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ABSTRACT

Using the method that was developed in the first paper of this series, we measured the vertical gravitational potential of the Galactic
disk from the time-varying structure of the phase-space spiral, using data from Gaia as well as supplementary radial velocity informa-
tion from legacy spectroscopic surveys. For eleven independent data samples, we inferred gravitational potentials that were in good
agreement, despite the data samples’ varied and substantial selection effects. Using a model for the baryonic matter densities, we
inferred a local halo dark matter density of 0.0085 ± 0.0039 M� pc−3 = 0.32 ± 0.15 GeV cm−3. We were also able to place the most
stringent constraint on the surface density of a thin dark disk with a scale height ≤50 pc, corresponding to an upper 95% confidence
limit of roughly 5 M� pc−2 (compared to the previous limit of roughly 10 M� pc−2, given the same scale height). For the inferred
halo dark matter density and thin dark disk surface density, the statistical uncertainties are dominated by the baryonic model, which
potentially could also suffer from a significant systematic error. With this level of precision, our method is highly competitive with tra-
ditional methods that rely on the assumption of a steady state. In a general sense, this illustrates that time-varying dynamical structures
are not solely obstacles to dynamical mass measurements, but they can also be regarded as assets containing useful information.

Key words. Galaxy: kinematics and dynamics – Galaxy: disk – solar neighborhood – astrometry

1. Introduction

Our knowledge about the dynamics, composition, and history of
the Milky Way is intimately connected to the determination of
its gravitational potential (Dehnen & Binney 1998; Klypin et al.
2002; Widrow et al. 2008; Kafle et al. 2014; Cole & Binney
2017; McMillan 2017; Nitschai et al. 2020; Cautun et al. 2020;
Li et al. 2020). Furthermore, direct and indirect dark mat-
ter detection experiments rely on precise knowledge on how
dark matter is distributed in our Galaxy (Stoehr et al. 2003;
Vogelsberger et al. 2009; Klasen et al. 2015; Petač 2020; Nobile
2021). The gravitational potential of the Galaxy is often
inferred by fitting a stellar number density distribution to
data under the assumption of a steady state, either in the
solar neighbourhood (McKee et al. 2015; Widmark & Monari
2018; Sivertsson et al. 2018; Schutz et al. 2018; Buch et al.
2019; Guo et al. 2020; Salomon et al. 2020; Li & Widrow
2021) or a more global spatial volume (Nesti & Salucci 2013;
Cole & Binney 2017; McMillan 2017; Cautun et al. 2020;
Hattori et al. 2020; Petač 2020). Other studies have explored a
measurement of the gravitational potential directly from stellar
accelerations (Chakrabarti et al. 2021; Buschmann et al. 2021)
or from stellar streams (Koposov et al. 2010; Bonaca & Hogg
2018; Malhan & Ibata 2019; Widmark et al. 2020).

Gravitational probes of the Milky Way can help constrain the
particle nature of dark matter through the detection or exclusion

of dark substructures, such as the subhalos predicted in the cold
dark matter scenario (Diemand et al. 2008; Springel et al. 2008;
Stref & Lavalle 2017; Facchinetti et al. 2020). There has also
been speculation that a dark disk, co-planar with the stellar disk,
could exist in the Milky Way, formed either from the accretion
of satellites (Read et al. 2008; Purcell et al. 2009; Ruchti et al.
2014) or, in a less standard scenario, from a dark matter particle
sub-species with strong dissipative self-interactions (Fan et al.
2013a,b). This latter type of dark disk could potentially be
very thin, with a scale height as small as a few tens of par-
secs. Such a disk has been constrained in dynamical mass
measurements of the solar neighbourhood (Kramer & Randall
2016b; Caputo et al. 2018; Schutz et al. 2018; Buch et al. 2019),
where the strongest constraints use Gaia observations of the
very local population of stars. However, in a similar study
by Widmark et al. (2021a) (also drawing from the results of
Widmark 2019), they argue that such measurements are strongly
biased by time-varying dynamical effects.

Although disk formation requires a fairly quiescent accretion
history (Freeman & Bland-Hawthorn 2002), non-equilibrium
effects are certainly not lacking in the Milky Way. Over
the last decades, a growing body of observations, partly
enabled by the advent of large automated Milky Way surveys,
have revealed signs of large-scale asymmetries in the verti-
cal structure in the solar neighbourhood (Widrow et al. 2012)
and the outskirts of the Galactic disk (Newberg et al. 2002),
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as well as in its velocity distribution (Widrow et al. 2012;
Williams et al. 2013; Carlin et al. 2013). This suggests the
presence of bending waves in the disk (Xu et al. 2015;
Price-Whelan et al. 2015; Sheffield et al. 2018; Bergemann et al.
2018), possibly sourced by self-excitation (Chequers & Widrow
2017), satellite and dark subhalo interactions (Kazantzidis et al.
2008; Gómez et al. 2013; Widrow et al. 2014; Chequers et al.
2018), fly-bys (Gómez et al. 2016), or even bar buckling
(Khoperskov et al. 2019). The Gaia satellite reaffirmed the pres-
ence of these asymmetries and helped characterise the wave-
length of these perturbations (e.g., Schönrich & Dehnen 2018),
as well as their time-evolving nature. Using the second data
release from Gaia, Antoja et al. (2018) revealed the presence
of a phase-space spiral in the solar neighbourhood. The pres-
ence of the phase-space spiral at all stellar ages, as shown
by Laporte et al. (2019), indicates a recent collective pertur-
bation of the disk. Furthermore, the spiral’s presence over
more than two disk scale lengths (Laporte et al. 2019) and as
far as 14 kpc from the Galactic centre (Xu et al. 2020) con-
firms it being a manifestation of a disk-wide disequilibrium
phenomenon. This reinforces the connection between the per-
turbations seen in the solar neighbourhood and the Galactic
outskirts, as was originally predicted by pre-Gaia models of
satellite interactions (Laporte et al. 2018), such as the Sagit-
tarius dwarf galaxy. Indeed, using toy models, Antoja et al.
(2018) and Binney & Schönrich (2018) noted that the perturba-
tion may have been set off as far back as 900 Myr ago, which
is similar to the orbital period of the Sagittarius dwarf galaxy
derived from stream fitting models (e.g., Johnston et al. 2005;
Vasiliev et al. 2021). Although the phase-space spiral was orig-
inally identified and mostly studied in its azimuthal and radial
velocity moments (e.g., Antoja et al. 2018; Binney & Schönrich
2018; Khoperskov et al. 2019; Bland-Hawthorn et al. 2019), we
exploit the spiral’s shape as seen in terms of its relative num-
ber density with respect to the stellar bulk background, as first
revealed in Laporte et al. (2019). This reduces the exercise of
potential fitting to only the vertical dimension, similar to what
is typically done when determining the gravitational potential
and dark matter density in the solar neighbourhood (Read 2014;
de Salas & Widmark 2020).

The phase-space spiral is a time-varying dynamical structure
and as such it constitutes an obstacle and a systematic bias to
traditional dynamical mass measurement methods that assume
a steady state (e.g., Jeans modelling). The method employed in
this work is complementary to such traditional methods, in the
sense that it extracts information from the shape of the phase-
space spiral itself. It does so under the assumption that the wind-
ing angle of the spiral is a smooth function with respect to
vertical energy; given the shape of spiral in the (z,w)-plane,
this sets strong constraints on the vertical gravitational poten-
tial. The general principles of our method are discussed at length
in the first paper of this series—Widmark et al. (2021b), hence-
forth referred to as Paper I—where we also tested our method
on one-dimensional simulations. In those tests, we were able to
retrieve the true gravitational potentials of our simulations with
high accuracy.

In this work, we applied our method to the Milky Way,
using the early instalment of Gaia’s third data release (EDR3),
supplemented with radial velocity measurements from legacy
spectroscopic surveys through the catalogue compiled by
Sanders & Das (2018). We constructed eleven main data sam-
ples using different cuts in Galactocentric radius and angular
momentum. We were able to measure the gravitational potential
to high precision and, using a model for the baryonic densities,

we inferred the local halo dark matter density and placed the
most stringent constraints on the surface density of a thin dark
disk.

This article is structured as follows. We begin with some def-
initions in Sect. 2, such as the coordinate system, continuing with
a description of the data in Sect. 3. In Sects. 4 and 5, we outline
our model of inference and our model for the baryonic matter
densities in the solar neighbourhood. In Sect. 6, we present our
results. Finally, we discuss and conclude in Sects. 7 and 8.

2. Coordinate system and other definitions

In this paper, we use the following system of coordinates. The
spatial coordinates X ≡ {X,Y,Z} denote the position with respect
to the Sun, where positive X corresponds to the direction of
the Galactic centre, positive Y corresponds to the direction of
Galactic rotation, and positive Z corresponds to the direction
of Galactic north. Their respective time derivatives correspond
to velocities V ≡ {U,V,W} in the solar rest frame.

The spatial coordinate Z, denoting height with respect to the
Sun, is related to the height with respect to the Galactic disk,
written z, according to

z = Z + Z�, (1)

where Z� is the Sun’s height with respect to the Galactic mid-
plane. Similarly, the velocities in the Local Standard of Rest (see
Binney & Tremaine 2008), written u ≡ {u, v, w}, are found via the
Sun’s peculiar motion, written V� ≡ {U�,V�,W�}, according to

u = V + V�. (2)

We adopt values of V� = {11.1, 12.24, 7.25} km s−1

(Schönrich et al. 2010).
The Poisson equation is written

∂2Φ(R, z)
∂z2 +

1
R
∂

∂R

[
R
∂Φ(R, z)
∂R

]
= 4πGρ(z), (3)

where we have neglected the contribution in the azimuthal direc-
tion (which is zero in the case of rotational symmetry). The sec-
ond term of the left-hand side is known as the circular velocity
term, because the circular velocity of the Galactic plane vc is
given by

v2
c(R) = R

∂Φ(R, 0 pc)
∂R

. (4)

This term can be written as a matter density correction, as

∆ρ =
1

4πGR
∂

∂R

[
R
∂Φ(R, 0 pc)

∂R

]
. (5)

Because the rotational velocity curve is close to flat, this cor-
rection is small; the slope of the circular velocity is roughly
∂vc/∂R = −1.5 ± 0.2 km s−1 kpc−1 (−1.7 ± 0.1 km s−1 kpc−1

in Eilers et al. 2019; −1.33 ± 0.1 km s−1 kpc−1 in Ablimit et al.
2020), giving ∆ρ ' −0.0016 ± 0.0006 M� pc−3.

In our model of inference, the gravitational potential is equal
to

Φ(z | ρh) =

4∑
h=1

4πGρh

(2h−1 × 100 pc)2 log
[

cosh
(

z
2h−1 × 100 pc

)]
, (6)

where the free parameters ρh={1,2,3,4} are constrained to lie in the
range [0, 0.2] M� pc−3. Via the Poisson equation of Eq. (3) and
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Table 1. Stellar number counts of radial velocity information for our
eleven main data samples.

Survey Number count Percentage

Gaia 943,742 91.61
LAMOST 38,271 3.72
GALAH 22,834 2.22
RAVE 12,273 1.19
APOGEE 11,530 1.12
SEGUE 950 0.09
GES 518 0.05

also accounting for the matter density correction of Eq. (5), the
total matter density is equal to

ρ(z) =

[ 4∑
h=1

ρh cosh−2
(

z
2h−1 × 100 pc

)]
+ ∆ρ. (7)

Using this functional form, the gravitational potential and mat-
ter density distribution are very free to vary in shape (although
assumed to be symmetric, smooth, and strictly decreasing with
|z|). They are not constrained by strong prior information about
the baryonic matter density distribution in the Galactic disk,
but are flexible enough to emulate such models (see e.g.,
McKee et al. 2015 and Schutz et al. 2018).

3. Data

In this work we have used data from Gaia EDR3, supplemented
with radial velocity information compiled in Sanders & Das
(2018) using LAMOST DR3 (Deng et al. 2012), GALAH DR2
(Buder et al. 2018), RAVE DR5 (Kunder et al. 2017), APOGEE
DR14 (Abolfathi et al. 2018), SEGUE (Yanny et al. 2009), and
GES DR3 (Gilmore et al. 2012). A supplementary radial veloc-
ity was used if a star in the Gaia catalogue had missing radial
velocity information or had a radial velocity uncertainty larger
than 3 km s−1. If there was radial velocity information from sev-
eral supplementary surveys, we used the value with the small-
est associated uncertainty. Additionally, we excluded any star
with discrepant radial velocity measurements, requiring less than
a 2.5σ tension between all supplementary surveys that had a
radial velocity uncertainty smaller than 5 km s−1; this amounted
to removing roughly one per cent of the stars with supplemen-
tary radial velocity measurements. The stellar number counts of
the radial velocity information taken from the respective surveys
are listed in Table 1.

We constructed eleven main data samples on which we
applied our method. To begin with, we made cuts in data quality,
which all samples were subjected to. After that, we constructed
our respective samples by making cuts in phase-space. These
cuts are discussed in detail below.

3.1. Data quality cuts

In this work, we applied quite strong constraints with respect to
data quality. This was done in order to be able to neglect observa-
tional uncertainties and utilise the stars’ six-dimensional phase-
space information. At the same time, this gave rise to strong
selection effects, most importantly with regards to radial velocity
completeness, which has a strong spatial dependence. However,
strong selection effects are not detrimental to our method, as long

as the shape of the phase-space spiral is robustly extracted (this
is discussed further in the beginning of Sect. 4.1).

We required that the stars in our data sets would have a Gaia
G-band magnitude smaller than 15 mag (in Gaia EDR3 there
are only spurious stars with radial velocity information above
15 mag, see Gaia Collaboration 2021a), and a radial velocity
uncertainty (σRV) smaller than 3 km s−1. For the radial velocity
measurements coming from the Gaia spectrograph, the uncer-
tainties are typically around 0.3 km s−1 for bright stars and
1.8 km s−1 for dim stars (Katz et al. 2019), with only a thin tail
of stars with uncertainties larger than 3 km s−1; as such, our cut
in radial velocity uncertainty only removed a small fraction of
stars from our data samples.

In terms of the astrometric measurements, we required that
the renormalised unit weight error (RUWE) would be smaller
than 1.4 and that the parallax uncertainty (σ$) would be smaller
than 0.05 mas. The first of these criteria is already very constrain-
ing, such that applying the subsequent second criteria removed
only one in a thousand stars.

In summary, the data quality cuts can be written as follows:

(i) G < 15 mag,

(ii) σRV < 3 km s−1,

(iii) RUWE < 1.4,
(iv) σ$ < 0.05 mas. (8)

3.2. Phase-space cuts

For the main data samples, we made the following phase-space
cuts. We constructed bins in Galactocentric radius that were 100
pc wide, labelled by the index s, and also restricted the spatial
extent in the azimuthal direction to |Y | ≤ 400 pc. In this spatial
volume, we made cuts in angular momentum, requiring it to be
close (±10%) to that of a circular orbit. The angular momentum
of a star is equal to

Lz = vφ × R, (9)

where vφ is the velocity in the azimuthal direction in the Galactic
rest frame. The angular momentum of a perfectly circular orbit
was calculated by taking the data sample’s Galactocentric mid-
point and multiplying it by the circular velocity, according to

Lz,circ. = vc × [R� + (100s pc)], (10)

assuming a flat rotation curve with a circular velocity of vc =
240 km s−1 (Reid et al. 2014) and a solar Galactocentric radius of
R� = 8178 pc (Gravity Collaboration 2019). In Fig. 1, we show
the histogram of the angular momentum relative to the angular
momentum of a circular orbit. The Lz distribution is not perfectly
centred on Lz,circ, but rather slightly shifted towards smaller val-
ues, as expected due to asymmetric drift (Binney & Tremaine
2008).

When making these cuts in data, we neglected any obser-
vational uncertainties associated with the measurements. For
example, a star’s coordinate Y is taken directly from its angu-
lar position on the sky and its parallax value, according to
Y = cos(l) cos(b) (mas/$) kpc. This is motivated by our restric-
tive cuts in data quality; for example, with this parallax preci-
sion, the distance is known to a relative uncertainty of only a
few percent at the furthest relevant distance of one kilo-parsec.
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Fig. 1. Histogram of angular momentum (Lz) relative to the angular
momentum of a circular orbit (Lz,circ.), for different cuts in Galactocen-
tric radius, where R − R� ∈ [100s − 50, 100s + 50] pc. The grey band
highlights the region where Lz is within 10% of Lz,circ..

In summary, the phase-space cuts of the main data samples
can be written:

(i)
R − R�

pc
∈ [100s − 50, 100s + 50],

(ii)
Y
pc
∈ [−400, 400],

(iii)
Lz

vc × [R� + (100s pc)]
∈ [0.9, 1.1], (11)

where s is an integer in range −5 to 5.
To validate our choice of phase-space cuts, we also applied

our method to a variety of data samples using different cuts. In
particular, we include the results from an additional data sam-
ple where we only make a spatial cut according to

√
X2 + Y2 <

300 pc, with no cut in angular momentum. The total number of
stars in our respective data samples is listed in Table 2, counting
only the stars for which |Z| < 800 pc.

3.3. Data reduction

In our model of inference, the data was in the reduced form
of a two-dimensional histogram in the (Z,W)-plane. This his-
togram is the number count of observed stars in bins of size
(20 pc) × (1 km s−1), written di, j, where the indices (i, j) label
the respective bins. Similar to the phase-space cuts defined
in Sect. 3.2, the values for Z and W are taken directly from
the astrometric measurements, neglecting any observational
uncertainties.

4. Model of inference

The method used in this work is the same as the one presented
in Paper I, although with some minor modifications, which are
as follows: (i) we constrain ourselves to an asymmetric single-
armed spiral; (ii) the spiral is fitted to slightly lower vertical

Table 2. Total number count of our main eleven data samples summed
together, with the additional constraints that |Z| < 800 pc.

Data sample Number count

s = −5 36 810
s = −4 54 099
s = −3 78 581
s = −2 111 918
s = −1 150 048
s = 0 171 432
s = 1 145 883
s = 2 108 238
s = 3 76 247
s = 4 52 402
s = 5 35 727
<300 pc 812 250

energies; (iii) we mask the data for latitudes lower than |b| . 20◦;
(iv) the Sun’s vertical position and vertical velocity are fixed
rather than free parameters. Our method is described below,
with emphasis on its modifications with respect to the original
version.

Just as for the tests run in Paper I, we assume separabil-
ity of the gravitational potential and reduce the dynamics to
only the vertical dimension. In Jeans analysis, the so-called tilt
term accounts for the coupling between the radial and verti-
cal directions, and is a derivative of the bulk phase-space den-
sity distribution with respect to the radial direction. Because
our method disregards the bulk density, no such term enters our
method. The radial-vertical coupling of the gravitational poten-
tial does induce a radial motion, but for the relevant range of
vertical energies (Ez < Φ(700 pc)) this motion is small com-
pared to the radial extent of our data samples. In principle,
this can still become relevant to the extent that the shape of
the spiral has a radial dependence. Because the inferred grav-
itational potentials and phase-space spiral shapes are so simi-
lar between neighbouring data samples (see Sect. 6 for more
details), we deem such effects to be negligible, which moti-
vates the assumption of vertical separability when using this
method.

4.1. Bulk and spiral phase-space densities

In our method, we fit a phase-space distribution to data, consist-
ing of a product of bulk and a spiral phase-space density distribu-
tion. In traditional methods that are based on the assumption of a
steady state, the bulk density is the quantity that is used to infer
the gravitational potential. Conversely, in our method the bulk is
only fitted in order to extract the spiral shape and does not influ-
ence, nor is influenced by, the inferred gravitational potential.
Because the bulk is fitted as a mere background, to a large extent
it absorbs any selection effects pertinent to the data. Such effects
are critical to account for in steady state modelling, but can be
disregarded in our method as long as the shape of the spiral is
robustly extracted.

The free parameters of our model are shown in Table 3. The
parameters are split into two groups: the bulk phase-space den-
sity parameters, writtenΨbulk, and the spiral phase-space density
parameters, written Ψspiral. The total number of free parameters
is equal to 7 + 3K, where K is the number of Gaussian compo-
nents in the bulk stellar density, for which we set K = 6.
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Table 3. Free parameters in our model of inference.

Ψbulk Bulk phase-space density parameters

ak Weights of the Gaussian mixture model
σz,k, σw,k Dispersions of the Gaussian mixture model
Ψspiral Spiral phase-space density parameters
ρh={1,2,3,4} Mid-plane matter densities
t Time since the perturbation was produced
ϕ̃0 Initial angle of the perturbation
α Relative density amplitude of the spiral

We model the bulk density as a Gaussians mixture model
according to

B(z,w |Ψbulk) =

K∑
k=1

ak

exp
(
−

z2

2σ2
z,k

)
√

2πσ2
z,k

exp
(
−

w2

2σ2
w,k

)
√

2πσ2
w,k

, (12)

whereΨbulk are the bulk density components, which includes the
Gaussian weights (ak) and dispersions (σz,k, σw,k).

A star’s vertical oscillation has a total time period of

P(Ez | ρh) =

∮
dz
w

= 4
∫ zmax

0

dz√
2[Ez − Φ(z | ρh)]

, (13)

where Ez = Φ(z | ρh) + w2/2 is a star’s vertical energy per
mass, zmax is the maximum height that a star reaches, and ρh
parametrises the gravitational potential according to Eq. (6). The
position of a star in the (z,w)-plane is associated with a temporal
angle, which is given by

ϕ(z,w | ρh) =

2πP−1
∫ |z|

0

dz′√
2[Ez − Φ(z′ | ρh)]

if z ≥ 0 and w ≥ 0,

π − 2πP−1
∫ |z|

0

dz′√
2[Ez − Φ(z′ | ρh)]

if z ≥ 0 and w < 0,

π + 2πP−1
∫ |z|

0

dz′√
2[Ez − Φ(z′ | ρh)]

if z < 0 and w < 0,

2π − 2πP−1
∫ |z|

0

dz′√
2[Ez − Φ(z′ | ρh)]

if z < 0 and w ≥ 0.

(14)

In our analytic spiral model, the initial perturbation is
assumed to have no initial winding. Because the gravitational
potential is anharmonic, this perturbation winds into a spiral with
time. Even though the initial perturbation might have a more
complicated form, the winding behaviour can be expected to
dominate the shape of the eventual spiral, as long as the per-
turbation is not a spiral-resembling shape to begin with (a more
thorough discussion on the underlying assumptions of our spiral
model can be found in Paper I). The spiral angle as a function of
vertical energy Ez evolves according to

ϕ̃(t, Ez | ρh, ϕ̃0) = ϕ̃0 + 2π
t

P(Ez | ρh)
, (15)

where ϕ̃0 is the initial angle of the perturbation.
The total phase-space density of our analytical model is

equal to

f (z,w |Ψ)= B(z,w |Ψbulk)×
[
1+m(z,w | ρh) S (z,w |Ψspiral)

]
. (16)

In this expression,

S (z,w |Ψspiral) = α cos
[
ϕ(z,w | ρh) − ϕ̃(t, Ez | ρh, ϕ̃0)

]
, (17)

is the relative number density of the spiral with respect to the
bulk, where α is a unit-less amplitude in range [0, 1]. This is the
first difference with respect to how the method was formulated in
Paper I, which included a symmetric spiral component with an
amplitude β. This component was not included here, as no sec-
ond arm is seen for the Milky Way spiral. Furthermore, Eq. (16)
contains the quantity

m(z,w | ρh) = sigm
[

Ez(z,w | ρh) − Φ(300 pc | ρh)
Φ(300 pc | ρh) − Φ(280 pc | ρh)

]
, (18)

where

sigm(x) ≡
1

1 + exp(−x)
. (19)

This sets a lower boundary in Ez to the spiral of our ana-
lytic model; close to the origin of the (z,w)-plane, the spiral
is washed out due to self-gravity effects. The numerical val-
ues of the m(z,w | ρh) function constitute our second modifica-
tion with respect to the method as formulated in Paper I, in that
the inner boundary is somewhat less restrictive, using a limit of
Ez & Φ(300 pc) instead of Ez & Φ(400 pc). The reason for this
change is that the phase-space spiral of the actual Milky Way
is more clearly defined in the inner region than for the one-
dimensional simulations of Paper I, possibly because the effects
of self-gravity are not as strong and cohesive for the more com-
plex, three-dimensional kinematics of our Galaxy.

4.2. Data likelihood and masks

In our method, the phase-space density model was fitted to data
in two separate steps. In the first step, we fitted the bulk density
distribution without the spiral; in other words, we minimised the
data likelihood with respect to Ψbulk while α = 0. In the second
step, we fitted the relative phase-space density spiral; in other
words, we minimised the likelihood with respect to Ψspiral while
Ψbulk remained fixed.

The data likelihood is given by the Poisson count comparison
of the model and data in the (Z,W)-plane, in bins labelled by the
indices (i, j). The logarithm of the likelihood is equal to

ln L(di, j |Ψ) =

−
∑
i, j

θ(|Zi| − Z̄) M(Zi,W j)
[di, j − f (Zi + Z�,W j + W�,Ψ)]2

2 f (Zi + Z�,W j + W� |Ψ)

+ {constant term}, (20)

where θ(|Zi| − Z̄) and M(Zi,W j) are mask functions described
below, and f (Zi + Z�,W j + W� |Ψ) is the model phase-space
density as defined in Eq. (16).

The first mask function in Eq. (20) is a Heaviside step func-
tion equal to

θ(|Zi| − Z̄) =

{
0, if |Zi| ≤ Z̄,
1, if |Zi| > Z̄,

(21)

where Z̄ = sin(20◦)×|100s| pc. This mask is applied to stars with
low heights, roughly corresponding to a cut in Galactic latitude
of |b| < 20◦. This constitutes the third modification with respect
to how the method was formulated in Paper I. It is included in
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this work due to severe selection effects, especially in terms of
the availability of radial velocity information close to the Galac-
tic plane (see Sect. 6 and Fig. 4).

The second mask function in Eq. (20) is M(Z,W), defining
a circular outer boundary in the (Z,W)-plane. It is applied in
order to mask the high vertical energies where the stellar number
density is low and the spiral is less pronounced. It is defined

M(Z,W) = sigm
{
− 10

[(
Z

Zlim.

)2

+

(
W + W�

Wlim.

)2

− 1
]}
, (22)

where sigm is the sigmoid function of Eq. (19). The numeri-
cal values of Zlim. and Wlim. differed for the two minimisation
steps of our method, in order to avoid fitting artefacts. In the
first step, when the bulk was fitted, we set Zlim. = 800 pc and
Wlim. = 44 km s−1. In the second step, when the spiral was fitted,
we set Zlim. = 700 pc and Wlim. = 40 km s−1.

The fourth and final modification of our method with respect
to Paper I is that we fixed the Sun’s vertical position and veloc-
ity (Z� and W�), rather than letting them be free parameters in
our fitting procedure. This is motivated by significant and spa-
tially dependent selection effects, coming from radial velocity
completeness and other data quality cuts; completeness is poor
close to the Galactic mid-plane and also has a strong asym-
metry with respect to the Galactic north and south for many
data samples. These issues made our inference of Z� and W�
highly unstable and they are better determined in other stud-
ies. For the Sun’s vertical velocity, we set W� = 7.25 km s−1,
which is a well established value, known to within an uncertainty
smaller than 0.05 km s−1 (Schönrich et al. 2010). Within this
uncertainty, varying W� has a negligible effect on our results. For
the Sun’s vertical position, the uncertainty is more significant.
Different studies have produced somewhat discrepant results,
ranging from roughly 0–20 pc (Jurić et al. 2008; Yao et al. 2017;
Bennett & Bovy 2019; Buch et al. 2019; Widmark et al. 2021a;
Gaia Collaboration 2021b). For this reason, we adopt three dif-
ferent values of Z� = {0, 10, 20} pc when applying our method,
which allows us to estimate the uncertainty of our result with
respect to the Sun’s position.

Our method was implemented in TensorFlow, allow-
ing for efficient minimisation using the Adam optimiser
(Kingma & Ba 2014). Still, minimising the spiral likelihood
function is computationally expensive, requiring several hundred
CPU hours. For a more detailed explanation of our method, as
well as illustrative examples highlighting its general principles,
we refer back to Paper I. The code used in this work is open
source and available online1.

4.3. Jackknifing

In order to estimate the statistical uncertainty of our respective
data samples, we employed the technique of “delete-d jackknif-
ing” (Efron 1982). With this technique, the statistical uncertainty
of some inferred parameter (e.g., ψ) is evaluated by inferring this
parameter for a number of subsamples constructed from the full
data sample. The statistical variance, written Var(ψ), is propor-
tional to the variance of the inferred parameter between the dif-
ferent subsamples, written Var∗(ψ), according to

Var(ψ) =
n − d

d
Var∗(ψ), (23)

where n is the total number of data objects and d is the number
of deleted data objects.
1 https://github.com/AxelWidmark/SpiralWeighing

Jackknifing should ideally be performed by running infer-
ence on all possible subsample constructions. This was not pos-
sible for us due to the computational cost of our algorithm. For
each data sample and fixed value of Z�, we independently con-
structed ten subsamples by randomly selecting half of the stars
(i.e. d = n/2).

5. Baryonic model

The gravitational potential of our model of inference, as stated
in Eq. (6), did not rely on any baryonic model. However, after
applying our method, we compared our results with a model for
the baryonic matter densities, in order to constrain the halo dark
matter density and the surface density of a thin dark disk.

We used the baryonic model from Schutz et al. (2018), based
on the pre-Gaia studies by Flynn et al. (2006), McKee et al.
(2015), and Kramer & Randall (2016a). This baryonic model is
also used in other local dynamical mass measurements, such
as Sivertsson et al. (2018), Buch et al. (2019), Widmark (2019),
and Widmark et al. (2021a). In this model, the total baryonic
density is a sum of twelve different components: four gas com-
ponents (molecular, cold atomic, warm atomic, and hot ionised
gas); six stellar components divided by absolute magnitude;
white dwarfs; and brown dwarfs. Each of the twelve components
is described in terms of its mid-plane matter density (ρt,0) and its
vertical velocity dispersion (σw,t). It is assumed that the respec-
tive components are iso-thermal, such that their matter density
profiles decay with height according to

ρt(z) = ρt,0 exp
[
−

Φ(z)
σ2

w,t

]
. (24)

In Fig. 2, we show the matter density distribution and vertical
gravitational potential of this baryonic model. In this figure, the
baryons are divided into four different groups: stars and dwarfs,
cold atomic gas, molecular gas, warm and hot gas. We also
include a halo dark matter density of 0.011±0.03 M� pc−3, which
encapsulates the approximate range of recent local dark matter
density measurements (de Salas & Widmark 2020).

It is important to note that this model of baryonic matter
densities in the solar neighbourhood could potentially suffer
from significant systematic errors. For the stellar components,
the assumption of iso-thermality are not ideal descriptions when
comparing with Gaia data: the stellar components’ vertical
velocity distributions are not strictly Gaussian but have heavier
tails and the shape of the stellar number density profiles differ
from those predicted by the baryonic model (a comparison can
be found in the appendix of Widmark et al. 2021a). This is, at
least in part, connected to the fact that the stellar components
are categorised in terms of absolute magnitude, which does not
differentiate them in terms of age and kinematic properties. Per-
haps even more worrisome are the matter density distributions of
the gas components, which have larger statistical uncertainties
and are arguably more prone to significant systematic bias. For
example, measuring molecular hydrogen depends on the CO-to-
H2 conversion factor, while measuring atomic hydrogen depends
on corrections for optical depth (e.g., discussed in Hessman
2015). Furthermore, the cold gas is non-uniformly distributed,
both in terms of density and ionisation (Lallement et al. 2003).
As such, it is not at all impossible that the baryonic model suf-
fers from systematic errors significantly larger than the reported
statistical uncertainties.
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Fig. 2. Baryonic model from Schutz et al. (2018), including a component of halo dark matter, shown in terms of its matter density distribution (left
panel) and vertical gravitational potential (right panel). Details are found in Sect. 5.

6. Results

In this section, we present the results from having applied our
method of inference on our respective data samples. Using a
summary of those results, we also place constraints on the local
dark matter density and the surface density of a thin dark disk.
Most figures in this section only show a smaller number of data
samples. The corresponding figures for the remaining data sam-
ples are found in Appendix A.

In Fig. 3, we show the data histograms of four representa-
tive data samples (s = {−4,−1, 0, 3}). The stellar number density
differs quite dramatically between data samples (their number
counts are listed in Table 2), mainly depending on the distance.
They vary in terms of their dispersion in Z, where the more
distant data samples are wider while nearby data samples seem
pinched (seen most clearly when comparing data samples s = −4
and s = 0). Furthermore, the more distant data samples have a
number density depression close to the Galactic mid-plane (i.e.
for low |Z|, seen most clearly for s = −4 and to a lesser extent
also for s = 3). All these features are due to selection effects,
most significantly because of the completeness of the radial
velocity measurements. For the nearby spatial volume, the radial
velocity data is deeper in terms of absolute magnitude. The com-
pleteness gets progressively worse with greater distances, espe-
cially close to the Galactic mid-plane where the radial velocity
measurements are obfuscated by stellar crowding.

In Fig. 4, we show the phase-space spirals for the same four
data samples as in Fig. 3 (s = {−4,−1, 0, 3}). The visualised
quantity is equal to

M(Zi,W j) ×
[

di, j − B(Zi + Z�,W j + W� |Ψbulk)
B(Zi + Z�,W j + W� |Ψbulk)

]
, (25)

where we have assumed a value of Z� = 10 pc. Furthermore,
this quantity is smoothed to an effective bin size of (40 pc) ×
(2 km s−1) for better visibility. The number density depression
close to the Galactic mid-plane is seen clearly in this figure, and
is confined to the boundaries of the θ mask function of Eq. (21).
There is also some asymmetry with respect to the Galactic mid-
plane, at least for the more distant data samples (seen also in
the figures in Appendix A). It is evident from both Figs. 3 and 4

that selection effects vary dramatically between the respective
data samples. Despite this, the phase-space spirals that emerge
when subtracting the bulk density are qualitatively similar, most
importantly in terms of their shapes.

In Fig. 5, we show the inferred matter density distribution
and inferred gravitational potential for three representative data
samples (s = {−2, 0, 2}). The coloured band corresponds to the
1σ statistical uncertainty given by jackknifing (as explained in
Sect. 4.3), including the variance coming from the three different
solar height values. The black lines correspond to the mean result
for the three different solar heights (Z� = {0, 10, 20} pc). The
grey band shows the baryonic model to within a 1σ uncertainty,
including a local dark matter density of 0.011 ± 0.003 M� pc−3.
The inferred gravitational potential agrees well with the baryonic
model, and is very well consistent between samples.

The inferred matter density distribution has a higher rela-
tive statistical uncertainty than the inferred gravitational poten-
tial, which is expected in any dynamical mass measurement due
to it being derived from the gravitational potential’s second order
derivative. It also varies more dramatically between samples, and
also for the different values of Z�. A general trend seen in Fig. 5,
as well as for the other data samples shown in Appendix A, is
that the inferred matter density distribution is flatter and agrees
better with the baryonic model for the data samples closer to
the Galactic centre (s ≤ 1). Conversely, the data samples in the
direction of the anti-centre (s ≥ 2) are more pinched, and some-
what discrepant with the baryonic model. There is a similar but
less pronounced trend for the different values of Z�, where espe-
cially Z� = 0 pc gives rise to flatter matter density distributions.

In Fig. 6, we show the inferred value of Φ(400 pc) for
all twelve data samples. As suggested by the test on one-
dimensional simulations in Paper I, the gravitational potential at
this height is the quantity that is most robustly inferred. Indeed,
the inferred values for Φ(400 pc) are largely consistent between
the different data samples. Interestingly, this is the case even for
the samples at greater distances (i.e. large |s|), for which the spi-
ral was much less clearly defined (e.g., s = −4 in Fig. 4). This
demonstrates that our method works reasonably well even when
the data is noisy and suffers from severe selection effects, which
are absorbed by the bulk density distribution. It is expected that
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Fig. 3. Histograms in the (Z,W)-plane, for data samples s = {−4,−1, 0, 3}. The scale of the colour bar is not linear, but follows sinh[10 ×
di, j/max(di, j)].

the mass of the Galactic disk varies with Galactocentric radius,
giving rise to a negative slope with respect to the data sample
index s. Such a slope is allowed but not preferred given our
results, and varies depending on what data samples are consid-
ered reliable enough to include in the fit of such a slope. For
some data samples, the size of the statistical uncertainties differ
quite a lot depending on Z�. This is most notable for data sample
s = −4, which has a very large uncertainty for Z� = 0 pc, but
rather small uncertainties for Z� = {10, 20} pc. The reason is that
the inner mask function, m(z,w | ρh) as defined in Eq. (18), is a
function of the phase-space coordinates in the rest frame of the
Galactic disk. This means that this masked region shifts some-
what in the (Z,W) histogram, depending on the fixed value of
Z�. Especially for the noisy histogram of data sample s = −4,
this small shift has a significant effect on the likelihood function.

In order to infer the local dark matter density, we com-
pared the inferred value of Φ(400 pc) with that of the bary-
onic model. The baryons and the matter density correction of
Eq. (5) amounted to a total contribution of 265.0 ± 16.0 km2 s−2

to Φ(400 pc). Any surplus with respect to this value was inter-
preted as halo dark matter. The reason for only using the value
of Φ(400 pc) is that this quantity was shown to be the most accu-
rately inferred in tests on one-dimensional simulations (Paper I),
and also agrees well between the different data samples and fixed
values of Z� used in this work.

When placing constraints on the surface density of a thin
dark disk, we used a similar line of reasoning: a thin dark disk
was allowed to the extent that there is room for its contribution
to Φ(400 pc). We use the same model for the baryonic matter
densities, and a dark matter halo density coming from indepen-
dent studies of the Milky Way circular velocity curve (to use
the halo density derived in this or any other work that analy-
ses the vertical motion of stars would be circular reasoning).
In order to be conservative when placing thin dark disk con-
straints, we assumed a local halo dark matter density of ρDM,� =
0.009 ± 0.003 M� pc−3, which is a somewhat low value with a
large uncertainty2. A thin dark disk with a surface density of
ΣDD = 1 M� pc−2 and a scale height of hDD = {20, 50, 100} pc,

2 In a recent review on the local dark matter density by
de Salas & Widmark (2020), the measurements based on the Milky Way
circular velocity curve lie in the range 0.008–0.013 M� pc−3, which is
lower than the range of 0.011–0.016 M� pc−3 for more local analyses.
For example, de Salas et al. (2019) report 0.008 ± 0.0008 M� pc−3 or
0.001±0.0001 M� pc−3 depending on the baryonic model, Cautun et al.
(2020) report 0.009±0.0005 M� pc−3, and Petač (2020) reports 0.0096±
0.0005 M� pc−3 or 0.0010 ± 0.0005 M� pc−3 depending on the shape of
the dark matter halo. With this in mind, ρDM,� = 0.009 ± 0.003 M� pc−3

is a conservative choice when constraining the thin dark disk sur-
face density, because the assumed ρDM,� has a low mean and a large
uncertainty.
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Fig. 4. Spirals in the (Z,W)-plane, for data samples s = {−4,−1, 0, 3}. They are plotted in terms of the relative difference between the data
histogram and the fitted bulk density distribution, as defined in Eq. (25). The vertical dashed lines correspond to the boundaries of the θ mask
function defined in Eq. (21).

assuming a matter density profile

ρDD =
ΣDD

4hDD
cosh−2

(
z

2hDD

)
, (26)

contributes with {9.9, 8.9, 7.2} km2 s−2 to Φ(400 pc).
When inferring the local dark matter density, as well as set-

ting constraints on the thin dark disk surface density, we only use
the information coming from the nearby data samples, namely
|s| ≤ 3. The reason for this is that the more distant data sam-
ples have less statistics and suffer from more extreme selection
effects. This is seen in for example Fig. 4, where the spiral of
data sample s = −4 is poorly defined. Our method does seem
to have worked well even for those data samples, but we still
found it more cautious to exclude them. When summarising the
results of several data samples and a fixed value of Z�, the total
weighted mean was calculated according to

{weighted mean} =

∑3
s=−3{mean}s × {variance}−1

s∑3
s=−3{variance}−1

s

, (27)

with a total statistical variance of

{total variance} =
1∑3

s=−3{variance}−1
s

. (28)

For the respective values of Z�, the summary results of data
samples |s| ≤ 3 was

Φ(400 pc) =


304.8 ± 4.0 km2 s−2, for Z� = 0 pc,
295.3 ± 3.7 km2 s−2, for Z� = 10 pc,
305.2 ± 3.9 km2 s−2, for Z� = 20 pc.

(29)

These three different values of Z� have a total mean value
of 301.8 km2 s−2, and the dispersion between them amounts
to 4.6 km2 s−2. In order to account for the statistical variance
given a fixed value of Z�, as well as the variance that arises
from changing Z�, we added these measurement uncertainties
together according to√

4.02 + 3.72 + 3.92

3
+ 4.62 km2 s−2 = 6.0 km2 s−2. (30)
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Fig. 5. Inferred matter density distribution (left panels) and inferred gravitational potential (right panels), for data samples s = {−2, 0, 2}. The
black lines correspond to the mean values for different fixed values of Z�. We also show 1σ bands of the inferred results and the baryonic density
distribution model.

Hence, for the joint analysis of samples |s| ≤ 3, we inferred
Φ(400 pc) = 301.8 ± 6.0 km2 s−2 and ρDM,� = 0.0085 ±
0.0039 M� pc−3. The dominant component of this uncertainty
comes from the baryonic model (0.0037 M� pc−3), which was
added in quadrature to the statistical measurement uncertainty
(0.0014 M� pc−3).

Using the assumptions discussed above and a dark disk scale
height of 50 pc, the likelihood of its surface density is a Gaussian
with a mean and standard deviation of −0.24 ± 2.40 M� pc−2,

which is consistent with zero. Negative values for this quan-
tity are unphysical and therefore excluded; the upper limits
are given by the likelihood ratio relative to the null hypothesis
(i.e. ΣDD = 0 M� pc−2). We obtain an upper 68% (95%) con-
fidence limit of 2.17 M� pc−2 (4.56 M� pc−2). For scale heights
of 20 pc and 100 pc, the limits are 1.96 M� pc−2 (4.13 M� pc−2)
and 2.71 M� pc−2 (5.59 M� pc−2), respectively. Even if we would
have been extremely conservative and assumed no halo dark
matter, we would still have placed the most stringent constraints
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Fig. 6. Inferred gravitational potential at height z = 400 pc for all data samples (s from −5 to 5 and
√

X2 + Y2 < 300 pc). The markers and vertical
lines show the mean and standard deviations as derived from jackknifing, where the colours represent the three fixed values for the height of the
Sun (Z� = {0, 10, 20} pc). The grey band represents the baryonic model, including a dark matter density of 0.011 ± 0.003 M� pc−3.

on a thin dark disk surface density, corresponding to an upper
68% (95%) confidence limit of 6.02 M� pc−2 (7.93 M� pc−2),
assuming a scale height of 50 pc.

As a comparison, for the data sample with a spatial cut
(
√

X2 + Y2 < 300 pc), the inferred values were

Φ(400 pc) =


304.2 ± 9.7 km2 s−2, for Z� = 0 pc,
314.1 ± 9.0 km2 s−2, for Z� = 10 pc,
320.3 ± 8.5 km2 s−2, for Z� = 20 pc.

(31)

Using the same analysis as above, applied to this one data
sample, we obtained Φ(400 pc) = 312.9 ± 11.2 and ρDM,� =
0.0111 ± 0.0045 M� pc−3. This result is statistically consistent
with the one presented above, although slightly higher in both
value and uncertainty. For a thin dark disk with a scale height
of 50 pc, the upper 68% (95%) confidence limit is 3.62 M� pc−2

(6.25 M� pc−2).

7. Discussion

Using a new method that extracts information from the time-
varying structure of the Milky Way phase-space spiral, we have
been able to infer the vertical gravitational potential of the solar
neighbourhood for eleven statistically independent data samples.
Using these results and a model for the total matter density of
baryons, we have inferred the local halo dark matter density, as
well as placed the most stringent constraints on the surface den-
sity of a thin dark disk.

Overall, the inferred gravitational potential of the respective
data samples agree well, at least in terms of Φ(400 pc), which
was deemed to be the most robustly inferred quantity in tests on
one-dimensional simulations in Paper I. The results are consis-
tent, despite the fact that the data samples are subject to very
different selection effects and differ significantly in their number
density profiles as a function of height. For data sample s = 0, we
see a high stellar number density, especially close to the Galactic
mid-plane; conversely, for the distant data samples, most notably
|s| ≥ 4, the mid-plane number density is low. Despite this, the

different data samples gave rise to very similar results; this illus-
trates that our method is robust with respect to such systematics,
and that selection effects are absorbed by the bulk density distri-
bution.

The inferred matter density distributions agree fairly well
with the baryonic model, especially for Z� = 0 pc and s ≤ 1.
This can be compared with Widmark (2019) and Widmark et al.
(2021a), where they used a similarly free model for the total den-
sity, but weighed the Galactic disk using a distribution function
fitting method based on the assumption of a steady state. For
several statistically independent stellar samples, they inferred a
matter density distribution that was very pinched (i.e. with a high
mid-plane value and quickly decreasing with height) and argued
that their result must be biased by time-varying dynamics. The
reason that the results of this work agree better with the baryonic
model is probably explained by the fact that the different meth-
ods are subject to different systematic biases. For example, the
method used in this work is not as sensitive to the distribution of
stars with low vertical energies (Ez . Φ(300 pc)).

Using summary statistics of seven data samples (fulfilling
|s| ≤ 3), we infer a local halo dark matter density of ρDM,� =
0.0085 ± 0.0039 M� pc−3. This is a somewhat low value com-
pared to most other analyses of the vertical motion of stars
in the solar neighbourhood (although strictly speaking not dis-
crepant as our uncertainty is fairly large), and more in line with
more global estimates, such as those coming from the Milky
Way rotational velocity curve (de Salas & Widmark 2020). We
also set an upper 68% (95%) confidence limit of 2.17 M� pc−2

(4.56 M� pc−2) to the matter density of a thin dark disk with a
scale height ≤ 50 pc. This is significantly stronger than any pre-
vious constraints on a thin dark disk (Schutz et al. 2018 set an
upper 95% confidence limit of roughly 10 M� pc−2, for a scale
height of 50 pc). The statistical uncertainties on the inferred halo
dark matter density and thin dark disk surface density are dom-
inated by the uncertainty associated with the baryonic model.
Therefore, in order to make further progress, it is crucial to
revisit and improve on the baryonic matter density distributions
of the solar neighbourhood. As discussed in Sect. 5, it is not
implausible that the baryonic model used in this work suffers
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from significant systematic errors, potentially larger than the
reported statistical uncertainties.

For the data sample that only had a cut in spatial coordi-
nates, according to

√
X2 + Y2 < 300 pc, the results agree with

the main analysis to within 1σ, both in terms of Φ(400 pc) and
ρDM,� (where only the latter includes uncertainties from the bary-
onic model). The results agree particularly well for Z� = 0 pc.
This data sample is not statistically independent from the main
analysis and was only included as a test of consistency. We con-
sider this result less reliable, due to not having any cuts in angu-
lar momentum and thus including stars with strongly elliptical
orbits.

In this work, we did not attempt to infer the height of the
Sun with respect to the Galactic mid-plane (Z�), mainly because
of strong selection effects. Rather, we accounted for the uncer-
tainty of this parameter by producing results for three differ-
ent fixed values of Z� = {0, 10, 20} pc. Interestingly, studies
based on the more local spatial volume, within a few hundred
parsec, tend to prefer lower values (0–10 pc, e.g., Buch et al.
2019; Widmark et al. 2021a; Gaia Collaboration 2021b); con-
versely, higher values typically come from studies that reach
several kilo-parsec in height (e.g., Jurić et al. 2008; Yao et al.
2017; Bennett & Bovy 2019). This discrepancy indicates that the
Galaxy is not perfectly mirror symmetric and that an estimate of
Z� can depend on how this quantity is defined. With this caveat in
mind, a comparison between the baryonic model and the inferred
matter density distributions seems to suggest that our results are
vaguely in favour of Z� = 0 pc, which is in agreement with other
local studies.

The spatial reach of the method employed in this work is
mainly limited by the completeness of the radial velocity sam-
ple. This will improve with Gaia’s future data releases, most
immanently with the full third data release (EDR3 only contains
a cleaned version of the second data release’s radial velocity
sample). Apart from such improvements to the data, it should be
possible to use the astrometric information of stars even when
the radial velocity is missing; especially for more distant parts
of the Galactic disk, stars close to the Galactic mid-plane have
a vertical velocity that is well approximated by their latitudinal
proper motion. With careful data treatment, we might be able
to circumvent the issue of missing radial velocity measurements
and weigh different parts of the Galactic disk with high preci-
sion.

In order to perform more careful tests and further refine
this new method, we plan to apply it to high resolution three-
dimensional galaxy simulations. To reproduce well-resolved
phase-space spirals requires simulations with roughly a bil-
lion particles, which only very recently have become feasible
(Asano et al. 2020, Hunt et al., in prep.).

8. Conclusion

For the first time, we have employed a method for weighing the
Galactic disk using the time-varying structure of the Milky Way
phase-space spiral. Our method extracts information from the
shape of the phase-space spiral and is complementary to tra-
ditional methods that are based on the assumption of a steady
state. Using a baryonic model, we have inferred a local halo
dark matter density of ρDM,� = 0.0085 ± 0.0039 M� pc−3 =
0.32±0.15 GeV cm−3, which is consistent with other recent mea-
surements. Using conservative assumptions, we have been able
to place the most stringent constraints on the surface density of
a thin dark disk: a 95% confidence limit of roughly 5 M� pc−2,
assuming a dark disk scale height ≤ 50 pc.

For both the halo dark matter density and the surface density
of a thin dark disk, the statistical uncertainty is dominated by the
baryonic model. As discussed in Sect. 5, this model is somewhat
outdated and could potentially suffer from significant systematic
errors, both in terms of its stellar and gaseous components. We
plan to update this model using new data in the near future.

Our method places strong constraints on the weight of the
Galactic disk and its dark sector components. In terms of its pre-
cision, it is highly competitive with respect to methods based
on the assumption of a steady state. In a general sense, this illus-
trates that time-varying structures, that break the assumption of a
steady state, are not solely obstacles to dynamical mass measure-
ments, but can in fact be assets containing useful information.
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Appendix A: Plots of the remaining data samples

In this appendix, we present the plots corresponding to Figs. 3,
4, and 5, for the data samples that were not already shown in

Sect. 6. We show the data histograms in Fig. A.1, the extracted
spirals in Fig. A.2, and the inferred matter density distribution
and gravitational potential in Fig. A.3.

Fig. A.1. Same as Fig. 3, but for data samples s = {−5,−3,−2, 1, 2, 4, 5} and
√

X2 + Y2 < 300 pc.
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Fig. A.1. continued.

Fig. A.2. Same as Fig. 4, but for s = {−5,−3,−2, 1, 2, 4, 5} and
√

X2 + Y2 < 300 pc.
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Fig. A.2. continued.

A86, page 16 of 19



A. Widmark et al.: Weighing the Galactic disk using phase-space spirals. II.

Fig. A.3. Same as Fig. 5, but for s = {−5,−4,−3,−1, 1, 3, 4, 5} and
√

X2 + Y2 < 300 pc.
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Fig. A.3. continued.
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Fig. A.3. continued.
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