t), for all g ∈ G,

where A(ρ̂t) is defined in Lemma 2.3.
return ρ̃t+1 = Π ◦ ρ̂t+1 where Π is defined in Lemma 2.3 and ρ̂t+1 is the solution of the minimization problem in Lemma 2.3
with h= ht.

t= t+ 1
until t= T

2.3. Generic regret bounds

We are now on time to apply Theorem 2.4 in the following toy generic example. Let us consider a finite
set of learning machines G = {g1, . . . , , gp}, where p ≥ 1 is the number of learners. Suppose we have at
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hand a prior knowledge on these learning machines, in terms of generalization power, as well as another
generic criterion to minimize (such as for instance energy consumption or carbon footprint, see [12] and the
references therein). We denote by {(Err1,Crit1), . . . , (Errp,Critp)} these sequences of criteria, where gi
has generalization error estimate Erri and score Criti for the generic criterion. We consider in the sequel
two different scenarii corresponding to Corollary 2.5 and Corollary 2.6. In the first scenario, we suppose
the simplest multiple-criteria decision-making problem, where for any η > 0, there exists an unique optimal
decision g?η = gi?η ∈ G such that:

i?η = arg min
g∈G

(Erri + ηCriti) ,

where η > 0 governs the trade-off between both criteria. Large value of η > 0 corresponds for instance to a
small energy budget whereas η = 0 corresponds to a classical machine learning problem. With this in mind,
consider a new task based on a deterministic sample {z1, . . . , zT } and a loss function `(g, z). We want to
draw a distribution, or mixture, on the finite set G able to trades off dynamically the loss over the new set of
observations, and the generic criterion. For that purpose, we start from g?η , the best compromise at hand and
adapts sequentially the mixture thanks on Algorithm 3 as follows. At each round t ≥ 1, we choose a new
distribution ρ̃t+1 ∈ P(G) that minimizes the expected loss on new observation zt and the transport from ρ̃t,
where the optimal transport is based on a cost function depending on the sequence Crit, such as for instance
C(gi, gj) := Criti − Critj . We hence have the following result based on a direct application of Theorem
2.4:

Corollary 2.5. Let π = δg?η the Dirac measure on g?η and consider Algorithm 3 with C(gi, gj) :=

C(Criti,Critj) for any i, j = 1, . . . p in the optimal transport divergence (11). Then we have, for any deter-
ministic sequence {z1, . . . , zT }:

T∑
t=1

Eĝt∼ρ̃t`(ĝt, zt)≤min
g∈G

{
T∑
t=1

¯̀(zt, g) +
C(g, gi?)

λ

}
+ ∆T ,

where ∆T > 0 is defined in Theorem 2.4 and λ > 0.

The proof is straightforward using Theorem 2.4 with Dirac prior δg?η .
However, in practice, the existence and uniqueness of g?η is rarely satisfied due to the unstability of the

problem. Indeed, the generalization power, as well as the generic criterion, could be considered as stochastic
values depending on unknown parameters such as the variability of the problem, the considered hardware,
or some other practices. As a result, it could be more realistic to consider a prior πb based on a weighted
average of candidate learners {g1, . . . , gp}. Moreover, if we have at hand a budget b > 0, we can choose πb
as a solution of the following optimization:{

minρ Eg∼ρÊrr(g)

s.t. Eg∼ρĈrit(g)≤ b,

where Êrr(g) and Ĉrit(g) are respectively estimates of the true but untractable generalization power and,
for instance, electric consumption of learner g ∈ G. In this case, strarting from πb for some b > 0, we have
the following result:
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Corollary 2.6. Let π = πb for some b > 0 in Algorithm 3 and C(gi, gj) := C(Criti,Critj) for any i, j =
1, . . . p in the optimal transport divergence (11). Then we have for the sequence of distribution {ρ̂t, t =
1 . . . , T} based on Algorithm 3:

T∑
t=1

Eĝt∼πt`(zt, ĝt)≤ inf
i=1,...,p

{
T∑
t=1

¯̀(zt, g) +
Eg′∼πbC(g, g′)

λ

}
+ δT ,

where δT > 0 is a residual term.

The proof is also straightforward using Theorem 2.4 with prior δg?η .

3. Proofs

3.1. Proof of Lemma 2.1

We start with the proof of Lemma 2.1. Since G is finite, the solution can be described directly by the Karush-
Kuhn-Tucker (KKT) theory (see [32]). We first formally write the optimization problem as:

minρ
{
Fh,π(ρ) := Eg∼ρ[h(g)] +BΦ(ρ,π)

}
s.t. ρ(g)≥ 0,∀g ∈ G∑

g∈G ρ(g)− 1 = 0

For the first statement, since Φ and h are convex and continuously differentiable, Fh,π(·) is convex and
continuously differentiable and by the KKT conditions involved in the strong duality theorem, we first have
for ρ̂ := ρ̂h,π minimizer of Fh,π:

h(g) +∇gΦ(ρ̂(g))−∇gΦ(π(g)) = µ(g)− λ,∀g ∈ G,

where µ : G →R+ and λ≥ 0 are KKT multipliers.
Moreover, the complementary slackness condition (see [32], Theorem 5.21) implies that if ρ̂(g) 6= 0, then

µ(g) = 0. That is, if ρ̂(g) 6= 0, then

∇gΦ(ρ̂(g)) =∇gΦ(π(g))− h(g)− λ (15)

while if ρ̂(g) = 0, then

∇gΦ(0) =∇gΦ(ρ̂(g)) =∇gΦ(π(g))− h(g)− λ+ µ(g)≥∇gΦ(π(g))− h(g)− λ.

Combining the above conditions, there is some constant ch,π such that for every g ∈ G:

∇gΦ(ρ̂(g)) = max{ag,∇gΦ(π(g))− h(g) + ch,π},

where ag = infr∈(0,1)∇gΦ(r). In particular, for every g ∈ G,

ρ̂(g) = max
{

0, (∇gΦ)−1 (∇gΦ(π(g))− h(g) + ch,π
)}
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where ch,π satisfies the following constraint:∑
g∈G

ρ̂(g) =
∑
g∈G

max{0,min{1, (∇gΦ)−1 (∇gΦ(π(g))− h(g) + ch,π
)
}}= 1.

Moreover, by strict convexity of Φ, it is straightforward to see that ch,π is unique.
For the second statement, we suppose the existence of a minimizer. Then, by KKT conditions, (15) holds.

Moreover, the uniqueness of the minimizer follows for the dual convexity formula. Indeed, consider another
distribution ρ′ and define the family of convex combinations ρε = (1− ε)ρ̂+ ερ′ for ε ∈ [0,1].

Then, consider the first variation of ρ 7→BΦ(ρ,π):

d

dε

(
Eρεh+BΦ(ρε, π)

)∣∣∣∣
ε=0

=
d

dε
Φ(ρε)−

d

dε
(∇Φ(π)− h)(ρε − π)

∣∣∣∣
ε=0

= ∇Φ(ρε)(ρ
′ − ρ̂)− (∇Φ(π)− h)(ρ′ − ρ̂)

∣∣
ε=0

=∇Φ(ρ̂)(ρ′ − ρ̂)− (∇Φ(π)− h)(ρ′ − ρ̂)

= (∇Φ(π)− h+ c1)(ρ′ − ρ̂)− (∇Φ(π)− h)(ρ′ − ρ̂)

= 0.

Then, consider the second variation

d2

dε2
(
Eρεh+BΦ(ρε, π)

)∣∣∣∣
ε=0

= ∇2Φ(ρε)(ρ
′ − ρ̂)2

∣∣∣
ε=0

=∇2Φ(ρ̂)(ρ′ − ρ̂)2

> 0.

This shows that ρ̂ is indeed a local minimizer. Moreover, the global convexity of the Bregman divergence
in the first argument yields to the uniqueness of the global minimizer.

For the third statement, we provide a pointwise Bregman divergence as in (7), where the measure ν is
assumed to be finite. Moreover, suppose that limx→0 s

′(x)→−∞.
As noted in the above remark, this is a special case of the general Bregman divergence. Naturally, Bs =

BΦ, where Φ(p) =
∫
s(p(x))ν(dx) and ∇Φ(p)(q) =

∫
s′(p(x))q(x)ν(dx). Recall, as in the discrete case,

that under the assumptions, the monotonicity of s′ implies that it is invertible on R. It follows that the inverse
problem in (15) has solution ρ̂(g) = (s′)−1(s′(π(g))− h(g) + c). Indeed, the fact that there is a unique c
such that ρ̂ is a distribution follows from the strict convexity of s and

d

dc

∫
(s′)−1(s′(π(g))− h(g) + c)ν(dg) =

∫
1

s′′(ρ̂(g))
ν(dg)> 0.

Then, we use the intermediate value theorem with∫
(s′)−1(s′(π(g))− h(g) +M)ν(dg)≥

∫
(s′)−1(s′(π(g))ν(dg) = 1

and ∫
(s′)−1(s′(π(g))− h(g) +m)ν(dg)≤

∫
(s′)−1(s′(π(g))ν(dg) = 1,
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where M = supg h(g) and m= infg h(g).
For the last statement, considering for concision a pointwise Bregman divergence as above, we have

coarselly:

ρ̂T+1(g) := (s′)−1(s(ρ̂T (g))− hT (g) + cT )

= (s′)−1(s(ρ̂T−1(g))− hT−1(g) + cT−1 − hT (g) + cT )

...

= (s′)−1(s(ρ̂1(g))−
T∑
t=1

ht(g) + c).

3.2. Proof of Theorem 2.2

The proof of Lemma 2.2 is based on the following lemma.

Lemma 3.1. Let (ρ̂t)
T+1
t=1 the sequence of distribution defined in the proof of Theorem 2.2. Then under the

assumptions of Lemma 2.1:

T∑
t=1

∇Φ(ρ̂t)(ρ̂t+1 − ρ̂t) =∇Φ(π)(ρ̂T+1 − π)−Eg∼ρ̂T+1

T−1∑
t=1

ht(g) +

T−1∑
t=1

Eg∼ρ̂t+1
ht(g).

Proof. From Lemma 2.1, since G is finite and using KKT conditions, (15) holds. Then by definition of the
sequence (ρ̂t)

T+1
t=1 , we have for any t= 1, . . . , T , and any ρ, ρ′ ∈ P(G):

∇Φ(ρ̂t)(ρ− ρ′) =
(
∇Φ(ρ̂t−1)− ht−1 + cht,ρ̂t−1

)
(ρ− ρ′)

=∇Φ(ρ̂t−1)(ρ− ρ′)−
∑
g∈G

ht−1(g)
(
ρ(g)− ρ′(g)

)
,

where ρ̂0 = ρ̂1. Then, applying extensively this equality and telescoping terms, we hence have:

T∑
t=1

∇Φ(ρ̂t)(ρ̂t+1 − ρ̂t)

=

{
T−1∑
t=1

∇Φ(ρ̂t)(ρ̂t+1 − ρ̂t)

}
+∇Φ(ρ̂T−1)(ρ̂T+1 − ρ̂T )−

∑
g∈G

hT−1(g) (ρ̂T+1(g)− ρ̂T (g))

=

{
T−2∑
t=1

∇Φ(ρ̂t)(ρ̂t+1 − ρ̂t)

}
+∇Φ(ρ̂T−1)(ρ̂T+1 − ρ̂T−1)−

∑
g∈G

hT−1(g) (ρ̂T+1(g)− ρ̂T (g))

=

{
T−2∑
t=1

∇Φ(ρ̂t)(ρ̂t+1 − ρ̂t)

}
+∇Φ(ρ̂T−2)(ρ̂T+1 − ρ̂T−1)−

T−1∑
t=T−2

∑
g∈G

ht(g) (ρ̂T+1(g)− ρ̂t+1(g))
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...

=∇Φ(π)(ρ̂T+1 − π)−
T−1∑
t=1

∑
g∈G

ht(g) (ρ̂T+1(g)− ρ̂t+1(g))

=∇Φ(π)(ρ̂T+1 − π)−Eg∼ρ̂T+1

T−1∑
t=1

ht(g) +

T−1∑
t=1

Eg∼ρ̂t+1
ht(g).

3.3. Proof of Lemma 2.3

We write the minimization problem of Lemma 2.3 with the embedded optimal transport problem to consider
a single minimization problem over Λ ∈∆(π), the space of couplings whose right marginal is π.

min
∑
g,g′∈G Λ(g, g′)(C(g, g′) + h(g)) + α

(
H(π) +

∑
g,g′∈G Λ(g, g′)(log Λ(g, g′)− log

∑
g′′∈G Λ(g, g′′))

)
s.t.
∑
g∈G Λ(g, g′) = π(g′) ∀g′ ∈ G

Λ(g, g′)≥ 0, ∀g, g′ ∈ G.
(16)

Then, by the Karush-Kuhn-Tucker (KKT) conditions, there exist u ∈ RG×G+ , v ∈ RG+ such that for every
g, g′ ∈ G,

C(g, g′) + h(g)− u(g, g′) + v(g′) + α

log Λ(g, g′)− log
∑
ḡ∈G

Λ(g, ḡ)

= 0. (17)

Moreover, Λ(g, g′) · u(g, g′) = 0 for all g, g′ ∈ G, so either u(g, g′) or Λ(g, g′) is zero. Thus, when mul-
tiplying the constraint by Λ(g, g′), we can assume in general that u(g, g′) = 0. Multiplying by Λ(g, g′) and
summing in both g and g′ yields:

F (h,π)− αH(π)

=
∑
g,g′

Λ(g, g′)
(
C(g, g′) + h(g)

)
+ α

∑
g,g′

Λ(g, g′) log Λ(g, g′)−
∑
g

∑
g′

Λ(g, g′) log
∑
g′

Λ(g, g′)


=−

∑
g,g′∈G

Λ(g, g′)v(g′)

=−〈π, v〉.

Thus, the optimal value satisfies

F (h,π) = αH(π)− 〈π, v〉.

We use the other constraints to solve for v explicitly. Denote ρ(g) =
∑
ḡ∈G Λ(g, ḡ). Exponentiating the

KKT conditions yields:
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Λ(g, g′) = ρ(g) exp

(
−C(g, g′) + h(g)− u(g, g′) + v(g′)

α

)
.

Summing in g yields:

π(g′) =
∑
g∈G

ρ(g) exp

(
−C(g, g′) + h(g)− u(g, g′) + v(g′)

α

)
. (18)

On the other hand, we see that Λ(g, g′) = 0 if and only if ρ(g) = 0. Consequently, the equation holds in
general with u(g, g′) = 0. For ρ(g) 6= 0, summing in g′ yields

1 =
∑
g′∈G

exp

(
−C(g, g′) + h(g) + v(g′)

α

)
.

Let v̂±α(g′) = e±v(g′)/α and ĥ±α(g) = e±h(g)/α. Let Ĉ−α be the matrix with entries exp(−C(g, g′)/α)
and under the assumption that it is invertible, let Bα be its inverse. Then, we rewrite the equation above in
matrix form

ĥ+α = Ĉ−αv̂−α =⇒ v̂−α =Bαĥ+α.

That is,

v(g′) =−α log

∑
g∈G

Bα(g, g′)eh(g)/α

 .

Finally, to prove the second statement, let λ > 0. Let ρ̂ be the minimizer of (13) and let Π : P(G)→P(G)
such that for any g ∈ G:

Π(π)(g) :=A(π)−1Eg′∼πe−C(g,g′)/α,

where A(π) is the normalizing constant defined as:

A(π) =
∑
g∈G

Eg′∼πe−C(g,g′)/α.

By equation (18), we have:

π(g′)v̂+α(g′) =
∑
g∈G

ρ̂(g) exp

(
−C(g, g′) + h(g)

α

)
.

Recall that

F (h,π) = αH(π)− 〈π, v〉

=−α
〈
π, logπ+

v

α

〉
=
〈
π,−α log(πev/α)

〉
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= 〈π,−α log(πv̂+α)〉

=−αEg′∼π log

∑
g∈G

ρ̂(g) exp

(
−C(g, g′) + h(g)

α

)
Then by Jensen’s inequality, to show A(Π, δλ), it suffices to show:

Eg′∼Π(π)Eg′′∼π
∑
g∈G

ρ̂(g) exp

(
−C(g, g′′) + h(z, g, g′)

α

)
≤ 1

Compute:

Eg′∼Π(π)Eg′′∼π
∑
g∈G

ρ̂(g) exp

(
−C(g, g′′) + h(z, g, g′)

α

)

= Eg′∼Π(π)

∑
g∈G

ρ̂(g)Eg′′∼π exp

(
−C(g, g′′)

α

)
exp

(
−h(z, g, g′)

α

)

≤
∑
g∈G

Eg′′∼π exp

(
−C(g, g′′)

α

)
Eg′∼Π(π) exp

(
−h(z, g, g′)

α

)

=A(π)Eg,g′∼Π(π) exp

(
−h(z, g, g′)

α

)
=A(π)Eg∼ρ̂,g′∼Π(π) exp

(
−λ(`(g, z)− `(g′, z)) + δλ(z, g, g′)

α

)

= Eg,g′∼Π(π) exp

(
−λ
α

(`(g, z)− `(g′, z))− 1

2

(
λ

α
(`(g, z)− `(g′, z))

)2
)

≤ 1.

3.4. Proof of Theorem 2.4

Let α> 0. First note that from Lemma 2.3, we have for any π ∈ P(G), for any z ∈Z:

Eg′∼Π(π)`(g
′, z)≤ 1

λ
Eg′∼Π(π) min

ρ∈P(G)

{
Eg∼ρ

(
λ`(g, z) + δλ(z, g, g′)

)
+Wα(ρ,π)

}
, (19)

where Π and δλ are defined in Lemma 2.3. Then applying (19) for t= 1, . . . , T , with π = ρ̂t minimizer of
(13) in Lemma 2.3 for ht−1 = λ`(zt−1, g) + δλ(zt−1, g, ĝt−1) and h0 ≡ 0 and summing accross iterations
yields:

T∑
t=1

Eg′∼Π(ρ̂t)`(g
′, zt)≤

1

λ

T∑
t=1

Eg′∼Π(ρ̂t) min
ρ∈P(G)

{Eg∼ρht(g) +Wα(ρ, ρ̂t)}. (20)
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The idea of the proof is to decompose the RHS in (20) by introducing a particular Bregman divergence, and
to use Theorem 2.2 as a main ingredient. For that purpose, let π? ∈ P(G) and consider the function Φα : ρ 7→
Wα(ρ,π?) based on the regularized optimal transport (12). First, note that by the entropy regularization, Φα
is strictly convex and differentiable is its arguments for any α> 0. Then we can decompose the RHS in (20)
as follows:

T∑
t=1

Eg′∼Π(ρ̂t)`(zt, g
′)≤ 1

λ

T∑
t=1

Eg′∼Π(ρ̂t) min
ρ∈P(G)

{Eg∼ρht(g) +Wα(ρ, ρt)}

=
1

λ

T∑
t=1

Eg′∼Π(ρ̂t) min
ρ∈P(G)

{Eg∼ρht(g) +BΦα(ρ, ρt) + εt(ρ)},

where εt(ρ) is defined as :

εt(ρ) =Wα(ρ, ρt)−BΦα(ρ, ρt).

By definition of the sequence {ρ̂t, t= 1, . . . , T}, we can now decompose the RHS as follows:

T∑
t=1

Eg′∼Π(ρ̂t)`(zt, g
′) =

1

λ

T∑
t=1

Eg′∼Π(ρt )
min

ρ∈P(G)
{Eg∼ρht(g) +BΦα(ρ, ρ̂t) + εt(ρ)}

≤ 1

λ

T∑
t=1

Eg′∼Π(ρ̂t) min
ρ∈P(G)

{Eg∼ρht(g) +BΦα(ρ, ρ̂t)}+
1

λ

T∑
t=1

εt(ρ̂t+1)

:= ΣT (BΦα) +
1

λ

T∑
t=1

εt(ρ̂t+1).

We start with the control of ΣT (BΦα). To use Theorem 2.2, we introduce the sequence {ν̂t, t = 1, . . . T}
where ν̂t+1 is the solution of the minimization (8) with couple (h,π) = (ht, ν̂t) and where ν̂1 = ρ̂1 corre-
sponds to the prior π. Then we can write:

ΣT (BΦα) =
1

λ

T∑
t=1

Eg′∼Π(ρ̂t) min
ρ∈P(G)

{Eg∼ρht(g) +BΦα(ρ, ρ̂t)}

≤ 1

λ

T∑
t=1

[
Eg′∼Π(ρ̂t)Eg∼ν̂t+1

ht(g) +BΦα(ν̂t+1, ν̂t)
]

+
1

λ

T∑
t=1

[BΦα(ν̂t+1, ρ̂t)−BΦα(ν̂t+1, ν̂t)]

:=
1

λ

T∑
t=1

[
Eg′∼Π(ρ̂t)Eg∼ν̂t+1

ht(g) +BΦα(ν̂t+1, ν̂t)
]

+
1

λ

T∑
t=1

δt,

where δt is defined by:

δt = BΦα(ν̂t+1, ρ̂t)−BΦα(ν̂t+1, ν̂t).
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Then, following the same lines as in the proof of Theorem 2.2, Lemma 3.1 allows us to write:

ΣT (BΦα)≤ 1

λ
min

ρ∈P(G)

{
Eg∼ρ

T∑
t=1

Eg′∼Π(ρ̂t)ht(g) +BΦα(ρ,π)

}
+

1

λ

T∑
t=1

δt

≤ 1

λ
min

ρ∈P(G)

{
Eg∼ρ

T∑
t=1

¯̀(zt, g) +Wα(ρ,π)− ε1(ρ)

}
+

1

λ

T∑
t=1

δt,

where ε1(ρ) is defined above. Hence we get the result by choosing π? in Lemma 3.2 in order to control the
residual term:

∆T (BΦα ,Wα) :=
1

λ

T∑
t=1

(εt(ρ̂t+1) + δt)

=
1

λ

T∑
t=1

(Wα(ρ̂t+1, ρ̂t)−BΦα(ρ̂t+1, ρ̂t) +BΦα(ν̂t+1, ρ̂t)−BΦα(ν̂t+1, ν̂t)) .

Lemma 3.2. Let α> 0 and π? ∈ P(G). Let Φα : ρ 7→Wα(ρ,π?). Then we have:

BΦα(ρ,π) =Wα(ρ,π?)−Wα(π,π?) + 〈v, ρ− π〉,

where v := v(ρ,π?) ∈RG+ is the KKT multiplier based on the optimizationWα(ρ,π?) defined in (12).

Proof First note that by the entropy regularization, Φα is strictly convex and differentiable is its arguments
for any α > 0. Then BΦα is well defined in (6). Moreover since G is finite, Φα can be described directly by
the Karush-Kuhn-Tucker (KKT) multipliers. We first formally write the optimization problem as:

minΛ
∑
g,g′∈G Λ(g, g′)C(g, g′) + α

(
H(π?) +

∑
g,g′∈G Λ(g, g′)

[
log Λ(g, g′)− logρ(g)

])
s.t. Λ(g, g′)≥ 0,∀g, g′ ∈ G∑

g′∈G Λ(g, g′)− ρ(g) = 0,∀g ∈ G∑
g∈G Λ(g, g′)− π?(g′) = 0,∀g′ ∈ G

(21)

By the KKT conditions and the strong duality theorem, there exist u ∈RG×G+ , v, v′ ∈RG+ such that for every
g, g′ ∈ G:

C(g, g′)− u(g, g′) + v(g) + v′(g′) + α
(
log Λ?(g, g′)− logρ(g)

)
= 0,

where Λ? is the solution of (21). Then, gathering with the same computations as in the proof of Lemma 2.3,
we have:

Wα(ρ,π?) = αH(π?)− 〈ρ, v〉 − 〈π?, v′〉

By definition of the Bregman divergence (6) and the choice of Φα, we hence have:

BΦα(ρ,π) =Wα(ρ,π?)−Wα(π,π?) + 〈v, ρ− π〉.
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