
HAL Id: hal-03262679
https://hal.science/hal-03262679v2

Preprint submitted on 18 Jun 2021 (v2), last revised 11 Aug 2021 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparsity Regret bounds for XNOR-nets++
Andrew Chee, Sébastien Loustau

To cite this version:

Andrew Chee, Sébastien Loustau. Sparsity Regret bounds for XNOR-nets++. 2021. �hal-03262679v2�

https://hal.science/hal-03262679v2
https://hal.archives-ouvertes.fr

Sparsity Regret bounds for XNOR-nets++

Andrew Chee1 and Sébastien Loustau2

1Cornell University, Operations Research and Information Engineering,

Ithaca, New-York

2Université de Pau et des Pays de l’Adour,

Laboratoire de Mathématiques et de leurs Applications de Pau, France.

June 18, 2021

Abstract

Despite the attractive qualities of convolutional neural networks (CNNs), and

the universality of architectures emerging now, CNNs are still prohibitive regard-

ing environmental impact due to electric consumption or carbon footprint, as well

as deployment in constrained platform such as micro-computers. We address this

problem and sketch how PAC-Bayesian theory can be applied to learn lighter

convolutional architectures in order to reduce training, inference complexity and

environmental impact of machine learning. We propose two main contributions:

(1) a first sparsity regret bounds to enforce specific network characteristics in

terms of number of parameters to train as well as non-zero weights, and (2) the

control of a low bitwidth architectura, where binarized operations are used to ap-

proximate standard real-valued convolutions. With this in mind, and gathering

with [1], we have the long term objective to design adaptive CNN architectura

that fits dynamically to the size of the data, the difficulty of the problem and the

desire environmental constraints.

1

1 Introduction

Deep learning is nowadays the most used technique to address the problem of

supervised learning. It is extensively developed in Computer Vision, Natural

Language Processing or communication networks, where very often the architec-

ture of the deep net is based on a cascade of convolutions and non-linear activa-

tions. Indeed, CNNs are based on a very reduced set of computations (essentially

convolutions and activations), and can be used to cover numerous application

domains (e.g., audio, video, biosignals). Many tasks can be automated by con-

volutional neural networks, from the vanilla image classification problem (see [2],

[3]) to more complex tasks such as text classification (see [4]), long-range tem-

poral dependencies such as speech generation (see [5]), or even in unsupervised

task such as object detection (see [6]) or graph embeddings (see [7]). Despite the

attractive qualities of CNNs, and the universality of architectures emerging now

to solve a broad range of tasks (see [8]), CNNs are still prohibitively expensive

to deploy in a tight constrained environment such as micro-computer, in the con-

text of high-resolution datasets or more generally on low-power devices since they

need power-hungry General Purpose - Graphic Processing Units (GP-GPUs). In

the recent literature, a natural approach for reducing the computational effort

of CNNs (training of smaller and faster models) is through binarized networks.

The idea behind binarized neural network is to approximate real-valued convo-

lutions with low bitwidth operations. In [9] (or more recently in [10]), CNNs

are trained with binary weights during the forward and backward propagations,

while retaining precision of the stored weights in which gradients are accumulated,

whereas in [11, 12], or more recently in [13], both filters and signal activations

are binarized, leading to the so-called XNOR-nets where convolutions are ap-

proximated using primarily binary operations. The latter results in 58x faster

convolutional operations and offer the possibility of running state-of-the-art net-

works on CPUs (rather than GPUs) in real-time. Moreover, binarizing the input

signals also provide a significant gain in the overall memory consumption, espe-

cially for large batch sizes. Finally, since binarized networks can lead to poor

2

approximations of real-valued convolutions, [14] proposes to use ternary weight

networks whereas [15] proposes a more flexible low bitwidth approach using dif-

ferent bitwidth weights for weights (1-bit weights), activations (2-bit activations),

and gradients (see below). [16] studies the effects of quantization for convolutional

neural networks when the network complexity is changed. It shows a better re-

silience of deep nets when the number of layers is big. Finally, as low bitwidth

convolutions can be implemented efficiently in standard CPU or GPU, but also

on tight constrained field-programmable gate arrays (FPGAs) or even on Ap-

plication Specific Integrated Circuits (ASICs), binarized networks are exploited

on each specialized computer hardware. It leads in [17] to a energy-efficient and

scalable CNN accelerator on ASICs, whereas [18] proposes a recent survey on

hardware accelerators that uses FPGAs.

It is also important to notice the recent growing interest for other main ap-

proaches to alleviate the computation of deep neural networks. Standard prun-

ing methods (see [19] for the original paper, or more recently [20]) first train a

feedforward or a convolutional neural network to convergence, and then network

connections and / or neurons are pruned only subsequently. These techniques are

applied and fined-tuned after training the entire network. Recent advances pro-

pose two different strategies in order to avoid the training of the entire network.

It leads to significant improvements and accelerate both training and inference

since the overall skeletonization is estimated before or during the training. One

can prune the network at initialization, by estimating the important weights for

a given task (see [21, 22] for moderate pruning levels up to 95%, or more recently

[23] for higher level of compression, up to 99.5%). Another promising strategy

is to select the connectivity of the network during the training. Interestingly,

theoretical guarantees are proposed in [24] for an adaptive procedure selecting

the architecture during training. It could be seen as a form of architecture de-

signing, from the most general purpose of automated machine learning (AutoML,

see [25]) to the problem of aggregation and design of efficient neural networks in

terms of latency, memory size or carbon footprint, which lead finally to search for

device-specific CNNs. As a seminal example, [26] proposes a neural architecture
3

search called FBNet to construct hardware efficient CNNs for mobile phones (see

also [27]). The so-called Neural Architecture Search (NAS) uses a stochastic gen-

erator of architectures (that is a recurrent neural network named the controller)

and train the proposed network with Reinforcement Learning (see for instance

[28] for a nice introduction). Another approach is proposed in [29] where several

budgeted super networks are selected to predict well in less than 100 milliseconds

or to learn efficient models in terms of memory (for instance models that fit in

a 50mb memory). More recently, [30] expends the search space to number of fil-

ters and channels dimension without prohibitive memory and computational cost

with FBNetv2. Finally, [31] uses another approach based on a hierarchical neural

ensemble to aggregate neural network blocks efficiently and control dynamically

the inference latency depending on external constraints.

However, despite a growing interest, the study of computational-efficient deep

neural networks is a work in progress in the community and affects several as-

pects of CNNs processing (i.e., training versus inference) as well as different key

metrics and concepts to compare the various architectures, design and hardware

(see [32] for a survey of deep nets processing). In this processing, power and

energy consumption account for all aspects of the system including the size of the

network, the hardware itself (such as CPUs, GPUs, FPGAs or ASICs) and the

potentially external memory access. Recently open sources libraries have been

proposed in order to evaluate globally the carbon footprint of deep learning al-

gorithms as well as specific studies of particular algorithms. It has been shown

for instance in [33] that significant gain in carbon emmission could be done with-

out endowing the generalization performances. However, open sources available

librairies in [34, 35, 36, 37, 38] are designed for massive usage of a large com-

munity of researchers and then constrain the estimations with strong hypothesis.

As a consequence, we loose the specific impact of different hardware platform,

as well as the cooling technique of the data center used for extensive compu-

tations. Moreover, carbon footprint are usually based on national coefficient.

Finally, as discussed in [39], electric consumption based on a software estimation

do not reflect the entire consumption of the system. Some contributions (see
4

[40, 39]) propose to conduct energy measurement experiments but are limited to

a particular hardware distributor and specific algorithms.

With this in mind, we have the long term objective to train algorithms that

reach a theoretical-based trade-off between accuracy of the network and power

or energy consumption. For that purpose, we need to design penalties that cover

precise attributes of the network such as - of course - the network architecture (in-

cluding number of layers, number of filters, filter sizes, and number of channels),

the number of non-zero weights (mainly for storage requirements) or the number

of MACs (multiply-accumulate operations), but also metrics from the hardware

design, depending on the number of cores or the amount of on-chip storage, the

latency and throughput (depending on the batch size), the memory access and

finally the power and energy consumption.

Finally, it is important to note that continuous weights are required for

Stochastic Gradient Descent (SGD) to work at all since SGD computes small

mooves and explores a real-valued space of parameters. Therefore, it is hard to

promote low bitwidth for gradient updates (see a 6-bits attempt in [15]). In this

paper, as well as in the companion paper [1], we use the PAC-Bayesian paradigm

to learn distribution over a set of deep nets. It changes drastically the optimiza-

tion procedure and lead to alternative to stochastic gradient updates for training -

binarized - architectures. In the present paper, we use standard Kullback-Leibler

divergences to get penalties proportional to the size of the network in terms of

non-zero weights. In the companion paper [1] one offers more flexibility thanks to

the introduction of Bregman divergences and optimal transport. It gives a new

extension of the usual PAC-Bayesian theory presented in this paper and can be

applied to deep learning with convolutional architectures in order to explore new

strategies for penalizing training and/or inference complexity related with envi-

ronmental impact. These theoretical based approaches could be applied to several

data sources (images, time series, and graphs) and both generic and low bitwidth

convolutional neural networks (see below), in order to design adaptive algorithms

that fits dynamically to the size of the data, the difficulty of the problem and the

desire environmental constraints.
5

2 Context and notations

2.1 Deep nets architectura

In this paper, we are interested in convolutional neural networks. From the

learning perspective, a CNN is uniquely determined by a potentially huge set of p

weights w ∈Wp ⊂ Rp, where W depends on the bitwidth of the system. In what

follows, we consider W = R for standard deep nets, as well as W = {−1, 1} for

binary XNOR-nets (the intermediate case W = {−b, . . . , b} for some integer b > 1

is not considered for simplicity). Then, we introduce a parametric set of decisions

G := {gw : X → Y,w ∈ Wp}, where X is the input of the neural network (also

called the input space of descriptors, such as images, time series, or graphs, see

below), and Y is the output of the network (for instance a vector of probabilities

in classification, or a scalar in a regression framework). We want to learn a set of

weights w := (wl, bl)
k
l=1, where each couple (wl, bl) denotes the weights of layer l

of the convolutional neural network gw(·) defined as:

gw(x) = softmax ((wk ∗ σ(wk−1 ∗ · · · ∗ σ(w1 ∗ x+ b1) · · ·) + bk)) , (1)

where w ∗x is a linear transformation described precisely below as a matrix mul-

tiplication and σ(·) is an element-wise non-linear activation such as a rectified

linear unit (ReLU in the sequel) defined as σ(x) = max(0, x). In (1), we ar-

bitrarily choose a softmax(·) since we deal in the main theoretical bounds with

classification with cross-entropy loss function. Of course other activations at the

head of the CNN could be considered, for other learning tasks. In what follows,

thanks to the general algorithm presented below, we can choose automatically

the number of layers k, as well as the number and size of filters or matrices in-

volved in the linear transformation at each layer. For the sake of simplicity, we

fix the number and size of filters at each layer and consider the space of candidate

architectures W as the following union:

W :=
L⋃
k=1

N⋃
i=1

F⋃
j=1

Wk(i+1)j , (2)

6

where L ≥ 1 is the maximal number of layers for gw, N ≥ 1 is the maximum

number of filters and F ≥ 2 is the maximum size of filters. We can easily extend

the main theoretical results to more complex decision spaces.

In the context of Computer Vision, x ∈ Rm represents a m = r1 × r2 image

(we restrict the number of channels to 1 for simplicity) and given a set of i filters

(fu)iu=1 of size j = s× s, the convolution w ∗ x in (1) corresponds to the matrix

product of the filters and a relaxed form of the Toeplitz matrix of input signal x

as follows:

w ∗ x :=

w11 w12 w13 w14

w21 w22 w23 w24

x11 x12 x21 x22

x12 x13 x22 x23

x21 x22 x31 x32

x22 x23 x32 x33

 ∈ Ri×4,

where we stand s = 2, d = 2, vertical and horizontal stride is let to 1 with no

padding, and r1 = r2 = 3 for the sake of simplicity. Note that this representation

could be extend to multiple channels and filters with redundant Toeplitz matrices.

Of course this matrix multiplication above corresponds to convolutional layers and

could be replaced by a standard matrix multiplication for fully connected layers.

Moreover, concerning convolutions, it is also possible to consider similarly time

series processing. If the input signal x is a univariate time serie of size m and

we have at hand a set of filters, the one-dimensional convolution of x with filters

(fu)iu=1 with i = 2 can be written as a matrix product w ∗ x as follows:

w ∗ x :=

w11 w12

w21 w22

x1 x2 x3

x2 x3 x4

 ∈ Ri×3

where m = 4, stride is let to 1 with no padding. Finally, for completeness, we

can also mention extensions of CNNs to graph real-world applications (see [41],

[42], [7] or more recently [43]). In this framework, we observe a graph G = (V,E)

where V = {1, . . . , N} is the set of vertices and E ⊂ {(i, j), i, j ∈ {1, . . . ,m}2}

is the set of edges, and a feature matrix X of size m ×m′ where each line i of

X describes node i with m′ features. Graph Convolutional Networks (GCNs)

corresponds to an universal architecture able to process these inputs. It could be
7

written as follows:

Hl+1 = f(Hl, A),

where A is the adjacency matrix of G = (V,E), H0 = X is the input matrix of

feature, and HL = Y is the output of the GCN. Then, the result of the present

paper could be applied to the architectura presented in [7] where the layer-wise

propagation rule has the following form:

Hl+1 = σ(D−1/2 ∗A ∗D−1/2 ∗Hl ∗Wl),

where D is the diagonal node degree matrix, Wl is the weight matrix of the

l-th layer and σ is a non-linear activation function like the ReLU, and ∗ stands

for the classical matrix product. This propagation could be described intuitively

as follows. Multiplication with A means that, for every node, we sum up all

the feature vectors of all neighbor nodes. It extends the localization ensured by

convolution to the graph topology. The presence of the diagonal node degree

matrix arises technically to normalize the scale of the feature vectors for high

degrees nodes.

Finally, in this paper, we also consider significant computational gain in con-

volution operations by considering XNOR-nets, where both parameters and ac-

tivations are binary in the matrix multiplications considered above. In binarized

CNNs, full precision weights and activations are binarized into 1 bit, so the mul-

tiplications and additions of the convolution are transformed into simple bitwise

operations (XNOR-bitcounting operations), resulting in significant storage and

computation requirements reduction. However, since much information has been

discarded during binarization, the accuracy degradation is high. For that purpose,

different techniques has been introduced to improve the approximation power of

binary or low bitwidth convolutions. In [12], real-valued weights and activations

are approximated by re-scaling the output of the binary convolution using real-

valued positive scale factors. Whereas these scaling parameters are computed

analytically in [12], [13] proposes to learn these factors directly via backprop-

agation. It leads to the following approximation of convolutions w ∗ x defined

8

above:

w ∗ x ≈
(
wbin

⊕
sign(x)

)⊙
wscale, (3)

where
⊕

stands for the bitwise convolution and
⊙

defines the element-wise

product of the output of the binary convolution wbin ∗ sign(x) and the scaling

factor wscale. In [13], the set of parameters that is learnt during the training at

a given layer is given by the couple (wbin, wscale), where the dimension of wscale

is varying. In this work, we adopt this strategy and consider (3) where wscale

corresponds to a sparse rank-1 tensor (see Section 3.2 and the proof of Theorem

3.2 for a precise description of the approximation, and [13] for details about this

choice).

2.2 PAC-Bayesian Theory

PAC-Bayesian machine learning theory can be traced back to the work of Mac

Allester and the first so-called Pac-Bayesian bounds ([44] and [45]). It was first

introduced in learning theory to give a theoretical framework for proving gener-

alization abilities of algorithms that combine the advantages of both PAC, that

is generalization bounds, and Bayesian statistics (that is, the introduction of a

prior domain knowledge on the set of candidate models). The main objective of

PAC-Bayesian bounds is to extract a procedure that optimizes a tradeoff between

complexity, or structure, such as sparsity of the candidate learners, with a good-

ness of fit, or likelihood of the observed sample. In [44], the first theoretical bound

claims that with high probabilities over the sample distribution, there exists an

optimal posterior distribution that realizes this trade-off, whereas [45] extends

the previous result to an uncountable set of decisions, thanks to the introduction

of the Kullback-Leibler divergence as an upper bound. It also shown that the

optimal posterior is actually a Gibbs distribution. More recently, many authors

have used these ingredients in the high dimensional setting to get interesting al-

ternatives to standard sparsity-induced penalized empirical risk procedures such

as lasso estimators. It leads to sparsity oracle inequalities for different aggregat-

ing procedures based on exponential weighted averages, with significant weaker

9

assumptions over the gram matrix of the predictors, as well as augmented sta-

bility in the procedures. For instance, in the i.i.d. setting, [46] extends to an

infinite set of weak learners the previous results stated in [47]. [48] goes one

step further considering a deterministic setting, tits the online learning setting,

where no assumption are provided over the data mechanism. Thanks to similar

argues, namely convex duality and a cancellation argument originated in [49],

regret bounds are stated for recursive algorithm inspired from the previous cited

litterature. Sparsity regret bounds for exponential weighted averages are then

derived in [50] in an online regression setting, as well as in online clustering in

[51]. In this paper, we focus on the sparsity scenario and apply the PAC-Bayesian

theory to different families of CNNs whereas the companion paper [1] proposes

a more ambitious theory where Kullback-Leibler divergence is replaced by Breg-

man or optimal transport divergences and give rise to more flexible penalties for

revisited optimization procedures.

2.3 Supervised online learning

In the online supervised learning scenario1, we observe sequentially a set of couples

{(xt, yt) ∈ X × Y, t = 1, . . . , T}. At each round t ≥ 1, the data mechanism and

the learning machine interact as follows:

• the environment reveals an new input (or mini-batch) xt ∈ X ,

• a stochastic algorithm proposes wt ∈ W drawn from a suitable distribution

πt over the space of candidate architectures (2) and predicts gwt(xt),

• the environment reveals the true output yt ∈ Y and the stochastic algorithm

computes πt+1.

Based on the deep nets architecture introduced in Section 2.1, and the usual online

PAC-Bayesian theory introduced in Section 2.2, the construction of the sequence

1In the sequel, we study the online learning paradigm to avoid any assumption about the data

mechanism. It is important to note that thanks to [48], our procedure in Algorithm 1 could be slightly

modified (by introducing a mirror averaging, see [46]) in order to get risk bounds in a classical statistical

i.i.d. framework.
10

of distributions {πt}Tt=1 expects to minimize the following notion of regret:

T∑
t=1

Eπt`(yt, gwt(xt))− inf
w∈W

{
T∑
t=1

`(yt, gw(xt)) + λpen(w)

}
, (4)

where ` : Y × Y → R+ is a task-dependent loss function, W is the space of

candidate weights defined above and pen(w) depends on the network size and

the number of non-zero weights. Parameter λ > 0 governs the trade-off between

complexity of the solution and accuracy with respect to the training set. To

prove regret bounds such as (4), we consider the standard PAC-Bayesian theory

with sparsity priors introduced in [52] (see also [48, 50, 51]) and lead to `1 and

`0 penalties. Depending on the choice of λ > 0 and the penalty above, our

procedure reaches automatically the desire trade-off. In the same spirit, we can

mention several papers dealing with neural networks sparsity (see [53] and the

references therein). Several authors also use reinforcement learning to conduct

Neural Architecture Search (NAS, see [28]), such as in FBNets (see [26, 30, 54]).

Others techniques are presented in [29] or [31].

Algorithm 1 General Algorithm

init. λ > 0, π = π1 a prior distribution on W and t = 1. Let h0 ≡ 0.

Observe x1 and draw ŵ1 from π1. Predict y1 according to gŵ1(x1).

repeat Observe yt and compute

ht(w) = ht−1(w) + `(yt, gw(xt)) +
λ

2
(`(yt, gw(xt))− `(yt, gŵt(xt)))

2 , for all w ∈ W .

return πt+1 = Gibbsλ(ht) where:

dGibbsλ(ht)(w) := Zλ exp {−λht(w)} dπ(w),

for Zλ the normalizing constant.

Draw ŵt+1 from πt+1 and predict yt+1 according to gŵt+1(xt+1).

t = t+ 1

until t = T + 1

11

3 Sparsity regret bounds for CNNs

In this section, we state regret bounds for convolutional neural networks (CNNs)

described above. The main agenda is to show how theoretical results can be

applied to convolutional architectures in order to get sparsity regret bounds for

Algorithm 1 and control the training and/or inference complexity of the solution.

In Section 3.1, we apply the general PAC-Bayesian paradigm to choose automat-

ically the architecture of a generic CNN. We penalize the size of the network in

terms of magnitude and non-zero weights. In Section 3.2, we apply these results

to a particular low bitwidth architectura, where a precise bitwise approximation

is used for the convolutional layers. It leads to a sparse and Bayesian version of

the XNOR-nets described in [13].

3.1 Sparsity Regret bound for Classification

We state regret bounds in the context of classification. In this case, considering

a set of weights w ∈ W and the associated convolutional neural network gw(·)

defined in (1), we define the last k-th layer by:

softmax(wk ∗ xk−1 + bk) =

exk(1)

Ck

exk(2)

Ck
...

exk(K)

Ck

 ∈ [0, 1]K , (5)

where xk−1 is the output of layer k − 1, xk = wk ∗ xk−1 + bk, wk ∈ Wpk is the

weight matrix of last layer k, Ck =
∑K

j=1 e
xk,j , K is the number of classes, ∗ is

the standard matrix multiplication and xk(j) stands for the j-th coordinate of

vector xk.

In what follows, we state a first regret bound considering the cross-entropy

between the output of the CNNs and yt = et the orthonormal vector of RK with

coordinate 1 at yt.

12

Theorem 3.1. Consider Algorithm 1 with prior π ∈ P(W) defined as:

π(w) =
L∑
k=1

αk

N∑
i=1

βi

F∑
j=1

γjπijk(w)1
{
w ∈ Rk(i+1)j

}
, (6)

where α (respectively β and γ) is the prior probability on the number of layers

{1, . . . , L} (respectively on the number of filters and the size of the filters) and

πijk is a sparsity prior for a given architecture of k layers, i filters of size j whose

density is given by:

πijk(w) =

p∏
u=1

cR,τ
(1 + |wu|/τ)4

1 (|wu| ≤ R) ,w ∈ Rp,

where constant cR,τ := 3
2τ

(
1− 1

(1+R/τ)3

)−1
and with a slight abuse of notations

w = (w1, . . . , wp) for p = k(i+ 1)j.

Let {(xt, yt), t = 1, . . . , T} a deterministic sequence and (πt)
T
t=1 the sequence

of distribution defined in Algorithm 1 with prior π. Then, for any λ, τ > 0, we

have:

T∑
t=1

EπtH(yt, gwt(xt)) ≤ inf
w∈W(R)

{
T∑
t=1

H (yt, gw(xt)) + λ pen(w)

}
, (7)

where pen(w) = 2τ pen1(gw)
∑T

t=1 ‖xt‖+ 2τT pen2(gw) + λpen3(gw) for

pen1(gw) =
k∏
l=1

C1
l +

∑
l 6=l′

C1
l ‖wl′‖+ λC ′(R)T, (8)

pen2(gw) =

k−1∑
l=1

(
k∏

l′=l+2

‖wl′‖

)[
C1
l+1(‖ReLU(bl)‖+ C2

l) + C2
l

]
, (9)

pen3(gw) = 4‖w‖0 log

(
1 +

‖w‖1
τ‖w‖0

)
− log(αkβiγj), (10)

where k is the number of layer of w and C1,2
l are constants depending on the

distribution π in its layer l and:

W(R) = {w ∈ W : |wu| ≤ R, ∀u ∈ {1, . . . , p}}.

The proof uses the general PAC-Bayesian theory with several computations

related with the definition of CNNs architecture in (2) gathered with Kullback-

Leibler divergences with sparsity prior (6) (see Section 4 for the proof).
13

Remark 1. Theorem 3.1 can lead to usual statistical risk bounds for deep nets by

slightly modifying Algorithm 1 with a mirror averaging (see [46]). Then, gener-

alization bounds relying on the Froebenius norm of the weights at each layer can

be proposed and compared with the recent literature (see [55, 56, 57, 53]).

Remark 2. We can state the same result for more general prior involving dif-

ferent filter size inside each layer by considering:

π(w) =
L∑
k=1

αk

Nk∑
i=1

βik

Fki∑
j=1

γijkπijk(w). (11)

We omit this case for concision.

Remark 3. In [1], we derive similar results in a more general case where the

Gibbs measure in Algorithm 1 is replaced by a new optimization procedure based

on a convex conjugate of Bregman divergences or optimal transport. It gives rise

to more flexible penalties than in Theorem 3.1 and Theorem 3.2.

3.2 Application to sparse XNOR-Nets

In this section we propose to extend the previous result to a binarized network.

Following in particular [12] and [13], we propose to reduce drastically the real-

valued operations involved in standard CNNs. Moreover we alleviate high quan-

tization errors thanks to the introduction of sparse scaling factors in our bitwise

approximations. Inspired by [11], we first keep the first convolutional layer and

the last fully connected layer with sparse real-valued weights and activations.

Then, scaling factors are learned by the learning procedure itself for intermediate

layers, where sparsity is also enforced for these scaling parameters at each binary

layer. In order to define properly the prior distribution, we now detail the ap-

proximation used for the intermediate layer. In the sequel, we denote by xl−1 the

input of the lth-layer, wbin
l the binary set of weights involved in layer l and wscale

l

the scaling factors of layer l. Then, following [13], the output of a binarized layer

l is given by the following approximation:

xl =
(
wbin
l

⊕
sign ◦ BNorm (xl−1)

)⊙
wscale
l ,

14

where
⊕

stands for the bitwise convolution, BNorm is the Batch Normalization,⊙
is the element-wise product between the tensor

Bl := wbin
l

⊕
sign ◦ BNorm (xl−1) ∈ {0, 1}h

(l)
1 ×h

(l)
2 ×h

(l)
3

and the scaling tensor wscale
l = (wscale

l,1 , wscale
l,2 , wscale

l,3) ∈ Rh
(l)
1 +h

(l)
2 +h

(l)
3

+ given by:

xl(i, j, k) = Bl(i, j, k)wscale
l,1 (i)wscale

l,2 (j)wscale
l,3 (k), ∀ i = 1, . . . h

(l)
1 , j = 1, . . . h

(l)
2 , k = 1, . . . h

(l)
3 .

(12)

Note that different choices of scaling tensor wscale
l are discussed in [13]. It leads

to the resulting binarized network:

gw(x) = softmax
(
wreal
L ∗ xL−1 + bL

)
,

where xL−1 is given by:

xL−1 =
(
wbin
L−1

⊕
sign ◦ BNorm (xL−2)

)⊙
wscale
L−1

=
(
wbin
L−1

⊕
sign ◦ BNorm

(
wbin
L−2

⊕
sign ◦ BNorm (xL−3)

⊙
wscale
L−2

))⊙
wscale
L−1

=
(
wbin
L−1

⊕
· · · sign ◦ BNorm

(
wreal
1 ∗ x+ b1

))⊙
wscale
L−1

Then we can state the following theorem.

Theorem 3.2. Consider a prior π related with the particular architecture de-

scribed above, based on the triplet of priors (πreal, πbin, πscale) as follows:

π(w) = πreal(w
real)πbin(wbin)πscale(w

scale). (13)

Let us consider a sparsity prior πreal for the real-valued weights wreal as above:

πreal(w
real) :=

preal∏
r=1

cτ,R
(1 + |wreal

r |/τ)4
1

{
|wreal
r | ≤ R

}
,

where cτ,R > 0 is defined in Theorem 3.1. For wbin we consider πbin as a product

of independent Rademacher distribution defined as:

R({wbin
r = 1}) = R({wbin

r = −1}) =
1

2
, ∀r = 1, . . . , pbin.

15

Then, wscale contains the pscale scaling factors with associated prior:

πscale(w
scale) :=

pscale∏
r=1

c′τ,R
(1 + wscale

r /τ)4
1

{
0 ≤ wscale

r ≤ R
}
,

where c′τ,R = 3/τ
(

1− 1
(1+R/τ)3

)−1
.

Let {(xt, yt)}Tt=1 a deterministic sequence and {πt}Tt=1 the sequence of distri-

bution defined in Algorithm 1 with prior π defined in (13) with standard deviation

τ > 0. Then, for some R > 0, by denoting W(R) := {w = (wreal,wbin,wscale) :

∀w ∈ wreal ∪wscale, |w| ≤ R}, we have for any λ > 0:

T∑
t=1

EπtH(yt, gwt(xt)) ≤ inf
w∈W(R)

{
T∑
t=1

H (yt, gw(xt)) +
penXNOR(w)

λ

}
+resλ,τ (T),

where:

penXNOR(w) =
∑

w∈{wreal,wscale}

‖w‖0 log

(
1 +

‖w‖1
τ‖w‖0

)
+ pbin log 2,

and resλ,τ (T) is a residual term of order
√
T for particular choices of hyper-

parameter (λ, τ) in Algorithm 1 and prior (13).

Remark 4. Theorem 3.2 allows to bound the cumulative loss of the PAC-Bayesian

version of XNOR-nets presented in [13]. Interestingly, the RHS in Theorem 3.2

depends on the sparsity of the set of real-valued parameters of the XNOR-nets.

It gives some insights to construct sparse versions of classical binarized networks

where continuous weights are used to approximate real-valued convolutions.

Remark 5. However, this sparsity-induced penalty scales linearly with the dimen-

sion of the binary weights. As in [58], this unconstrained bound strongly depends

on the network size, and can be trivial when the number of parameters exceeds the

sample size. This dependence is not considered here where we focus on a sparse

version of XNOR-Nets in its real-valued weights.

16

4 Proofs

4.1 Proof of Regret bounds

4.1.1 Proof of Theorem 3.1

The proof is based on the online PAC-Bayesian bound stated in [48] as follows:

Theorem 4.1. [48, Theorem 4.6] Let (xt, yt),t = 1, . . . , T a deterministic se-

quence of data and (πt)
T
t=1 a sequence of distributions based on Algorithm 1.

Then we have the following bound:

T∑
t=1

Eπt`(yt, ĝt(xt)) ≤ min
ρ∈P(W)

{
Ew∼ρ

T∑
t=1

¯̀(yt, gw(xt)) +
K(ρ, π)

λ

}
,

where ¯̀(yt, gw(xt) = `(yt, gw(xt) + λ
2 (`(yt, g(xt))− `(yt, ĝt(xt))2.

In what follows, we use this bound with a particular measure ρ in the RHS.

Let w∗ ∈ W =
⋃L
k=1

⋃N
i=1

⋃F
j=1Wk(i+1)j a specific set of weights in architecture

a∗. Without loss of generality, we denote by L the number of layers of w∗. Then,

for a fixed parameter τ > 0, consider πw∗ the translation of the sparsity prior

πijL defined in Theorem 3.1 as follows:

πw∗(dw) =
dπijL
dw

(w −w∗)dw. (14)

Lemma 4.2 below is useful to control the first term in the RHS of Theorem 4.1,

whereas Lemma 4.6 below controls the Kullback-Leibler divergence K(πw∗ , π).

Lemma 4.2. Let w∗ = (w∗l , b
∗
l)
k
l=1 ∈ W for some k ∈ {2, . . . , L}. Then we have

for any parameter τ > 0:

Eπw∗
T∑
t=1

H (yt, gw(xt)) ≤
T∑
t=1

H (yt, gw∗(xt))+2 pen1(w
∗, τ)

T∑
t=1

‖xt‖+2T pen2(w
∗, τ),

where

pen1(w
∗, τ) =

k∏
l=1

(‖w∗l ‖+ C1
nl,τ

)−
k∏
l=1

‖w∗l ‖,

pen2(w
∗, τ) =

k−1∑
l=1

(
k∏

l′=l+2

‖w∗l′‖

)[
C1
nl+1,τ

(‖ReLU(b∗l)‖+ C2
nl,τ

) + C2
nl+1,τ

]
and C1,2

l,τ are constants depending on the distribution πw∗ in its layer l.
17

Proof. Observe that it suffices to obtain the estimate at each time t. Then, for

each (x, y) ∈ X × Y, we need to proove the following bound:

Eπw∗H(y, gw(x)) ≤ H(y, gw∗(x)) + 2 pen1(w
∗, τ)‖x‖+ 2 pen2(w

∗, τ).

Let x0 = x the input data and k = L without loss of generality. From the choice

of πw∗ in (14), we denote the output of layer 1 ≤ l ≤ L− 1 by

xl = ReLU((wl + w∗l) ∗ xl−1 + bl + b∗l),

where w = (wl)
L
l=1 has law π. Moreover, we denote in the sequel El := E(w1,...,wl)∼π

the expectation with respect to the distribution π in the first l layers.

We start by unpacking the interaction of the cross entropy loss with the soft-

max activation function in the final layer. For the weights (wl, bl) in layer l, wl,i

and bl(i) denote their ith row and ith entry, respectively. Under the previous

notations, the final output is:

gw∗(x0) = softmax(xL) =

(
exL(1)

CL
, · · · , e

xL(K)

CL

)T
,

where xL = wL ∗ xL−1 + bL and CL =
∑K

i=1 e
xL(i). Without loss of generality,

suppose that yt = e1 = (1, 0, ..., 0). Then, by definition of the cross entropy:

Ew∼πw∗H(y, g(x)) = −Ew∼πw∗ log
exL(1)

CL

= −Ew∼πw∗xL(1) + Ew∼πw∗ logCL.

We bound the two above terms separately. For the first term, by symmetry of

the distribution πw∗ , one has:

−Ew∼πw∗xL,1 = = −Ew∼πw∗ ((w
∗
L,1 + wL,1) ∗ xL−1 + bL(1)∗ + bL(1))

= −(w∗L,1x
∗
L−1 + bL(1)∗)− EL(wL,1xL−1 + bL(1))− w∗L,1EL−1(xL−1 − x∗L−1)

≤ −x∗L,1 + ‖W ∗L‖EL−1‖xL−1 − x∗L−1‖.

18

On the other hand, for any i = 1, ...,K, using the same computations:

xL(i) = (w∗L,i + wL,i) ∗ xL−1 + bL(i)∗ + bL(i)

= (w∗L,ix
∗
L−1 + bL(i)∗) + w∗L,i(xL−1 − x∗L−1) +WL,ixL−1 + bL,i

≤ x∗L,i + ‖w∗L,i‖‖xL−1 − x∗L−1‖+ ReLU(WL,ixL−1) + ReLU(bL(i))

≤ xL(i)∗ + ‖w∗L‖‖xL−1 − x∗L−1‖+ ‖ReLU(wLxL−1)‖+ ‖ReLU(bL)‖,

where we adopt the notation that for a vector x ∈ Rk, ReLU(x) = (ReLU(x1), ...,ReLU(xk))
T .

Then,

Ew∼πw∗ logCL

= Ew∼πw∗ log
K∑
i=1

exL(i)

≤ Ew∼π log

K∑
i=1

exL(i)
∗

exp
(
‖w∗L‖‖xL−1 − x∗L−1‖+ ‖ReLU(WLxL−1)‖+ ‖ReLU(bL)‖

)
= log

K∑
i=1

ex
∗
L(i) + Ew∼π

{
‖w∗L‖‖xL−1 − x∗L−1‖+

∥∥∥∥ReLU

(
wL

xL−1
‖xL−1‖

)∥∥∥∥ ‖xL−1‖+ ‖ReLU(bL)‖
}

≤ logCL + ‖w∗L‖EL−1‖xL−1 − x∗L−1‖+ C1
L,τEL−1‖xL−1‖+ C2

L,τ ,

where

C1
l,τ = max

‖x‖=1
El ‖ReLU(wlx)‖

C2
l,τ = El‖ReLU(bl)‖

In summary:

Ew∼πw∗H(y, gw(x)) ≤ H(y, gw∗(x)) + C1
L,τEL−1‖xL−1‖+ 2‖W ∗L‖EL−1‖xL−1 − x∗L−1‖+ C2

L,τ

+ EL−1‖ReLU (wLxL−1) ‖+ EL−1‖ReLU (bL) ‖

≤ H(y, gw∗(x)) + 2
[
C1
L,τEL−1‖xL−1‖+ ‖W ∗L‖EL−1‖xL−1 − x∗L−1‖+ C2

L,τ

]
.

19

Finally, by inducting with Lemma 4.3 and Lemma 4.4 below, we have:

C1
L,τEL−1‖xL−1‖+ ‖w∗L‖EL−1‖xL−1 − x∗L−1‖+ C2

L,τ

≤
L−1∑
l=1

(
L∏

k=l+2

‖w∗k‖

)
(C1

l+1,τE‖xl‖+ C2
l+1,τ)

≤

[
L∏
l=1

(‖w∗l ‖+ C1
l,τ)−

L∏
l=1

‖w∗l ‖

]
‖x0‖

+
L−1∑
l=1

(
L∏

k=l+2

‖w∗k‖

)(
C1
l+1,τ (‖ReLU(b∗l)‖+ C2

l,τ) + C2
l+1,τ

)
= pen1(w

∗, τ)‖x0‖+ pen2(w
∗, τ).

Lemma 4.3. For l = 1, ..., L− 1.

El‖xl − x∗l ‖ ≤ ‖w∗l ‖El−1‖xl−1 − x∗l−1‖+ C1
l,τE‖xl−1‖+ C2

l,τ . (15)

Proof. We use the following facts:

• ReLU(a+ b) ≤ ReLU(a) + ReLU(b)

• ‖ReLU(a)‖ ≤ ‖a‖

• ReLU(a) = ReLU
(

a
‖a‖

)
‖a‖.

Then, we have:

El‖xl − x∗l ‖

= El‖ReLU((w∗l + wl)xl−1 + b∗l + bl)− ReLU(w∗l x
∗
l−1 + b∗l)‖

≤ El‖ReLU(w∗l (xl−1 − x∗l−1))‖+ El‖ReLU(wlxl−1)‖+ El‖ReLU(bl)‖

≤ ‖w∗l ‖El−1‖xl−1 − x∗l−1‖+ El
∥∥∥∥ReLU

(
wl

xl−1
‖xl−1‖

)
‖xl−1‖

∥∥∥∥+ C2
l,τ

≤ ‖w∗l ‖El−1‖xl−1 − x∗l−1‖+ El−1
[
Ewl∼π1

A,τ,l

∥∥∥∥ReLU

(
wl

xl−1
‖xl−1‖

)∥∥∥∥ ‖xl−1‖]+ C2
l,τ

≤ ‖w∗l ‖El−1‖xl−1 − x∗l−1‖+ C1
l,τEl−1‖xl−1‖+ C2

l,τ .

20

Lemma 4.4. For l = 1, ..., L− 1.

El‖xl‖ ≤ ‖w∗l ‖El−1‖xl−1‖+ C1
l,τE‖xl−1‖+ C2

l,τ + ‖ReLU(b∗l)‖. (16)

Proof. From a similar computation as in the proof of the previous lemma, one

gets:

El‖xl‖ = El‖ReLU((w∗l + wl)xl−1 + b∗l + bl)‖

≤ El‖ReLU(w∗l xl−1)‖+ ‖ReLU(b∗l)‖+ El‖ReLU(wlxl−1)‖+ El‖ReLU(bl)‖

≤ ‖w∗l ‖El−1‖xl−1‖+ ‖ReLU(b∗l)‖+ +C1
nl,τ

El−1‖xl−1‖+ C2
nl,τ

,

Lemma 4.5. For any l ∈ {1, . . . , L}, the constants C1
l,τ and C2

l,τ are linear in τ

as follows:

C1
l,τ = τC1

l , C2
l,τ = τC2

l ,

where C1
l := C1

l,1 and C2
l := C2

l,τ .

Proof. The proof follows from working with the sparsity prior directly and sub-

stitution.

Let x ∈ Rnl−1 and ‖x‖ = 1. We use the substitution W1 7→Wl/τ . Then,

EWl∼π1
A,τ,l
‖ReLU(Wlx)‖ =

∫ (nl∑
i=1

ReLU(Wl,ix)2

)1/2
 nl∏
i=1

nl−1∏
j=1

(3/τ) dWl;ij

2(1 + |Wl;ij |/τ)4

= τ

∫ (nl∑
i=1

ReLU

(
Wl,i

τ
x

)2
)1/2

 nl∏
i=1

nl−1∏
j=1

(3/τ) dWl;ij

2(1 + |Wl;ij |/τ)4

= τ

∫ (nl∑
i=1

ReLU (Wl,ix)2
)1/2

 nl∏
i=1

nl−1∏
j=1

3 dWl;ij

2(1 + |Wl;ij |)4

= τEWl∼π1

A,1,l
‖ReLU(Wlx)‖.

The homogeneity of order 1 in τ is preserved when taking the max over all

21

‖x‖ = 1.

C1
l,τ = max

‖x‖=1
EWl∼π1

A,τ,l
‖ReLU(Wlx)‖

= τ max
‖x‖=1

EWl∼π1
A,1,l
‖ReLU(Wlx)‖

= τC1
l .

The result for C2
l,τ follows from a similar computation.

We are now on time to bound the quadratic term in Theorem 4.1. Using the

previous computations, by noting that w∗ ∈ W(R) for some positive R > 0, and

since π has a bounded support, we have for any (x, y) ∈ X × Y:

(H(y, gw(x))−H(y, gw′(x)))2 ≤ min
(

1,max (H(y, gw(x)),H(y, gw′(x)))2
)

= min
(

(1,
(
x+L (y)− logC+

L

)2)
≤ min

(〈xL−1, wL,y〉+ bL,y − log

K∑
k=1

exL,k

)2

≤ (‖ReLU(wL−1 ∗ xL−2 + bL−1)‖‖wL‖+ 2R)2

≤ (‖wL−1 ∗ xL−2 + bL−1‖‖wL‖+ 2R)2

...

≤ C(R).

We then get the result by using Lemma 4.2 and the following lemma.

Lemma 4.6. Let w∗ ∈ W and ρw∗ given by (14). Then we have:

K(ρw∗ , π) ≤ 4‖w∗‖0 log

(
1 +

‖w∗‖1
τ‖w∗‖0

)
− log(αkβiγj).

22

Let w∗ ∈ W. Then we have denoting ρ = ρw∗ :

K(ρ, π) =

∫
log

ρ

π
dρ =

∫
log

ρ

πijk

πijk
π
dρ,

= K(ρ, πijk) +

∫
Rk(i+1)j

log
πijk

αkβiγjπijk
dρ,

=

p∑
u=1

∫
log

(1 + |wu|/τ)4

(1 + |wu − w∗u|/τ)4

)
ρ(w) dw − log(αkβiγj),

= 4

p∑
u=1

log

(
1 +
|wu|
τ

)
− log(αkβiγj),

≤ 4‖w‖0 log

(
1 +

‖w‖1
τ‖w‖0

)
− log(αkβiγj),

where we use Jensen inequality to the concave function x 7→ log(1 + x) in last

line.

4.1.2 Proof of Theorem 3.2

Let w0 = (wreal
0 ,wbin

0 ,wscale
0) ∈ W a particular set of weights of the particular

XNORNets++ architectura defined in Section 3. In what follows, with a slight

abuse of notations, for any `, we denote x`(w0) the output of the `-th layer with

particular weights w0 until it does not depend on weights of layers k, for k > `.

We also denote by x`(w0,l) the output of the `-th layer with particular weights

w0,l at layer l. Moreover, given the prior π introduced in (13), we introduce a

particular measure ρ0 based on w0 as follows:

ρ0(w) := πreal(w
real
0 −wreal)δwbin

0
(wbin)π0scale(w

scale),

where δw(·) stands for the dirac distribution at weight w and π0scale is based on

the prior πscale and the set of weights w0 as follows:

π0scale(w
scale) = Πpscale

r=1

c′′τ,R,w0
r

(1 + |wr − w0
r |/τ)4

1 {0 ≤ wr ≤ R} ,

where c′′τ,R,w0
r

= 3/τ
(

2− 1
(1+w0

r/τ)
3 − 1

(1+(R−w0
r)/τ)

3

)−1
.

With a slight abuse of notation, we also denote by Ewl
1∼ρ0

the expectation

with respect to the first l layers of ρ0 whereas Ewl∼ρ0 denotes the conditoinal

expectation of layer l given layers 1, . . . , l − 1. To prove Theorem 3.2, we follow
23

the same line as the proof of Theorem 3.1 and adapt the computations to the

particular XNOR Nets defined in Section 3.2. The first step is to apply Theorem

4.1 to distribution ρ0 defined above to get:

T∑
t=1

EπtH (yt, gwt(xt)) ≤ Ew∼ρ0

T∑
t=1

H (yt, gw(xt))

+ Ew∼ρ0EπT−1
0

T∑
t=1

δλ(xt, yt,w, ŵt−1) +
K(ρ0, π)

λ
.

To study the first term in the upper bound, we perform the same computations

as above. For a given (x, y), we have:

Ew∼ρ0H (y, gw(x)) = −Ew∼ρ0

(
〈wreal

L,y ,xL−1〉+ bL,y

)
+ Ew∼ρ0 log(CL) (17)

= −
(
〈wreal

0,L,y,Ew∼ρL−1
0

xL−1〉+ b0,L,y

)
+ Ew∼ρ0 log(CL).

(18)

Then we need the following lemma:

Lemma 4.7. Let w0 ∈ W and ρ0 a shifted version of prior π defined in (13)

with mean w0. Then we have ∀l ∈ {2, . . . , L− 1}, if Varwscale = cr
T Id:∣∣∣Ewl

1∼ρ0
xl(u)− Ewl−1

1 ∼ρ0xl(w0,l)(u)
∣∣∣ ≤ c√

T
+
c′

T
, ∀u = 1, . . . , h

(l)
1 h

(l)
2 h

(l)
3 ,

where c, c′ > 0 are absolute constant depending on R and the dimension of the

network.

Proof : Let l ∈ {2, L − 1}.The proof uses a standard decomposition of the

expectation and uses Tchebychev inequality. Let us denote wscale
l = (α, β, γ) ∈

Ra+b+c+ the triplet of scaling factors according to [13], where a, b, c are the di-

mensions of the output tensor at layer l defined in (12). Consider the event

Ωα,β,γ := {∀k = 1, . . . a, |αk − α0,k| ≤ δ1}
⋂
{∀i = 1, . . . b, |βi − β0,i| ≤ δ2}

⋂
{∀j =

1, . . . , c, |γj − γ0,j | ≤ δ3}. Then we have by definition of xl in (12), and noting

x = sign ◦ BN(xL−2) ∈ {−1,+1}abc:

Ewl
1∼ρ0

xl = Ewl
1∼ρ0

(
(wbin

l ⊕ x)�wscale
l

)
= Ewl

1∼ρ0

(
(wbin

l ⊕ x)�wscale
l

) [
1(Ωα,β,γ) + 1(Ω̄α,β,γ)

]
24

Then, for any u ∈
{

1, . . . , h
(l)
1 h

(l)
2 h

(l)
3

}
, there exists a binary filter wrl ∈ {0, 1}s1s2s3 ,

r ∈ {1, . . . , N}, and integers i, j, k such that:

Ewl
1∼ρ0

xl(u) = Ewl
1∼ρ0

 s1∑
f1=1

s2∑
f2=1

s3∑
f3=1

wr
l (f1, f2, f3)x(f1, f2, f3)αkβiγj

[
1(Ωijk

α,β,γ) + 1(Ω̄ijk
α,β,γ)

]
= Ewl−1

1 ∼ρ0

 ∑
f1,f2,f3

wr(f1, f2, f3)x(f1, f2, f3)(α0,k + δ1)(β0,i + δ2)(γ0,j + δ3)

+ P

(
Ω̄ijk
α,β,γ

)
≤ Ewl−1

1 ∼ρ0xL−1(w0,l)(u) +
c√
T

+ P (|X − µ| ≥ δi|)

≤ Ewl−1
1 ∼ρ0xL−1(w0,l)(u) +

c√
T

+
c′

T
,

where last two lines follows from Tchebychev by choosing δi ∼ 1/
√
T , the as-

sumption on the variance of wscale and the boundness of wscale. It leads to the

RHS upper bound. For the RLS, we have using the same notations as above:

Ewl
1∼ρ0

xl(u) = Ewl−1
1 ∼ρ0

 ∑
f1,f2,f3

wr(f1, f2, f3)x(f1, f2, f3)(α0,k + δ1)(β0,i + δ2)(γ0,j + δ3)

+ P

(
Ω̄ijk
α,β,γ

)
≥ Ewl−1

1 ∼ρ0xL−1(w0,l)(u)− c√
T
− c′

T
,

where we use in last line the decomposition as above and noting that on Ωijk
α,β,γ ,

we have α = α0 + ε with ε > −δ, and on the complementary, ε ≥ −‖wscale‖∞.

Now we need to control the second term in the previous inequality. As in the

proof of Theorem 3.1, we have, for any i = 1, ...,K, under the shifted distribution,

xL(i) = (wreal
0,L (i) + wL|(i) ∗ xL−1 + b0,L(i) + bL(i)

= wreal
0,L (i) ∗ xL−1(w0) + b0,L(i) + wreal

0,L (i) ∗ (xL−1 − xL−1(w0)) + wL(i) ∗ xL−1 + bL(i)

= xL(w0)(i) + wreal
0,L (i) ∗ (xL−1 − xL−1(w0)) + wL(i) ∗ xL−1 + bL(i).

25

Then we have:

Ew∼ρ0 log(CL) = Ew∼ρ0 log
K∑
i=1

exL(w0)|i exp
(
wreal

0,L |i ∗ (xL−1 − xL−1(w0)) + wL|i ∗ xL−1 + bL|i
)

≤ logCL(w0) + Ew∼ρ0 max
i=1,...K

{
wreal

0,L |i ∗ (xL−1 − xL−1(w0)) + wL|i ∗ xL−1 + bL|i
}

≤ logCL(w0) +
c3√
T
,

where we use Lemma 4.7 in the last inequality. Then, applying L−3 times Lemma

4.7 for discrete layers and the same computations as in the proof Theorem 3.1 for

the first and last layer, we have finally, gathering with the last inequality:

T∑
t=1

EπtH (yt, gwt(xt)) ≤
T∑
t=1

H (yt, gw0(xt)) + c
√
T

+ EπT−1
0

T∑
t=1

λ

2
Ew∼ρ0(H(yt, gw(xt))−H(yt, ĝt(xt))

2 +
K(ρ0, π)

λ

≤
T∑
t=1

H (yt, gw0(xt)) + c1
√
T + c2λT

K(ρ0, π)

λ
,

where c1 > 0 is a positive constant depending on the previous computations.

Moreover, using the boundness assumption on w0 and the same computations as

in Theorem 3.1, we arrive at:

T∑
t=1

EπtH (yt, gwt(xt)) ≤
T∑
t=1

H (yt, gw0(xt)) + c1
√
T + c2λT +

K(ρ0, π)

λ
,

where c2 := c2(R) > 0. Finally, by the definition of ρ0 and the sparsity prior π,

we can bound the Kullback-Leibler divergence as follows:

K(ρ0, π) =

∫
log

(
ρ0(w)

π(w)

)
ρ0(w) dw

=

preal∑
r=1

∫
log

(1 + |wreal
r |/τ)4

(1 + |wreal
r − wreal

0,r |/τ)4

)
ρ0(w) dw +

pbin∑
r=1

∫
log
(
2δw0,r(wr)

)
ρ0(w)dw

+

pscale∑
r=1

∫
log

(1 + |wscale
r /τ)4

(1 + |wscale
r − wscale

0,r |/τ)4

)
ρ0(w) dw

≤ 4

preal∑
r=1

log

(
1 +
|wreal

0,r |
τ

)
+ pbin log 2 + 4

pscale∑
r=1

log

(
1 +

wscale
0,r

τ

)

≤ 4‖wreal
0 ‖0 log

(
1 +

‖wreal
0 ‖1

τ‖wreal
0 ‖0

)
+ 4‖wscale

0 ‖0 log

(
1 +

‖wscale
0 ‖1

τ‖wscale
0 ‖0

)
+ pbin log 2

:= penXNOR(w0).
26

References

[1] Andrew Chee and Sébastien Loustau. Learning with bot - bregman and op-

timal transport divergences. https://hal.archives-ouvertes.fr/hal-03262687,

2021.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-

sification with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097–1105, 2012.

[3] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[4] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional

networks for text classification. In Advances in neural information processing

systems, pages 649–657, 2015.

[5] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,

Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray

Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint

arXiv:1609.03499, 2016.

[6] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-

wards real-time object detection with region proposal networks. In Advances

in neural information processing systems, pages 91–99, 2015.

[7] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[8] Iasonas Kokkinos. Ubernet: Training a universal convolutional neural net-

work for low-, mid-, and high-level vision using diverse datasets and limited

memory. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 6129–6138, 2017.

[9] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binarycon-

nect: Training deep neural networks with binary weights during propaga-

tions. In Advances in neural information processing systems, pages 3123–

3131, 2015.
27

[10] Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary

neural network with high accuracy? In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 31, 1, 2017.

[11] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and

Yoshua Bengio. Binarized neural networks: Training deep neural net-

works with weights and activations constrained to+ 1 or-1. arXiv preprint

arXiv:1602.02830, 2016.

[12] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.

Xnor-net: Imagenet classification using binary convolutional neural net-

works. In European conference on computer vision, pages 525–542. Springer,

2016.

[13] Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Improved binary

neural networks. arXiv preprint arXiv:1909.13863, 2019.

[14] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint

arXiv:1605.04711, 2016.

[15] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng

Zou. Dorefa-net: Training low bitwidth convolutional neural networks with

low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

[16] Wonyong Sung, Sungho Shin, and Kyuyeon Hwang. Resiliency of deep neural

networks under quantization. arXiv preprint arXiv:1511.06488, 2015.

[17] Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini. Yodann:

An architecture for ultralow power binary-weight cnn acceleration. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

37(1):48–60, 2017.

[18] Ahmad Shawahna, Sadiq M Sait, and Aiman El-Maleh. Fpga-based accel-

erators of deep learning networks for learning and classification: A review.

IEEE Access, 7:7823–7859, 2018.

[19] Michael C Mozer and Paul Smolensky. Skeletonization: A technique for

trimming the fat from a network via relevance assessment. In Proceedings of
28

the 1st International Conference on Neural Information Processing Systems,

pages 107–115, 1988.

[20] Zichao Yang, Marcin Moczulski, Misha Denil, Nando De Freitas, Alex Smola,

Le Song, and Ziyu Wang. Deep fried convnets. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1476–1483, 2015.

[21] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-

shot network pruning based on connection sensitivity. arXiv preprint

arXiv:1810.02340, 2018.

[22] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets

before training by preserving gradient flow. arXiv preprint arXiv:2002.07376,

2020.

[23] Pau de Jorge, Amartya Sanyal, Harkirat S Behl, Philip HS Torr, Gregory

Rogez, and Puneet K Dokania. Progressive skeletonization: Trimming more

fat from a network at initialization. arXiv preprint arXiv:2006.09081, 2020.

[24] Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein.

Deep rewiring: Training very sparse deep networks. In International Con-

ference on Learning Representations, 2018.

[25] Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-

of-the-art. arXiv preprint arXiv:1908.00709, 2019.

[26] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming

Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet:

Hardware-aware efficient convnet design via differentiable neural architecture

search. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 10734–10742, 2019.

[27] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler,

Andrew Howard, and Quoc V Le. Mnasnet: Platform-aware neural architec-

ture search for mobile. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2820–2828, 2019.

29

[28] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement

learning. arXiv preprint arXiv:1611.01578, 2016.

[29] Tom Veniat and Ludovic Denoyer. Learning time/memory-efficient deep

architectures with budgeted super networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 3492–3500,

2018.

[30] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Sain-

ing Xie, Bichen Wu, Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2:

Differentiable neural architecture search for spatial and channel dimensions.

arXiv preprint arXiv:2004.05565, 2020.

[31] Adrià Ruiz and Jakob Verbeek. Distilled hierarchical neural ensembles with

adaptive inference cost. arXiv preprint arXiv:2003.01474, 2020.

[32] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient

processing of deep neural networks: A tutorial and survey. Proceedings of

the IEEE, 105(12):2295–2329, 2017.

[33] Titouan Parcollet and Mirco Ravanelli. The Energy and Carbon Footprint of

Training End-to-End Speech Recognizers. working paper or preprint, April

2021.

[34] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dan-

dres. Quantifying the carbon emissions of machine learning. arXiv preprint

arXiv:1910.09700, 2019.

[35] Peter Henderson, Jie-Ru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky,

and Joelle Pineau. Towards the systematic reporting of the energy and

carbon footprints of machine learning. ArXiv, abs/2002.05651, 2020.

[36] Löıc Lannelongue, Jason Grealey, and Michael Inouye. Green algorithms:

Quantifying the carbon emissions of computation. Advanced science, 05

2021.

30

[37] Lasse Anthony, Benjamin Kanding, and Raghavendra Selvan. Carbon-

tracker: Tracking and predicting the carbon footprint of training deep learn-

ing models. page arXiv preprint https://arxiv.org/abs/2007.03051, 07 2020.

[38] David A. Patterson, Joseph Gonzalez, Quoc V. Le, Chen Liang, Lluis-Miquel

Munguia, Daniel Rothchild, David R. So, Maud Texier, and Jeff Dean. Car-

bon emissions and large neural network training. CoRR, abs/2104.10350,

2021.

[39] Qingqing Cao, Aruna Balasubramanian, and Niranjan Balasubramanian. To-

wards accurate and reliable energy measurement of NLP models. In Pro-

ceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language

Processing, pages 141–148, Online, November 2020. Association for Compu-

tational Linguistics.

[40] Crefeda Faviola Rodrigues, Graham Riley, and Mikel Luján. Synergy: An

energy measurement and prediction framework for convolutional neural net-

works on jetson tx1. In Proceedings of the International Conference on Paral-

lel and Distributed Processing Techniques and Applications (PDPTA), pages

375–382. The Steering Committee of The World Congress in Computer Sci-

ence, Computer . . . , 2018.

[41] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spec-

tral networks and locally connected networks on graphs. arXiv preprint

arXiv:1312.6203, 2013.

[42] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bom-

barell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convo-

lutional networks on graphs for learning molecular fingerprints. In Advances

in neural information processing systems, pages 2224–2232, 2015.

[43] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation

learning on large graphs. In Advances in neural information processing sys-

tems, pages 1024–1034, 2017.

31

[44] David A McAllester. Some pac-bayesian theorems. Machine Learning,

37(3):355–363, 1999.

[45] David A McAllester. Pac-bayesian stochastic model selection. Machine

Learning, 51(1):5–21, 2003.

[46] Arnak S Dalalyan, Alexandre B Tsybakov, et al. Mirror averaging with

sparsity priors. Bernoulli, 18(3):914–944, 2012.

[47] Anatoli Juditsky, Philippe Rigollet, Alexandre B Tsybakov, et al. Learning

by mirror averaging. The Annals of Statistics, 36(5):2183–2206, 2008.

[48] Jean-Yves Audibert et al. Fast learning rates in statistical inference through

aggregation. The Annals of Statistics, 37(4):1591–1646, 2009.

[49] Andrew R Barron. Are bayes rules consistent in information? In Open

Problems in Communication and Computation, pages 85–91. Springer, 1987.

[50] Sébastien Gerchinovitz. Sparsity regret bounds for individual sequences

in online linear regression. Journal of Machine Learning Research,

14(Mar):729–769, 2013.

[51] Le Li, Benjamin Guedj, Sébastien Loustau, et al. A quasi-bayesian perspec-

tive to online clustering. Electronic journal of statistics, 12(2):3071–3113,

2018.

[52] Arnak S Dalalyan and Alexandre B Tsybakov. Sparse regression learning

by aggregation and langevin monte-carlo. Journal of Computer and System

Sciences, 78(5):1423–1443, 2012.

[53] Johannes Schmidt-Hieber. Statistical guarantees for regularized neural net-

works. Taheri, Masha and Xie, Eang and Lederer, Johannes, 48(4):1875–

1897, 2020.

[54] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei,

Kan Chen, Yuandong Tian, Matthew Yu, Peter Vajda, and Joseph E. Gon-

zalez. Fbnetv3: Joint architecture-recipe search using predictor pretraining.

arXiv preprint arXiv:2006.02049, 2021.

32

[55] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent

sample complexity of neural networks. In Sébastien Bubeck, Vianney

Perchet, and Philippe Rigollet, editors, Proceedings of the 31st Conference

On Learning Theory, volume 75 of Proceedings of Machine Learning Re-

search, pages 297–299. PMLR, 06–09 Jul 2018.

[56] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-

normalized margin bounds for neural networks. In I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,

Advances in Neural Information Processing Systems, volume 30. Curran As-

sociates, Inc., 2017.

[57] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-

bayesian approach to spectrally-normalized margin bounds for neural net-

works. In 6th International Conference on Learning Representations, ICLR

2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track

Proceedings. OpenReview.net, 2018.

[58] Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoret-

ical Foundations. Cambridge University Press, 1999.

33

